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IVbl

Introduction d'une théorie générale
pour l'étude des voiites minces de translation

Eine neue allgemeine Theorie von Translationsflachen

Introduction of a general theory of shells of translation

L. BROGLIO

Rome

Si on déplace en translation une courbe I', contenue dans un plan
vertical le long d’une autre courbe I's contenue dans un plan vertical
orthogonal au précédent, on obtient une surface donl la projection sur un
plan horizontal est rectangulaire. Si on pose ladile surface sur le périmétre
de sa projection au moyen de quatre tympans, on réalise le schéma géo-
métrique d’une « voiite de translation » (fig. 1).

Pour 1’étude d’un type de toiture si important dans les applications,
dans I’hypothése d’un régime statique & membrane, il existe un procédé
connu, relaté par M. Fliigge dans son traité classique ('), duquel nous
allons donner un bref résumé dans ce premier paragraphe.

En un point générique P (fig. 1) de la surface désignons par f, et fs
respectivement les tangentes aux courbesl’y et I'y ; soient o et § les angles
que t, et t; forment respectivement avec ses projections horizontales ;
assumons comme repere en P le triédre oblique 1., ?,, z, désignant par z
la verticale dirigée vers le bas. Soient X, Y, Z les composantes de la charge
extérieure par unité de surface, et soient encore N.., Ny, N les efforts
intérieurs de la structure, a savoir la traction dans la direction ¢, , la
traction dans la direction ¢, et le cisaillement selon les deux directions
obliques t., f. , qui se rencontrent sous l'angle « = arccos (sin¢ -sin ).
Désignons enfin par r, =r (o) et ry=1,(0) les rayons de courbure de
I'yetdel,.

Le procédé que nous allons résumer consiste d’abord a exprimer
mathématiquement les deux conditions suivantes : équilibre de toute por-
tion élémentaire de volite comprise entre deux I', et deux I'y infiniment
voisines, et incapacité de chaque tympan (qu'on imagine infiniment
rigide dans son plan) a soutenir des actions orthogonales a luj.

(}) W. Frbcee, Statik und Dynamik der Schalen, Berlin, Springer, 1934, pp. 91-100.
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Les conditions d’équilibre selon {., t;, z sont respectivement don-
nées par (*) (fig. 2):

0 r(? aN':.Q - ‘
T Py SO8 )= T~ < 008 & = Kok oS g il = U (1)
aa_e(Nﬂcose)+%%0059+Yr9c0358ina::0; (2)

(N, cos o) ry cos®@ - (N cos 0) r, cos*o + Zr,ry cos’o cos* sin e =0 . (3)

Les conditions sur les tympans sont respectivement (°):

Le long des deux cotés ¢ = constante

N, =0; (4)
Le long des deux cOtés 0= constante
Ng=10. (5)

Comme deuxi¢me pas, le procédé en question réduit le sysiétme de (1),
(), (3), (4), () a contenir une seule inconnue N.g. Dans ce bul, il
faut d’abord dériver (3) par rapport & ¢ et a 4, tenant compte des expres-
sions que (1) et (2) donnent respeclivement pour

0 0
, 2 T ’ N 2
I'yCOS 9-—-8? (Ny,cosv) et r. cos’o 3 (Ng cos ),

(®*) Loc. cit., équalions (54a, 54b), et (53¢).
(3) Loc. cit., p. 94.
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de sorte qu’on arrive i 1’équation (*)

-. a . BN?‘B 0 . aN.qu
Iy COS ¢ =0 (cos b _73—9—) -+ rycos G—é? (cos © ——82?—)
= _82.89 (Zr, rq cos’s cos®f sin @) — r, cos ¢ ;e— (X1 cos® 8 sin a)

0 .
—rgcos 8 . (Yr,cos*osina). (6)
En outre, si on dérive (3) par rapport a2 § en tenant compte de (4)
et qu’on substitue dans (2), ou si on dérive (3) par rapport a ¢, en tenant
compte de (5) et qu’on substitue dans (1), les conditions aux limites
deviennent :

Pour ¢ = constante

Ngy 1 9

oo recos’o cos i 08

(Zr, rocos’o cos*l sina) — Yrgsina; (4

Pour 0= constante

ONgs 1 P , vn o ’
M T cos’icos s 0s (Zr, rg cos’o cos®*f sin a) — Xrgsina. ()

Comme troisieme et dernier pas, il faut procéder a l'intégration de
I’équation (6) avec les conditions aux limites (4') et (5'). Au point de vue
mathématique ce probléme présente des difficultés trés considérables ; par-
tant, les résultats oblenus par la méthode rappelée sont peu nombreux et
se réferent (°) surtout au cas des directrices I'y, 'y circulaires, et de la
structure bissymétrique, chargée symétriquement uniquement par des
forces verticales, variables selon la loi

Z sin o — constante .

Fonction des efforts pour la vofite de translation

Considérons le cas général d’une volte de translation non-syméirique
par rapport & n’importe quelle directrice et chargée de maniére quel-
conque. La non-symétrie de la structure permet d’étudier une tloiture
posée sur des murs de hauteur inégale ; la faculté de choisir le type des
directrices présente & son tour un intérét parce qu’elle permet un choix
plus large au point de vue économique et esthétique et parce qu'on peut
ainsi satisfaire aux exigences de diverses natures, acoustique ou optique,
éventuellement imposées pour la piéce a couvrir ; enfin, le cas de la charge
répartie de n’importe quelle fagon (en particulier, celui de la charge con-
centrée) a de l'importance pour une étude plus compléte de la vouite ou
pour l'examen des structures minces de translation pour des cas plus
complexes que celui d'une simple toiture.

Désignons (fig. 1) par a et b les deux dimensions de la projection
horizontale de la votite. Assumons comme repére un triedre cartésien, ayant
]'origine & un des sommets du rectangle, et disposons les axes z, y selon

(%) Loc. cit., éq. (55).
(3) Loc. cil., p. 103.
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les cOtés a et b dudit rectangle : la direction z, comme on I'a dit au para-
graphe précédent, est verticale, positive vers le bas. Les relations différen-
tielles entre les coordonnées « et § du paragraphe précédent et les nouvelles
coordonnées z, y sont naturellement les deux suivantes :

(_1.7:__*" COS % Ay
de ~ ¢ T db

Les équations (1) et (2) du paragraphe précédent, qui expriment
I’équilibre d'un élément de voiite dans le plan tangent deviennent alors :

=rycosb. (7)

Th—
L(N?cosg)—{— 8(\ 8 cos § - X sin a = 0; (8)
a( LB) " P
—(Neco ) +——"cosec+ Ysinz=0. (9)

Un ensemble de conditions nécessaires pour la résolution du probléeme
examiné est donc constitué par (8), (9), (3), (4), (5). On constate que les
équations (8) et (9) sont satisfaites si on introduit une fonction des
efforts @ telle que :

2
N.i,cos?_:(a q: + \(y)— (z, y))cosﬂ (10}
N, cosﬁ:(%— —{——‘LV(J:)%?(;E, y))coscp; (11)
N (azq’ ‘Kmdy+—+ [ Y@ds)-LC (12
w=—|m 7 [ Xody+5 [ Y@as)tc a2
posant
= 1 PO 1 2 .
X(z,y)_coSe [ (Xsino)yde; Y (r,y)=— ey [ (Ysina)dy. (13)
o Jo
X (y) = cosﬁ / (X sin @) dz = X (a,y); "
Y (&) == cosgo /". (Y sina) dy =Y (y,b) .

et désignant par C, dans 1’équation (12), une constante arbitraire.
Si on substitue les relations (10), (11), (12) dans les équations (3),
(4), (5), on en tire 1'équation :

1 otd 1 otd
rocos*t  dz? + e cos’c 0y
L sin a 1 1 Yo = :
o ZCOSOCOSB+IL()SO((LX ‘()—}_1000539 (FYMY)‘ (15)
avec les conditions de rive :
Pour z=a et =0
o'Pp
oy =0; (16)
Pour y=>b et y=0
P :
BANNTTY (17)
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h ry Sinsl doY —ei

Fig. 2. Fig. 3.

D’ailleurs il est bien évident que les relations (10), (11), (12) déter-
minent la fonction ® & une fonction pres :

U(x, y)=k + k.x + kyy + Ky, (18)

ou ky, k., ky, k, sont des constantes arbitraires. IEn effet, si on ajoute la
fonction W & @ pour un choix arbitraire de k,, k., k;, Fk;, les équations
(10), (11), (1) restent inchangées, rappelant que C est une constante
arbitraire elle aussi. Alors il suffit de choisir k,, k., k,, k, d’une telle
fagon qu’elles annulent la fonction ® dans les quatre sommets du recltangle
de base, & savoir, dans les points (0, 0), (a, 0), (a, b), (0, b) pour que les
conditions (16) et (17) puissent étre écrites :

Le long de toute la limite
b=0. _ (19)

Si z,=12,(x) el z,=12z4(y) sonl respectivement les équalions carté-
siennes d une quelconque ', dans un plan y= constante, et d’une quel-
conque I'y dans un phn x—constante on a naturellement, si on suppose

partout ¢ < ,—)- , 0 —

1 d’z,
—— | |=r@; (20)
1 d2Z9
—_— = . 21
rs cos’d ‘ dy’ A W) 1)
Rappelant en oulre que :
7% — Z sin o (22)

cos © cos b
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n’est que la composante verticale de la charge par unité de surface de la
projection horizontale de la voiite, et posant

q(z,y)=17* + B x)( X = \)+A(y)(%?—'\?) (23)

on lire de (15)

o' d o' P
e | B(.’B)—W-——‘—(I(Ji,y) (24)

Le probleme relatif & la détermination de la fonction des efforts est
ainsi complétement défini: il s’agit d’intégrer 1’équation (24) avec la
condition a la limite (19). On voit tout de suite qu’un tel probléme équi-
vaut & déterminer les déplacements verticaux d’une membrane rectangu-
laire, fixée le long de tout son contour, soumise a la charge q(z, y) par
unité de surface et tendue par une tension constante le lonfr de chaque fil,
c’est-a-dire, variable selon la loi A (y) pour les fils par'llleles a l'axe =z, et
selon la loi B(z) pour les fils paralleles & l'axe y [il faut remarquer que
A(y) et B(x), a cause de (20) et (21), sont essentiellement positives]. On
a ainsi une précieuse analogie, par laquelle le calcul de la votite de trans-
lation se transforme dans le calcul d'une simple membrane appuyée au
contour. On peut tirer parti de cette analogie pour déterminer la fonc-
tion @ par la voie expérimentale, comme on le dira ensuite. Avant
d’étudier I'intégration de (24) avec la condition (19), il vaut mieux de
compléter la mise en train générale du probléme par une observation rela-
tive & l'effective détermination des efforts N,, Ny, Ny par la fonction .

A(y) ==

Les conditions de compatibilité pour les voiites minces

Lorsqu’on a déterminé la fonction des efforts ® au moyen de (24) et
(19), on tire immdédiatement de (10), (11) et (12) les efforts N, Ny et N,.
Mais ce dernier effort est en réalité déterminé par (12) & une constante
arbitraire C prés. Ce fait est tout logique, et dérive de la circonstance
que les conditions d’équilibre (1), (2) et (3) et les conditions de rive (4)
et (5) ne constituent pas en général un ensemble de conditions suffisantes
pour la compleéte determnntlon des efforts N,, Ng, N, dans la voute.
En fait on voit immédiatement que (1), (2), (3), (4), (5) sont vérifiés
méme apres l'addition de n 1mp01te quelle constante arbitraire & N,
En un mot, la volte de translation n’est pas, en général, un systéme 1so—
statique, c’est-a-dire une structure ou il est p0551ble de déterminer les
efforts au moyen des équations d’équilibre seulement, mais c’est un sys-
téme hyperstatique, pour la résolution duquel il est nécessaire d’adjoindre
des conditions de compatibilité aux conditions d’équililne Si les efforts
intérieurs sont N,, Ny, N, comme on 1'a supposé, I’ hypelshtlcne de la
volite de translation se réduit & un seul parametre, ¢’est-a-dire & une cons-
ltante arbitraire & ajouter a N.;. Comme les équations (24) et (1Y) sont
une traduction fidele de (1), (2) (3) et de (4), (5), on conclut que néces-
sairement la connaissance de la fonction ® doit rendre déterminés les efforts
N,, Ny, N.y & une constante arbitraire prés a ajouter & N,;. Pour com-
pléter le calcul des efforts N.,, Ng, N.o, lorsqu’on a detenmne d par (24)
et (19), il est suffisant de déterminer la valeur de la conslante, qui parait
au deuxiéme membre de (12). Si la structure est symétrique et chargée
symétriquement, pour des raisons de symétrie, N.; doit s’annuler sur le
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plan de symétrie, et la question est toute résolue : cela veut dire que la
voltle symétrique, chargée symétriquement, devient isostatique par 1’ad-
jonction de la condition N. =0 aux conditions (4) et (3) en un point
quelconque de la surface appartenant au plan de symétrie. Dans le cas
général la constante C doit étre déterminée, comme on a dit, par des con-
ditions de compatibilité. A ce propos il faut observer que chaque tympan,
qui a été supposé infiniment rigide dans son plan, et infiniment élastique
dans la direction orthogonale, constitue pour les surfaces de translation
une contrainte dont les réactions ne font pas de travail par effet des défor-
mations dues a la charge : en effet les réactions qui apparliennent au plan
du tympan ne font pas de travail car le déplacement des points d’applica-
tion respectifs est nul, tandis que les réactions orthogonales audit plan ne
font pas de travail parce que ce sont elles qui sont nulles par hypothése.
Par conséquent on peut appliquer aux votites de translation le théoreme de
Menabrea : bien mieux, lorsqu’on a satisfait toutes les conditions d’équi-
libre, le théoréme de Menabrea résume toutes les conditions de compaltibilité
que la structure doit satisfaire (°). Remarquons que cette observation reste
valable méme si le régime statique de la volite n’était pas & membrane, mais
le plus général qu’il est possible. Comme les efforts N., N,, N, calculés
d’apres les équations (10), (11), (12), satisfont déja toutes les conditions
d’équilibre, on peut déterminer le parameétre C qui parait dans (12); si
I'on pose

~L —

, otd 1 = = .
NW:_(may +— / X (y)dy + / Y () dx), (25)

. . .o sz n € ’ . A
en disant que C doil rendre minimum 1'énergie de déformation de la voiite
calculée en fonction de N,, Ny, N';y 4 C; N., Ny, N’ étant des fone-
tions désormais connues.

Pour calculer le travail élémentaire de déformation que les efforis
N,, Ng, Ny produisent en une portion élémenlairer,do, rodh de la
volte, le procédé que I'on va indiquer peut réussir avantageusement. Tma-
ginons pour un moment que le parallélogramme r,d< rgdb fait partie d’un
lect'mnle dont les cOtés soient rydo —}— I’y COS o di ot rysin 2 db (fig. 3).
Supposons que ce rectangle soit soumis : @) A une traction simple, d’inlen-
sité¢ unilaire «,, dans la dlrectlon de t.; b) a une traction simple, d'in-
lensité unitaire s,, dans la direction orthogonale; ¢) & un cisaillement
simple, d’intensité unitaire =, selon les deux dlrectlons orthogonales repré-
sentées par les cOtés du rectangle. Le travail de déformation de la partie
de reclangle qui correspond au parallélogramme de cotés r.de, rydb est
alors :

_i s.*h s h ‘Tih) T R ;
dIJ_de( T - T - G dQ = (ro rysin a) dedh (26)

ou E et G sont les modules d’élasticité a la traction et au cisaille-
ment, h 1’épaisseur variable de la voite, dQ =r,rysin a de di la surface
du paralleloglamme ayant supposé nul le coefficient de contraction lalé-
rale (volte en béton armé). Les trois tvpes de tensions a, b, c ont été

(®) Cf. par exemple L. Brocrio, Introduzione d'un metodo in doppio per il calcolo delle
strutture elastiche (Atti di Guidonia, 1941).
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\

représentés dans les figures 3a, 30, 3¢. On voil ainsi qu’il suffit de poser :
gy = Nysina;

wh== Ngo + Ngcosa;

s No_ 4 2Ny

sin « tg a

Ngcos a

+ tga

pour que la superposition des troiz cas a, b, ¢ conduise au vrai état de ten-
sion de 1'élément de voite. Le travail de déformation global est alors :

17 1 N, 2 Nog Ngcosa\® 1 o
L—“ff,[lEh (Sina + ig -+ tga )+ . (Nosin a)

-+ —é—h— (N.y + Ngcos a)’] rorgsinadedi  (27)

ou l'intégrale est ¢tendue a loule la votite. Naturellement il suffil de rappeler
les équations (7) pour que l'intégrale ait comme variables d’intégration z

1
et y au lieu de ¢ et §. Comme G =5 I, en rappelant que cos o = sin ¢ sin §:

— [ e (1 ) 2 B

sin'a tg*a

(N, + Ng) N dzd
e Sl;{xﬂatggctv9 V1+1tg° o4 tg*h y . (28)
Dans 'équation (28) les fonctions
dz, dz,
o — — 3 = — 2
lgo—=—+; tgh Ty (29)
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sont des fonctions connues ne dépendant que des équations cartésiennes
26 =1z, () et z; =24 (y) des deux directrices I'y et I';. Remarquons que
dans l'intégrale (28) N, et Ny sont traitées symétriquement, exacte-
ment comme il doit étre, étant donné que dans la génération géométrique
de la voute le role de I'y et I'; peut étre échangé. Si 'on pose alors,
d’apres (25),

Nf{O - N,.{_g + C (%O)

pour que C rende minimum l'intégrale (28), il faut que
N —}—Vn I/ (dzo *dxdy
N’
0 Jo l( ) °0+91natga, + dy) Eh
2 / Zy dzy\* dzdy
.££P+mdlhwﬂd+uﬂ ER
(31)

Le probléme de la déterminalion des efforts dans la voiile est ainsi
complétement résolu. Naturellemenl si la volte est symélrique et chargée
symétriquement il faut que C=0, comme on le voit de (31), rappelant
M—}— Ny _(N@—{— Ny

sin o {g « sin®o.

que dans ce cas N'gp ainsi que )cos %

sont antisymétriques.

Solution du probléme au moyen de l'analogie de la membrane

Comme on I'a déjd observé, par 1'équation (24) avec les conditions
aux limites (19), I'éiude d'une votite mince de translation dans les condi-
tions géomélriques et de charge les plus gcnera]es est réduit & un pro-
bléme qu’'on peut dire clemenl‘nre c¢’'est-a-dire, a 1’étude d’'une membrane
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rectangulaire fixée au contour et tendue uniformément le long de chaque
fil. Ce probléme peut, en l'occurrence, étre étudié par voie expérimentale.
En effet, il suffit de substituer & la membrane un réseau de fils suffisam-
ment serré, produire par des poids une tension constante A(y) le long de
chaque fil parallele & 1'axe x et une tension constante B(x) le long de
chaque fil paralléle & 'axe y, et enfin appliquer & la membrane la charge
q(z, v), pour avoir dans les déplacements verticaux ® dudit réseau la solu-
tion de (24). L’auteur a déja obtenu par celle voie un nombre remarquable
de résultats, se servant d’une méthode de mesure des déplacements verti-
caux qui permet d’obtenir, avec une grande facilité et rapidité, une pré-
cision supérieure a une fraction de micron. L’analogie de la membrane se
présente particulierement utile pour I’étude des charges concentrées.

Solution du probléme par la méthode de l'équivalence

La solution de 1'équation (24) avec les conditions (19) peut étre faci-
lement conduite par voie analytique aussi, par des procédés d’approxima-
tions successives. Outre les méthodes de ce type déja connues, l'auteur a
étudié¢ une application particuliére & ce probléme de la méthode d’équi-
valence ("). FFaute de place, nous renvoyons a un autre mémoire pour
I’exposition du résultat obtenu par cette voie.

Cas remarquables

Le cas des actions extérieures uniquement verticales est particuliére-
ment important. Dans ce cas le probléme est réduit a intégrer 1’équation

e 5 )
A(y) "a—xe‘—l‘B(I)a—ygz— A (32)

7* étant la charge par unité de surface de la projection verlicale de la
volite. Les conditions & la frontiére sont & 'ordinaire ® =0 le long de tout
le contour. Quand on a déterminé @, il vient :

N cos e °*d ]
®cosh oy’
; cos f o *P
e cose Oz’
* P 02
o 9% C N = —
Neo oz dy 0 Ny oxdy

La constante C est donnée par 1’équation (31).

[Le cas ou les directrices sont deux paraboles est trés intéressant aussi.
Alors A(y) et B(z) sont constantes. L’équation (32) devient immédia-
lement 1’équation d’une membrane rectangulaire & tension constante, char-

(") L. Brocrio, A method of equivalence applied to the solution of problems of elasticity and
“nf Mathematical Physics (VII. Int. Cong. App. Mech., 1948).
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gée de n’importe quelle facon. Supposant que les équations des direcirices
paraboliques donnenl

d’z | 1 &z, | |
deo | N° dy* | K?
il est suffisant de poser
g T,
ke = hy =
r’ YT
cl T'= conslante, pour que (32) devienne
o' o iy
T e T T
¢quation dont la solution est bien connue. Pour 7Z% = conslanle on a en
particulier (*)
4 ] nwy
3 7 n—1 cosit
AR ~ | 7 a n=x
‘I) = T3 3 B ('—"‘ l) 2 1 — cOs (33)
= — nrb
no— 1300 (’()Hl] ___l_)_,‘

en prenant l'origine au centre du reclangle qui est la projection verticale
de la voite.

Remarque

Dans le cas qu'on vienl de considérer (directrices paraboliques et
charge verticale uniforme selon la projection horizonlale), 1'ancienne
théorie, a savoir les équalions (6) avec les conditions (4') el (8) donnent
N¢g == conslante. Si on suppose la slructure symélrique, on a Ny = 0.
Substituant dans (1) et (2) et rappelant (4) el (5) ona N.= Ny=0. En
un mol, I'équation (6) avec les condilions (4') el (5') porte, dans le cas
considéré, & une solution ou les efforls sont nuls dans toute la votte. Celte
solution n’est pas idenlique a celle qu’on oblient dans I'équation (33) et,
d’ailleurs, ne satisfait pas I'équation d’équilibre (3). Cette discordance pro-
vient du fail que I'équation (6) avec les condilions (4") et (5’) n’a pas éLé
déduite des relations (1), (2), (3), (4), (9), mais de (1), (2), (4), (d) et
par des relations dérivées de (3). Cela veut dire que (6) avec (4') et (H)
ne tiennent pas compte de Ia vraie équation d’équilibre, mais seulement de
dérivées de celle équation.

Résumé

Dans ce mémoire on inlroduit une théorie générale des volies minces
de translation, qui permet une solution compléte du probléme. Au moyen
d’un changement de variables el grice a l'introduction d’une fonction des
efforts, on réduit le probléme & 1'étude de la membrane rectangulaire

(8) S. Tivosnenko, Theory of Elasticity, New York, 1934, p. 246.
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tendue et fixée le long de son contour. La méthode permet, sans difficultés
particuliéres, 1'étude des voutes non symélriques et chargées non symétri-
quement, pour lesqquelles on démontre la nécessité d’ ad]omdre aux condi-
tions d’ equﬂlbre (qui sont les seules usitées) une condition de compatibi-
lité exprimée par le théoréme de Menabrea.

Cette méthode permet la résolution, dans le cas des charges concen-
trées aussi. La solution de la voiite aux directrices paraboliques soumise
a une charge quelconque répartie selon la projection horizontale, dans
la méthode proposée, est réduite a celle bien connue d'une membrane
rectangulaire fixée le long de son contour, uniformément tendue et char-
gée par la méme charge

Zusammenfassung

In diesem Beiirag wird eine allgemeine Theorie der Translations-
flichen entwickelt, die die vollstindige Losung dieses Problems er-
moglicht. Mittels einer Variabelntransformation und der Einfiihrung einer
Spannungsfunktion kann das Problem auf dasjenige der an den Riindern
gehallenen, gespannten Membran zuriickgefithrt werden. Die Methode
erlaubt ohne besondere Schwierigkeiten die Behandlung von unsymmetri-
schen und unsymmelrisch belasteten Schalen. Es wird gezeigt, dass fiir die
letzleren den Gleichgewichisbedingungen (welche in den bisherigen Ver-
offentlichungen allein betrachtel wurden) eine Vertriglichkeitsbedingung
hinzugefiigt werden muss, die mit dem Theorem van Menabrea hergeleitet
werden kann.

Diese Methode ermoglichl die Lésung auch im Falle von konzenltrierten
Lasten. Die Losung der Schale mil parabolischen Leitkurven und mil einer
iiber die Horizontalprojeklion gleichmissig verteillen Belastung, wie sie in
der vorgeschlagenen Methode angegeben ist, wird zuriickgefithrt auf die
wohlbekannlc Methode der an den TRiindern gehaltenen, nlelchmassw ge-
spannlen und gleichmiissig belasteten, rechtec kigen Membran,

Summary

In this paper one is introduced to a general theory of shells of trans-
lation, which provides a complele solution of the ploblem By means of
a change of variable quantities and thanks (o the introduction of
a stress funclion, the problem is reduced o the study of the rectangular
membrane, stretched and fixed along its boundary. Without any par-
ticular difficulty, the method enables to study shclls that are non-
symmelrical and non-symmetrically loaded, for which the author stresses
the necessity of adjoining to the equilibrium conditions (which are the
only ones used) a condition of compatibility expressed by Menabrea's
theorem.

This method provides a solulion, in the case of concentraled loads
loo. The solulion of a shell with parabolic directrices, subjected to a load
evenly distributed on the horizontal projection in the proposed method,
is reduced to the well known one of a rectangular membrane fixed along
its boundary, uniformly stretched and evenly loaded.



	Introduction d'une théorie générale pour l'étude des voûtes minces de translation

