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Ponts métalliques a grande portée
Weitgespannte Stahlbriicken

Developments in long span steel bridges

Rapporteur général — Generalberichterstatter — General Reporting Member

Dr O. H. AMMANN

Consulting Engineer, New York
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Considérations techniques et économiques
devant intervenir dans le choix du type de pont

Technische und wirtschaftliche Grundlagen der Systemwahl
Technical and economical considerations in the selection of type
Estimation & priori des poids — Influence de la rigidité latérale — Ulilisation d’acier

de qualité — Influence du sol de fondation — Montage.

Theoretisches Haupttrigergewicht — Einfluss der Seitensteifigkeit — Hochwertige
Stihle — Einfliisse des Baugrundes — Fragen der Aufstellung.

Influence of the weight and cost of principal system — Influence of lateral rigidity
— Steels other than ordinary mild slteel — Influences of the foundalion condilions —
Questions of erection.

IIIb
Ponts suspendus
Hangebriicken

Suspension bridges

Contributions récentes a la statique des ponts suspendus — Influence des charges
roulantes et effets du vent — Constitution des tabliers et des poutres de rigidité —
Quvrages remarquables.
Neuere Beitrige zur Statik der Hingebriicken — Dynamische und aerodynamische
Einfliisse — Formgebung von Fahrbahn und Versteifungstrigern — Bemerkenswerte
Ausfithrungsbeispiele.

~ Recent contributions to the theory of suspension bridges — Dynamic and aero-
dynamic influences — Design of floors and stiffening girders — Notable structures.
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Ponts en arc
Bogenbriicken
Long-span arch bridges
Contribulions récentes A la slatique des ponts en arc — Détail de construction --
Ouvrages remarquables.

Neuere Beitrige zur Statik der Bogenbriicken — Bauliche Besonderheiten — Bemer-
kenswerte Ausfithrungsbeispiele.

Recent conlributions 1o the theory of long-span arch bridges — Structural details —
Notable structures.
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Ponts métalliques a grande portée
Complément au Rapport général (1)

Weitgespannte Stahlbriicken

Erginzung zum Generalreferat (!)

Developments in long-span steel bridges
Supplement to General Report (1)

Dr O. H. AMMANN

Consulting Engineer, New-York

The paper by C. D. Crosthwaite, 1nalysis of the Long Span Suspension
Bridge, presents another useful modification and simplification of the
theory applicable to this type of structure.

Mr. C. Scruton’s paper An Ezperimental Investigation of the Aero-
dynamic Stability of Suspension Bridges is a creditable contribution
towards a problem which is of great current interest to designers of long
span suspension bridges. Experimental research of this kind, however,
will yet require considerable expansion before an adequate solution for
practical design can be established on that basis.

Mr. G. A. Maunsell in his paper Preservation of the Menai Suspension
Bridge gives a valuable account of the history of that milestone in bridge
construction and of ils ingenious reconstruction after 112 years of useful
service, preserving as far as possible its impressive character.

(1) Voir Publication Préliminaire, p. 409. — Siehe Vorbericht, S. 409. — See Preliminary
Publication, p. 409.
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Le poids théorique comme base du choix du type de pont
Das theoretische Gewicht als Grundlage der Systemwahl

Theoretical weight as the basis for selecting a type of bridge

PROF. D* F. STUSSI
Eidg. Techn. Hochschule, Zirich

Allgemeines

Dr. O. H. Ammann hat in seinem Generalreferat mit Recht darauf
hingewiesen, dass der Begriff der ,, grossen Spannweile “ nicht allgemein
und eindeulig definiert werden kann. Nun liisst sich aber zeigen, dass wir
diesen Begriff wenigstens von dem wichtigen Gesichtspunkt der Wirt-
schaftlichkeit eines bestimmten Tragsystems aus doch zahlenmiéssig um-
schreiben und dabei gewisse Beurteilungsgrundlagen fiir die Systemwahl
finden kénnen.

Es ist allgemein bekannt, dass bei weitgespannten Briicken das Eigen-
gewicht der Tragkonstruktion mit wachsender Spannweite einen immer
grosser werdenden Anteil an der Gesamtbelastung darstellt. Diese Zusam-
menhinge konnen iibersichtlich durch den Begriff des theoretischen Ge-
wichtes erfasst werden.

Das theoretische Gewicht

Der Begriff des theoretischen Gewichtes soll zuniichst am Beispiel eines
einfachen IFachwerkbalkens (Abb. 1) abgeleitet werden. Das Gesamltge-
wicht Gy des Hauptlirigers ergibt sich aus dem Volumen F-s und dem
Raumgewicht y der einzelnen Stiibe, wobei allerdings dieses theoretische
Gewicht noch mit einem Konstruktions-Koeffizienten w zu multiplizieren
ist. Bezeichnen wir mit gy das durchschnittliche Laufmetergewicht des
Haupltrigers, mit S die Stabkraft in einem Stab und mit ¢ die zulissige
Zugbeanspruchung, so kénnen wir das Haupttriigergewicht in der Form

Gusgu'l:!"-'Y'EF's:}L_;l -E8-s

anschreiben. Die Stabkraft S zerlegen wir durch Einfithrung der Einheits-
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FU (gf ’ p)

Abb. 1.

stabkrifte Sy, Sp und S, in ihre Anteile aus Haupttrigereigengewicht gy,
Fahrbahngewicht g; und Verkehrslast p :

S=¢gx-Sa+9gr-Se+p-S,
Durch Einfiihrung der Werte

. 2 YSg-s XS,
.-SH-S—_—,B'I, OF = wa—— » O = o
..-SH'S ...S“-S

wobei der Zahlenfaktor § nur vom geometrischen Netz des Tragsystems,
die Verhiltniszahlen ¢ und ¢, auch von der Art der Lastverteilung und
der Form der Einflusslinien abhingen, ergibt sich das Haupttriigergewicht
in der Form

Q
gu-l = U (gn + 1 g + 9,
Durch Einfiihrung der Abkiirzungen
a=w-3 und Il = C:T

und durch Ordnen erhalten wir die theoretische Gewichtsformel (*)

gu = (%¥-gr + 9" P)-

Gr_'l ’

Wird die Spannweile ! gleich der Grenzspannweite ls., so wird auch bei
beliebig kleiner Belastung das Haupttriigereigengewicht unendlich gross
oder das Tragwerk vermag unter Einhaltung der zulissigen Beanspruchun-
gen gerade sein eigenes Gewicht zu tragen.

() In der Diskussion wies Prof. Ir. A. Roggeveen (Holland) darauf hin, dass
Prof. Ir. N. C. Kist, Delft, schon vor liingerer Zeit cine dhnlich gebaule Gewichtsformel empfoh-

lan hat :
M f-1
) . e —
o=(r+97) L

Dabei bedeuten :

Q das Haupttrigergewicht;
P_ das Fahrbahngewicht;

M das grisste Moment aus Verkehrslast;

t die zuliissige Beanspruchung;

f einen aus dem Vergleich mit ausgefithrten Briicken zu bestimmenden Zahlenwert : far
einfache Fachwerkbalken ist f= 2.3 = 3,3.
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Den Konstruktionskoeffizienten p. kénnen wir uns aus drei Anteilen
zusammengesetzt denken : Einmal hat er zu beriicksichtigen, dass die ein-
gefiihrte zuldssige Beanspruchung ¢ wegen der Lochschwichungen in
Zugstiben und wegen der abgeminderten Knickspannungen in Drucksti-
ben, sowie wegen der Unmdoglichkeit, die Stabquerschnitte immer genau
den Stabkriften anzupassen, nicht ausgeniitzt werden kann. Diesen ersten
Anteil kénnen wir auf etwa u,=1,25 + 1,70 einschitzen. Ein zweiter An-
teil hat das Gewicht der Knotenbleche, Stosslaschen, Querschotten, Binde-
bleche u.i. konstruktiver Zusatzteile zu erfassen; dieser Anteil diirfte mit
etwa w,=1,20 = 1,30 zu beriicksichtigen sein. Endlich ist es in der Regel
zweckmiissig, auch das Gewicht der Wind- und Querverbinde dem
Haupttrigergewicht zuzurechnen; diesen Anteil konnen wir etwa mil
s =1,10 - 1,15 in Rechnung setzen. Praktisch diirfte der Konstruktions-
koeffizient p insgesamt etwa zwischen 1,8 und 2,4 schwanken, wobei die
Geschicklichkeit des Konstrukteurs sich in der Erzielung eines mdglichst
kleinen Wertes dussert.

Fiir einen einfachen Fachwerkbalken nach Abb. 1 mit Trigerhdhe
h=1/8 ergibt sich der Zahlenwert & zu etwa 3=1,90, so dass wir im
giinstigsten Fall hier mit einem Systembeiwert « von

a=—u-3=1,80-1,90=3,42

rechnen konnen. Es ist zweckmiissig, die beiden ELinfliisse w und £ in
einem einzigen Systembeiwert « zu vereinigen, weil wir wohl durch Ver-
grosserung der Systemhohe den Wert 3 verkleinern kénnen, wihrend sich
aber gleichzeitig wegen der grosseren Schlankheit der Druckstreben der
Wert o vergrossern wird, so dass das Produkt a=wu-£ durch eine
Aenderung der Systemhohe innerhalb verniinftiger Grenzen sich nicht
wesentlich verindern wird. Aus der Gewichtsuntersuchung ausgefiihrter
Beispiele ergibt sich die Feststellung, dass ein Systembeiwert « =3,42 fiir
den einfachen Fachwerkbalken praktisch kaum unterschritten und iiber-
haupt nur von einem guten Konstrukteur erreicht werden kann.

9y 4
geryp
b 4

20

Abb. 2. Ein-
facher Fach-
werkbalken.
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Gerbertrdger G Bogenbriicke B Héngebriicke H (unversteift)
Abb. 3.

Fiir den einfachen Fachwerkbalken und bei gleichmissiger Verteilung
von Eigengewicht und Fahrbahngewicht ist

op=1,00, g, =0¢=1,09.

In Abb. 2 ist der Gewichtsverlauf sowohl fiir normalen Baustahl St. 37
(e =3,42) wie fiir hochwerligen Baustahl St. 52 (2==3,50) aufgetragen.
Es zeigt sich, dass das Haupitrigergewicht sehr stark anzuwachsen beginnt,
sobald die Spannweite [ etwa ein Drittel der Grenzspannweite iiberschritten
hat; es ergibt sich somit fiir den einfachen Balken eine wirtschaftliche
Anwendungsgrenze, die bei normalem Baustahl etwa bei 170 m, bei hoch-
wertigem Baustahl etwa bei 250 m liegt.

Der Aufbau der theoretischen Gewichtsformel zeigt uns, welche Fak-
toren fiir die Erzielung einer wirtschaftlichen Losung bei einem bestimm-
ten Tragsystem massgebend sind. Durch den Begriff der Grenzspannweite
ist nicht nur die absolule Anwendungsgrenze eines Tragsystems, sondern
auch die wirtschaftlich noch vertretbare Grosstspannweite, die mit etwa
einem Dritlel der Grenzspannweile festgelegt werden kann, bestimmt. Der
Begriff der grossen Spannweite ist in technisch-wirtschaftlicher Beziehung
von der Grenzspannweite aus zu orientieren; er ist deshalb abhingig von
der Form des Tragsystems, von der Materialart und von der Geschicklich-
keit des Konstrukteurs.

Systeme weitgespannter Briicken

Fir den Bau weitgespannter Briicken im engeren Sinne mit Spann-
weiten tiber etwa 300 m haben sich drei Tragsysteme durchgesetzt, nim-
lich der durchlaufende Fachwerkbalken mit Zw 1schen"elenl\en (Gerber-
trager), der Zweigelenkfachwerkbogen und die verankerle Iiingebriicke.

Fiir jedes I'rnrrsy%tem lisst sich unter der Vorausselzung, “dass das
Superpositionsgesetz giiltig ist, ein Systembeiwert « und damit fiir ein be-
stimmtes Material eine Grenzspannweite bestimmen. Bei der verankerten
Hingebriicke ist das Superpositionsgesetz nicht giiltig in Bezug auf das
Kriftespiel im Versteifungstriger; es lassen sich hier die Werle « und I,
lediglich fiir das Haupttragorgan, das Kabel, ohne Beriicksichtigung des
Vemtelfun"slmgers, angeben. Es ist dies deshalb vielleicht kein entschei-
dender Nachteil, weil ja mit wachsender Spannweite die Bedeutung des
Versteifungstrigers mehr und mehr zuriicktritt, so dass eine grundsiitz-
liche Beurteilung des Systems bei grossen Spannweiten vom Kabel allein
aus moglich wird.

In t\bb 3 sind diese drei Tragsysteme einander gegeniiber gestellt: die
Tabelle 1 enthilt die charakteristischen Zahlenwerte ‘Wobei fiir den Ger-
bertriiger eine der Wirklichkeit entsprechende stark ungleichmiissige
Ftrrenrrewnchtsvertellunrr mit kleinstem Gewicht in Feldmitte und grésstem
Gewwht iiber den Stiitzen eingefiihrt wurde.

In Abb. 4 ist unter der Annahme g,=2p das Gewichisverhiltnis
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Abb. 4. g t
40
' e / / 9F=2p

ga/p in Abhingigkeit der Spann- 30 7
weile [ aufgetragen, wobei fir Ger- G// . P
bertriger und Bogen hochwerliger 20 / B A
Baustahl (¢ = 2,1 t/ecm?®) und fiir 10 2 —
die Hingebriicke hochwertige L —
Drahtkabel (s = 5,5 t/cm®) ange- 400 800 7200 7600 2000(™

nommen wurden.
In den Abb. 5, 6 und 7 sind

die bedeutendsten ausgefiihrten Briicken dieser drei Systeme zusammen-
gestellt. Diese Zusammenstellungen bestidtigen im grossen Ganzen die Ver-
hiltnisse der Abb. 4; wir diirfen wohl den Schluss ziehen, dass beim Gerber-
irdiger mit etwa 500 m Spannweite heute schon die wirlschaftliche
Anwendungsgrenze des Systems praktisch erreicht ist, wihrend beim
Bogentriger noch eine kleine Vergrdsserung iiber die heute erreichten
Spannweiten hinaus moglich erscheint. Bei der verankerten Hingebriicke
dagegen ist mit Paralleldrahtkabeln aus hochwertigem Stahldraht eine Stei-
gerung der Spannweite bis 1 500 m und dariiber wirtschaftlich moglich.

Schlussfolgerungen

Fiir weitgespannte Briicken haben sich nur einfache und klare sta-
tische Systeme entscheidend durchsetzen kdnnen. Bei Spannweiten von
mehr als 600 m dominiert eindeutig die verankerte Hingebriicke mit
Kabeln aus hochwertigen Stahldrihten.

Die wirtschaftliche Anwendungsgrenze eines bestimmten Tragsystems
kann aus der theoretischen Gewichtsformel und vom Begriff der Grenz-
spannweite aus iibersichtlich beurteilt werden. Selbstverstéindlich sind im
konkreten Einzelfall auch die Eigenschaften des Baugrundes, sowie die
Fragen der rdumlichen Tragwirkung (Winddruck, Briickenbreite) von
massgebender Bedeutung.

Das theoretische Gewicht ist ein wichtiges Hilfsmittel des Konstruk-
teurs zur Priifung der Wirtschaftlichkeit eines Entwurfes. Es erlaubt eine
technische Nachkalkulation auf tibersichtlicher Grundlage und die Aus-
wertung der eigenen Erfahrungen. Der Austausch solcher Erfahrungen auf
einheitlicher Grundlage, d.h. durch die fiir das theoretische Gewicht cha-
rakteristischen Zahlenwerte durch die Stahlbauer der verschiedenen Linder
ist im Interesse der ganzen Bauweise erwiinscht.

@ Y Lv'p
Gerbertrager G . . . . 1,60 1,5 1,6
Bogenbriicke B . . . . 1,30 1,0 2,0
Hangebricke H . . . . 1,55 1,0 1,0
\ TaBeLLE 1
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Abb. 5 (oben) und 6 (unten).

Hell Gate 1917 sl Sydney Harbour 1932

Résumé

L’auteur donne des notions du poids théorique et des portées limites
des maitresses-poutres de ponts. Cette portée limite permet d’indiquer la
limite d’emploi économique d’un type déterminé de pont, pour laquelle
le poids des maitresses-poutres n’est pas exagéré par rapport au poids de
la charge supportée (tablier et surcharge). :

En examinant les réalisations actuelles, nous constatons que cette
limite est prés d’étre atteinte pour les poutres continues & treillis articu-
lées, alors que pour les ponts triangulés en arc & deux rotules, il reste une
certaine latitude au développement futur. Pour les ponts suspendus ancrés
comportant des cédbles en acier a haute limite élastique, la portée peut
encore étre sensiblement augmentée.

Zusammenfassung

Es werden die Begriffe des theoretischen Gewichtes und der Grenz-
“spannweite fiir das Haupttragsystem von Briicken abgeleitet. Aus der Grenz-
spannweite eines bestimmten Systems kann direkt auf die wirtschaftliche
Anwendungsgrenze geschlossen werden, bei der der Materialaufwand fiir
die Haupttragkonstruktion gerade noch in einem wirtschaftlich tragbaren
Verhiltnis zur aufzunehmenden Belastung (Fahrbahngewichi und Ver-
kehrslast) steht. Bei den bisherigen Ausfithrungen diirfte der durch-
laufende Fachwerktriger mit Zwischengelenken diese Grenze annihernd
erreicht haben, wihrend beim Fachwerkzweigelenkbogen noch ein kleiner
Spielraum fiir die weitere Entwicklung verbleibt und bei der verankerten
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Hingebriicke, mit Tragkabeln aus hochwerligen Stahldrihten, die bis-
herigen Spannweiten mit wirlschaftlich vertretharem Materialaufwand
noch erheblich gesteigert werden kénnen.

Summary

The author gives the notions of the theoretical weight and the
extreme spans for the main girders of bridges. This extreme limit per-
mits to indicate the limit of economic use of a given type of bridge in
which the weight of the main beams is not exagerated as compared to the
weight of the load borne by the latter (roadway and live load).

In examining present day structures we find that this limit is nearly
reached in the cantilever system, whereas in two hinged arches the
extreme span is nol yet attained. For suspension bridges anchored with
high grade steel cables the span can still be appreciably increased.
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Contribution au calcul des ponts suspendus ancrés
Zur Berechnung verankerter Hangebriicken

A contribution to the calculating of anchored suspension bridges

PROF. Dr F. STUSSI
Eidg. Techn. Hochschule, Zirich

Gegenstand

Die Berechnung verankerter Hiingebriicken verlangt im Normalfall
die Losung einer linearen inhomogenen Differentialgleichung zweiter
Ordnung, in besonderen Fillen einer Gleichung vierter Ordnung. Zur
Losung dieser Gleichungen wird in der Literatur der Hiingebriicken in der
Regel dle mathem’msche Analysis beigezogen. Ich stehe (h"eﬁen auf dem
Standpunkt, dass baustatische Axuf,-:raben mit baustatischen Methoden gelist
werden sollen, weil diese den Besonderheiten des Einzelfalles 'lllpleQb’lI‘
und durch den Konstrukteur iibersichtlich anwendbar sind. Ich bin tiber-
zeugt, dass gerade im Beispiel der verankerten Hingebriicke die Anwen-
dung eines klassischen baustatischen Mittels, namllch des Seilpolygons,
anderen Losungen in Bezug auf Lel)erswhlhchkelt Anpassbarkeit an bau-
liche Besonderheiten und '1uf den nolwendigen Zeitaufwand iiberlegen ist.

Ich versuche in der folgenden, knappen “Skizze (") zunichst die Grund
gleichungen der normalen Formiinderungstheorie der verankerten Hiinge-
briicke in baustatischer Form abzuleiten, um anschliessend einige Ver-
besserungen dieser Theorie zu besprechen.

Die Seilpolygongleichung

Wenn wir in der Baustatik etwa die Momentenfliiche eines Balkens
infolge lotrechter Lasten (Abb. 1) bestimmen miissen, so werden wir diese
Aufgabe kaum durch Integration der Differentialgleichung M/ = —p zu

(1) Die folgende Darstellung nimmt in vereinfachler und verbesserler Form die Ueber-
legungen einer fritheren Arbeit wieder auf @ s. ¥F. Stiiss1, Zur Berechnung verankerter Hinge-
briicken (Abh. IVBH, Band IV 1936). Eine cingchendere Darstellung dieser Melhode soll dem-
nichst in den Mitteilungen aus dem Institul fiir Baustatik an der ETI, Ziirich, erscheinen.
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16sen versuchen, sondern wir verwenden dazu das Seilpolygon. Nach der
elementaren Biegungslehre ist

l\Im B \lm_l “‘|" Qm ‘ A'7"':111 3

Mooy =My Q= Ay, - (1)
Eliminieren wir die Querkrifte Q mit Hilfe der Beziehung
Qm - Qm+1 = Pm (2)

so erhalten wir fiir konstante Feldweiten und nach Ordnen die Seilpoly-
gongleichung der Balkenbiegung :

—M,.,+2M,—M,, =P, -Az. (3a)

Wirkt statt der Einzellasten P eine verteille Belastung p, so sind deren
Knotenlasten K(p) einzufithren; nehmen wir feldweise linearen Verlauf
von p an, so erhalten wir diese aus der Trapezformel

Xz
I(m (p) == T = (pm_-l + 4 pm + pm{-l\ U (l ”)

/

Setzen wir dagegen den Verlauf von p iiber je ein Doppelfeld parabelfor-
mig voraus, so ergibt sich die Knotenlast aus der Parabelformel

A
Ko (P) = T3 (Pnos 410 P+ Pus) - (40)

Eine analoge Seilpolygongleichung besteht entsprechend der Mohr’-
schen Deutung der Biegungslinie zwischen den Durchbiegungen » und den

) M .
reduzierten Momenten iE_l eines Balkens

M
’_“.Qm~l+2nn;_.flm+l :Km (ﬁ)"&x 3 (3 b)

Endlich gilt eine analoge Seilpolygongleichung auch zwischen den Durch-

hingen y und den Belastungen P eines durch den Horizontalzug H ge-
spannten Seiles '

P’)l L)
_yn1_1+2ynl_ym+]=ﬁ'Am‘ ('3 C)
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Abb. 2.

Die Normalgleichungen der Hangebricke

Wir betrachten einen Zwischenknotenpunkt m und die links und
rechts benachbarten Felder Az einer verankerten Hingebriicke (Abb. 2).
Dabei ist es belanglos, ob der Knotenpunkt m ein wirklicher Knotenpunkt
des Systems ist, oder ob wir unter Voraussetzung dicht ausgeteilter Hinge-
stangen angenommene Knotenpunkte einfithren. Den gesamten Horizon-
talzug des Kabels bezeichnen wir mit N

N=H,+H; 9=g-+p.

Es ist bemerkenswert und kennzeichnend fiir das Tragsystem der
verankerten Hingebriicke, dass am Knotenpunkt m alle drei erwihnten
Formen der Seilpolygongleichung gleichzeitic auftreten. Am Knoten-
punkt m des Kabels kénnen wir die Gleichung

Vm * A:B — N * (— Nm_1 —I_ 2 Nm — 7]m+1) + N * (_ ym_l + 2 ym - ym+1) (5)

anschreiben, wiithrend am Versteifungstriger einerseits die Beziehung zwi-
schen Momenten und Belastungen

(Kn(¢q)—V,) - Az=—M,,+2M,—M,, (6)

und andererseits die Beziehung zwischen Durchbiegungen und reduzier-
ten Momenten

<, (%) AL =— Ny + 20, — N (7)
gilt.

Durch Addition der Gleichungen 5 und 6 eliminieren wir die Hinge-
stangenkrifte V, . Setzen wir im Sinne der iiblichen oder normalen
Forminderungstheorie gleiche Durchbiegungen von Kabel und Verstei-
fungstriger voraus

Nk =—Nv=—7
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so konnen wir die Durchbiegungen + eliminieren, indem wir von der
Summe der Gleichungen 5 und 6 die mit N multiplizierle Gleichung 7
subtrahieren

K (q)-A0 = — M, _, +-2M,, — M,.,, + N-Az K, (%})

+N (— ¥Ym—1 —lf— 2 ynL'_'y"1+1) *

Fihren wir die Knotenlast der reduzierten Momentenfliche entsprechend
der Parabelformel, Gleichung 4b, ein, so erhalten wir mit der Abkiirzung

. N-Az’
T 12 EJ
nach Elimination des Eigengewichtes
Km (9) Az = I.Ig * ("_'" Yo + 2 Ym— ym+1)

und nach Ordnen die Grundgleichung fiir die Momente aus Verkehrslast
im Versteifungstriger der verankerten Héngebriicke

T Mm—l a (l = T) —|— B’Im & (2 '—1_ ]-O Y) = I\/Imq.l ° (l - Y)
— Krn (P) * A.’L‘ G }I i ('_-ym_l —|— 2 Yo — ym+1) . (8)

Sobald wir den Gesamtkabelzug N, der in der Abkiirzung ~ enthalien ist,
uns als gedachten Festwert vorstellen, ist diese Grundgleichung von den
Belastungen linear abhiingig und das Superpositionsgesetz erscheint damit
wieder giiltig. Wir konnen somit die Belastungen auf der rechlen Seite
der Gleichung 8 in ihre Teileinfliisse, d.h. in #dussere Belastung und Ablen-
kungskrifte des Kabelzuges H bezw. H=1 zerlegen; den Kabelzug H
bestimmen wir in bekannter Weise aus einer Elastizititsbedingung
(worauf wir hier allerdings aus Raumgriinden nicht niiher eingehen kon-
nen); damit kénnen wir endlich die Momente im Versteifungsiriger
durch Superposition und anschliessend auch die Formiinderungen be-
stimmen.

Das Endield
Im Endfeld, bezw. in dem dem Auflager A des Versleifungstrigers

benachbarten Knotenpunkt 1 tritt eine Besonderheit deshalb auf, weil
Kabel und Versteifungstriger normalerweise nicht die gleiche Spannweite

Abb. 3.
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besitzen (Abb. 3). Fiir den Knotenpunkt 1 des Kabels ldsst sich hier die
Seilpolygongleichung

. éa_x__"ll __.,]2)

anschreiben, die in Verbindung mit den Gleichungen 6 und 7 auf die
Beziehung

\'J‘Ax:N‘le_‘yz)—l’N'("h

e
“1'(2‘}‘10“{)—){2'(1_Y):I<1 (([)'A‘B—N(z)'x _Yz)+N"ﬂ|'F

fiuhrt. Das Storungsglied N .7, - —Z— lasst sich bei Aufteilung der Belastung

in symmetrische und antimetrische Anteile leicht bestimmen und es
ergibt sich :
Fiir symmetrische Lastanteile

e e
R
a

Az ‘§Mo1_Ml—N'yx {3

M1(2+10 M "}_—AGT)_‘MW([ _-'I'):Kl (p)-Az + M, ‘;—x

el )]

g o040
e=30m T
752m “ {'= 406 m o 752m
2 rnan 6T

é‘_/ J’ =120 L 320 "EJ-48-106"" = bk12:10
| R -500 N=3600"

{ =400m

»

I
|
|
L

Moment M
T+ 500
A4=175%
++ 7000
e=00075 [ Ls 2500

v.,mf Abb. 4.
M
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Und fiir antimetrische Lastanteile :

e e l
N-nl"&“zﬁ'r Moy, — M, {5
e l . e l
M, (2—|—IO Y+—A-;-T:)— M,-(1 —v) =K, (p)- Az +M,,- e i

Der Einfluss dieser Verschiedenheit der Spannweiten von Kabel und
Versteifungstriger dussert sich auch bei normalen Ausfiihrungsverhiltnis-
sen uberraschend stark. Abb. 4 zeigt die Ergebnisse eines durchgerech-
neten Zahlenbeispieles. Wir erkennen, dass auch bei einer kleinen Exzen-
trizitit e der Lager, die hier nur 0,75 9 der Spannweite belrigt, die
Momente in Auflagernihe merkbar grosser sind als nach der iiblichen
Normaltheorie, und wir kénnen ohne weiteres folgern, dass dieser Einfluss
auf die Querkrifte im Versteifungstriger in Auflagernihe nicht vernach-
lassigt werden darf. Bei dieser Auflager-Exzentrizitit handelt es sich iibri-
gens um einen dhnlichen Linfluss wie infolge der Verlingerung der Hinge-
stangen, der ebenfalls in Auflagernihe eine merkbare Grosse erreichen
kann. Dieser Einfluss einer Lingeninderung der Hiingeslangen kann
iibrigens in einem zweiten Rechnungsgang einfach beriicksichligt werden,
indem wir die bei der Elimination der Durchbiegungen aus den Gleichun-
gen 5 und 7 nun iibrig bleibenden Restglieder infolge

An=1y—x
als zusitzliche Belastungen einfiihren.

Der Einfluss der Horizontalverschiebungen

Der Einfluss der Horizontalverschiebungen & der Kabelpunkte (Abb. 5)
dussert sich darin, dass dadurch sowohl die Kabelkriimmungen oder die
Ablenkungskriifle verin-
dert werden, als auch
§ 4 d g darin, dass sich infolge

X + gv der wagrechten Kompo-

YT ay nenten der Hingestan-
; @ genkriifte der Kabelzug
@ iiber die Spannweite dn-

/] dert. Wir konnen diese
beiden Einfliisse in ei-
g-ax nem zweilen Rechnungs-
gang durch Einfithrung

_\_:L_y d g einer Zusalzlast
S~ T ap=N-(y*-a)fw-y

~ o .
w-a'x A beriicksichtigen, wobei
S der erste Anteil die
Kriimmungsinderung,

v-ax

§ §+d§ Abb. 5.
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der zweite die Aenderung des Horizontalzuges erfasst. In der
Differentialgleichung von Rode,

(ET ") — (H,+H) [(1 457 #) =H-y" +p,

erweiterten
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auf die auch S. O. Asplund in seinem Beitrag zum Vorbericht (*) nach-
driicklich hinweist, ist nur der erste Anteil enthalten. Da aber beide An-
teile von gleicher Grossenordnung sind, ist grundsiitzlich, wenn schon die
I\orma]berechnunc verfeinert \\erden soI], auch der Einfluss der Veriinder-
lichkeit des IIorlzontalzuges zu beriicksichtigen. Beide Anteile dussern sich
im Sinne einer Verkleinerung der Momente und Durchbiegungen.

Zur Frage des Fahrbahnlangsschlitzes

In seinem Beitrag zum Vorbericht hat C. Scruton (*) eingehend iiber
Untersuchungen und Modellversuche iiber den Einfluss von Fahrbahn-
]dnﬂsschlltzen auf die aerodynamische Stabilitit von Hiingebriicken be-
richtet und zahlreiche Literaturhinweise iiber bisherige Untelsuchunfren
zu dieser Frage angegeben. Die eigentliche Quelle dleqes neuen und beson-
deren \lerkn1.1]es de[ geschlitzten l*ahrl).lhn finden wir allerdings in die-
sen Literaturangaben mcht Ich bin zufillig in der Lage, diese Quelle zZu
reprodu21eren : In Abb. 6 ist eine Zummmenste]luncr von Versuchsergeb-
nissen wiedergegeben, die Prof. Dr. J. Ackeret im Jalue 1941 am Aero-
dynamischen Institut der LEidg. Techn. Hochschule in Ziirich zusammen
mit seinem Milarbeiter E. Egli durchgefiihrt hat und die den charakteris-
tischen Einfluss eines Fahrbahnlingsschlitzes deutlich erkennen lassen.
Prof. Ackeret hat diese Zusdrnmemlel]unnr der Abb. 6 am 21. November 1941
an Prof. Farquharson in Washington nesclnd\t und der Empfang ist von
diesem auch einige Zeit spiter bEStdtlét worden. Trotzdem war es mir
bisher nicht mijglich, diesen eigentlichen Ursprung des neuen Merkmals
in der Literatur zu finden; umso eher fiihlte ich mich aus kollegialen
Griinden zu dieser Feststellung der Urheberschaft Ackeret-Egli berechtigt
und verpflichtet.

Résumé

Se basant sur l'équation du polygone funiculaire, I'auteur esquisse
une mdéthode de calcul de nature statique pour la construction des ponts
suspendus ancrés. Une des caractéristiques de ce systéme portant est que
les trois formes normales de 1'équation d’équilibre apparaissent simul-
tanément; 1'élimination des forces dans les suspentes et des fleches donne
une équation fondamentale simple ternaire permettant de calculer les
moments dans les poutres raidisseuses. Pour une valeur donnée de I'effort
horizontal total dans le cible, celte équation est linéaire; il s’en suil que
la loi de superposition peul étre appliquée et la méthode de calcul est Ia
méme que celle des syslémes hvperstatiques.

L’auleur envisage ¢également sommairement quelques influences
secondaires.

Pour terminer, il rappelle les essais « Ackeret-Egli » concernant 1'in-
fluence d’une fente longitudinale dans le tablier sur la stabilité aérody-
namique des ponts suspendus.

(13 S. 0. Asrrunp, Influence functions for the angular deviation correction in suspension
bridges. Third Congress IABSE, Lidge, 1948, Preliminary Publication, p. 415.

*) C. Scruton, An c:vperzmental investigation of the acrodwmnuc stability of suspension
bridges. Third Congress [ABSE, Lidge, 1948, Preliminary Publication, p. 463.
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Zusammenfassung

Ausgehend von der Seilpolygongleichung werden die Grundziige einer
baustatischen Berechnungsmethode fiir verankerte Hingebriicken skizziert.
Es ist ein charakteristisches Merkmal dieses Tragsystems, dass gleichzeitig
alle drei normalen Formen der Seilpolygongleichung vorkommen und dass
aus ihnen durch Elimination der Hingestangenkriifte und der Durchbie-
gungen eine einfach gebaute, dreigliedrige Grundgleichung fiir die
Momente im Versteifungsiriger gewonnen werden kann. Fiir eine be-
stimmte Grosse des totalen horizontalen Kabelzuges ist diese Gleichung
linear; damit wird das Superpositionsgeselz wieder giiltig und das Be-
rechnungsverfahren wird dadurch in formaler Beziehung der iiblichen
Berechnung statisch unbestimmter Systeme angeglichen. Einige Neben-
einfliisse werden kurz betrachtet. Endlich wird auf die Versuche Ackeret-
Egli iiber den Einfluss eines FFahrbahnlingsschlitzes auf die aerodyna-
mische Stabilitit von Hingebriicken hingewiesen.

Summary

The author gives the diagram of a method of static calculation of
anchored suspension bridges, based on the equation of the funicular
polygon. A remarkable characteristic of this type of bridge is that the
three regular formes of the equilibrium equation appear simultaneously.
The elimination of the forces in the hangers and the deflections gives
a simple basic equation having three elements enabling us to calculate
moments in the stiffening girders. For a given value of the total horizon-
tal stress in the cable, this equation is linear; it follows that the law of
superposition can be applied and the method of calculation is the same
as that of statically indetermined systems.

The author also deals summarily with a few secondary influences.

In conclusion, he refers to the « Ackeret-Egli» tests concerning the
influence of a longitudinal slot in the roadway on the aerodynamic sta-
bility of suspension bridges.
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L'étude spatiale du cdble de suspension
Das rdumliche Seileck

Stereometrical study of suspension cables

PROF. Dr TECHN. H. BEER

Graz

Die Unlersuchung der einzelnen Phasen der Montage von Hinge-
briicken erfordert die Behandlung des unversteiften Seiles, d.h. die Be-
stimmung der Seillage und der Horizontalziige unter der jeweiligen Mon-
tagebelastung. Eine sehr anschauliche Darstellung des ebenen Seileckes
gibt IF. Stiissi (*), wobei er ausser den lotrechten auch noch horizontale
Lasten in Briickenlingsrichtung beriicksichtigt. Bei Hingebriicken mit
schriger Ilingerfithrung in Briickenquerrichtung — wie sie bei zenlrisch
belastelen Pylonenschiften zur Durchfiithrung der vollen Breite der Ver-
kehrswege erforderlich ist — sowie bei einer zusat711chen Seilabspannung
(Sturmselle) ist mit der Ausbildung eines riitumlichen Seileckes zu rechnen.
Auch bei Belastung durch den Winddruck quer zur Briicke wiihrend der
Montage tritt ein ldumllches Seileck auf. Die Anwendung der Abhandlung
soll jedoch nicht nur auf den Hangebriickenbau beschrankt bleiben, son-
dern alle Tragkonstruktionen mit “Seilen als Abspannung oder 7ucmr]|ed
umfassen.

Der Diskussionsbeitrag beschiftigt sich mit der Ermittlung der Seillage
(Seileck) und der Ilorizontalziige fiir beliebig im Raume gerichtete Lasten,
wobei das Seil in irgendwelchen Punkten starr oder nachgiebig gestiitzt
sein kann. Der Berechnung wird das in beliebigen Intervallen durch Ein-
zellasten belastete Seil zugrunde gelegt und auch sein Eigengewicht in
diesen Punkten wirkend gedacht.

Abbildung 1 zeigt ein solches — zwischen zwei nachgiebigen Punk-
ten O und n gestiitztes — ridumliches Seileck, das z.B. einer Hingebriicken-
6ffnung entspricht in der Grund- und Aufrissprojektion. Die ,, Ausgangs-
lage “ bezieht sich hierbei auf den Zustand vor der Belastung durch die
Montagelasten, in dem das Seil durch die Lastkomponenten V,,, L,, und
W.,, belastet ist, withrend in der ,, Endlage “ die entsprechenden Werte —

(*) Abhandlungen der Internationalen Vereinigung fiir Britckenbau und Hochbau, Band 6.
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Abb. 1. Raumliches Seileck im Grund- und Aufriss.

um die Montagelasten und gegebenenfalls den Winddruck vermehrt — auf
den Betrag V,,, L, und W, anwachsen. Der feldweise veriinderliche Hori-
zontalzug im Feld m —1 bis m soll in der Ausgangslage H,,, und in der
Endlage H, sein. Zur Ermittlung der Endlage dienen bei gegebenem H,,
die beiden Gleichgewichtsbedingungen in jedem Knoten m und die Rand-
bedingungen in der Y- und Z-Richtung. Der Horizontalzug fiir ein Endfeld
(H,=H) wird aus der Bedingung bestimmt, dass die Summe aller Feld-
weitendnderungen gleich sein muss der Aenderung der Horizontaldistanz
der Aufhingepunkte (Randbedingung in der X-Richtung). Da beide
Grossen aber wieder von II abhiingen, muss die Berechnung der Endlagen
fiir mehrere angenommene Werte von H durchgefithrt und das tatsichlich
vorhandene I durch ein hierfiir entwickeltes graphisches Verfahren ermit-
telt werden.

Ermittlung der Endlage

[Fiir die Endlage gelten die folgenden Gleichgewichtsbedingungen fiir
die Aufriss- und Grundrissebene :

I_Im tg (Pm - I_Im+1 tg (9m+1 — Vm (1)
I-Im tg me - }Im+1 tg 4)1714.1 == Wm . (2)

Fiihrt man
r=m—1 r=m—1 r=m—1
V=% , rzi L=, und Z W, =W,

r=1 P
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ein, so-erh'eilt man aus (1) und (2) die beiden Rekursionsformeln :

H. Vnm ,
t’g ?m = B (13 ,‘,;1 - T) (‘3)
H Uy,
t8 Y= (tg%— o ) )

Hierbei ist H,,—H — £, . Zur Ermittlung der Anfangswinkel des
Seilpolygons tg ¢, und tg ¢, dienen die folgenden geometrischen Rand-
bedingungen in Richtung der Y- und Z-Achse :

m =n

2 (an -+ Aa,)tg 2, =v 4 Av (D)

m=1

m=n

(a,, + Aa,) g d,, = w+ Aw (6)

m=1

Woraus in Verbindung mit (3) und (4) folgt :

1 ~
—_— . _m i _ _1_ -
(a,,+ Aa,)
— H,,
1 \' W,
tg ('I"l — n . Z H (am _I_ A”m) + w + Aw‘l (S)
H A 1 He .
}; T (@ +Aa,)
Aa, bedeutet — wie schon aus Abbildung 1 hervorgeht — die Aenderung

der Horizontaldistanz a,, beim Uebergang von der Ausgangslage in die End-
lage. Nach Abbildung 2 ist:

a, + Aa, = (s, -+ As,,) cos @, - cos n]T (9)

As,, stellt die Seildehnung infolge des
— bei diesem Uebergang erzeugten —
Horizontalschubes H,, dar. Ist auch
noch eine Temperaturinderung von {°
Celsius damit verbunden, so wird :

H, s

_ ’ mp — + E,t'sm ’
(10)

As,,

E' ist der Elastizititlsmodul des Seiles
und F, die Fliche des Seilstiickes

Abb. 2. Ermittlung von Aa,
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zwischen m—1 und m (fiir Kabelhingebriicken ist I, = F = const.).
Die Feldweiteninderung wird dann :

H,.,
E'F,

Aa,= s, COS @, COS L[z — COS ©,,0° COS u,,m ~+ & -t-coso,-cos,|.

(1)

Dieser Ausdruck fiir Aa, wire nun in die Gleichungen (7) und (8)
einzusetzen und mit Hilfe von (3) und (4) die goniometrischen Gleichun-
gen fiir tg«, und tg ¢, aufzustellen. Thre Auflésung wiirde jedoch sehr
lanmmeug und nur graphlsch oder durch Probieren durchzufithren sein.
Man kann aber die ganze umstindliche Rechnung vermeiden, wenn man
von der Tatsache ausgeht, dass Aa, wohl in allen praktisch vorkommenden
Fillen wesentlich kleiner als a,, sein wird. Bei den Hingebriicken ist dies
— selbst bei grossen lotrechten Verschiebungen, wie sie bei der Montage
auftreten — stets der Fall. Aus dieser Tatsache ergibt sich folgender Itera-
tionsweg zur Bestimmung der Werte ©, und ¢, . Man setzt zuniichst
Aa,’=0 und berechnet mit IHilfe von (7) und (8) die ersten Niherungs-
werte ¢! und ¢! und mit (3) und (4) die entsprechenden Werte u]
und ¢,. Nunmehr ist es mit Hilfe von Gl. (11) mdglich, die Vaherunns-
werte Aa,,! zu bestimmen. Man kann nun im zwelten Iteratlonscrano mit
Hilfe dieser Werte Aa,! verbesserte Winkel ¢,!'' und ¢, bestimmen und
erhilt schliesslich neue Feldweitenﬁnderunﬂen Aa,", die in der Regel
schon ausreichend genau sein werden, um daraus die endgiiltigen Neigungs-
winkel zu berechnen.

Eine anschauliche bildliche Darstellung dieses Iterationsverfahrens
und seiner Konvergenz zeigt Abbildung 3. Der Einfachheit halber wird
ein Seil, das zuniichst ohne Last und daher durch den Horizontalzug H,
straff gespannt ist, mit nur einer Einzellast P belastet. Lisst man zunichst
die Feldweiteninderung unberiicksichtigt (Aa=0), so wiirde — bei lot-
rechtem Lastweg und unverschiebbaren Lagern — das Seil die Lage 1-1
einnehmen. Diese Lage ist aber mit
den geomelrischen Bedingungen
nicht vertriglich, da die Linge der
beiden Seilstrahlen ja gegeben ist
(der Einfachheit halber wird ein
dehnungsloses Seil vorausgesetzt,
da die Beriicksichligung der Seil-
dehnung an der Konvergenzbe-
trachtung nichts dndert). Das Auf-
lragen der richtigen Seillingen
bedingt eine Parallelverschiebung
des Seilstrahles 1 nach 1’ wihrend
E in die neue Lage E! kommt. Um
die richtige Hohenlage von E her-
zustellen, ist nun eine lotrechte P
Verschiebung des Seilzuges not-
wendig. Trigt man nun wieder
Seilstrahllingen ab, so wird 2 & AL
3 Py /

Abb. 3. Bildliche Darstellung des <
Iterationsverfahrens. L — i
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parallel nach 2’ verschoben, wodurch der Indpunkt nach EY kommt.
Das Verfahren wird nun solange fortgesetzt, bis E geniigend genau in der
richtigen Héhe liegt. Sind System und Belastung symmetrisch, so ist von
vornherein eine Erfiillung der Hohenbedingung méglich. Der erste Itera-
tionsgang gibt also bereits das endgiiltige Ergebnis.

Aus dieser figuralen Darstellung, die natiirlich auch auf viele Lasten
in beliebiger Richtung erginzt werden konnte, erkennt man, dass umso
weniger Iterationsschritte erforderlich sein werden, je mehr sich System
und Belastung dem Symmetriefall nihern. Auch eine Verminderung der
Steilheit der Geraden AL bedingt eine noch bessere Konvergenz des Ver-
fahrens.

Die Konvergenz lisst sich allerdings auch noch auf folgende Art ver-
bessern. Man sucht fiir Aq,’ geniherte Ausgangswerte fiir den ersten
Rechnungsgang, wobei man trachtet in Gleichung (11) statt der Cosinus-
werte der Nelrrunrrswmkel deren Tangenten einzufiihren. Dies geschieht
durch \ernachldsswuncr der Quadrate der Verschiebungswege — beim
Uebergang von der Ausrrancrslafre in die Endlage — gegeniiber den Pro-
dukten aus Verschiebungsweg “und entsprechender Koordinate. s wird
also z.B. Ad® gegeniiber a - Aa vernachlédssigt. Man erhilt dann nach kurzer
Zwischenrechnung :

Aa,, As,, a,’
=~ — —% [t Pmo (18 @ — 18 @uio) + 18 Yoo (18 Yo — 18 Lmo)] - (12)

aﬂl sﬂl Sm

Setzt man noch

Asm ~ Hmp _ + Et't
Sm E,Fm cos Dono Cos (;"mo
und fiithrt GI. (12) in die Gl. (7) und (8) <¢in, so wird :
: ’)l (lﬂlz B I{ cv
2 m s 2 8 ¢ mo I‘I (f] H ) lg VmO
1 S n m
g, (lgv—i‘?— — gy ge— ) —vf a0 (13)
mo Hm 1 H O n el l H
ASm m ' c(?m 2
a,, 31 — l Fmo 8' 7T TH ) — 187 .0
H W " H U
+ tg L[Jml) Hm (‘g L!)l ) IO "")mo %' l{m (t 3 (?I H ):w_}_"\w (14)

Man erhilt schliesslich zwei quadratische Gleichungen fiir 1g ¢, und
tg 4, von folgender Bauart :

Agig®o, + Aytgoigd, — B, tge, — C,1g 4, 4D, =0 (15)
Autg® b+ A lg e tgd, — By tgd, — Cytg o, +D,, =0 (16)

aus denen tg o, und tg ¢, berechnet werden kann. Die hierbei erforderliche
Auflésung einer Gleichung vierten Grades ist jedoch ziemlich langwierig,
sodass man in der Regel die Rechnung mit Aa’=0 beginnen wird und
lieber einen Iterationsgang mehr durchfiihrt.
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Abb. 4. Hangebriicke mit Aussendffnung und raumlicher Seilfiithrung.

Bestimmung des Horizontalzuges

Die graphische Bestimmung des Horizontalzuges wird fiir eine Hinge-
briicke mit 3 Oeffnungen und eingespannten Stahlpylonen gezeigt. Mit den
Bezeichnungen von Abbildung 4 werden die Verschiebungen der Pvlonen-
spitzen B und C in Richtung der X-Achse :

Linke Seitendffnung

t=n'

AIJ: Z A(15+5_\; (17)

tl=1
Rechte Seitenéffnung

k=“”
AR — 2 Adty -0 ; (18)

k=1

Mitteloffnung
AM = Z Aa,, . (19)

m =1

Da diese Verschiebungen fiir verschiedene angenommene Horizontal-
ziige berechnet wurden, kénnen die Kurven

AL-+AR=f(H) wund AM=¢(H)

aufgetragen werden. Die Auflésung der Gleichung AM = AL -+ AR d.h.
die Ordinate des Schniltpunktes der beiden Kurven gibt sodann den
latsiichlichen vorhandenen Horizontalzug. Bei eingespannten Pylonen muss
hierbei beachtet werden, dass die Horizontalziige links und rechts von den
Pylonen um jene Krifte AH; und AHy verschieden sind, welche die Pylo-
nen bei ihrer Ausbiegung um die Masse AL und AR aufnehmen. Ist p die
Federkonstante der Pylone (die Ausbiegung, welche von der Kraft 1 t
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Abb. 5. Graphische
Ermittlung des Horizon-
talzuges. /

erzeugt wird), so ist in den Aussenidffnungen eine Drehung der A-Achse

um den Winkel 2 erforderlich, wobei gilt: tga——-%. Ferner muss die

A-Achse fiir die rechte Aussenéffnung noch um den Betrag £,=%XL,
t

parallel verschoben werden, um zu beriicksichtigen, dass positive Hori-
zontallasten der Mitteléffnung den Horizontalzug an der linken Pylone um
ihre Summe vermehren. In Abbildung 5 ist die Bestimmung des Horizon-
talzuges durchgefiihrt. Fiir drei angenommene Horwonlalzuoe am Beginn
der \Iltleloffnung H;, H,; und llIII werden nach Abschmtt B die \\ erte
AL, AR und AM berechnet und die Kurven AL, AR und AM gezeichnet.
Hierbei ist zu beachlen, dass die Kurvenpunkte fir AL auf den um den
Winkel « gedrehten Gemden LH;, "Hy; und "H;; liegen, wiithrend die
entsprechenden Punkte fiir AR sich auf den um « gedrehten und um £,
parallel nach abwirts verschobenen Geraden ®H;, ®H;; und B®H,; be-
finden. Sodann wird die Summenkurve AL -+ AR gezeichnet und mit der
Kurve AM zum Schnitt gebracht. In Abbildung 5 sind die dem Schnitt-
punkt entsprechenden Werte der Verschiebungen AL, AM und AR, sowie
die zugehdérigen Horizontalziige Hp, Hy und Hy eingetragen. Das Werte-
tripel der angenommenen IHorizontalziige muss fiir den ersten Iterations-
gang so gewihlt werden, dass der — sich als Losung ergebende — Hori-
zonlalzug dazwischen liegt. Da zunidchst nur rohe Schiitzungen des
Horizonlalzuges vorliegen, werden die Intervalle zwischen H;, Hy und
Hy;; entsprechend gross sein, wodurch natiirlich die L&sung ungenau
wird. Man wird smh daher fiir den zweiten Iterationsgang dlese erste
Losung fir H zu Nutze machen und die Wertetripel fiir H nunmehr dicht
belemander annehmen konnen, sodass man mit Iilfe des graphischen
Verfahrens eine ausreichende Genauigkeit erzielen kann. Meist ist es sogar
besser, die zweite Iteralion nur mehr mit dieser ersten Loésung durch-
zufithren (vgl. d. Zahlenbeispiel).
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Abb. 6. Raumliche Seilifihrung der Aussendffnung einer Hangebricke
bei Gleichlast.

Nachgiebigkeit der Verankerung und der Pylone

Um die Verhiiltnisse nicht unnotig zu komplizieren, wird nach Ab-
bildung 6 angenommen, dass das I\abel im Punkt A iiber einen Pendel-
bock (Zwelhock) umgelenkt wird, dessen Symmelrieachse in der lot-
rechten Ebene durch die Sehne des Kabelstiickes AB liegt. Auch wird mit
einer mittleren aber gleichen Verformung der beiden Stiele des Zweibockes
gerechnet. Da die \elqchlebunnen des Punktes A in den praktisch in Frage
kommenden Fillen nicht sehr ins Gewicht fallen, kénnen auch 1b\\el-
chende Anordnungen der Pendelbicke mit ausreichender Genauigkeit durch
das angenommene symmetrische System ersetzt werden. In Abbildung 7 ist
die Kabelumlenkung durch einen Pendelbock und die Bm,kverankeluno
in Grund- und Aufriss dargestellt, wobei auch die Umlegung in die
Grundrissebene eingezeichnet ist. Das Zweibein kann hierbei — unter
Beachtung der vorstehend gemachten Vorausselzungen — durch einen
Stab ersetzt werden, dessen Querschnittsfliche F, so gewiihlt wird, dass
er die selbe Zusammendriickung erleidet wie das Zweibein. Bezeichnet
AH, den IIou7ont*1]zug rechts von A infolge der Montagebelastung (in
Abbllduno 7 in der Umlegung in die \ufus:ebene dargestellt), so folgt aus
dem raumll(,hen I\rclftepolv"on die Kraft im Riickverankerungsseil :

. cos 8
S, = 4H, . ——_—‘?— (g ox + 18 2) (20)
sin (gx = )
und die Kraft im Pendel :
Ay =AH, — 2 (Igop —1g9.). (21)

sin (e +B)
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Abb. 7. Bestimmung der Verschiebungs-
komponenten fiir die Rickverankerung.

Man erhilt sodann nach einiger Zwischenrechnung die drei Kompo-
nenten der Verschiebungen des Punktes A zu :

cos Uy s-sin {3— cosE
\ :AH " - — te o to
EAP ? sint (fR + B) E'Fr ( 894 + D ﬁ)
)-Sin op - COS o
F PR g e —1go0)| (22)
AH | s-cos’ B p- cos® op }
- _ b — - N TR o b
4P T N (on - B) [ . (8Pt 83) — T p (8o — 8 9a)
| (23)
CAJ’) —_—— EAp - tg ‘Pn . (24)

Tritt ausserdem eine Temperaturinderung der Riickverankerung um
t°C ein, so ergeben sich die folgenden zusitzlichen Verschiebungskompo-
nenten :

ro_ (. Costr

Cat = € — __(s-sin P — )-sing? 25
\t ' Sin(%_*_?))( B—1 k) (25)
l - —
Nar = — g+t — — (s-cos 3+ p-coswvy) (26)
sin (or 1 7)

CA: —_—— EAt -ig ‘IJR . (27)
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E’ und E bedeuten hierbei die Elastizititsmoduli von Kabel und Stiitzbock
und Fy die Querschnittsfliche des Kabels.

Zur Ermittlung der Nachgiebigkeit der Pylonenspitzen B fiir den Fall,
dass die Aussendffnung nicht durch Montagelasten belastet ist, muss
zunichst die Horizontalverschiebung Al eines in A (Abb. 6) starr festge-
haltenen Kabels ermittelt werden. Fiir ein Element ds, das die Lingen-
dnderung Ads mit den Verschiebungskomponenten d%, dr und d¢ erfihrt,
besteht die einfache geometrische Beziehung :

2ds.Ads=2dz.di+2dy-dnt+2dz-d{-+d= - dr* - d0.  (28)

Daraus wire dz zu berechnen und iiber die ganze Seitenéffnung zu
integrieren. Vernachlidssigt man d%* gegen die anderen Gréssen der rechten
Gleichungsseite, was allerdings nur fiir nicht zu grosse Pfeilinderungen
beim Uebergang von der Ausgangslage in die Endlage zuliissig ist, und
setzt :

ds ’

Ads = etds + =, yY=tgy und 2'=lgd,
E'F cos ¢ cos ¢

so wird nach einiger Umformung :

‘ g dz H t dz ¢
Al:fdi:etf — £ f _—ft odn
0 o cos’p-cos’d T E'F Jo cos’scos®d g B9
] i
— [yt~ g [y @)
0 0

Nimmt man als Seilkurve eine Parabel an und entsprechen in der Aus-
gangslage den Lastkomponenten fiir den laufenden Meter v,/ und w,/, die
Pfeilhdhen f,, und f,, ; wihrend in der Endlage den Lasten v’ und w’ die
Pfeilhohen f, und f, (Abb. 6) zugeordnet sind, so wird fiir die Aufriss-
projektion :

tgo=tgo,+ —

4 fuo 4 Af,

l'l
AR v,
Afvzfv—fuo=—g'(-g— o)
0/

withrend fiir die Grundrissprojektion sinngemiiss ¢ durch ¢ und v durch w
zu ersetzen ist. Man erhidlt dann nach einiger Zwischenrechnung den
Nidherungswert :

6
= [|1 —}—tge(?; —l— thL!J[ "‘[""’31._1‘{ (fc02+fwoz)] (

l1—2z); dn= (l —2:x)dx;

Hy

COS &;-COS u‘ E'F

+ st)

— 37 (Mefat M fot M AL . GO)

Die Verschiebungskomponenten des Punkties B in der X- und Y-Rich-
tung werden dann :

EB=EA_|—AI""-(7IA'—"‘73]3) tg (PI'_(CA_CB) tg LPI y (31)

h, vl
ng = —¢,-t-h,+ H,- EF( Dl+ﬁ+t5?‘)' (32)
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Abb. 8. Raumliches Krafteck zur Ermittlung des
Horizontalzuges.

Zur Bestimmung der Verschiebungskompo-
nente in der Z-Richlung miissen bestimmte
Annahmen getroffen werden. Fiir den vorlie-
genden Fall w1rd zunichst eine symmetrische
seitliche Verformung der beiden Kabel voraus-
gesetzt und mit rrlmchem Horizontalzug in den beiden Tragwinden
gerechnet. Weichen die tatsichlichen Verhiltnisse hiervon ab — wie z.B.
bei schriger Hingerfithrung in Briickenquerrichtung — so muss diese Tat-
sache durch nachtrigliche Einfithrung dieser Verschiedenheiten bertick-
sichtigt werden, was zweckmiissig beim zweiten Iterationsgang erfolgt. Mit

&

z 9 tor d S, wl
Gs=H.v, ~t8?n—T+—I{— +&-t-b,

wird die gesuchte Verschiebungskomponente :

.y, !
m ettt — P (nig g, L) a»

N

t+2-H-2

v, bedeutet hierbei die Federkonstanle gegen ein seitliches Verschieben der
Pylone und b, die halbe Pylonenbreite.

Fiir die drei angenommenen Horizontalziige des ersten Iterations-
ganges wird von den Verschiebungskomponenten nur der Anteil
s == &4 -+ Al beriicksichtigt und erst fiir das daraus nach Abbildung 5 ermit-
telte H* werden die drei Komponenten nach den Gleichungen (31) bis
(33) in die weitere Rechnung eingefiihrt.

Ist die Pfeilinderung in der Aussendffnung beim Uebergang von der
Ausgangslage in die LEndlage verhdltnismissig gross, so wird die vor-
stehende Niherung unbrauchbar. Man kann dann die Horizontalver-
schiebung ‘Al aus der Seillinge in dieser Oeffnung bestimmen. Fiir die
Ausgangslage ist diese Seillﬁnge (Abb. 6):

' 8
Lo = co 1 ‘I" '3—1,0'2' (fuo’2 + fwon)!

wenn fir
fo=1,(1 + tg’?lo "I" tgz"!’to)
gesetzt wird. Ebenso ist fiir die Endlage :

p%f[1+3_8rz <f;’+fw")] o (3)

daraus ist :

L /Lz 8 2 e
t=g+ |/ -5 + 1
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und die horizontale Stiitzweite der Endlage :

I=( /1 —tg’c, — tg°¢, .
Man erhilt schliesslich die gesuchte Verschiebung der Pylonenspitze aus :

Al=—1—1,.

Sind die Aussendffnungen durch Montagelasten belastet oder ist der
Durchhang und seine Aenderung so betrichtlich, dass beide Niherungen
ungenaue Werte ergeben, so wird man — wie fiir die Mittel6ffnung — das
Iterationsverfahren auch fiir die Aussenéffnung anwenden.

Zahlenbeispiel

Dieses wurde fiir den Montagezustand (Versteifungslriigermoulag?)
einer Hingebriicke mit den Abmessungen und Belastungen von Abbil-
dung 9 durchgerechnet. Es wurde der fiir das Iterationsverfahren ungiins-
tigere Fall eines unsymmetrischen Montagefortschrittes (Voreilen der Mon-
tage in der rechten Briickenhiilfle) angenommen. Der Gang der Berechnung
soll hier kurz geschildert werden.

A7 60 60

m 8om

Abb. 9. Annahme des Zahlenbeispieles :
Die lotrechte Belastung der Ausgangslage betragt 27 t je Knoten.

1. Fir die drei Horizontalziige 800 t, 900 t und 1000 t wird unter
Vernachlissigung der Kabeldehnung und der hier nur kleinen Querlasten
der erste Iterationsschritt durchgerechnet, wobei die — durch Schrig-
stellung der Hiingeseile verursachten — Lingskriifte nur roh geschiitzt
wurden. Da die Konvergenz des Iterationsverfahrens in der Aussendéffnung
schlechter ist, als in der Mittel6ffnung, wird fiir erstere sogleich noch ein
zweiter Rechnungsgang durchgefiihrt, withrend fiir die Mitleléffnung die
Werte aus dem ersten Rechnungsgang beibehalten werden. Es geniigt den
zweiten Gang fiir nur zwei Horizontalziige durchzufithren, da im vorlie-
genden Fall das zu erwartende H im wesentlichen durch die Mitteléffnung
bestimmt wird. Fiir beide Rechnungsginge kann der Einfluss der Kabel-
dehnung angendhert unter Vernachlidssigung des Kabeldurchhanges er-
mittelt werden. Die Genauigkeit des Rechenschiebers ist villig ausreichend.
Die angegebene zeichnerische Ermittlung des Horizontalzuges fiir die ein-
zelnen Oeffnungen wird anschliessend vorgenommen. Man erhilt fiir die
drei Oeffnungen :

Hi=910 %, H;=—926 t, Hy =957 t.
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Abb. 10. Zahlenbeispiel : Raumliche Ausgangs- und Endlage des Kabels
(Héhen und Versch1ebungen sind funffach wverzerrt).

Die mit diesen Horizontalziigen ermitielten Verschiebungen der Anker-
punkte und die Versc'mebun«rskomponenten 7, und der Pylonenspitzen
gehen nunmehr als feste Randbedingungen in den zweiten Iterations-
gang ein.

2. Vor Beginn der zweiten Iteration werden — zur Bestimmung der
Schriglage der Hangel und der daraus entstehenden Honmnt'\lla%ten am
Kabel — die Aenderungen der Feldweiten (Aa) bestimmt. Die dieshe-
ziiglichen Annahmen der ersten Iteration kiénnen so berichtigt werden. Der
zweite Iterationsgang wird nun (auf 4 Stellen genau) durchgefiihrt, wobei
alle Linfliisse erfasst werden Im vorliegenden Fall ergab sich, dass — trolz
der angenommenen starken Unsymmetrie des \Ionlwefonschn ttes —
bereits die Genauigkeit dieses Rechnungsganges prakuqch ausreicht. lLs
erwies sich als Awerkma551 o, diesen Itemtlonsrranrr nur mehr mit dem aus
der ersten Iteration bestimmlten Horizontalzug II"‘ durchzurechnen und die
nochmalige graphische Bestimmung des vorh‘mdenen Horizontalzuges
nach }\bb]]dun" 5 so vorzunehmen, dass man an Stelle der Kurven AM
und AL + AR nur mehr mit den Tﬂncrenten an der Stelle H* arbeitet, deren
Neigung parallel zu den entsp:e(henden Tangenten and die beim ersten
Tterationsschritt ermittelten Kurven angenommen wird.

In Abbildung 10 ist die riumliche qellhﬁe (Ausgangs- und Endlage)
fiir das behandelte Beispiel eingetragen. Man erkennt, d‘lss die einzelnen
Knotenpunkte betriichtliche Horizonlalverschiebungen erleiden und dass
insbesondere der Einfluss, der aus der Schriiglage der Iliinger enlstehenden
Horizontalkriifte nicht vernachlissigt werden darf.

Résumé

Ce mémoire traite du cas géncéral du cible suspendu en deux ou
plusieurs points élastiques sous Teffet de charges spatiales uelconques,
avec application particuliére concernant letude du montage des ponts
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suspendus (cdbles el efforts horizontaux). L’auleur développe une
méthode par itération donnant une solution rapide pour tous les cas ren-
contrés en pratique. La position du cdble se calcule en admettant des
efforts horizontaux; ceux-ci seront alors déterminés graphiquement. Un
exemple numérique indique le procédé a suivre pour l'application de celte
méthode.

Zusammenfassung

Die Arbeit behandelt den allgemeinen Fall des an zwei oder mehreren
nachgiebigen Punkten aufgehingten Seiles unter beliebiger Belastung im
Raume und die spezielle Anwendung des entwickelten Berechnungsganges
auf die Untersuchung der Montagezustinde (Kabellagen und Horizontal-
ziige) von Hingebriicken. Es wird eine Iterationsverfahren entwickelt, das
fur alle praktisch vorkommenden Fille sehr rasch zum Ziele fiihrt. Die
Bestimmung der Seillage erfolgt hierbei fiir angenommene Horizontalziige.
Der vorhandene Horizontalzug wird sodann durch ein graphisches Ver-
fahren bestimmt. Ein Zahlenbeispiel zeigt den praktischen Gang der
Rechnung und die Brauchbarkeit der Methode.

Summary

This paper deals with the general case of a cable suspended from two
or more elastic points, under the effect of any kind of spatial loads,
applying particularly to the study of erecling suspension bridges (cables
and horizontal stresses). The author explains an iteration method which
gives a rapid solution to all the cases encountered in actual practice. The
posilion of the cable is calculated by assuming there are horizontal stresses;
these are then determined graphically. A numerical example indicates the
process to be followed in applying this method.
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Corrections a l'équation de Melan
Korrektionen zu der Gleichung von Melan-

Corrections to Melan’'s equation

S. O©. ASPLUND
Orebro

I should like to say a few words on the corrections to Melan's equation
in suspension bridge analysis.

Until this morning my opinion was that the deflection theory analysis
of a suspension bridge is best carried through by using influence lines on
the basis of Melan’s fundamental equation and assuming inextensible
cables. Melan’s equation is founded upon several assumptions that do not
quite agree with actual conditions. The corrections for these assumptions
are generally small. It seems to me that they should not be treated all
together but one by one, and be finally added.

That will make the whole procedure clearer. Corrections for different
disturbances may be compared from case to case and often they may be
estimated without much or any computations or they may be neglected.

Influence lines based on Melan’s equation and inextensible cables will
be the simplest and they have the great advantage of being applicable to
all bridges with different cables.

In using such influence lines the first correction will be for the cable
yield (by ehsllc extension, temperature and anchorage displacements).
These corrections are generally small and their rational application has
been clearly demonstrated in recent literature.

Similarly the span interaction terms in multiple span bridges can
be carried to the same cable yield correction.

That makes possible a very rational treatment of multiple-span
bridges by the immediate use of the influence lines of the one-span bridge.

The influence of and correction for stiff towers has been carefullv
investigated by a great many authors. They have found rather small
-corrections, in practica] cases on the order of one per cent.

In the calculation of the horizontal pull Melan’s theory assumes equal
suspender forces. That introduces an error, as pointed out by Krivoshein.
For a special bridge it has been calculated by myself not to exceed two
per cent for the deflectlons and a fraction of one per cent for the moments.

The effect of the suspender elongation and of the tower shortening
under live load is generally neglected.
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Moissief (Johnson, Bryan, and Turneaure) finds a negligible gain in
accuracy by considering this effect. Steinman estimates the correction to
be a small decimal of one per cent. Mabilleau arrives at the conclusion
that the elasticity of the suspenders and towers is of negligible influence
upon the stresses. Kloppel and Lie in a particular case find a correction to
moments of 0.15 9. However, in his paper in the Preliminary Publication
Crosthwaite in a particular case finds that the shear increases by 4 9, near
the towers, which is notable. It may very well be so, and it will be in-
teresting to verify this figure.

When a suspension bridge is loaded the inclination of its suspenders
will change, which changes the horizontal force. Kloppel and Lie and
Stiissi and Amstutz have investigated this disturbance both theoretically
and numerically. It is generally small but depends greatly upon the length
of the shortest hangers.

Of all other corrections to be applied I only want to mention the cor-
rection to Melan’s equation due to the angular deviation of the cable
elements. It can be separately evaluated as has been demonstrated in the
Preliminary Publication.

To-day Professor Stiissi has laid forth a very interesting funicular
polygon method for the suspension bridge analysis. When using his
method it may be more expedient not to segregate each correction and I
think one should not insist upon that because of the obvious advantage
of his method of solving a statical problem by means of statical instead of
by more mathematical methods.

Professor Stiissi’s method deserves full consideration and application,
but it would be regrettable if interest is lost in the development of the
classical differential equation method which still may be or may become
the most serviceable in many instances. It seems desirable not to cut off
any line of development but to proceed on both.

Résumé

L’équation de Melan est basée sur des hypolheéses qui constituent des
approximations. Les termes correctifs sont en général faibles. On peut foute-
fois les évaluer un a un et les ajouter aux résultats obtenus par 1’équation de
Melan. '

Zusammenfassung

Die Gleichung von Melan ist auf Anniherungen gegriindet. Die Korrek-
lionsfaktoren sind im allgemeinen sehr gering und kdnnen separat
abgeschitzt werden um mit den ersten Ergebnissen der Gleichung von
Melan zusammengerechnet werden zu konnen.

Summary

Melan’s equation is founded upon several assumplions that do not.
quite agree with actual conditions. The correclions for these assumptions.
are generally small. It seems that they could be treated one by one, and be:
finally added.
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Le montage de la travée centrale
du pont sur le Mississippi prés de Dubuque (Iowa)

Die Montage der Mitteloffnung
der Mississippi-River-Bridge bei Dubuque (Iowa)

Erection of the main span
of the Mississippi river bridge at Dubuque (Iowa)

ERNEST E. HOWARD
Kansas City

The Julien Dubuque highway (raffic bridge across the Mississippi River
from Dubuque, Iowa to east Dubuque, Illinois, has a total length of 7 082 fl.
It provides for two lanes of vehicular traffic on a roadway 24 ft wide
between curbs. It has one 6 ft over-all sidewalk and on the opposite side
of the roadway a curb 2 ft wide, making a total of 32 ft between handrails.
The structure is made up of steel girder spans and all-riveted truss spans
supported on concrete piers. Roadway and sidewalk floor slabs are of rein-
forced concrete.

The principal feature of this bridge is a three-span continuous through
truss structure having a total length of 1 539 ft, with a central tied arch
span of 845 ft and two end spans each 347 ft. Trusses are 35 ft centers.
This type of structure, well-known in Europe, is not common in America.
This is said to be the longest continuous truss span in the world. The
length and positioning of this span was fixed by navigation requirements,
here unusually severe because of the docks immediately at the bridge site.
It is the longest channel span of any bridge across the Mississippi River
excepl only the Nalchez and Baton Rouge bridges.

This type of span was selected after studies of various possible struc-
tures, because of its comparable economy, its pleasing appearance, and its
inherent advantages for erection. The design provided for such erection
by a program which needed a minimum amount of additional metal
incorporated in the members of the structure to provide for erection stresses.
The total steel in this 1 539 ft span is 4 225 tons (2 000 lbs). This total
includes only 200 tons above the minimum required for the final service
of the span.
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Diagram I. General form and various elements of the structure.

This was accomplished by carrying out the erection in several stages :
(1) By cantilevering each half of the total span length as two 2-span struc-
tures, but omitting all vertical hangers of the central span and all metal
suspended from them; (2) By connecting these two halves of the span 1o
constitute a three-span structure, set in a way to have adequate capacity to
support the omitted hangers and bottom chord ties and floorbeams; (3) By
a shortening of the distance between shoes of the central span from the
position chosen for operation (2) to provide for splicing its boltom chord
ties and adjusting the span into its functioning as a tied arch : thereafter
adding stringers and other floor metal.

To make compensation for the deflection or sag of the overhanging
portions of the arch trusses in their cantilevered position of Stage 1, and
to afford controlled positioning of the trusses for other erection stages, the
details were arranged so that each entire half span could be rocked on its
channel pier shoe by lifting or lowering its shore end. Provisions were
also made for longitudinal shifting. To make the mid-arch connection after
Stage 1, the shore ends of the end spans were lowered 3 ft 6 1/2 in below
final normal position for connecting the bottom chords of the arch trusses,
and raised to 3 ft 3 in below normal position for connecting the corres-
ponding top chords. During erection Stage 2 these shore ends were set
1 ft 6 in below normal position. Thereafter, lowering to 2 ft 8 1/2 in below
normal would bring the bottom chord tie together for splicing. Alternately
it was contemplated that this final splicing of the bottom chord ties might
be accomplished by applying pulling jacks to them; and the Contractor
decided to make the connection in that way. The concluding operation was
to jack up these end shoes to final elevation at which the trusses are
designed to function permanently, and to add the rest of the floor steel and
the concrete floor slabs. In final position the dead load reaction on each of
lhe four end shoes, — which are in fact rocker columns — is 125 tons.

A general consideration of the functioning of the structure will make
evident that a very considerable control of stress distribution was possible
by raising or lowering the ends of the spans. To have added the hangars
and the floor metal with the cantilevering operations under Stage 1 would
have required extensive enlargement of many truss members, — solely
for the erection condition. In its functioning as a three-span continuous
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Diagram II. Method of compensating for deflection of cantilevered arch trusses.

truss, under the controlled conditions described for Stage 2, the sltructure
was adequate to support the hangars, bottom chord ties, floorbeams and
bracing. Installation of stringers, curbs, handrails and other floor metal
was deferred until after the bottom chord ties had been finally spliced wund
connected so that the central span was functioning as a tied arch. Tn
making these various adjustments of the span by lowering and lifting the
ends, the reactions were measured as well as the deformations. The
amounts of the reactions for the various deformations closely corresponded
to the theoretical amounts as determined in the design calculations.

The general procedure of the erection operation can most readily be
followed by the reviewing the accompanying diagrams and photographs.
Diagram I illustrates the general form and identifies various elements of the
structure herein referred to. Diagram II illustrates the method of com-
pensating for deflection of cantilevered arch trusses so these parts could
correctly be brought together to accomplish the riveted connection.

Photograph 1 is a general view showing adjacent parts of the bridge
as well as the main span.

Photograph 2 shows the main span completed in final form ready for
traffic. The scale of the structure may be noted from the automobile on the
central span and of the man standing near the midspan hanger. This
view is taken looking downstream. All other pictures are taken looking
upstream.

Photograph 3 shows a fairly advanced state of erection. It will be
noticed that the west end span, at the left end of the picture, extends in
part across the shore. This span was supported during erection on two
steel falsework bents, one of which remains in place in this picture. It
was set up principally by the derrick standing on the top chord. After
reaching the west channel pier erection of the arch truss continued by
cantilevering, with the derrick moving forward on the top of the span.

The east one-half of the structure appearing to the right of the picture,
to the extent here shown was erected by cantilevering in both directions,
balanced upon the east channel pier. Temporary inclined steel struts set on
a projection of the pier below water supported the first panel point east
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Fig. 3. Fairly advanced state of erection.
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Fig. 4. Beginning of the
cantilever erection.

of the pier. On this base
erection proceeded in
both directions from the
pier, in suitable order lo
maintain balanced loads
on the pier. This picture
was made just before
placing the end panel
members which landed
the span on the east shore
pier. The span as shown
extends 312 ft from the
pier in each direction,
making a total length of
624 ft of balanced slruc-
ture. It may be remarked
that this is no time to
invite a wind storm.

This view also illus-
trates the means of steel
delivery. As needed the steel members were brought on barges to positions
immediately below the erection derriks and so lifted directly from the barges
to their places in the structure, for all parts of the structure above water
(fig. 4).

Photograph 5 shows a somewhat further advancement of erection. The
end panel members are in place and anchored to the east shore pier, ter-
minating some anxiety. The derricks erecting the arch trusses have moved
forward, and more panels are added.

Fig. 5. Further advanced cantilever erection.
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Fig. 6. Connection at the
middle of the arch span.

Photograph 6 shows the connection being made at the middle of the
arch span. It will be noticed that both bottom chords of the arch trusses
are in place. The final portion of top chord of the near truss has been set in
place and there remains only to place the final top chord of the far truss.
Only minor final vertical and horizontal adjustments of the ends of the
span were necessary to bring these parts together to make perfect joinings
of the riveted connections, with rivet holes as provided in the fabrication.
No reaming of holes or drilling of any special holes was necessary to
make these connections,

Photograph 7 shows the structure after the arch trusses had been
fully riveted and the span adjusted for erection Stage 2. The two derricks on
lop of the center span have begun to move back, putting in the hangers as
they retreat to the channel piers. The floorbeams between each pair of
hangers, and the sections of the bottom chord ties were also placed as the
derricks moved back but none of these parts were in place when this picture
was made.

Fig. 7. Arch span fully connected.
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Fig. 8. Details provided
for lowering and raising
the ends of the spans
(jack and tic-down bolts).

Photograph 8 shows the jack, the tie-down bolts and other delails
provided for lowering and raising the ends of the spans. It may be noted
that these details will permit longiludinal shifting if and as necessary.

In conclusion it may be of inlerest to nole that the main shoes are
built with * knife edge ” rocker supports rather than with usual rocker
pins. Also all eight shoes are of roller or rocker types. A vertical pin sel in
one of the channel pier engages the span and provides longiludinal ancho-
rage. This detail substantially eliminates torque in the piers.

A full description of the bridge including a complete discussion of the
methods of design and summaries of design calculations has appeared in
Proceedings and will be published in the next volume of Transactions of
the American Society of Civil Engineers.

The bridge was planned, designed, and construction supervised by
Howard, Needles, Tammen & Bergendoff, Consulting Engineers, the wri-
ter’s firm. Conlractor for Substructure was Robers Construction Co & La
Crosse Dredging Corp. : for Superstructure, Bethlehem Steel Company. In
September 1948 this bridge was awarded first prize by the American Insti-
tute of Steel Construction as the most beautiful of its year in its class of
long span structures.

Résumé

La travée centrale du pont de Dubuque sur le Mississippi, le plus grand
pont en treillis du monde, a une longueur de 1 539 pieds. Elle se compose
d’un arc sous-tendu de 845 pieds et de deux travées d’extrémité de 347 pieds.
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C’est une construction entiérement rivée. Le montage le plus économique
put étre réalisé sans échafaudage en construisant chaque moitié de la travée
avec montage en cantilever. Les dispositifs prévus pour la levée et la descente
des extrémités extérieures et le ripage latéral furent utilisés pour le raccor-
dement des deux demi-arcs. Les autres éléments métalliques furent assem-
blés suivant un plan prédéterminé : le pont passa du type & poutres con-
tinues sur deux ouvertures & celui de poutres continues sur trois ouver-
tures, le tirant étant placé en dernier lieu.

Zusammenfassung

Die Mitlel6ffnung der Dubuquebriicke {iber den Mississippi, der ling-
sten durchlaufenden Fachwerkbriicke der Welt, ist 1539 Fuss lang. Sie
besteht aus einem Bogen mit Zugband von 845 Fuss Linge und zwei Endfel-
dern von je 347 Fuss Liange. Die ganze Konslruktion ist genietet. Die diesem
Bauwerk eigenen Merkmale ergaben, dass die Montage ohne Geriisle wirt-
schaftlicher und vorteilhafter war. Jede Hilfte des Hauplfeldes wurde
zuerst als durchlaufender Zweifeldtriger im Freivorbau montiert. Die fiir
das Heben und Senken der landseitigen Enden der Endfelder und fiir das
horizontale Verschieben vorgesehenen Vorrichtungen erwiesen sich als
zweckmissige Massnahmen, um den Bogen in seiner Mitte zu verbinden.
Die restliche Stahlkonstruktion wurde montiert, wenn sich die Triger in
vorausbestimmten, verschiedenen Bauzustinden befanden : indem sie zuerst
als dreifeldriges durchlaufendes Fachwerk und spiter mit dem Mittelfeld
als Bogen mit Zugbhand wirkten.

Summary

The main span of the Dubuque Bridge across the Mississippi River,
said to be the longest continuous truss span in the world, is 1 539 ft long
with a central tied arch span of 845 ft and two end spans each 347 ft, of
all riveted construction. Its inherent characteristics made erection without
falsework economical and advantageous. Each one-half of the total span
was first erected as a two-span continuous truss by cantilevering methods.
Adjustments provided for raising and lowering the shore ends of the end
spans and providing longitudinal shifting afforded ready means for joining
the arch at its center. The remaining steelwork was erected with the span
in pre-determined different positions, functioning as a three-span conti-
nuous truss, and later with the central span functioning as a tied arch.
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L'arc avec poutre raidisseuse
Der mit Versteifungstriger verbundene Bogen

The arch with connected stiffening girder

PROF. D* ING. VIKTOR HAVIAR

Ministerialrat der Briickenbauabteilung des ungarischen Verkehrsministeriums, Budapest

Als Haupttriiger fiir Eisen- und Lisenbetonbriicken mit unterer Fahr-
bahn werden neuerdings oft verwendet :

I. Der schlanke, in seiner Ebene ungeniigend biegungssteife Bogen
(eventuell Stabzug), welcher mit einem Balken von entsprechend ge-
wiihlter Biegungssteifheit nach Abb. 1 verbunden wird, und

II. Der in sich biegungssteif ausgebildete Bogen, auf welchem die
gleichfalls biegungssteif gebaute I“lhlln]mhfel nach Abb. 2 aufgehiingt
wird.

Beide Tragsysteme sind in statischer Hinsicht identisch, der Unter-
schied ist nur, dass in erstem Falle der Versteifungstriger, im zweiten [Falle
der Bogen die bedeutend grossere Biegungssteifheit besitzt.

I. Der schlanke Bogen und der Versteifungsiriger werden an beiden
Enden unmitlelbar mit steifer Verbindung, in dazwischen vertikal iiber-
einander liegenden Punkten mittels Hiingestangen verbunden. Der An-
schluss dleser Hingestangen kann in der Berechnung, infolge ihrer
Schlankheit gelenkig angenommen werden. Wenn die Zahl der Hinge-
stangen n betrigt. so ist das Tragsystem (n—3) fach slatisch unhechmmt
Da n in der Praxis zwischen 10 und 20 variiert, so ist die Bestimmung der
Innenkrifte dieser hochgradig statisch unbestimmten Konstruktion nach
den iiblichen Methoden der statisch unbestimmten Sy%teme sehr umstind-
lich. Zwecks Vereinfachung der Rechenarbeit pflegt man in der Praxis den
Bogen mit einem ﬂre]enkwen Stabzug zu vergleichen (Langerscher Balken
Abb 3) und so, mlt der Annahme JB—-O eine einfach statisch unbe-
stimmte Konstruktion zu berechnen. Wenn H die statisch iiberzihlige hori-
zontale Komponente der Stabzugkrifte ist, so ist das Moment des Ver-
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% Mg Js Ma
AX M Tm u 88 X AL ) ) a
X I ; a _J ]
+y 3
Abb. 1. Abb. 2.

steifungstrigers M =M, — Hy, wo M, das Moment des einfachen Balkens
ist. Die Innenkraft der Hingestangen betrigt nach Abb. 3

Aye _ Av] g, A

S —_— o —{o — . —
.= H (tgx, —tga,)=H Ap Az | a A

wobei ¢« = Ax ist. Im Falle einer parabolischen Bogenachse mit

4
y_—:.——lzi-.r(l—x),
betrigt
Ay 8f
Az? P
und so ist
8
SL = l_gf alH = ‘?)H 5
a 8f A S
Wo p= —-a=eine Konslante bedeutet. Infolge dessen ist die Ein-
flusslinie der Hingestangenkraft @hnlich der H-Linie Abb. 3.
Die Ausgangsbedingung J; = 0 befriedigende Gelenke werden aus

wirtschaftlichen und istetischen Griinden vermieden. Die Ausbildung
eines gedriickten Gelenkstabzuges ist ndmlich schwieriger und teuerer,
die dstetische Erscheinung ungiinstiger wie die eines Bogens.

Eine schirfere Anniherung der Annahme J;=0, durch die Ver-
wendung einer minimalen Bogensteifheit, ist dsthetisch ebenfalls zu
bemingeln : eine zu kleine Bogenstidrke in verhidltnissmissig grosser Hohe
von der Fahrbahn gesehen wirkt ungiinstig, da sie nicht das Gefiihl der
Sicherheit erweckt.

II. Der biegungsfeste Bogen (Abb. 2) nimmt die konzentrierte Be-
lastung infolge der Uebertragung der Fahrbahntafel mehr oder weniger
verteilt auf. Bei der Berechnung dieses Systems wird im allgemeinen der
Biegungswiderstand der Fahrbahntafel vernachlissigt und durch die Ein-
fithrung erdachter Gelenke (in Versteifungstriger d.h. in Fahrbahntafel
[Abb. 4]), also mit der Annahme J, =0 als Zweigelenkbogen mit Zug-
band gelést. Dadurch erhalten wir auf dem Versteifungsiriger keine
Momente, dagegen sind die Momente auf beliebige Bogenquerschnitte :
My = M, — Hy, wo H die statisch iiberziihlige Zugbandkraft ist.

Die die angenommene Lastverleilung caracterisierende Einflusslinie der
Héngestangenkrifte gestaltet sich nach Abb. 4.

Die in der Praxis vorkommenden Trigersysteme I und II fallen
zwischen die oben behandelten Grenzfille J;=—0 und Jy=0.
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Nachstehend wird fiir die beiden Trigersysteme I und II eine einfache
Berechnungsmethode angefiihrt, die fiir beliebige Verhiltnisse der Bogen-
und Versteifungstrigersteifigkeiten giiltig ist.

Die Berechnungsmethode stiitzt sich auf eine Art der Momenlenver-
teilung, welche auf verschiedenen Gebieten der Statik mit Erfolg verwendel
wurde (*). Die Momente und Querkriifte des gegebenen Bogens resp. Ver-
steifungstrigers werden mitlels eines Bogens ermitielt, dessen Achse geo-
metrisch mit der Bogenachse des zu lésenden Tragsystems identisch ist,
dessen Biegungssteifheit aber grosser ist. Die Berechnungsmethode er-
moglicht die Beriicksichtigung der Wirkung der absoluten Krifte und die
Lingeninderungen der Hiingeslangen.

Es werden dabei die in der Statik iiblichen Annahmen beziiglich der
relativen kleinen Formiinderungen, des elastischen Bereiches und des gros-
sen Bogen-Kriimmungshalbmessers gemacht.

Grundlegende Zusammenhiange der Momente des Bogens
und des Versteifungstragers

I's werden die folgenden Bezeichnungen verwendet :
Im Abstande z von der linken Stiitze bedeutet (Abb. 1):

oy die Senkung des Bogens, d.h. die lotrechte Komponente der Bogen-
deformation ;

oy die Senkung der Versteifungstriigers;
% im allgemeinen den Unterschied zwischen &; und 85, d.h. A=28; — &;.

Der Umstand, dass A in den Vertikalen der Hingestangen mil
deren Lingeniinderung identisch ist, ermdoglicht, dass wir Zusam-
menhiinge zwischen den Momenten des Versteifungstriigers und des
Bogens ableiten.

Fiir jede Vertikale gilt nimlich der Zusammenhang :

S =By %,

(1) Haroy Cross, Continuous Frames of Reinforced Concrete, New York, 1933.
Dr. M. Rurrer, Der eingespannte Bogen it Versteifungstrigern (1. V. B. lI. Abhandlung-

gen, Bd. VI, S, 265-276).
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Wenn die Hingestangen entsprechend dicht verteilt sind, was bei der
iiblichen Zahl n=10 ~ 20 der Hingestangen der Fall ist, so gilt auch fir
die zweiten Differentialquotienten mit guter Annéiherung :

d®s, d*og , d’)

In den dquidistant gelegenen Stellen der Hingestangen — infolge der
mit der dichten Teilung erwihnten Bemerkung — wird statt des letzten
Gliedes ein Differenzenquotient geschrieben, d.h.

d”at. dioy A%
dz® = dr* ' Az

Da
s, _ M. My
det — EJ, "0 Tdz' T Elpcoss
ist, wo ¢ den Neigungswinkel der Tangenle (Abb. 1) bedeutet, so ist
R’Iu _ J.\I]-; . E'J!.NIB Ag)\
EJ,  Elgcosc gder M= EJg cos © + B, Az?
Mit der Bezeichnung
EJ, A

Ky =— und M, =LEJ

EJg cos » v Azt
ist
M, = kM;; -+ M;.
Die rechle Seile der Gleichung wird zweckmissig wie folgl millels
der leicht berechenbaren (M, -+ \IB) Summe der \[omente auwedluckt
Deswegen soll zu der rechten Seile -+ kM, — kM, addiert w elden Hiemit

wird

M, = k (M, + My) — k-M, M,

und so erhalten wir

= 4
und ihnlich
1
MB——‘W (M, + M) ko1 M, . (2)

Diese Grundgleichungen sind bei Verbindung von Bogen und Balken mit
beliebig verinderlichen Triigheitsmomenten giiltig, und geben den Zusam-
menhang zwischen den Querschnittsmomenten des Bogens und des Ver-
steifungstrigers im selben Vertikalschnitt.

Vorldufig nehmen wir an, dass die Querschnittsflichen der Hinge-
stangen sehr gross sind, d.h. dass die Lingeniinderungen derselben ver-
nachlissighar sind. Mit A=0 ist

2
M = B -EJ, =0
Azt

und die obigen Grundgleichungen gestalten sich :
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1, — ! 3
M, = k+1(M—|—IB (3)
und
i
= —(M, 1 4

d.h. die Summe der auf eine Vertikale bezogene Bogen- und Balken-
momente verteilen sich zwischen Bogen und Balken im Verhiltnisse

k d |
k1 % kF1

Zwecks Berechnung der Grésse (M, M) erzeugen wir die unbe-
kannten Momente M, und My auf den Trigern Abb. 5a resp. Abb. d8b. Der
Triger Abb. 5a unterscheidet sich von dem zu losenden dadurch, dass die
Hingestangen durchgeschnitten und der Versteifungstréager (Zuﬂlﬂnd)
gelenkig mit dem Bogen verbunden ist. Der Bogen ist mit den Hinge-
stangenkrifte S,, ..., S, und mit den auf den Booen direkt wnkenden
Kr'zifte P.B, ..., P,B belastet. Der Triger Abb. da stellt bloss den Versteifungs-
triiger als einfachen Balken dar, welcher mit den Hingestangenkriften
dyo S, o, S und mit den auf den Versleifungstriger direkt wir-
kenden P,Y, ..., P,V belastet ist.

Das Schnittmoment My im Versteifungstrdger an der Stelle z betriigt :

I\qul\IOv—{—l\iA’%—l—l\fIB’ =2 1 My (5)

und das entsprechende Schnittmoment im Bogen ist
MB——_LL)B”!_ NI\ —'— “3 ‘I—\’Is—— H. 'y (6)

M,, und My’ bedeuten die Momente, welche auf dem den Versteifungstriger
erselzenden einfachen Balken Abb. 5b infolge der Belastung P, und &
entslehen, ferner bedeuten M,z und Mg die Momente infolge der Belastung
Py, respektive S am einfachen Balken mil gekriimmter Bogenachse Abb. 5a,
durch welchen der Bogentriger ersetzt wurde.

Durch Addition von 5 und 6 erhalten wir :

(M, + My) = M5+ M,, — Hy = M, — Hy

M, ist das gesammte Moment eines einfachen Balkens von der Stiitzweite [
infolge der Gesamtbelastung Py -+ P, .

Zur Bestimmung der Summe (M,-+ Mg) ist also nur die einzige sta-
tisch unbestimmte Grésse H zu berechnen.
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Die Forminderungsgleichung des Bogentriigers kann folgenderweise
aufgestellt werden :

B Mpds B (s -
’[; &I y + H C()S@_—ﬁ (7)

d.h. der Summe der horizontalen Verschiebung infolge der Momente und
absoluten Kriifte im Punkte B ist der VerlanoerunfT des Versteifungstriigers
(als Zugbandes) gleich. Die Momente des Verste1funrrstmcrers verursachen
in dem in Abb. 1 angegebenem Falle keine horizontale ‘.’erschlel:mmT Mit
EJB (k—|—'l) Ely

¥ (M, — Hy) ds o
L (k I-1) &I, +HL Lr cose=1 1,

Da (k1) Jy=Jp 4

chung derart gedeutet werden, dass antstall der urspriinglichen Biegungs-
fsleﬂl("kEll del Bogen mit der angegebenen Achse, aber mit den vergros-

J
serten- und im allgemeinen verdnderlichen J/ =17+ a—é—@— Trigheitsmo-
]

wird

(8)

ist, so kann der Sinn der obigen Glei-

menten zu berechnen ist (Abb. 6).

Nachher kann die statisch iiberzihlige Zugbandkraft H nach der
iiblichen Methode einfach bestimmt werden, auch mit Riicksicht auf die
absoluten Deformationen, und so kdénnen mittels M, — Hy die gesuchten
Versteifungstriger- und Bogenmomente M, und M; bestlmmt werden.

Die Innenkrafte der steifen Hangestangen

Die Grosse der Querkraft am Querschnitte des Versteifungsirigers im
dM,
dz

Der Unterschied zwischen den zwei Querkriften, welche sich auf die
unendlich nahe rechts und links vom obigen Querschnitle angenommen
Querschnille beziehen, bestimmt die konzentrierte Kraft P, welche iiber dem
Querschnitt wirkt, und zwar

dM,
dx

Abstande z vom linken Auflager betrigt R =

Jrechts links

dM,

dz ——P=0Q.

Die Innenkraft S der steifen Hingestange kann somit mit Hilfe des
Momentes M, durch die Gleichgewichtsgleichung des Anschlusspunktes der
Hingestange berechnet werden. Wenn in der Vertikale einer Hiingestange
die Belastung P=1" wirkt, so ist Gleichgewichtsgleichung

dNIu rechts dMu links o
{ dz dz =S b=l
Mit M, = —k—(Mo——Hy) und mit der Annahme dass k& in der

k1
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unmittelbaren Umgebung der belreffenden Hingestange konstant ist, folgl
unter Beriicksichtigung von

dM, _ dM, . dy
dr  d=z dr
e [d)[o rechts (L\(Iollinks dy rechts dy links\
_“S+P+k+1“d.r} “[de _H({E ~ |dz M
== {}.
Da
d " ]r'echts d ]link.\ -
und
rechts links
H s Ay dy §= — S,
d.‘l:

ist, bekommen wir, dass die gesuchte Hingestangekraft

S_—:‘ P ist.

k
k+1 +k+1

Im Falle, dass k in der Nihe der gepriiften Hingeslange veriinderlich

ist, muss zu dem Ausdrucke des Differentialquotienten k——l:——l (M, — Hy)
, ; : d | J i
noch das Glied (M, — Hy) " - addiert werden.

Die Einflusslinie der Hingestangenkraft kann auf Grund des obigen
Ausdruckes einfach bestimmt werden : Im allgemeinen sind die Ordinaten

der Einflusslinie des Langerschen Balkens mit Py zu multiplizieren.
In der Vertikalen der gepriiften Hingesiange muss dazu noch die Ordinate

1
k—+1
geslaltet. Die Einflusslinien der oben behandellen extremen Fille T und IT
kénnen nach diesen Erwigungen einfach abgeleitet werden.

gegeben werden, so dass die Einflusslinie sich nach Abb. 7 und 8

Im Falle I ist ndmlich bei J;=0, k=oc, —— =1 und

k1

=0, so dass hier die Ordinalen des Langerschen Trigers in ihrer

k1

ganzen Grosse zur Wirkung kommen.
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Abb. 9.
7
: 2 Abb. 10.
: ; k 1
Im Falle IT bei Jy=0ist k=0, — —- =0 und ——— =1, so

k1 k41
dass hier die Ordinaten des Langerschen Trigers gleich Null sind, dagegen

muss die ganze Wirkung Fl}——j_ in der Vertikale der Hingeslange mit
der Grosse ,, Eins “ in Riicksicht genommen werden.

Diesen, auf steife Hingeslangen bezogenen einfachen Fall hat Dr. Ing.
J. Wanke auf anderem \Vecre aboeleltet und in Bezug auf die H: mplfonmeln
die gleichen Ergebnisse erha]ten (*].

Das Verfﬂhren ist auch dann verwendbar, wenn die versteifte Bogen-
konstruktion ein Teil eines evenluell mehrfach statisch unbestimmten
Systems ist. Ein solcher Fall ist in Abb. 9 dargestellt, bei welchem der Ver-
steifungslriger ein kontinuierlicher Balken uber drei Oeffnmmen ist.

In Abb 10 ist die Grundfigur des Ersatzsystems dqroeste]]t und auch
die Momentenlinien infolge dEI Belastung H=— 1, M= 1 und M= 1.

Die Beriicksichtigung der Langenanderungen der Hangestangen

a) Die Momente

Im Vorigen haben wir fiir die in derselben Verlikalen liegenden
Querschnitte des Versteifungstrigers, rsp. Bogens die 7119‘1mmenhancre

k .
M, = k-—-}—l (l\IUP}—I\’IB) +—]_C_—'}—_1N[ (1)
und
My= ! M,+ M L‘\I- 2
M=t M M) =M &)
abgeleitet.

Im Folgenden werden zwei Nebensiltze bewiesen und zw.:

1. Die Grosse (M, M) kann ebenso, wie im Falle der starren
Hingestangen, auch jetzt in der Form M;— Hy geschrieben werden ;

(" Dr. Ing. J. Wankr, Ueber die Berechnung von Bogentrigern einem Strecktriger (Der
Eisenbau, 1922, §. 264-274). '
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2. Das Biegungsmoment M, =EJ,— = — ist in der Form M, = <H

ausdriickbar, wo e eine Konstante bedeutet.

1. Wenn wir auf den Triigern Abb. 5a und 5b ausser den dort einge-

zeichneten Kriften und Momenten auch die Momente _E—ll——l M, und
—,—c% M, wirken lassen, so fallen bei der Addition der Momente M,
d M; die M t 1 M; und —1—’\]- dass auch hie
und M; die Momente P k_%_[;,nus,so ass au ier
tatsidchlich .
(M, + M) =DM, — Hy ist.
A%
2. sC e M, = LJ, A'g bedeutel die Léngeninderung
S
A :ﬁ; , wo y die Linge der Hingeslange bezeichnet.

Die Hidngestangenkraft S kann in diesem Ausdruck anniihernd mil
dem Werte

k 1
Sr. P
k41 + k41
angenommen werden. Ilier gilt das erste Glied auf die ganze Trigerlinge,
dagegen das zweile nur an der Angriffsstelle der Kraft P, so dass das lelztere

auf die Momenle des ganzen Trigers vernachlissigl werden und in dem
Ausdrucke

S =

& Sy
A= ER
anstatt S
S k S k Sja I

k1" " kF1I
gescln‘ieheh werden kann; so wird
k 8fa H
k+1 ¢ BF7Y
Falls Lk entlang des Trigers konstant oder abschniltsweise konstant

ist, so ist auch der Ixoellmenl von y konstanl oder abschnittsweise kon-
stant so dass

A=

A% T, k 8fa Ay
My =Blver =5 k1 ¢ A’ H
geschrieben werden kann.
. . . Aty Sf .
Bei einer parabolischen Bogenachse gilt, dass At p st oso dass
A0 k 81\ J.
My = EJ, 51y = k_]_i(z)tl?v.n
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° T,

und mit der Bezeichnung .:k(Ble ) a5

M, —¢H ist, wo ¢ eine Konstante bedeutel.

Bei der Bestimmung der statisch unbestimmten Grésse H kénnen wir
mit Beniitzung der Siitze 1 und 2 ebenso vorgehen, wie im Falle der starren
Hingestangen, es muss bloss in der Grundcrleichung

B

~B M ds [‘“ (I:r:
3 S"' e H ey
J w vt Bf gRe I %

[M, — H (y +¢)]

1
Mls=m(Mo — Hy —M))=—5—— ke + [

eingeselzt werden. Damit wird die Elastizitdlsgleichung durch
b (M, — H)(y + ) b do
I J—
«  (1¥KkE; +f FF, = H[\

dargestellt. Die Berechnung von H kann damit auch hier an dem Zwei-
gelenkbogen mit Zugband mit der vergrisserten Steifheit von

““JP"I——‘—

CcOos <

erfolgen. Da in dem Ausdruck von M, die Kraft H mit (y-¢) multipli-
ziert ist, kann die Wirkung der Elastizitit der Hingestangen an dem Bogen
und Versteifungstriiger derart berechnet werden, dass man die Kraft H
nicht in der elastischen Linie des Versteifungstriigers wirken liisst,
sondern mit dem Masse ¢ nach unten verschoben und den Lrsatzbogen auf
diese H Kraft l6st (Abb. 11). Wenn der Wert von & streckenweise ver-
inderlich ist, so erfolgt die erwiihnte Verschiebung stufenweise (Abb. 12).
Jener Umstand dass die Kraft H mit dem Hebelarm (y - ¢) wirkt,
erscheint nicht so sehr in der Grésseninderung von H, sondern ihre Haupt-
wirkung erscheint darin, dass im l‘alle ausgeglichener Momente, d.h. —
wenn M, nahe gleich Hy ist, — das Glied He zur Geltung kommt.
Dennoch ist, infolge der grossen Drucksmnnunfren im Bogen die
Wirkung der Aen(]elunrren der Hingestangenliingen, nicht bedeulend

b) Héngestangen

Grosser ist die Wirkung der Elastizitdt der Hiingestangen auf die Innen-
krifte derselben.
Im Folgenden soll die Aenderung der starren Hingestangenkraft

k
o= St bzw S,,..=

Sntarr
k1

k 1
— S+
k1" k+1P
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Abb. 13 (links) und 14 (rechts).
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®

infolge der Dehnungen A bestimmt werden. Dabei werden die Dehnungen
annihernd auf Grund der starren Hingestangenkriifte S, angenommen,
welche offensichilich den Haupltteil dieser Kraft bilden.

Die Dehnung der Hingestange infolge der Kraftwirkung S, betrigt

s __ Y k¥ L 5
CEEFRET TR R TN

Infolge dieser Dehnungen tritt im Versteifungstriager das Moment

A

.\I‘,_ — EJ]’F
auf, welches so gedeutet werden kann, dass in den Vertikalen der Hénge-
stangen infolge der Dehnungen derselben neuere vertikale Krifte auftreten,
welche das Moment M; verursachen. Diese Zusatzkriifte sind eben die

gesuchten Korrektionen der Kriifte S, .

Mit Anwendung des Zusammenhanges zwischen den Momenten und

der Belastungskraft konnen wir schreiben :

-
) M

d d
—M — |—M; = S,/ S,"”
dz l}rec]nm [d-r ‘]liuks ‘ + §
wo S, die Korrektion der ILingestangenkraft Sy, infolge der Dehnung
bedeutet.

Es wurde in dem Vorhergehenden bewiesen, dass ein Anleil des

— v Y _k
Momentes M, welches von der Lingeninderung A = EF RE1 St

hervorgerufen wird, gleich der Konstanlen eI ist. Infolgedessen ist die
) . d ) )
von diesem Anteil stammende Grisse EM{ und so auch die diesem

entsprechende und mit S;’ bezeichnete Korrektion gleich Null. Es muss

daher nur die Wirkung des anderen Gliedes 1" = -EJ;‘_ k_i—!_——l— in Riicksicht
genommen werden.

Falls der Bogen fix wiire, d.h. die Dehnungen in ihrer ganzen Grosse
nur den Versteifungstriger verbiegen wiirden, so wiren die gesuchten
Hingestangenkrifte gleich (wie die aus diesen entstehenden Momente M. ”

des Versteifungstrigers) den Reaklionsinderungen (bzw. den Momenten)
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des elastisch aufgehingten kontinuierlichen Versteifungstrigers. Der Ver-
steifungstriager erkl in diesem Falle namlich wie ein Bnlkenlrmel der
an den elastlschen Hiingestangen federartig aufgehingt ist und deseen belde
Enden mit dem Boven slarr verhunden smd (Abb. 13). Die Innenkrifte
dieses lragersyslems konnen mittels der geomelrischen und Festigkeit-
Angaben der Bogenkonstruktion bestimmt werden.

Der Bogen bewegt sich aber tatsiichlich infolge der Teilnahme in den
Wirkungen der lIanfreslangendehnunrren Die Betelllﬂung des Versteifungs-
triigers und des Bogens kann in der mit der Last P=1° belasteten Ver-
tikalen bestimmt werden, es muss aber dabei in Betracht genommen wer-
den, dass vom Gesichtspunkte der gesuchten Dehnungskorrektion von der

1
Hingestangenkraft nur der Teil von der Grosse LT 1* wirkungs-
voll ist.
Wenn der auf den Versteifungstriiger fallende Anteil der Dehnung A/

-y

mit — bezeichnet wird, werden die Korrektionen der Hingestangenkrifte
¥
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. 1 T : ;
anniihernd gleich den — fachen Reaktionsinderungen des obigen elastisch
Y

aufgehiingten kontinuierlichen Balkentridgers. Gleichzeitig erhélt man jene
Momente M ” welche in dem Vorhergehenden als vernachlissigbare lokale

Wirkungen angegeben wurden. Die Grosse dieser Momente betrigt das —
Y

fache der Momente M;” des obigen kontinuierlichen Balkens. ‘
Die Wirkung der Hingestangendehnungen in der Vertikalen der ge-
priiften Hingestange vermindert die Einflussordinate dieser Hingestangen-
kraft und vergrossert die zwei benachbarten Ordinaten. Ferner ist die Wir-
kung vernachlédssighar klein (Abb. 14).
Die Wirkung der Lingeninderungen der Hingestangen auf die Innen-
krifte derselben beziiglich der Hingeslange 6 der Bogenkonstruktion der

Szegeder Tiszabriicke ist in Abb. 15 dargestellt.

Anwendungen

1. Bei der 147,20 m weit gespannten Bogenkonstruktion der jetzt im
Bau befindlichen eisernen Strassenbriicke iiber den Theiss (lisza)-Fluss
bei Szeged (Abb. 15) wurde die Steifheit des Stahlbogens grisser gewihlt,
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Abb. 17 und 18.
wie es die iibliche annéhernde Berechnung — mit Riicksicht auf Montage

— als Minimum angibt, da sich der Wert von k zwischen 8 und 10 iindert.

Die Ergebnisse der mit starren Hingestangen durchgefiihrten Berech-
nung beziiglich der Bogenspannungen ergaben trotz der erwiihnten grés-
seren Bogensteifheit eine Abweichung von héchstens 10 9, gegeniiber der
iiblichen anndhernden Berechnungsmethode.

Die Einflussordinaten der Hingestangenkrifte in der Vertikalen der
gepriiften Hingestangen sind tiberall grosser, als die des Langer-Triigers,
der grosste Unterscheid ist 45 9. Die Einflussflichen der nach zwei Metho-
den berechneten Einflusslinien sind jedoch beinahe gleich gross, infolge-
dessen ist der Unterschied zwischen den massgebenden Kriiften sehr klein.

Die Lingeninderung der Hingestangen verursachte bei den Bogen-
spannungen nur einen Unterschied von hochstens 1 9, im Vergleich mit
den des Bogens mit starren Hingestangen. In solchen Fillen, wo die
Montierung derart vorgeht, dass auch die stindige Belastung durch den
versteiften Bogentriger aufgenommen wird, kann dieser Unterschied mehr
bedeuten.

Die Wirkung der Dehnungen der Hingestange auf die Stabkrifte
derselben wurde in Abb. 15 dargestellt. Die Entlastung in der Laststellung
iber dem gepriiften Stabe betriigt 10 9 im Vergleich mit der Stabkraft der
starren Hingeslange.

2. Bei dem Haupttriger der gleichfalls jetzt im Bau befindlichen
Tiszabriicke bei Vasidrosnamény (Abb. 16) ist der Stahlbogen verhilt-
nissmissig sehr schlank entworfen, so dass sich hier k zwischen 20 und 80
dndert. Die genauere Berechnung mit starren Hingestangen hat trotz der
grosseren Bogenschlankheit bei den Bogenspannungen einen Unterschied
von bis 10 9 im Vergleich zu denjenigen des Langertrigers ergeben, da die
Querschnittsprofile des Bogens hier beziiglich der Aufnahme von Biegungen
weniger giinstig ausgebildet wurden.

Modellversuche zur Bestimmung der Einflusslinien
der Hingestangenkrafte

Zur Vergleichung der berechneten und in der Wirklichkeit entstehen-
den Kriftespiele in der Bogenkonstruktion Abb. 1 wurden Modellversuche
ausgefiihrt. Da zwischen der genaueren und der iiblichen anniherenden
Berechnung der grésste Unterschied in der Lastverteilung erscheint, welche
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Abb. 19.

am besten durch die Einflusslinien der Hingestangen charakterisiert wer-
den kann, so wurde bei den Modellversuchen die Einflusslinie dieser Krafl
auf kinematischem Wege festgestellt.

Der Bogen und der Versteifungsiriiger des Modells wurden aus Stahl-
stiiben mit dem Querschnitte 10 >4 mm bzw. 15 % 10 mm und die Hinge-
stangen mit Rohrquerschnilten von Durchmesser 5 mm und der Wand-
stirke 0,3 mm erzeugt (Abb. 17).

Die Rohrquerschnitte der Hiingestangen waren zwecks Sicherung einer
entsprechenden Biegungssteifheil gegen Knickung dieser Stiibe notwendig.
Bei der Vorfilhrung der kinematischen Einflusslinien sind nimlich
Druckkriifte in einigen Hingestangen aufgetreten.

Ein Teil der gepriiften drei Hingestangen wurden mit Schrauben-
gewinden ausgebildel, so dass die Linge der grepriiften Hingeslange in
einem bestimmten Mass geiindert werden konnte.

Die kinematische Einflusslinie wurde durch die bestimmte Lingen-
dnderung der gepriiften Hingeslange erhalten und die infolgedessen
entstandenen vertikalen Verschiebungen des Versteifungstrigers durch
Messuhren eingemessen (Abb. 18).

Es sind die eingemessenen Einflusslinien der drei Hingestangen in
Abb. 20 aufgezeichnet.
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Die Vergleichung der gerechneten und eingemessenen Einflusslinien
zeigt, dass die Lastverteilung tatsichlich gemiss der genaueren Berech-
nungsmethode geschieht.

Infolge der Rohrquerschnitie waren die Querschnittsflichen der
Hingestangen verhiltnismissig gross, so dass die angemessenen Einfluss-
linien dem Falle von starren Hingestangen entsprechen.

Résumé

1. Considérations sur les déformations des suspentes et sur la rigidité
de I’arc lors du calcul des poutres de rigidité.

2. Exemples de réalisation :

a) Le nouveau pont-route sur la Tisza & Szeged (I = 146 m);

b) Le nouveau pont-route sur Jla Tisza a Védsdrosnamény
(1==101,70 m).

Zusammenfassung

1. Beriicksichtigung der Forminderung der Hingestangen und der
Steifigkeit des Stabbogens bei der Berechnung des Versteifungstrigers.

2. Ausfithrungsbeispiele.
a) Die neue Strassenbriicke iiber die Theiss in Szeged (I = 146 m);

b) Die neue Strassenbriicke iiber die Theiss bei Vasirosnamény
(1=101,70 m).

Summary

1. Considerations concerning the change in the shape of the hangers
and stiffness of the arch members in calculating the stiffening girder.

2. Examples of execution :

a) The new higway bridge over the Tisza at Szeged (I — 146 m);

b) The new highway bridge over the Tisza at Vasirosnamény

(I=101.70 m).
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