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IVb2

La charge de rupture de dalles en béton armé
Die Bruchlast von Eisenbetonplaiten

The ultimate strength of reinforced concrete slabs

K. W. JOHANSEN
Dr techn. Copenhague

Ii. is evident thal in the determination of the ultimate load the theory
of elasticity is inapplicable. Already after the development of cracks and,
more particularly, after yielding of the reinforcement has begun, the state
is not elastic any longer. As the working load has to be fixed in proportion
to the ultimate load, a theory of the vielding or plastic state of reinforced
concrete slabs is desirable. An outline of the « theory of lines of fracture »
will therefore be given in the following.

Let us consider a slab with un1f01m reinforcement in two directions
at right angles to each other. When the reinforcement is evenly distributed,
the yield value will be the same in all sections of the slab. The yielding
will begin where the values will have maximum magnitude, and proceed
along lhe lines of fracture. At the ultimate load the yielding has reached
the edfres, and along the lines of fracture the bending moment m per unit
length is constant and equals the yield value correspondmOr lo the reinfor-
cement. This moment m is a maximum value in relation to the moments
in all sections in the proximity of the lines of fracture. The lines of fraclure
divide the slab into several parts, and if now we assume the elastic
deformations of these slab parts to be insignificant in comparison with
the plaslic-deformations along the lines of fracture, the slab parts may be
considered as plane. It then follows that the lines of fraclure are straight
lines. On the said assumption the deformation may be considered as angular
rolations of the plane slab parls about the supporls, and consequently the
line of fracture between two slab parls must pass through the point of
intersection of the axes of rotation of the two slab parts. Figure 1 shows
some lypical figures of fracture of slabs supported on four, three, and two
sides, as well as on two sides and by one column, and on one side and
by two columns, respeclively. The axes of rotation lie in the supporled
sides and pass lhI‘OU”‘]I the columns. The final delermination of the figure
of fracture and the breaking moment m is achieved with the condmons
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of equilibrium for the individual parts of the slab. For recording these
condilions it is necessary to know the shearing forces along the lines of
fracture. m being a maximum value in relation to the moments in sections
in other directions through the same point, it is one of the principal
moments, that is to say, the twisting moment is zero along the lines of
fracture. We then find — as is also the case with a beam — that the shearing
force is zero because m is maximum in relation to the moments in sections
parallel to the section of fracture through adjacent points. Thus, only the
bending moment m acls in the section of fracture, and the total moment
may be represented by a vector equal to the line of fracture. The resulting
moment for a part of the slab is found by vector addition.

Example 1. — A triangular slab with evenly distributed load is simply supporled
along its sides. According to the above, the figure of fracture will be as shown in
figure 2. Let us consider the slab part at a. In the line of fracture OB acts the
moment m - BO, and in _the line of fracture OC the moment m - CO. On the whole
slab part acts m (BO 4 OC) = m - BC = m . a. The moment about a gives the
condition of equilibrium m . a = 1/6 wa - h*, or m = 1/6 wh?®,. Correspondingly,
we get for the other slab parts m = 1/6 wh® and m = 1/6 wh*, i.e.,

h,=h, = h_,=r, where r is the radius

of the inscribed circle. The breaking mo-
ment is m =1/6 wr?, where w is the
ultimate load.

For all polygons circumscribed the
circle with the radius r (fig. 3), it
will be seen dircctly that also here
we have m=1/6 wr?; for the square
having the side a, specially m=1/24 wa*.
(For reclangle see INgemsLEv, Inslitulion
of Struclural Engineers’ Journal, 1923.)

Fig. 2.

The ultimate load being n limes lhe working load, and the breaking
moiment n times the working moment, where n is the coefficient of safeiy,
we can also let m and w mean the permissible values.

With a free or simply supporled edge, both the bending moment and
the twisting moment should strictly speaking be zero. This involves that
the lines of fracture should be al right angles to the edge. This is really
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the case (fig. 4), but only quite close to the edge do the cracks suddenly
turn so as to be at right angles to it.

As is known from the theory of elasticity for thin slabs, there are
also here difficulties with the twisling moment at the edge. These diffi-
culties are overcome by transforming the twisting moment into shear
forces, as shown in figure 5 and first indicated by Kelvin and Tait. While
the two single forces m, neutralize each other when the slab is considered
as a whole, they must be considered as acting each on its slab part when
the equations of equilibrium for the individual slab parts are to be deve-
loped. The principal moments being m and m, (fig. 6), the bending
moment along the edge will according to the above be

m cos® z -+ m, sin® « = 0
and (he twisting moment
m, = (m —-m,) cos « sin o = m col a, as M, = — mcot” « .

If we make the same transformalion for plastic slabs, this will correspond
lo a rectilinear extension of the line of fracture to the edge (fig. 4). The
single force m cot « is then a static equivalent of the twisting moments
and the shearing forces on Lhe stretch s. Incidentally, this force the edge
force, can also easily be deduced directly from the equation of equilibrium
for the infinitesimal triangle AOB shown in figure 6. As m is a maximum
value, the adjacent section OB has the same m, and as the bending moment
is zero along AB = ds, the resultant for the whole triangle

m (AO-LOB) =m.-AB=m.ds.

The moment about BO gives then, when magnitudes of a higher order arc
ignored,

m-ds-cosa=—m,-ds-sin« ; m,=—mcoto .
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Ezample 2. — A rectangular slab with evenly distributed load is simply supported
on two adjacent sides and free on the two others (fig. 7). The figure of fracture shown

gives the edge force m . ——z— The moment abhout a for the slab part A gives

1 o T
ma = & waz —+ me—--2,
and the moment about b for the slab part B gives X c
m-x—}—m%-a:%wba——é—wa’z' A , //
/
From these two equations of equilibrium are found : Y \\ //
- a ~
a 2
IS VRTINS 7
~
2
2
m :i wh b>a. F_b 7
ig. 7.
14 ]/ 1492 az
In the diagonal section shown is found the negative moment
m' = ! wn? = ! w e b
6 ) a®-4 bt ’

It can be proved quite simply that the number of equations is always
equal to the number of unknowns (IABSE, Publications I, 1932, p. 283).
The equations are not linear, so that superposition cannot be applied, but it
can be proved that it is safe to superpose loads acting jointly (that is, do
not counteract each other).

Should the solution of the equations be too cumbersome, the following
method can always be used in practice : By the principle of virtual work,
m can be determined directly for an arbltmr]]v chosen figure of fﬂclure
(loc. cit., p. 284). The real value of m being a maximum value the proper
figure of fracture will be the one making the corresponding m the maxi-
mum. As the variations in the proxi-
mity of a maximum are very small, a
fair approximation for m can be ob-
tained by estimating the figure of
fracture. By the equations of equili-
brium for the individual slab parls
the estimated figure of fracture may
be improved and a better approxi-
mation be attained. With a little ex-
perience il is possible Lo estimale im-
mediately the figure of fracture so
well that the corresponding m will
differ only a few percent from the
real value.

In the development of the equa-
tion of work advantage is taken of the
fact that the work of the moment
vector M in the rotation 0, which is
likewise a vector, is the scalar pro-
duct (M) =— M0 cos (M). If the vec-
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lors are resolved into components along two axes which are at right angles
to each other, we get the expression (M§) = M.8, -+ M,6,. The rotation is
delerinined, for instance, by the sinkings as shown in flgure 8.

Example 3. — We will apply the equation of work to the preceding example. We
lower C d; thereby the slab part A will get the rotation 0, = d + ; and the slab part B,

(?B—o—a about the supports. The virtual work \\11[ be made M6, + M 0, =0,
i.e.,

(ma = % wuxg) % + (m-:v — % wba® —{—% wa‘-':r?) % =0,

which gives :

X

1 3_'5"
m:-G—wab p b

T T3

The shearing forces do not contribute, since the two slab parts do not move
vertically in relation to each other. The real figure of fracture is now found by the con-
dition dm -+ dz — 0, which gives the result previcusly found

a y
If we use as approximation z = a, we get m = 1/12 wab (3—7). For b = a

we then have m=—wab : 6, exactly wab : 5.55. For b—=2 a we get m—wab : 4.8, exactly
wab : 4.72. The error is 7.5 and 1.6 percent, respectively, which is of no practical
consequence.

Example 4. — A square slab, simply supported on two adjacent sides and by one
column in the opposite corner, is loaded with a single force P in the centre.

The figure of fracture will be as
in figurc 9. When the force P is \

lowered 6 =1, the slab parts A get the \ Fig. 9.
\
rotations 1 : g—: 2 : a, while the rola- L
\ AN
tion for the slab part B has the com- al ) B
ponents 1 :a, as h, =h =a (fig. 8) Y I\\
and the moment has the components \\\ I N
2
3 ma Hence is obtained the cqua- \\ : a \
tion of work : Z ‘ i \\
7 |
2
P.l =2.-ma- — 42 ?ma% 7 : 8 \\
16 4 A WPy #a \
=3 M g ~_ 1" -
3 7 - \
" A ga| TN
. B
For fixed-end slabs and slabs : G a

which are continuous over sup-
ports are assumed lines of fracture over the supports wilh negative
momenls corresponding to the upper reinforcement of the slab.

When the reinforcement is uniform, but not equal in the two ortho-
gonal directions, so that the corresponding yield values are m and um,
m is the same as in a slab with equal yield values m, and affines to the
given slab in the proportion 1 : |/ and with the same load per unit of area.

‘The theory is very well verified by the tests, both as regards the figures
of fracture and the ultimate loads.
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Résumé

Ce mémoire donne une description de la théorie des lignes de rupture
de dalle en béton armé. On peut déterminer ces lignes de ruplure géomé-
triquement grace au fait que les déformations élastiques sont faibles com-
parées aux déformations plastiques. Le moment fléchissant atteint sa
valeur maximum le long de ces lignes, ce qui permet de déterminer les
efforts transversaux et de torsion. lls sonl nuls sauf au bord libre. On en
déduit les conditions d’équilibre pour les surfaces partielles limitées par
les lignes de rupture connaissant ces lignes de rupture et le moment de
rupture. Une méthode approchée peut étre déduite du principe du travail
virtuel. Cette méthode est illustrée par des exemples.

Zusammenfassung

Eine Beschreibung der Bruchlinientheorie fiir Eisenbelonplatten wird
gegehen. Miltels geometrischer Bedingungen, welche aus der Tatsache fol-
gen. dass die elastischen Deformationen unbedeutend sind gegeniiber den
plastischen, kann die Form der Bruchfigur bestimmt werden. Da das
Biegungsmoment lings der Bruchlinien einen Grosstwert hat, kénnen die
Querkrifte und die Drillungsinomente bestimmt werden. Sie sind null,
ausgenommen an einem freien Rand. Hierauf konnen die Gleichgewichls-
bedingungen aufgestellt werden fiir die Teilflichen, in die die Platte durch
die Bruchlinien geteilt wird, wobei die Bruchfigur und das Bruchmoment
bekannt sind. Eine einfache Niherungsmethode kann durch die Anwen-
dung des Prinzips der virtuellen Arbeit entwickelt werden. Die Theorie
wird durch Beispiele illustriert

Summary

An outline of the theory of lines of fracture of reinforced concrele
slabs is given. Through the geometric conditions which are a consequence
of the fact that the elastic deformations are insignificant as compared with
the plaslic ones the character of the figure of fracture can be determined
(fig. 1). The moment in the lines of fracture being a maximum value, the
transversal force and the (wisting moment can be determined. They
become zero, excepl al a free edge. The equations of equilibrium for the
individual parts into which the lines of fracture divide the slab can then
be set up, whereby the figure of fracture and the breaking moment are
determined. A simple method of approximation can be indicated by appli-
cation of the principle of virtual work. The method is illustraled by
examples.
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