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Icl

Théorie et essais de voilement de tdles sollicitées
par des tensions longitudinales a distribution égale

Theorie und Versuche iiber das plastische Ausbeulen von
Rechteckplatten unter gleichmissig verteiltem Langsdruck

Theorie and tests concerning buckling of plates
stressed by equally distributed longitudinal stresses

P. P. BIILAARD C. F. KOLLBRUNNER F. STUSSI
Delft Dottingen Zirich

Theoretische Grundlagen

Wir legen unserer Theorie des plastischen Ausbeulens die Theorie
der ortlichen plastischen Verformungen von P. P. Bijlaard (') zu Grunde;
damit lassen sich fiir eine lingsgedriickte Platte (Abb. 1) mit s, > o, die
Forminderungsgleichungen
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anschreiben. Dabei bedeutet N die Platlensteifigkeit im elastischen Bereich,
_ Egy  E-1L.K

1—v 12(1— %)
wiihrend die Abminderungszahlen A,, B, = C,, D, und F, die Abnahme der

Steifigkeil gegeniiber den verschiedenen hier auftretenden Beanspruchungs-
arten nach Ueberschreiten der Proportionalililsgrenze kennzeichnen. Sie

N

(1) P. P. Buraarn, Theory of local plastic deformations (Abh. 1. V. B. H., Band 6).
P. Buraarp, Theory of the plastic stability of thin plates (Abh. I. V. B. II., Band 6).
P. Buraarn, Some contributions to the theory of elaslic and plastic stability '(Abh.

1. V. B. H., Band 8).

P.
P.
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sind hier, im Interesse einer einheitlichen Darstellung des elastischen und
des plastischen Beulbereiches und in Abweichung gegeniiber der urspriing-
lichen Darstellung durch die Zahlen A, B=C, D und F (') auf die Plat-
tensteifigkeit N und nicht auf EJ bezogen; gegeniiber der urspriinglichen
Darstellung erscheinen diese reduzierten Abminderungswerte somit hier
mit (1 —v*) mullipliziert, also

(A, B, C, D, F,) = (1—+) (A, B, C, D, F) .

Im elastischen Bereich nehmen die reduzierten Abminderungszahlen die
Werte

A, =D, =1,
B,=C,=v,
2F, =1—v

an. -

Wir beschrinken uns hier, mit Riicksicht auf die heute vorliegenden
Versuchsergebnisse, auf das Ausbeulen unter gleichmissig verteiltem Langs-
druck o,. Setzen wir fiir diesen Fall die F01mandelunﬂrwlelchungen (1)
in die Gleichgewichtsbedingung eines Plattenelementes,

M, *M,, *M, *w )
oz® ax oy ;T dy* :"”'h'a—z'_ ’ (2)

ein, so erhalten wir die Beulgleichung fiir den plastischen Bereich (fiir
g, === Konst., ¢,=0, v,==0)

8“ _'w 8“w o,-h  Otw

Die Losung dieser Beulgleichung ist von der Lagerungsart der Lings.
rinder abhingig.

a. GELENKIG GELAGERTE LANGSRANDER.

Bei beidseitig frei drehbaren oder gelenkig gelagerlen Lingsrindern
laulet der Losun”sqnswtz der Beulgleichung

o " . nN=«
. sin y
b

W = wW,-sin

und wir erhalten die kleinste krilische Spannung mit n =1 zu

N m.; a’=?
i A+b22(B+2F)+b‘ -D,

Gxyp — T

oder mit der Abkiirzung

zu

(4)

MWJAV+2Q%4Fy+WI“V

h-bt
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Im elastischen Bereich wird mil der Schreibweise
N

hbf_k“

5-kr = k
der Klammerausdruck zur Beulzahl F,
l._ﬁurzuo-}-ﬁ?, (5a)

fiir den plastischen Bereich haben wir somit eine abgeminderte Beulzahl k,

e— A8 £2(B 42T + 22, 5 b)
~ .

erhalten.
Fiir die Konstruktionspraxis isl besonders der Kleinstwert von k von
Interesse; wir erhalten diesen Kleinstwert k., fiir

D,
% 0,

2A,p— 2

zu

Kma=2}A,-D, + 2 (B,-- 2 F,) (3 ¢)

Eine iibersichtliche und fiir die Konstruktionspraxis bequeme Darslel-
lung des plastischen Ausbeulens erhalten wir, in Analogie zur Knickspan-
nungslm]e des zentrisch gedriicklen Stabes, durch die Beulspannungshmc
die im elastischen Bereich durch die Benehung

= E
)\2

Orr —

gegeben ist. Aus der Gleichsetzung

=2.E =:.N
X2 _k“hbﬁ

finden wir die ideelle Schlankheit der Platie zu

)

Es liegt nun nahe, auch fiir das plastische Ausbeulen einen « Beul-
modul » Ty durch den Ansalz

e T (7)

zu definieren, den wir, ausgehend von k,;, der Gleichung 5c¢, aus der Gleich-
selzung
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] N
)2 — kmin : _h—F
und durch Einfiihren des Schlankheitsgrades nach Gleichung 6 zu
E
r:[‘I — K. o — 8
1 I\Illlll k_ ( )

el

bestimmen kénnen. Fiir den betrachielen Fall der frei drehbaren Lings-
rinder erhalten wir mit k,;, nach Gleichung 5¢ und mil dem entspre-
chenden Mindestwert k, = 4,00 fiir den elastischen Bereich den Beulmodul
Ty zu

Ty =0,50 [/A,-D,+B,+2F,|-E (8 a)
oder
T, =0,455 ) A-D4+B4-2F|. E (& b)

b. STARR EINGESPANNTE LANGSRANDER

Fiir beidseitig starr eingespannte Liingsrinder kann der Beulwert kg
fiir den elastischen Bereich in Analogic zu Gleichung 5a angeschrieben
werden zu (*)

H.24
ko=t 230 + 252 ®a

Wenn auch genau genommen diese Zahlenwerte fiir einen bestimmten
Wert von 2 (% = 1,5) ermillelt worden sind und die Form der Beulfliche
hier von § abhingig ist, so gilt Gleichung 9a doch mit praktisch mehr
als ausreichender Genauigkeil auch fiir andere Werle von $ und sie darf
insbesondere auch auf den plastischen Bereich iibertragen werden. Damit
erhallten wir

5,24-D.
0

k= A8 2,39 (B, 2F) 2 (9 b)

D,
?— 2 2 S
=229/ 2

Ko = 4,58 |/ A,-D, + 2,39 (B, - 2 F,) 9 ¢)

Der Beulmodul Ty ergibt sich fiir diesen Fall mit min. k,; = 6,97 zu

k wird zum Kleinsltwert fiir

und es ist

(2) F. Srtisst, Beérechnung der Beulspannungen gedriickter Rechieckplatten (Abh.
I. V. B. H., Band 8).



THEORIE UND VERSUCHE UBER DAS PLASTISCHE AUSBETULEN 123
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Abb. 2. Mittleres Span-
nungs - Dehnungs - Dia-
gramm von Avional-M _ &
Platten. .0123656763,0112.‘314‘516172;
‘ T, = [0,657 /A, D. 4+ 0,343 (B,--2F,)|E (8 )
oder
j \
L T,=[0,598) A-D +0,312(B+21)].E i (8 )

Genau so, wie der Knickmodul T, des Druckstabes von der Quer-
schniltsform abhiingig ist, so ist hier der Beulmodul von der Lagerungsart
der Lingsrinder abhiingig. Fiir Platlten mit einem gelenkig gelagerten
und einem slarr em"e%pannlen Liingsrand darf der Beulmodul genau genug
als Mitlelwerl der beiden durch die Gleichungen 8a und 8b beqtlmmten
Werle angenommen werden.

Versuchsergebnisse

a. FrRUHERE VERSUCHE :

Diese theoretischen Ergebnisse seien zunfichst mit den fritheren Ver-
suchen von C. F. Kollbrunner (*) verglichen. Diese Beulversuche (s, =
Konst.) wurden an Platten aus Avional M der Aluminium Industrie A. G.
Neuhausen mit E = 715 t/em® durchgefithrt. Das mittlere Spannungs-
Dehnungs-Diagramm ist in Abb. 2 aufgetragen. Die daraus nach der Theorie

() C. IF. Koverunxer, Das Ausbeulen der auf einscitigen, gleichmissig verteilten Druc's
beanspruchten Platten im elastischen und plastischen Bereich (Mitteil. a. d. Institut f. Baustatik
an der E. T. H., Zurich, Nr. 17). :
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Abb. 3. Abminderungszahlen. Abb. 4. Beulmodul.

1
Gp = 2,08fcr

o k-2

N

von P. P. Bijlaard berechneten Abminderungszahlen A, B,=C,, D,, F,
sind aus Abb. 3 ersichtlich, wihrend der Beulmodul T, fiir die beiden
Lagerungsarten nach den Gleichungen 8a und 8¢ in Abb. 4 dargestellt ist.

Die folgende Tabelle I enthilt die Versuchsmittelwerle von o fir
Versuche im elastischen und plastischen Bereich, geordnet nach den aus
Gleichung 6 berechneten Schlankheiten A und fiir die drei Lagerungsarten

a : beidseitig gelenkig,
b : beidseilig slarr eingespannt,
¢ : einseilig gelenkig, einseitig slarr eingespannl.

bRl
Thy . b h 7 Lagerung Tab. Nr.

t/cm? cm cm

2,924 4,4 0,2 ' 27,6 D 10
2,733 "5.3 0,2 ' 37,6 ¢ 9
2,116 6,2 0,2 51,2 a 6
2,024 10,2 0,3 36,2 a 5
1,936 9,4 0,2 58,9 b 11
1,246 10,3 0,2 73,0 c 8
0,939 10,2 0,2 81,3 a 5
0,732 20,3 0,3 96,0 ¢ 7
0,683 6,2 0,1 102,4 a 6
0,474 19,4 0,2 121,5 7] 12

TABELLE 1.

Zur Orienlierung sind in Tabelle I auch die Tabellennummern des
Versuchsberichtes (*) angegeben.

Abb. 5 enthill den Vergleich dieser Versuchswerte mil den nach
Gleichung 7 berechnelen Beulspannungslinien.

b. Neure VERSUCHE :

Da fiir die fritheren Versuche nur eine Belastungseinrichtung (Hebel-

maschine) beschriinkler Leistungsfihigkeil (P,,, = 6 t) zur Verfiigung
stand und auch die Ausfithrung der Fithrungselemenle der Platien nicht
voll befriedigte, wurde am Institut fiir Bauslatik an der E. T. H. (Abteilung

Stahlbau und Holzbau, F. Stiissi) in Zusammenarbeit mit der Technischen
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Abb. 5. Vergleich der Versuchswerte mit
den berechneten Beulspannungslinien.

Kommission des Verbandes der Schweiz. Briickenbau- und Stahlhochbau-
Unternehmungen (T. K. V. S. B. Prisident C. . Kollbrunner) eine neue

verbesserte und leistungsfithigere Hebelmaschine mit P, = 25 L (Abb. 6
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Abb. 6. Hebelmaschine von 25 t Leistungsfahigkeit.
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Abb. 7. Hebelmaschine

von 25 t Leistungsfahig-
keit.

u. 7) aufgestellt und es wurden auch verbesserte Plattenfithrungen (Abb. 8)
und Versuchseinrichlungen enlwickelt.

Die Einzelheilen dieser neuen VYersuchseinrichtungen wurden von
Dipl. Ing. M. Walt entworfen, der auch zusammen mit Mechaniker E. Peter
die neuen Versuche durchfiihrte.

Zuniichst wurden aus von den fritheren Versuchen her noch vorhan-
denen Piatlen (Avional M) einige Versuchsreihen mit ¢, = Konst. fir die
beiden Lagerungsarten « und b durchgefiihrt, deren Ergebnisse in Tabelle 2
zusammen geslellt sind.

In Abb. 9 sind diese Versuchswerte mil den theoretischen Beulspan-
nungen verglichen.

Abb. 8. Neue verbesserte Plattenfihrungen.



THEORIE UND VERSUCIHE UBER DAS PLASTISCHE AUSBEULEN 127

G;r & t/em’ y Ore 2 tjem’

:i 5 E s N
, Op =20 tfcr’ S

20
\“

;'\

b\\

o i

2% 50 75 100 125

Abb. 9. Vergleich der Versuchswerte mit den theoretischen Beulspannungen.

Lagerung b h Skr A
cm cnl t/cm?
a 16 0,2 0,386 132,2
0,3 0,892 88,1
0,4 1,625 66,1
0,5 2,112 52,9
b 16 0,2 0,680 100,2
0,3 1,530 66,8
0,4 2,219 50,1
0,5 2,630 40,1

TABELLE 2.

Schlussfolgerungen

Fiir den untersuchten Fall von gleichmissig verteiltem Lingsdruck o,
ist die Uebereinstimmung von Theorie und Versuch bemerkenswert gut.
Damit darf auch die Theorie der ortlichen plastischen Verformungen von
P. P. Bijlaard als gesichert angesehen werden.

Ueber unsere weiteren gemeinsamen Untersuchungen, die sich beson-
ders auch auf ungleichmiissig verteilten Druck beziehen werden, soll am
Kongress selbst berichtet werden.
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Résumé

Pour le voilement des tdles sollicitées par des tensions longitudinales
a distribution égale, les tensions théoriques de voilement sont calculées en
se basant sur la théorie des déformations locales plastiques de P. P. Bijlaard
et elles sont présentées sous forme de la courbe des tensions de voilement,
c’est-a-dire en fonction d’un coefficient d’élancement idéal A. D’ailleurs,
en analogie du module de flambage, un module de voilement Ty est intro-
duit, dont la grandeur pour un matériel déterminé et une répartition de
charge déterminée ne dépend pas seulement de la tension critique, mais
aussi des conditions au bord de la tdle. Les tensions de voilement calculées
présentent notamment une bonne concordance avec les résultats d’épreuves
antérieures et récentes.

Zusammenfassung

Fir das Ausbeulen von durch gleichmissig verteilten Lingsdruck
beanspruchten Platten werden die theoretischen Beulspannungen auf Grund
der Theorie der ortlichen plastischen Verformungen von P. P. Bijlaard
berechnet und in Form der Beulspannungslinie, d. h. in Funktion eines
ideellen Schlankheitsgrades A dargeslellt. Ferner wird in Analogie zum
Knickmodul ein Beulmodul Tj; eingefiihrt, dessen Grosse fiir gegebenes
Material und gegebene Belastung nicht nur von der kritischen Spannung,
sondern auch von den Randbedingungen der Platte abhingt. Die berech-
neten Beulspannungen zeigen bemerkenswert gute Uebereinstimmung mit
dlteren und neuen Versuchsergebnissen.

Summary

For the buckling of plates stressed by equally distributed longitudinal
stresses the theoretical buckling tensions are calculated on the basis of the
theory of local plastic torsions of P. P. Bijlaard and depicted in the form
of the buckling pressure-curve, i.e. in function of an ideal ratio of slen-
derness A. Furthermore, in analogy to the modulus of buckling, a buckling-
modulus Ty is introduced, the extent of which, for a given material and a
given load distribution, does not depend only on the critical tension but
also on conditions at the edge of the plate. The buckling tensions calculated
show a noteworthy resemblance to previous and recent results of tests.
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Contribution a l'étude du voilement des tdles raidies
Beitrag zum Studium des Ausbeulens ausgesteifter Bleche

A contribution to the study of buckling stiffened plates

CH. DUBAS

Ingénieur, Bulle

I. Le voilement

Dans le probléeme du voilement, il faut tenir comple des charges lrans-
versales qui proviennent des déformations possibles de la tdle sollicitée
dans son plan par des efforts de bout. Nous pouvons admettre ces charges
transversales, fonction des fleches que nous appellerons w,. Elles agissent
alors comme des charges ordinaires d’une plaque el produisent en consé-
quence des fleches ue nous désignerons par w..

Au moment ol w, = w,, la tdle fléchit par suite des efforts de boul.
Si I’on multiplie a cet instant les charges transversales admisés par un
facteur quelconque d’affinité, on {rouve des fléches w, et w, mulliplides
par ce méme facteur d’affinilé, la condition w, = 1w, restant toujours
exacte. Puisque la fleche posséde a la fois plusieurs valeurs, elle est indé-
terminée et 1'équilibre est instable : la tdle se voile. La charge de bout
correspondant a w, = w, est donc la charge crilique, exprimée générale-
ment au moyen du facteur de voilement k.

La méthode exposée est la méthode bien connue d’Engesser-Vianello,
utilisée couramment pour le calcul des barres au flambement. Dans ce
dernier cas, il est vrai, on ne tient pas compte de charges Iransversales,
mais directement de moments fléchissants.

II. La plaque fléchie

1. CAS GENERAL

Les charges transversales une fois admises, nous avons A calculer
les fleches qui en découlent. G’est le probléme de la plaque fléchie. L’exac-
titude dont nous avions besoin aurait exigé des calculs trop longs en utili-
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sant les méthodes classiques (séries de Fourier ou aulres, différences selon
Marcus, ...). Ci-aprés la méthode emplovée :

Considérons la relation bien connue entre les charges transversales
et les fleches d’une plaque :

| o'w P |
+ o e 1
! ax“ + 81"8;/ T oy D ()
. ER’ M ; : -
ouD = 12(T-;?“)—est la rigidité de la plaque & la flexion, par unité de

largeur. Cette équation différentielle (1) correspond & celle de la flexion
des poutres :

d'w P
| d T RS ()

qui provient elle-méme de la combinaison des équations fondamentales :

d™M | ‘ (l w M |
— . e 3 2 — |
dz? P } (2) el ‘ dzr — EJg \

Remplagons la plaque par une série de poutres longitudinales (paral-
leles & I'axe des z) el de poutres transversales (paralleles a l'axe des y).

Alors, d’aprés (), le terme % n’est rien d’autre que la charge IDJ
des poutres longitudinales et Z —, 1 arg I) ales,

a la condition que les fléches de la plaque coincident parfaitement avec
celles des poutres de remplacement :

l w,=w| (5) et i w, = w : (6)

J'w . )

Quant au terme Frea il représente une charge p,, des poulres
longitudinales telle que les moments M, produits soient égaux aux
moments M, des poutres transversales chargées avec les p, :

| -
| M., =M, | (7)

0*M,, 9*M,
En effet, selon (3), nous avons : a:r‘;, = — Py -——v—a;;i et comme

o0*w i

oy?

M, .. Pay
=" d’aprés (4), alors D = 75y
En chargeant les poutres transversales avec des charges p,., on trou-
Pzy __ o'w P,

D odz%y* " D

ki

en tenant compte de (6).

verait de méme : , a la condition que :

I M,, =M,

(8)




VOILEMENT DES TOLES RAIDIES 131

; " d*w o'w ¢'w
Si nous introduisons les valeurs de ] , - dans
ar’ Iy

I’équation différentielle (1), nous trouvons:

'pet2p.,+p.=p (9

Nous avons donc maintenant remplacé la plaque par un systéme de
poutres entre-croisées. Pour le résoudre, nous ne disposons que d’une
seule condition d’équilibre (9), de sorle que le probléme est doublement
hyperstatique. Mais nous disposons aussi de quatre conditions exprimant
les déformations muluelles des poutres de remplacement. En réalité (5)
et (6) ne forment qu’une seule condition : w, = w,, de méme que (7) et
(8), puisque p,, = p,.. Nous pouvons donc écrire en chaque point de
croisement des poulres longitudinales et transversales trois équations pour
les trois inconnues p,, p.,, Py

Nous choisissons pour commencer le réseau des poutres de rempla-
cement et nous appliquons aux poutres de bord ce que nous venons de
dire. On en déduit alors les valeurs correspondantes de p., p,, et p,. Par
exemple, si la plaque est appuyée sur son pourtour, les poutres de bord
ne supportent aucune charge.

Les p:, Pz, p, doivent maintenant étre délerminés en tous les points
de croisement non situés sur le pourtour de la plaque. Nous pouvons irés
bien faire agir I’'un aprés 'autre les p, aux différents points. Pour chacun
d’eux, nous calculerons les w, correspondants des poutres longitudinales.
Nous connaissons par conséquent les w, des poutres transversales, puisque
w, = w,. Nous écrivons alors que les p, inconnus produisent les w,
trouvés, ce qui nous donne une série d’équations. En les résolvant nous
obtenons les valeurs des p,. On procéde de méme avec les moments
M.=M,, et I'on trouve les p,,. Nous connaissons donc & cet instanl les
Px» 2 D=y, Py en lous les points et par conséquent leur somme p. En super-
posant l'influence des p, inconnus aux divers points et en inlroduisant les
valeurs connues des charges réelles de la plaque p, on obtient une série
d’équations, qui une fois résolues, donnent les p, aux divers points. De 1a
on calcule aisément les fléeches w, = w, qui seules nous intéressenl dans
les calculs au voilement. Le méme raisonnement peut se faire, bien
entendu, en partant des p,, des p,,, des M, des M, ou méme directement
des w.

2. CAS PARTICULIER DE LA PLAQUE APPUYEE SEULEMENT SUR SON POURTOUR
ET FLECHIE PAR DES CHARGES REPARTIES SINUSOIDALEMENT DANS LE SENS
LONGITUDINAL

Dans ce cas les p,, M, et w, de loutes les poulres transversales sont des
sinusoides parallélement & 1’axe des x. Nous n’avons donc plus que la poulre
transversale médiane a considérer (sommet des sinusoides). Puisque
w,=w,, les p, sont é¢galement des sinusoides, qui valent, selon (2),

ot 7:2 .
Wy De méme les p,, valent — M, , d'aprés (3). La relation (9)

nous donne alors :

—
iv

P=

al

1 —_2
JL%+2ﬁdu+m (10)
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ou w, et M, sont les moments et les fleches de la poutre transversale
médiane dus a p,. De 14, le calcul se poursuit comme dans le cas général
en superposant l'influence des divers p, inconnus.

3. OBSERVATIONS

Dans les applicalions numériques, on exécutera lous les calculs des
poulres de remplacemenl pour des charges, des moments ou des fléches
unitaires. Ceci fait, le calcul des p d’une plaque rectangulaire de dimen-
sions quelconques est extrémement rapide : il suffit d'une simple super-
position. Il ne reste plus alors qu’a résoudre un systtme d'équalions
contenan! autant d’inconnues (ue de points de croisement, comme avec le
procédé de Marcus, bien moins précis el par conséquent bien moins avan-
tageux. Nous avons de plus exécuté lous les calculs sous forme de tables,
en utilisanl les charges nodales

- X
I\m:'_l_g— (l)ul- 1 '_I_ 10 P + I))al+|) )

ce qui nous a permis en plus de ramener les charges concentrées de la
plaque & des charges réparlies équivalentes p.

Outre le calcul des plaques, de nombreuses applicalions de la méthode
exposée sonl possibles, notamment pour le calcul des tranches minces, des
voiles et des barrages arqués. On remarquera d’ailleurs que la seule diffé-
rence d’avec le calcul élémentaire des plaques et des barrages arqués par
bandes entre-croisées provient de ce que nous avons tenu compte du lerme
de torsion.

III. Les charges transversales dues a la flexion latérale d'une ame de
poutre pleine raidie longitudinalement. Le coefficient de voilement k

La charge transversale due & la flexion latérale d’une tdle d’épaisseur
h soumise a des conlirainles o, seulement vaut :

0w,
]),_Jj-ll—agg—[ (L)

L’effort di au raidisseur de seclion F,, de moment d’inertie J, el de
largeur ¢ au droit de la téle a pour expression :

Y 2
e a (12)
Z

s .:—‘\‘_j _— [ | R —
C (I)rl- + I)r'.\) L » ax,l +— Atrr a

On voil que si w, est une sinusoide parallelemen! au raidisseur, les
charges p,, p,r el p,x sont égalemen! des sinusoides. Il en esl de méme,
comme nous l'avons vu, des fleches w, dues & ces charges. La condition de
voilement w, = w, énoncée tout au début esl par conséquent salisfaite :

les fleches w, = w, sonl bien des sinusoides parallelementl au raidisseur.
Introduisons les abrévialions usuelles
Ealy: < g , . %D
’\'/ — e/ D = I N.c — wam:n, N_n . kN,: ~

Db’ b’ b?

ou b est la hauteur de la tole, et remarquons que ¢ (p,y -+ p,x) esl une
charge concenlrée dans un sens. 11 suffit de considérer désormais le sommel
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129

100

50

+ + + } + Flg 1:
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des sinusoides w,. sin (T z, (ou a est la longueur de la (6le), ¢'est-a-dire la

médiane  perpendiculaire au raidisseur. Les déquations (11) et (12)
deviennent alors :

\ T ‘
' pi=k —5 wDw,

b’ (13)

‘ =4 il |
P, 4 Py = — D, [vb — — wki ——) | | -

|

Fig. 2. ) , ) ) ' . - 9
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Deés que les w, sont choisis, on peut trouver trés rapidement les fleches
Wiy K, Wip, Wik dues aux p,, P.p, P, en utilisant les tables dressées
lors du calcul de la plaque fléchie de mémes dimensions que la téle. La
fleche totale w, = w, vaut alors, au moment du voilement :

Wo = (Wy, + W) K + Wi
d’ou :

% Wy — W, . (15)
<, T |

expression dans laquelle k doit étre constant, quel que soit le point consi-
déré. Si ce n’est pas le cas, il faut recommencer le calcul avec de nouveaux
w, améliorés : c’est le principe de la méthode d’Engesser-Vianello, dont
nous avons déja parlé. On traitera pour débuter le cas § = 0. Pour un §
non nul, on peut montrer que les w, et le k ne changent pas, si le vy
augmente suffisamment. On trouve aisément la valeur de ce y en mainte-
nant constante ’expression (14). Ceci fait, le y correspondant & un § quel-
conque s’obtient de fagon rigoureuse au moyen d’une simple interpolation

ole

linéaire.
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IV. Résultats et conclusions

On montre que le coefficient de voilement k atteint son maximum
lorsque le raidisseur se lrouve entre deux séries librement formées de
cloques superposées (w = 0) et qu’il possede la rigidité ad hoc, dite éco-
nomique, rationnelle ou minimum. A ce moment, le voilement se produit
indifféremment avec une seule série de cloques juxtaposées ou deux séries
de cloques superposées. Pour les panneaux sans effort tranchant appré-
ciable d’'une poutre fléchie, les calculs exécutés donnent, pratiquement
dans tous les cas, le cinquiéme supéricur de ’dme et non le quart, supposé
généralement, sans justification.

L’augmentation du k, el par conséquent des tensions critiques

=D =1 h\2
i Bops =i 12 (1 — %) (‘b“)

est considérable si ’on déplace du quart au cinquiéme supérieur le raidis-
seur dit parfaitement rigide, c’est-d-dire possédant la rigidité économique
ou rationnelle. En comparant nos résultats et ceux de Stiffel (Biegungsbeu-
lung wversteifter Rechteckplatten, Der Bauingenteur, 5. Okt. 1941), qui
paraissent les plus exacts, cette augmentation atteinl 37 9. Les courbes
nécessaires au constructeur, données ci-contre (avec parties pointillées
approximatives) ont d’ailleurs la méme allure que si le raidisseur se

x ;
307 S k=129 \ i
(Ye) N
R
\ f o }._
| . Z-3%
107 N ke 757N ! é
‘ i
SRS VAR e
. ’ P Fig. 5
3 g b
b
so}
40 ¢
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20t
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tlrouve au quart supérieur de I'ame (cf. Ch. Massonnel, La stabilité de
I’dme des poulres munies de raidisseurs horizontauz el sollicitées par
flexion pure, Mémoires A. I. P. C., 1940-1941). Nous ne donnons que
les courbes correspondanl 34 ¢ = 0 el 4 ¢ = 0,1 puisque nous pouvons inler-
poler linéairement ou méme extrapoler. Des contrdles nombreux ont en
outre été faits par la méthode énergélique.

Remarquons pour terminer que la rigidité minimum de deaxiéme
espéce distinguée par cerlains auleurs (voir les deux articles du Stahlbau,
8. Sept. 1944 : A. Kromm, Zur Frage der Mindeststeifigkeiten von Platten-
aussteifungen; E. Chwalla, Ueber die Bzeqebeulung der lingsversteiften
Platte und das Problem der Mmdes{stelfzgkelt) n'est rien d'autre que la
rigidité minimum pour former deux séries de cloques superposées, lorsque
le raidisseur ne se trouve pas a I'endroit le plus favorable.

Résumé

L’emploi de la méthode Engesser-Vianello pour résoudre le probléeme
du voilement est possible par elle-méme. Il faul au préalable déterminer les
fleches de la 10le sollicitée transversalement, ce qui peul se faire facilemenlt
a l’aide d’une méthode améliorée par bandes entrecroisées, en tenant
comple de la torsion.

L’épaisseur des toles d'une poulre & dme pleine sollicitée par flexion
pure est minimum, lorsque le raidisseur se lrouve au cinquiéme supérieur
et posséde la rigidité suffisante. Dans ce cas, le coefficient de voilement
alteint la valeur de 129.

Zusammenfassung

Die Anwendung des Verfahrens von Engesser-Vianello zur Losung der
Beulprobleme isl olme weileres moglich, erforderl aber zuerst die Besllm-
mung der Durchbiegungen der als quelhel'mtete Platten beanspruchten
Bleche, was am besten mit Hilfe einer verbesserten, genauen Sireifen-
melhode mit Beriicksichligung der Torsion erfolgt.

Die Blechdicke eines auf reine Biegung beanspruchlen vollwandigen
Triagers wird dann am kleinsten, wenn dle Steife im oberen Fiinftel liegt
und die nolwendige Steifigkeil Desitzl. Die Beulzahl erreichl in diesem
Falle den Wert 199

Summary

The use of the Engesser-Vianello process for solving the problem of
buckling is actually possible, but it is necessary te have a prior knowledge
of the deflection of the siressed plales used as transversally loaded slabs,
which is best done with the help of an improved and precise sirip method,
taking torsion inlo account.

The thickness of plates of a plate girder siressed by bending alone
is smallest if the strip lies in the upper fifth and has the requisite stiff-
ness. In this case the buckling faclor reaches the value of 129.
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Le comportement des éléments comprimés de faible épaisseur
Das Verhalten diinnwandiger Druckgurte

Performance of thin steel compression flanges

D GEORGE WINTER

Professor of Structural Engineering, Cornell University, Ithaca, N.Y., U.S. A,

The economic use of slandard, hol-rolled steel shapes is limiled lo
relatively substantial siruclures. The need for lighter steel members for
small scale indusirial, commercial and residence ])ulldmcr initiated the use
of structural members made from sheet steels by cold formmc (cold rolling
or pleqsma) Roof decks of a considerable variely of sizes and s]npes,
formed in this manner, as well as slructural shapes of I-, channel, and
similar seclions. have been in use in the U. S. A. for an\r vears. The
developmenl! of automatic spot welding on the one hand, and the warlime
demand for light, pre-fabricated l)ulldmgs on the other, have stimulated
this development.

It was soon realized, however, that accepted design procedures had to
he modified to suit the special requirements of such thin-walled structures.
The American Iron and Steel Institute, in 1939, inaugurated a research
program under the wriler’s direction at Cornell Lmve[s]lv which has
resulted in the « Specificalions for the Design of Light Gage Sieel Structural
Members » issued by the Instilute in 1946.

One of the main problems in this connection is that of the performance
of thin compression plates, both at loads causing failure and at the lower
design loads. In this conneclion two types of such plates must be distin-
guished :

a) Long plales that are stiffened along both longitudinal edges, such
as webs of channels and I-beams;

b) Long plales that are stiffened only along one longitudinal edge, such
as the flanges of channels, I-seclions, and angles.

The presenl paper is concerned only with the first of these two types.

The classical theory of elasticity allows the calculation of critical
buckling loads of such pl'IIE% by the so-called small deflection theory, that
is by lhe solullon of the dlfferentnl equahon

ey 2

st 2%w

ch ov’ + av T TD 9 (1)
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In contrast to the phenomenon of column buckling, the crilical siresses
calculated from eq. 1 do not represent the limit of carrying capacity of
edge supported plates. Indeed, in such plates, deflections can not increase
indefinitely, as they do in columns at the Euler load. Consequently, once
the critical stress is passed, the hitherto plane plate merely deforms into a
non-developable, wavy surface, but continues to resist increasing stress.
The deformations just described result in additional, particularly transverse
stresses which act jointly with the imposed, primary longitudinal com-
pression stress. In analyzing this state one can no longer neglect the
influence of the deflections on the distribution of stress, which had been
the basis for the development of eq. 1.

The differential equation for this large deflection buckling of plates
was developed by Th. v. Kirman in 1910, and reads as follows

d*w 0'w otw
W g
azli 1 O$28y2 _l_ ay4
t [(0'F o*w 5 0 o*w I a'zw)

:D(ay2 or° 0=z dy 0oy + 3y

where I is a stress function. The complexity of this equation has so far
prevented its explicit solution for reclangular plates. Il is for this reason
that this problem had to be investigated primarily by experimental methods.

In this connection the concept of the equivalent width, initiated by
Th. v. Kirman, proved most helpful. This concept is best visualized by
means of a model. Imagine a square compressed plate replaced by a lattice
of bars. Beyond the buckling load of the compressed rods (he lattice will
obviously distort in the manner shown in fig. 1. Two circumstances are

clear from this picture :
a) The compression bars cannot
2\ fail as simple columns by continued
deflection because they are restrained
from doing so by the cross-bars.

b) In the stage shown in the figure
the total load is obviously not equally
distributed among the compression
bars; in view of the variations of the
deflections the bars near or at the
edges carry more load than those near

Fig. 1 (lett) and Fig. 2 (right).
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the center, and failure will occur when the more heavily loaded bars
will reach their yield strength.

It can be seen, therefore, that after first buckling has occurred, the
stress in a compressed plate must show a distribution as given in fig. 2.
The effective width b, is that width which will make the area under the
dotted lines equal to the area under the actual solid stress curve. Once this
effective width is determined, design can proceed in the usual manner,
merely by replacing the actual plate area b Xt by the equivalent area
b, X t. T.v.Kdrméin gave the following tentative expression for this effec-
tive width at the failure load :

"2) 3 Sup 1:,)

for Poisson’s ratio v=20.3 ().

Subsequent tests by L. E. Sechler showed that this expression was
reasonably correct for very wide and thin plates, but that a smaller value
of b, results for plates of smaller b/(-values ().

All these investigations were concerned only with the determinalion
-of the ultimate or yield strength of such plates. In addition, the amount
of test evidence even in this respect was limited.

For practical design, however, it is necessary to determine eqmvalenl
widths not only at fdllure but also at smaller loads, in particular al service
loads. Indeed, since sllght buckling occurs for Ialge b/t at loads far below
the ultimate, the stress distribulion of the type of fig. 2 takes place not
only at failure but frequently at design loads. Hence, in a flexual member
of the type of fig. 3, stresses and corresponding deformations are distributed
at design loads in the manner shown. The neutral axis of such a member
is then located below the centroid of the area, and its location as well as
the moment of inertia, section modulus, etc. must be computed by using
the equivalent instead of the real width of the compression flange. That is,
in order to compute stresses, deflections, and other design information for
any load up to failure, the actual section, fig. 3a, wilh its non-uniform
stress distribution can be replaced by the equivalent section, fig. 3b. Since
the maximum slresses, and corresponding sirains, at the edges of the webs
are equal for these two sections, all required information can be gained
from this equivalent seclion.

It was therefore necessary for practical design to determine the effec-
tive width not only at failure, but also at lower loads.

For this purpose more than 100 lests were carried oul on members of
the type of fig. 3, and other shapes, with b/¢{-ratios from 14 to 429 and
with sleel vield points from 20 100 to 57 800 psi. Deformations were mea-
sured in these flexural tests and it was found, as anticipated, that the
neutral axis was located below the centroid, and was shifting downward
under increasing load, i.e. wilh decreasing effective width.

Only the most recent of (hese tesls are reported here (°).

Specimens of these tests were of the type of fig. 3a, 3 in deep, 5 to 10
in wide, with thicknesses from 0.0288 tot 0.0615 in. Corresponding width/

(3)

(1) Th. v. Kinrman, E. E. Securen, L. H. Dosserr, The Strength of Thin Plates in Conipression
(Trans. Am. Soc Mech. Eng., Vol. 54, 1932, p. 53).

(*) E. E. Secmer, The Ultimaie Sitrength of Thin Flat Sheet in Compression, Publication
No. 27, Guggenheim Acronautics Labor, Pasadena, Cal., 1933.

(3) Geo. Winten, The Strenglh of Thin Steel Compression Flanges (Proc. 4m. Soc. Civ. Eng.,
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Fig. 3a.

thickness ratios b/f ranged from 86 to 344, vield points of steels, from
tension lests, were found to range from 24 400 to 56 850 psi. Specimens
were tested as beams, wilth two equal loads at the quarler points of the
span. In addition lo defleclions, sirains were measured at the top and
bottom of the flanges, allowing an experimental determination of the posi-
tion of the neulral axis. Flmllv displacements of the lop flange out of its
original plane were measured al six points along lhe cenler lme, in the
portions of the beams between loads.

Information on the magnitude of the equivalent width was gained
from these tests in the following manner : The posilion of the neullal axis,
at various loads, was established from slrain gage readings. Knowing this
position, in a section like fig. 3D, it is simple lo compule the corresponding
value of b.. With the equivalent section delermined in this manner, the
maximum compression siress s,,, corresponding lo Lhe palllcul(u load is
computed by customary methods. The lests, therefore, give information
on the relation of b, lo b/t and s,,...

To evaluate this relation, eq. 3 is rewrillen as

e

m X

b, _Ctl/ )

where C is a coefficient lo be determined from lesl. Previous invesligalions
by Sechler and the writer (*) (%) e%tahlis‘hed that C depends primarily on

t .
(7) . It 1s for this reason that,

in fig. 4, the experimentally determined coefficienls C are plotted againsl
this parameler. Determinalions were made, for cach test specimen, al the
vield load and at 1/3 and 2/3 of that load.
Although the scatlering of test resulls, as depicted in fig. 4, is qmle
considerable it is clearly seen thal the coeffrment C decreases \\th increasing
E i . . e
l// - ) e scatlering is apparently due o the extreme sensitivity
“max
of this method lo very minor experimental devialions. Indeed, a varialion
of 1 9 in the e\penm(‘nlnll\ delermined location of the neutral axis will
cause, in many cases, a varialion of 10 9, and more of the value of C. For

the non-dimensional parameler I/

Vol. 72 p. 199, 1946 and Trans. 4m. See. Civ. Eng., Vol. 112, p. 1, 1947). Sec also Bull. No. 35,
Part 3, Corncell University Engg. Experimenl Stalion, Ithaca, N, Y., 1947.
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Fig. 3b.

this reason, in interpreting fig. 4, the data should be regarded as slatis
tically distributed, rather than as strictly accurate.

With this in mind, the straight line drawn on that figure was thought
lo represenl a reasonable, and somewhal conservative means of developing
a simple formula for the equivalent width b,. The line is seen 1o slart at
a value of 1.9 for extremely large b/{-values and relatively high siresses,
for which case, therefore, the e\penmcnml determinations are in subslan-
tial agreement with v. Kérméin’s or iginal eq. 3. The formula for b, obtained
from ihis straight line can be writlen as

(1 o (08T :)——]/ ) (5)

which is seen (o be identical with eq. 3, except for the modifving lerm in
parenthesis, which, as pointed out, approaches 1 closely for lugc b/t and
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Eq. 5 indicates that a compression plate is fully effective (uniform
stress distribution, b, = b) for values of b/t smaller than

(ﬁ‘)r —= 0.95 l/ E (6)

\t. 4 smax

and that, for values above (b/t), deformations, defleclions, and yield loads
can be calculated with good accuracy by using the effective instead of the
real width,

By solving eq. 6, for s,.., it can easily be calculated that the first redis-
tribution of stress, that is the first gradual formation of buckling waves
occurs at stresses equal to s./4, where s, is the critical buckling stress
obtained from the small deflection theory, i.e. from eq. 1. This result is
not amazing. Theoretically, an ideally plane plate should not buckle at
stresses below s.. Actual sheet steel members, however, are not perfect
but possess initial distortions of shape, which result in small deflections al
stresses below s.. The situation is comparable to that of initially bent or
eccentric columns, which also deflect below the Euler load.

The fact that the initinl shape has a definite influence on the per-
formance of such plates, causes considerable scattering of test results. These
are also influenced by the amount of restraint provided by adjoining mem-
bers, such as the webs in fig. 8. For this reason eq. 5 represents merely a
conservative statistical expression of test results.

Fig. 5 shows a graphical representation of eq. 5 from which the
effective width can Be read directly for any given b/t and E/smax for use in
design.

The findings of this primarily experimental invesligation merely repre-
sent an elaboration of v. Kdrman’s concept. They improve the accuracy
of his original expression, particularly for plates with moderate b/t. In
addition, they prove the important additional finding that the same
expression, eq. 5, can be applied with good accuracy to stresses occurring
al design loads, as well as 1o failure stresses. :

The real worth of an equation of the Lype of eq. 5 depends, of course,
on the degree of accuracy with which it predicts the actual carrying
capacities and deflections of test beams. The following table contains, for
the 15 beams whose results are plotted on fig. 4, the vield loads as deter-
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mined from test, and those computed by means of the equivalent section,
fig. 3b, using eq. 5 for determining the equivalent width.

Yiceld Point Yicld Load, Yield Load

N bt . Computed Test Deviation
P ih I %
1 95 27 500 2 660 2 300 — 13.5
2 8t 36 000 3 640 3 600 — 141
3 109 37 400 2 730 2 500 — 84
4 145 30 130 1 480 1 550 -+ 4.7
5 175 25 750 964 1 100 —+ 141
6 172 24 700 945 1025 + 8.5
7 155 25 850 1 160 1 200 + 3.4
8 175 47 200 4 520 4 500 — 0.4
9 163 56 830 5 370 5 500 — 1.3
10 222 21 400 1 845 1 760 — 4.6
11 216 36 030 2 5350 2 Z50 — 11.8
12 284 30 630 1 523 1 480 — 2.8
13 303 25 100 1 165 1 280 + 9.9
14 339 28 000 1 032 940 — 10.7
15 344 27 630 1 028 41 060 -+ 3.0
’ average deviation
— 0.7 9%

It is seen that, for a very wide range of b/t and vield point stress, eq. o
allows the prediction of the actual carrying capacity with very satisfactory
accuracy. The same was found to be true for the numerous earlier tests (*)

It is interesting to nole that despite the rather bad scattering of some
points on fig. 4, such as points 4, 8, 11 and 15, the predicted and actual
carrying capacities of these four beams, as given in the table, are in very
satisfactory agreement. This supports the opinion advanced before that the
scatlering in fig. 4 is due mainly to inevilable inaccuracies in the empirical
determination of the neutral axes.

For practical design, deflections are of interest at design loads rather
than at -yield loads. Smce b, depends on the value of s,.., the effective
moment of inerlia is variable and must be determined for any given load.
The « Design Specifications » mentioned in the introductory paragraphs
stipulate a factor of safety of 1.85. For this reason, a comparison of mea-
sured and computed deflections is given in the table below for loads
approximately equal to the computed yield loads divided by 1.85. Further
computations, the results of which are omitted here, show that the same
general picture as given in this table obtains for other values of loads, up
to the yield load. The table gives the deflections d measured in tests at the
load P, and the deflections computed for that load (a) by using the equi-
valent width b, and (b) by using the full unreduced width b.
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P d, from test d, computed d, computed
N* using be, 0o using b 09
1b in in in
1 1 465 0.090 0.091 — 1.1 0.085 + 5.6
2 2 000 0.120 0.118 + 1.7 0.111 -+ 8.1
3 1 495 0.128 0.131 — 23 0.108 -+ 18.5
4 811 0.108 0.097 + 10.2 0.076 + 42.1
5 526 0.076 0.072 + 5.6 0.055 1 38.2
6 514 0.068 0.068 0.0 0.054 -+ 25.9
7 635 0.078 0.075 -+ 4.0 0.060 -+ 30.0
8 2 500 0.128 0.161 — 20.5 0.122 -+ 4.9
9 3 080 0,170 0.195 — 12.8 0.148 -+ 14.9
10 1 010 0.072 0.083 --13.3 0.064 -+ 125
11 1395 0.102 0.119 — 14.2 0.089 -+ 14.6
12 833 (.083 0.100 — 17.0 0.0606 -+ 25.8
13 635 0.061 0.074 | — 17.6 0 055 -+ 10.9
14 574 0.075 0.078 ‘ — 39 0.052 -+ 44.2
15 359 0.077 (.075 4+ 2.7 0.050 - 54.0
Average Average
devialion devialion
— 5.2 9% [ -+ 23.3 %

The table shows that by using the effective width b, deflections are
computed with an average accuracy of about 5 9, whereas the use of Lhe
full, unreduced section for this purpose leads to an average error of about
23 9%. Though scatlering is again considerable, all significant discrepancies
in the first case are on the safe side (compuled deflections larger than
measured values). On the other hand, by using the full, unreduced sec-
tional area, errors on the unsafe side in several cases reach magniludes of
40-50 9 ; by this method, for all beams, actual deflections were found (o be
larger than computed.

It should be said that an accurate computation of deflections by the
equivalent width method would involve the use of a momenl of inerlia,
variable along the beam. Indeed, since b, depends on s,.., the effeclive
moment of inertia increases from a minimum value at the point of maxi-
mum moment to a maximum value near the supporls. In the table above,
however, only the minimum moment of inertia was used. For the present
tests this does nol lead o too large an error, since M,. is constant over
the cenfer half of the span, for quarter point loading. Had a variable
momenl of inerlia been used, all deflections computed lw using b, would
have been obtained slightly smaller, to various relative defrrees, 1esult1nrr
in a slill belter average agreement wilth test resulls. This method of cal-
culation was nol used because. in rouline design procedures, engineers
can hardly be expecled to spend the very considerable amount of lime
necessary for such detailed calculalions with variable moment of inertia.

The evidence presented above, which is addilionally supported by a
great number of other teslts previously published elsewhere (*) indicates
that the proposed method allows, with reasonable accuracy, the deler-
mination of carrying capacilies as well as defleclions of members con-
taining thin compression flanges. The measure of agreement with test
resulls is not as close as would be oblained on customary, heavy sleel struc-
tures. This, however, is predicaled on the inherent character of thin sheet
malerial with ils inevilnhly larger imperfections as to accuracy of sheel
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thickness, of geometrical shape, etc. The discrepancies obtained in these
tests are believed to be tolerable practically; they are certainly not larger
than these observed in tests of reinforced concrete or timber structural
members.

The use of eq. 5 is somewhat cumbersome for routine design compu-
tations. The graph of fig. 5 allows the direct determination of b, for any
given stress and b/¢{-ratio. The initial straight line to which all curves are
tangent indicates the range over which the full width b is effective. It is
seen that the larger the maximum stress, the smaller is that limiting b/¢
beyond which the effectiveness of the flange begins to decrease (see eq. 6).

In contrast to conventional, thick-walled steel structures, the cross-
sections of thin-walled elements distort at loads far below the ultimate,
and in most cases at values even below the design loads. The type and
magnitude of these deformations is therefore of interest, since an excessive
amount of flange distortion would obviously make such members prac-
tically objectionable even if their strengths and over-all deflections were
adequate for the purpose.

These distortions of shape, for members of the type of fig. 3, consist
of two separate kinds of deformation which superpose to result in the final
shape under load. The first, and more obvious, is the simple buckling
deformation. Indeed, ultimate stresses and frequently working stresses are
considerably above the critical buckling stress as determined from eq. 1.
Moreover, it was mentioned in connection with eq. 6 that on the basis
of this equation incipient, extremely slight flange distortions apparently
occur at stresses of the order of s./4. Consequently, at stresses of about
that magnitude, the compression flange begins to buckle into a series of
approximalely quadratice buckling waves. That is, the half-wave length
is about equal to the flange width b, and the general shape of each of these
half-waves is that schematically indicated on fig. 1. This type of defor-
mation, which was observed in all tests of this kind, is of course exactly
the one predicted by the mathematical theory of buckling of plates.

In beam specimens of the type discussed herein, however, a funda-
mentally different type of deformation is superposed on the one just dis-
cussed. This type, which was likewise observed in all tests, is not limited
to compression flanges; it occurs likewise if the beams of fig. 3 are turned
by 180° so that the wide flange is in tension. The following brief and
intentionally approximate analysis illustrates the nature of these defor-
mations and allows a reasonably accurate determination of their magnitude.

Consider an element of the flange, of unit width in the transverse
direction, and length dl longitudinally, as shown on fig. 6. Under load,
this element is curved, its radius, r,, being equal to that of Lhe beam at that
cross-section. The total compression forces at both ends of the element
consequently subtend an angle do and, therefore have a resultant

do st

dl. — r,
If the stress s is uniform over the width of the cross-section, R acls in
the same manner as an exlernal, transverse load, as shown in fig. 6a,
tending to bend the flange toward the neutral axis. This bending is
governed by the simple equation for flexure of a long, narrow rectangular
plate under transverse load, i.e.

(7)

L U S 3 (8)
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neutral gxis

Fig. 6a.

The maximum deflection is then found from the usual formula

_ 5 s b |
ymax‘— 38‘.‘: 7; l) . (‘)

The use of this formula neglects the influence of restraint provided to the
flange by the webs. However, this restraint is of rather undetermined
magnitude. The webs of isolated beams deform as shown on fig. 6a, and
therefore afford little restraint. The restraint would be larger if such beams
were laid side by side, with webs in contact, as in a floor. In view of this
indeterminacy it seems best to neglect the unreliable effect of possible
restraint.

To find r, for substitution in eq. (9) one has from standard, elementary
beam theory

EI s] Ee
Tb=Mb, Moz—c—, ’b——s—- (10)
With this value of r,, the maximum flange distortion becomes
B f8\ b . ‘
ymax—gj(i—) '{3—0—'(1 i ) : (ll)

For tension flanges with their generally rather uniform stress distri-
bution, this type of distortion is the only one that occurs and ils magni-
tude can be determined with satisfactory accuracy from eq. 11. In com-
pression flanges the longitudinal stresses vary over the width of the flange,
as shown on fig. 2. Consequently, R is likewise distribuled in this manner,
instead of the uniform distribution shown on fig. 6a. In view of the appro-
ximate character of this calculation, and of the uncertainty as to the
amount of edge restraint, the details of the actual distribution of s, and
other factors, an elaborate modification of eq. 11 to account for the siress
distribution of fig. 2 would represent a rather fictilious improvement. For
this reason it is believed that a sufficiently close approximaltion is obtained,
if, in eq. 11, the average stress of fig. 2 is substituted for s. From the defi-
nition of the equivalent width, this average stress is easily obtained from

b,

S:l\' = Siu (T ) . (12)

For more information on this type of deformation, particularly for tension
flanges, see the writer’s earlier paper (').

(1) Geo. WinTER, Stress-Distribulion in, and Equivalent Widih of Wide, Thin-Wall Steel
Beams, Techn. Nole No. 784. Advisory Comm. for Aeronaulics, 1940, Washington, D. C.
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In the tesls reported herein, both types of deformation were clearly
observed. That is, the flanges showed a general « dishing » (smooth down-
ward deflection of the center line) on which was superposed the square-
wave pattern of the buckling deformations. By means of special apparatus,
the magnitude of these distortions of the flanges perpendicular to their
original planes were measured at six points along the center line of each
beam. It was found that at design loads (i.e. about Py;,4/1.85) these defor-
mations reached a maximum of 1 9 of the flange width for two of the
beams; and in most other cases they were closer to 1/2 9. Although these
distortions are clearly visible, it can be said thal their magnitude at design
loads is sufficiently small so as not to interfere with the practical use of
such light gage steel members.

In conclusion it should be said that the information given in this
paper suffers from the evident disadvantage of being primarily empirical
and approximate. The theorelical complexity of plate buckling at stresses
larger than s, as well as the large amount of possible variations of shape
resulting in a wide range of conditions of edge restraint, precluded an
analytical treatment of practical value. It is hoped that future investigations
in this field, both mathematical and experimental, will elucidate some of
the more detailed aspects of this problem.

NOTATION
b =—flat width of flange. s ==slress in flange.
b. —equivalent flange width. s =critical buckling stress of
¢ =distance from neutral axis to flange by small deflection
extreme fiber. theory.
D =—flexural plate rigidity. sy, —Yyield stress of malerial.
=E £*/12 (1—»"). t ==flange thickness.
M, =bending moment in beam. w = Dbuckling deflection of flange.
M, =bending moment in flange. x, y = coordinates.
r, —radius of curvature of beam. v = Poisson’s ratio.

r, ==radius of curvalure of flange.

Résumeé

L’emploi dc profilés laminés normaux pour les petites portées et les
charges relativement faibles n'est pas économique. Pour de lelles construc-
tions, les éléments en tdles minces laminées et plices & froid ont fait leur
preuve aux Etats-Unis. Des spécificalions pour le calcul de constructions en
toles minces pliées furent publiées récemment, basées sur les recherches de
I’auteur. Dans ce systéme, le comportement des ailes comprimées est d’une
importance primordiale.

Pour de telles toles, la tension de flambage .calculée de la facon habi-
tuelle, ne représente pas la limite de la charge utile. Dans I’état de défor-
mation, il y a une distribution irréguliére des tensions. On peut calculer le
comportement de tels éléments constructifs en remplacant la largeur réelle
b par une largeur équivalente b,, qui se calcule par une équation empi-
rique. La limite de fluage devient la valeur critique des lensions calculées
au moyen de b,.
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Une série d’essais caractéristiques a montré 1'erreur moyenne Lrés
faible obtenue par le calcul de la charge utile, ainsi que la déformation,
en se basant sur la largeur équivalente.

Une méthode approximative de calcul, amplement vérifiée par des
mesures, est également indiquée pour la déformation des ailes dans I'état
de déformation apres flambage.

Zusammenfassung

Die Verwendung normaler Walzprofile ist bei kleineren Spannweiten
und relativ leichter Belaslung nicht wirtschaftlich. Fiir solche Bauwerke
haben sich in den Vereiniglen Staaten Elementle aus kalt gepressten oder
gewalzien diinnen Blechen bewiihrt, fiir die auf Grund von Untersuchungen
des Vertassers kiirzlich LEntwurfsvorschriften verstfentlicht wurden. In
diesem Zusammenhang ist das Verhalten diinnwandiger Blech-Druckgurte
von besonderer Bedeulung.

Fir ein solches Blech stelltl die auf die iibliche Art berechnete Beulspan-
nung nicht die Grenze der Tragfihigkeit dar. Im ausgebeullen Zustand
tritt eine ungleichférmige Spannungsverteilung ein. Man kann das Verhal-
ten solcher Bau-Elemente durch Lrsetzen der wirklichen Breite 0 durch
eine iquivalente Breite D, berechnen, die sich mit Hilfe einer empirisch
gefundenen Gleichung bestimmen lisst. Die Fliessgrenze wird fiir die auf
Grund von b, ermittellen Spannungen zum kritischen Wert.

Eine Reihe charakleristischer Versuche zeigte die nur geringen durch-
schnittlichen Fehler, die sich bei Berechnungen der Tragfihigkeit wie auch
der Durchbiegungen auf Grund der iiquivalenlen Breite ergeben.

Ebenfalls wird fiir die Blechverformungen im ausgebeulten Zustand ein
durch Messungen iiberpriiftes angenihertes Berechnungsverfahren ange-
geben.

Summary

The use of conventional rolled steel shapes for small spans and com-
paratively light loads is uneconomical. For such conslructions, light mem-
bers, cold formed from sheet steel, have stood the test in the U. S. A. Spe-
cificalions for the design of such members were recently issued, based on
the author’s investigations. In this connection, the performance of thin
compression flanges is of particular importance.

For such plates the buckling stress calculated in the usual way does
not represent the limit of carrying capacity. In the buckled state an irre-
gular disiribution of slresses occurs. The behaviour of such structural
members can be calculated by replacing the actual width b by an equivalen|
width b, which can be ascertained with the help of an empirical equation.
The yield point becomes the limiting value of the siresses as determined by
means of b, . -

A series of characteristic lestls showed only slighl average errors
arising from the calculations of the carrying capacily ,as well as deflection
on the basis of the equivalent width.

An approximate method of calculation, amply proved by measure.
ments, is also given for distortion of members in the buckled state.
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