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Le comportement des éléments comprimés de faible épaisseur
Das Verhalten diinnwandiger Druckgurte

Performance of thin steel compression flanges

D GEORGE WINTER

Professor of Structural Engineering, Cornell University, Ithaca, N.Y., U.S. A,

The economic use of slandard, hol-rolled steel shapes is limiled lo
relatively substantial siruclures. The need for lighter steel members for
small scale indusirial, commercial and residence ])ulldmcr initiated the use
of structural members made from sheet steels by cold formmc (cold rolling
or pleqsma) Roof decks of a considerable variely of sizes and s]npes,
formed in this manner, as well as slructural shapes of I-, channel, and
similar seclions. have been in use in the U. S. A. for an\r vears. The
developmenl! of automatic spot welding on the one hand, and the warlime
demand for light, pre-fabricated l)ulldmgs on the other, have stimulated
this development.

It was soon realized, however, that accepted design procedures had to
he modified to suit the special requirements of such thin-walled structures.
The American Iron and Steel Institute, in 1939, inaugurated a research
program under the wriler’s direction at Cornell Lmve[s]lv which has
resulted in the « Specificalions for the Design of Light Gage Sieel Structural
Members » issued by the Instilute in 1946.

One of the main problems in this connection is that of the performance
of thin compression plates, both at loads causing failure and at the lower
design loads. In this conneclion two types of such plates must be distin-
guished :

a) Long plales that are stiffened along both longitudinal edges, such
as webs of channels and I-beams;

b) Long plales that are stiffened only along one longitudinal edge, such
as the flanges of channels, I-seclions, and angles.

The presenl paper is concerned only with the first of these two types.

The classical theory of elasticity allows the calculation of critical
buckling loads of such pl'IIE% by the so-called small deflection theory, that
is by lhe solullon of the dlfferentnl equahon
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In contrast to the phenomenon of column buckling, the crilical siresses
calculated from eq. 1 do not represent the limit of carrying capacity of
edge supported plates. Indeed, in such plates, deflections can not increase
indefinitely, as they do in columns at the Euler load. Consequently, once
the critical stress is passed, the hitherto plane plate merely deforms into a
non-developable, wavy surface, but continues to resist increasing stress.
The deformations just described result in additional, particularly transverse
stresses which act jointly with the imposed, primary longitudinal com-
pression stress. In analyzing this state one can no longer neglect the
influence of the deflections on the distribution of stress, which had been
the basis for the development of eq. 1.

The differential equation for this large deflection buckling of plates
was developed by Th. v. Kirman in 1910, and reads as follows

d*w 0'w otw
W g
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:D(ay2 or° 0=z dy 0oy + 3y

where I is a stress function. The complexity of this equation has so far
prevented its explicit solution for reclangular plates. Il is for this reason
that this problem had to be investigated primarily by experimental methods.

In this connection the concept of the equivalent width, initiated by
Th. v. Kirman, proved most helpful. This concept is best visualized by
means of a model. Imagine a square compressed plate replaced by a lattice
of bars. Beyond the buckling load of the compressed rods (he lattice will
obviously distort in the manner shown in fig. 1. Two circumstances are

clear from this picture :
a) The compression bars cannot
2\ fail as simple columns by continued
deflection because they are restrained
from doing so by the cross-bars.

b) In the stage shown in the figure
the total load is obviously not equally
distributed among the compression
bars; in view of the variations of the
deflections the bars near or at the
edges carry more load than those near

Fig. 1 (lett) and Fig. 2 (right).
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the center, and failure will occur when the more heavily loaded bars
will reach their yield strength.

It can be seen, therefore, that after first buckling has occurred, the
stress in a compressed plate must show a distribution as given in fig. 2.
The effective width b, is that width which will make the area under the
dotted lines equal to the area under the actual solid stress curve. Once this
effective width is determined, design can proceed in the usual manner,
merely by replacing the actual plate area b Xt by the equivalent area
b, X t. T.v.Kdrméin gave the following tentative expression for this effec-
tive width at the failure load :

"2) 3 Sup 1:,)

for Poisson’s ratio v=20.3 ().

Subsequent tests by L. E. Sechler showed that this expression was
reasonably correct for very wide and thin plates, but that a smaller value
of b, results for plates of smaller b/(-values ().

All these investigations were concerned only with the determinalion
-of the ultimate or yield strength of such plates. In addition, the amount
of test evidence even in this respect was limited.

For practical design, however, it is necessary to determine eqmvalenl
widths not only at fdllure but also at smaller loads, in particular al service
loads. Indeed, since sllght buckling occurs for Ialge b/t at loads far below
the ultimate, the stress distribulion of the type of fig. 2 takes place not
only at failure but frequently at design loads. Hence, in a flexual member
of the type of fig. 3, stresses and corresponding deformations are distributed
at design loads in the manner shown. The neutral axis of such a member
is then located below the centroid of the area, and its location as well as
the moment of inertia, section modulus, etc. must be computed by using
the equivalent instead of the real width of the compression flange. That is,
in order to compute stresses, deflections, and other design information for
any load up to failure, the actual section, fig. 3a, wilh its non-uniform
stress distribution can be replaced by the equivalent section, fig. 3b. Since
the maximum slresses, and corresponding sirains, at the edges of the webs
are equal for these two sections, all required information can be gained
from this equivalent seclion.

It was therefore necessary for practical design to determine the effec-
tive width not only at failure, but also at lower loads.

For this purpose more than 100 lests were carried oul on members of
the type of fig. 3, and other shapes, with b/¢{-ratios from 14 to 429 and
with sleel vield points from 20 100 to 57 800 psi. Deformations were mea-
sured in these flexural tests and it was found, as anticipated, that the
neutral axis was located below the centroid, and was shifting downward
under increasing load, i.e. wilh decreasing effective width.

Only the most recent of (hese tesls are reported here (°).

Specimens of these tests were of the type of fig. 3a, 3 in deep, 5 to 10
in wide, with thicknesses from 0.0288 tot 0.0615 in. Corresponding width/

(3)

(1) Th. v. Kinrman, E. E. Securen, L. H. Dosserr, The Strength of Thin Plates in Conipression
(Trans. Am. Soc Mech. Eng., Vol. 54, 1932, p. 53).

(*) E. E. Secmer, The Ultimaie Sitrength of Thin Flat Sheet in Compression, Publication
No. 27, Guggenheim Acronautics Labor, Pasadena, Cal., 1933.

(3) Geo. Winten, The Strenglh of Thin Steel Compression Flanges (Proc. 4m. Soc. Civ. Eng.,
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Fig. 3a.

thickness ratios b/f ranged from 86 to 344, vield points of steels, from
tension lests, were found to range from 24 400 to 56 850 psi. Specimens
were tested as beams, wilth two equal loads at the quarler points of the
span. In addition lo defleclions, sirains were measured at the top and
bottom of the flanges, allowing an experimental determination of the posi-
tion of the neulral axis. Flmllv displacements of the lop flange out of its
original plane were measured al six points along lhe cenler lme, in the
portions of the beams between loads.

Information on the magnitude of the equivalent width was gained
from these tests in the following manner : The posilion of the neullal axis,
at various loads, was established from slrain gage readings. Knowing this
position, in a section like fig. 3D, it is simple lo compule the corresponding
value of b.. With the equivalent section delermined in this manner, the
maximum compression siress s,,, corresponding lo Lhe palllcul(u load is
computed by customary methods. The lests, therefore, give information
on the relation of b, lo b/t and s,,...

To evaluate this relation, eq. 3 is rewrillen as

e

m X

b, _Ctl/ )

where C is a coefficient lo be determined from lesl. Previous invesligalions
by Sechler and the writer (*) (%) e%tahlis‘hed that C depends primarily on

t .
(7) . It 1s for this reason that,

in fig. 4, the experimentally determined coefficienls C are plotted againsl
this parameler. Determinalions were made, for cach test specimen, al the
vield load and at 1/3 and 2/3 of that load.
Although the scatlering of test resulls, as depicted in fig. 4, is qmle
considerable it is clearly seen thal the coeffrment C decreases \\th increasing
E i . . e
l// - ) e scatlering is apparently due o the extreme sensitivity
“max
of this method lo very minor experimental devialions. Indeed, a varialion
of 1 9 in the e\penm(‘nlnll\ delermined location of the neutral axis will
cause, in many cases, a varialion of 10 9, and more of the value of C. For

the non-dimensional parameler I/

Vol. 72 p. 199, 1946 and Trans. 4m. See. Civ. Eng., Vol. 112, p. 1, 1947). Sec also Bull. No. 35,
Part 3, Corncell University Engg. Experimenl Stalion, Ithaca, N, Y., 1947.
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Fig. 3b.

this reason, in interpreting fig. 4, the data should be regarded as slatis
tically distributed, rather than as strictly accurate.

With this in mind, the straight line drawn on that figure was thought
lo represenl a reasonable, and somewhal conservative means of developing
a simple formula for the equivalent width b,. The line is seen 1o slart at
a value of 1.9 for extremely large b/{-values and relatively high siresses,
for which case, therefore, the e\penmcnml determinations are in subslan-
tial agreement with v. Kérméin’s or iginal eq. 3. The formula for b, obtained
from ihis straight line can be writlen as

(1 o (08T :)——]/ ) (5)

which is seen (o be identical with eq. 3, except for the modifving lerm in
parenthesis, which, as pointed out, approaches 1 closely for lugc b/t and
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Eq. 5 indicates that a compression plate is fully effective (uniform
stress distribution, b, = b) for values of b/t smaller than

(ﬁ‘)r —= 0.95 l/ E (6)

\t. 4 smax

and that, for values above (b/t), deformations, defleclions, and yield loads
can be calculated with good accuracy by using the effective instead of the
real width,

By solving eq. 6, for s,.., it can easily be calculated that the first redis-
tribution of stress, that is the first gradual formation of buckling waves
occurs at stresses equal to s./4, where s, is the critical buckling stress
obtained from the small deflection theory, i.e. from eq. 1. This result is
not amazing. Theoretically, an ideally plane plate should not buckle at
stresses below s.. Actual sheet steel members, however, are not perfect
but possess initial distortions of shape, which result in small deflections al
stresses below s.. The situation is comparable to that of initially bent or
eccentric columns, which also deflect below the Euler load.

The fact that the initinl shape has a definite influence on the per-
formance of such plates, causes considerable scattering of test results. These
are also influenced by the amount of restraint provided by adjoining mem-
bers, such as the webs in fig. 8. For this reason eq. 5 represents merely a
conservative statistical expression of test results.

Fig. 5 shows a graphical representation of eq. 5 from which the
effective width can Be read directly for any given b/t and E/smax for use in
design.

The findings of this primarily experimental invesligation merely repre-
sent an elaboration of v. Kdrman’s concept. They improve the accuracy
of his original expression, particularly for plates with moderate b/t. In
addition, they prove the important additional finding that the same
expression, eq. 5, can be applied with good accuracy to stresses occurring
al design loads, as well as 1o failure stresses. :

The real worth of an equation of the Lype of eq. 5 depends, of course,
on the degree of accuracy with which it predicts the actual carrying
capacities and deflections of test beams. The following table contains, for
the 15 beams whose results are plotted on fig. 4, the vield loads as deter-
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mined from test, and those computed by means of the equivalent section,
fig. 3b, using eq. 5 for determining the equivalent width.

Yiceld Point Yicld Load, Yield Load

N bt . Computed Test Deviation
P ih I %
1 95 27 500 2 660 2 300 — 13.5
2 8t 36 000 3 640 3 600 — 141
3 109 37 400 2 730 2 500 — 84
4 145 30 130 1 480 1 550 -+ 4.7
5 175 25 750 964 1 100 —+ 141
6 172 24 700 945 1025 + 8.5
7 155 25 850 1 160 1 200 + 3.4
8 175 47 200 4 520 4 500 — 0.4
9 163 56 830 5 370 5 500 — 1.3
10 222 21 400 1 845 1 760 — 4.6
11 216 36 030 2 5350 2 Z50 — 11.8
12 284 30 630 1 523 1 480 — 2.8
13 303 25 100 1 165 1 280 + 9.9
14 339 28 000 1 032 940 — 10.7
15 344 27 630 1 028 41 060 -+ 3.0
’ average deviation
— 0.7 9%

It is seen that, for a very wide range of b/t and vield point stress, eq. o
allows the prediction of the actual carrying capacity with very satisfactory
accuracy. The same was found to be true for the numerous earlier tests (*)

It is interesting to nole that despite the rather bad scattering of some
points on fig. 4, such as points 4, 8, 11 and 15, the predicted and actual
carrying capacities of these four beams, as given in the table, are in very
satisfactory agreement. This supports the opinion advanced before that the
scatlering in fig. 4 is due mainly to inevilable inaccuracies in the empirical
determination of the neutral axes.

For practical design, deflections are of interest at design loads rather
than at -yield loads. Smce b, depends on the value of s,.., the effective
moment of inerlia is variable and must be determined for any given load.
The « Design Specifications » mentioned in the introductory paragraphs
stipulate a factor of safety of 1.85. For this reason, a comparison of mea-
sured and computed deflections is given in the table below for loads
approximately equal to the computed yield loads divided by 1.85. Further
computations, the results of which are omitted here, show that the same
general picture as given in this table obtains for other values of loads, up
to the yield load. The table gives the deflections d measured in tests at the
load P, and the deflections computed for that load (a) by using the equi-
valent width b, and (b) by using the full unreduced width b.
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P d, from test d, computed d, computed
N* using be, 0o using b 09
1b in in in
1 1 465 0.090 0.091 — 1.1 0.085 + 5.6
2 2 000 0.120 0.118 + 1.7 0.111 -+ 8.1
3 1 495 0.128 0.131 — 23 0.108 -+ 18.5
4 811 0.108 0.097 + 10.2 0.076 + 42.1
5 526 0.076 0.072 + 5.6 0.055 1 38.2
6 514 0.068 0.068 0.0 0.054 -+ 25.9
7 635 0.078 0.075 -+ 4.0 0.060 -+ 30.0
8 2 500 0.128 0.161 — 20.5 0.122 -+ 4.9
9 3 080 0,170 0.195 — 12.8 0.148 -+ 14.9
10 1 010 0.072 0.083 --13.3 0.064 -+ 125
11 1395 0.102 0.119 — 14.2 0.089 -+ 14.6
12 833 (.083 0.100 — 17.0 0.0606 -+ 25.8
13 635 0.061 0.074 | — 17.6 0 055 -+ 10.9
14 574 0.075 0.078 ‘ — 39 0.052 -+ 44.2
15 359 0.077 (.075 4+ 2.7 0.050 - 54.0
Average Average
devialion devialion
— 5.2 9% [ -+ 23.3 %

The table shows that by using the effective width b, deflections are
computed with an average accuracy of about 5 9, whereas the use of Lhe
full, unreduced section for this purpose leads to an average error of about
23 9%. Though scatlering is again considerable, all significant discrepancies
in the first case are on the safe side (compuled deflections larger than
measured values). On the other hand, by using the full, unreduced sec-
tional area, errors on the unsafe side in several cases reach magniludes of
40-50 9 ; by this method, for all beams, actual deflections were found (o be
larger than computed.

It should be said that an accurate computation of deflections by the
equivalent width method would involve the use of a momenl of inerlia,
variable along the beam. Indeed, since b, depends on s,.., the effeclive
moment of inertia increases from a minimum value at the point of maxi-
mum moment to a maximum value near the supporls. In the table above,
however, only the minimum moment of inertia was used. For the present
tests this does nol lead o too large an error, since M,. is constant over
the cenfer half of the span, for quarter point loading. Had a variable
momenl of inerlia been used, all deflections computed lw using b, would
have been obtained slightly smaller, to various relative defrrees, 1esult1nrr
in a slill belter average agreement wilth test resulls. This method of cal-
culation was nol used because. in rouline design procedures, engineers
can hardly be expecled to spend the very considerable amount of lime
necessary for such detailed calculalions with variable moment of inertia.

The evidence presented above, which is addilionally supported by a
great number of other teslts previously published elsewhere (*) indicates
that the proposed method allows, with reasonable accuracy, the deler-
mination of carrying capacilies as well as defleclions of members con-
taining thin compression flanges. The measure of agreement with test
resulls is not as close as would be oblained on customary, heavy sleel struc-
tures. This, however, is predicaled on the inherent character of thin sheet
malerial with ils inevilnhly larger imperfections as to accuracy of sheel
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thickness, of geometrical shape, etc. The discrepancies obtained in these
tests are believed to be tolerable practically; they are certainly not larger
than these observed in tests of reinforced concrete or timber structural
members.

The use of eq. 5 is somewhat cumbersome for routine design compu-
tations. The graph of fig. 5 allows the direct determination of b, for any
given stress and b/¢{-ratio. The initial straight line to which all curves are
tangent indicates the range over which the full width b is effective. It is
seen that the larger the maximum stress, the smaller is that limiting b/¢
beyond which the effectiveness of the flange begins to decrease (see eq. 6).

In contrast to conventional, thick-walled steel structures, the cross-
sections of thin-walled elements distort at loads far below the ultimate,
and in most cases at values even below the design loads. The type and
magnitude of these deformations is therefore of interest, since an excessive
amount of flange distortion would obviously make such members prac-
tically objectionable even if their strengths and over-all deflections were
adequate for the purpose.

These distortions of shape, for members of the type of fig. 3, consist
of two separate kinds of deformation which superpose to result in the final
shape under load. The first, and more obvious, is the simple buckling
deformation. Indeed, ultimate stresses and frequently working stresses are
considerably above the critical buckling stress as determined from eq. 1.
Moreover, it was mentioned in connection with eq. 6 that on the basis
of this equation incipient, extremely slight flange distortions apparently
occur at stresses of the order of s./4. Consequently, at stresses of about
that magnitude, the compression flange begins to buckle into a series of
approximalely quadratice buckling waves. That is, the half-wave length
is about equal to the flange width b, and the general shape of each of these
half-waves is that schematically indicated on fig. 1. This type of defor-
mation, which was observed in all tests of this kind, is of course exactly
the one predicted by the mathematical theory of buckling of plates.

In beam specimens of the type discussed herein, however, a funda-
mentally different type of deformation is superposed on the one just dis-
cussed. This type, which was likewise observed in all tests, is not limited
to compression flanges; it occurs likewise if the beams of fig. 3 are turned
by 180° so that the wide flange is in tension. The following brief and
intentionally approximate analysis illustrates the nature of these defor-
mations and allows a reasonably accurate determination of their magnitude.

Consider an element of the flange, of unit width in the transverse
direction, and length dl longitudinally, as shown on fig. 6. Under load,
this element is curved, its radius, r,, being equal to that of Lhe beam at that
cross-section. The total compression forces at both ends of the element
consequently subtend an angle do and, therefore have a resultant

do st

dl. — r,
If the stress s is uniform over the width of the cross-section, R acls in
the same manner as an exlernal, transverse load, as shown in fig. 6a,
tending to bend the flange toward the neutral axis. This bending is
governed by the simple equation for flexure of a long, narrow rectangular
plate under transverse load, i.e.

(7)

L U S 3 (8)
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neutral gxis

Fig. 6a.

The maximum deflection is then found from the usual formula

_ 5 s b |
ymax‘— 38‘.‘: 7; l) . (‘)

The use of this formula neglects the influence of restraint provided to the
flange by the webs. However, this restraint is of rather undetermined
magnitude. The webs of isolated beams deform as shown on fig. 6a, and
therefore afford little restraint. The restraint would be larger if such beams
were laid side by side, with webs in contact, as in a floor. In view of this
indeterminacy it seems best to neglect the unreliable effect of possible
restraint.

To find r, for substitution in eq. (9) one has from standard, elementary
beam theory

EI s] Ee
Tb=Mb, Moz—c—, ’b——s—- (10)
With this value of r,, the maximum flange distortion becomes
B f8\ b . ‘
ymax—gj(i—) '{3—0—'(1 i ) : (ll)

For tension flanges with their generally rather uniform stress distri-
bution, this type of distortion is the only one that occurs and ils magni-
tude can be determined with satisfactory accuracy from eq. 11. In com-
pression flanges the longitudinal stresses vary over the width of the flange,
as shown on fig. 2. Consequently, R is likewise distribuled in this manner,
instead of the uniform distribution shown on fig. 6a. In view of the appro-
ximate character of this calculation, and of the uncertainty as to the
amount of edge restraint, the details of the actual distribution of s, and
other factors, an elaborate modification of eq. 11 to account for the siress
distribution of fig. 2 would represent a rather fictilious improvement. For
this reason it is believed that a sufficiently close approximaltion is obtained,
if, in eq. 11, the average stress of fig. 2 is substituted for s. From the defi-
nition of the equivalent width, this average stress is easily obtained from

b,

S:l\' = Siu (T ) . (12)

For more information on this type of deformation, particularly for tension
flanges, see the writer’s earlier paper (').

(1) Geo. WinTER, Stress-Distribulion in, and Equivalent Widih of Wide, Thin-Wall Steel
Beams, Techn. Nole No. 784. Advisory Comm. for Aeronaulics, 1940, Washington, D. C.
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In the tesls reported herein, both types of deformation were clearly
observed. That is, the flanges showed a general « dishing » (smooth down-
ward deflection of the center line) on which was superposed the square-
wave pattern of the buckling deformations. By means of special apparatus,
the magnitude of these distortions of the flanges perpendicular to their
original planes were measured at six points along the center line of each
beam. It was found that at design loads (i.e. about Py;,4/1.85) these defor-
mations reached a maximum of 1 9 of the flange width for two of the
beams; and in most other cases they were closer to 1/2 9. Although these
distortions are clearly visible, it can be said thal their magnitude at design
loads is sufficiently small so as not to interfere with the practical use of
such light gage steel members.

In conclusion it should be said that the information given in this
paper suffers from the evident disadvantage of being primarily empirical
and approximate. The theorelical complexity of plate buckling at stresses
larger than s, as well as the large amount of possible variations of shape
resulting in a wide range of conditions of edge restraint, precluded an
analytical treatment of practical value. It is hoped that future investigations
in this field, both mathematical and experimental, will elucidate some of
the more detailed aspects of this problem.

NOTATION
b =—flat width of flange. s ==slress in flange.
b. —equivalent flange width. s =critical buckling stress of
¢ =distance from neutral axis to flange by small deflection
extreme fiber. theory.
D =—flexural plate rigidity. sy, —Yyield stress of malerial.
=E £*/12 (1—»"). t ==flange thickness.
M, =bending moment in beam. w = Dbuckling deflection of flange.
M, =bending moment in flange. x, y = coordinates.
r, —radius of curvature of beam. v = Poisson’s ratio.

r, ==radius of curvalure of flange.

Résumeé

L’emploi dc profilés laminés normaux pour les petites portées et les
charges relativement faibles n'est pas économique. Pour de lelles construc-
tions, les éléments en tdles minces laminées et plices & froid ont fait leur
preuve aux Etats-Unis. Des spécificalions pour le calcul de constructions en
toles minces pliées furent publiées récemment, basées sur les recherches de
I’auteur. Dans ce systéme, le comportement des ailes comprimées est d’une
importance primordiale.

Pour de telles toles, la tension de flambage .calculée de la facon habi-
tuelle, ne représente pas la limite de la charge utile. Dans I’état de défor-
mation, il y a une distribution irréguliére des tensions. On peut calculer le
comportement de tels éléments constructifs en remplacant la largeur réelle
b par une largeur équivalente b,, qui se calcule par une équation empi-
rique. La limite de fluage devient la valeur critique des lensions calculées
au moyen de b,.
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Une série d’essais caractéristiques a montré 1'erreur moyenne Lrés
faible obtenue par le calcul de la charge utile, ainsi que la déformation,
en se basant sur la largeur équivalente.

Une méthode approximative de calcul, amplement vérifiée par des
mesures, est également indiquée pour la déformation des ailes dans I'état
de déformation apres flambage.

Zusammenfassung

Die Verwendung normaler Walzprofile ist bei kleineren Spannweiten
und relativ leichter Belaslung nicht wirtschaftlich. Fiir solche Bauwerke
haben sich in den Vereiniglen Staaten Elementle aus kalt gepressten oder
gewalzien diinnen Blechen bewiihrt, fiir die auf Grund von Untersuchungen
des Vertassers kiirzlich LEntwurfsvorschriften verstfentlicht wurden. In
diesem Zusammenhang ist das Verhalten diinnwandiger Blech-Druckgurte
von besonderer Bedeulung.

Fir ein solches Blech stelltl die auf die iibliche Art berechnete Beulspan-
nung nicht die Grenze der Tragfihigkeit dar. Im ausgebeullen Zustand
tritt eine ungleichférmige Spannungsverteilung ein. Man kann das Verhal-
ten solcher Bau-Elemente durch Lrsetzen der wirklichen Breite 0 durch
eine iquivalente Breite D, berechnen, die sich mit Hilfe einer empirisch
gefundenen Gleichung bestimmen lisst. Die Fliessgrenze wird fiir die auf
Grund von b, ermittellen Spannungen zum kritischen Wert.

Eine Reihe charakleristischer Versuche zeigte die nur geringen durch-
schnittlichen Fehler, die sich bei Berechnungen der Tragfihigkeit wie auch
der Durchbiegungen auf Grund der iiquivalenlen Breite ergeben.

Ebenfalls wird fiir die Blechverformungen im ausgebeulten Zustand ein
durch Messungen iiberpriiftes angenihertes Berechnungsverfahren ange-
geben.

Summary

The use of conventional rolled steel shapes for small spans and com-
paratively light loads is uneconomical. For such conslructions, light mem-
bers, cold formed from sheet steel, have stood the test in the U. S. A. Spe-
cificalions for the design of such members were recently issued, based on
the author’s investigations. In this connection, the performance of thin
compression flanges is of particular importance.

For such plates the buckling stress calculated in the usual way does
not represent the limit of carrying capacity. In the buckled state an irre-
gular disiribution of slresses occurs. The behaviour of such structural
members can be calculated by replacing the actual width b by an equivalen|
width b, which can be ascertained with the help of an empirical equation.
The yield point becomes the limiting value of the siresses as determined by
means of b, . -

A series of characteristic lestls showed only slighl average errors
arising from the calculations of the carrying capacily ,as well as deflection
on the basis of the equivalent width.

An approximate method of calculation, amply proved by measure.
ments, is also given for distortion of members in the buckled state.
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