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Stabilite laterale des pouties a äme pleine
(Methode par superposition)

Kipperscheinungen von I-Trägern
(Eine Superpositionsmethode)

Lateral stability of I-beams
(Method of super-position)

ERIC INGERSLEV
London

The problem I am going to tackle is not a new one in technical litera-
lure, as it dates back to 1899, when it was first treated simultaneously by
A. G. Michell and Ludwig Prandtl.

Further development rests mainly upon works of S. Timoshenko,
presenting the special features of the rolled steel joist, and of H. Wagner,
who described the phenomenon, which he called "Drillknickung", i.e.,
buckling by twist.

The problem is to-day fully solved mathematically, but the exaet
Solution is normally so involved that it has no practical bearing — which
brings us to the point of this discussion, the approximate methods.

Our joist with I Section has the following leading features :

Maximum flexural rigidity
Minimum flexural rigidity
Torsional rigidity
Flexural rigidity of one flange

Its deflections will be measured from a system of co-ordinate axes x,
y, u; x along the centre line of the undeflected beam; y at right angles
to x in the web; and u at right angles to both x and y. The deflected beam
will at the point (x, y, u) be twisled an angle ß.

If vertical moments (i.e., acting in the plane of the web) M and
horizontal moments Mh are applied to the centre line of the beam and if

A EI,
B EL
C :GI«

D~¦*B



310 Idl. E. INGERSLEV

they are just sufficient to make the beam buckle, then the leading equations
will be :

-A-S©M+^eM- (1)

-b-£-m.+^.|m. (2>

M,1 \ AB d
MMA + (A-B)(^1- ^)+^©-©L C4S—4-fiDfc«-^

dx dx \ 2 dx2

m
If the maximum value of M be Mt we will write our Solution as :

k is a constant characteristic of the case of loading, and l is the span.
We will here confine ourselves to an I-cross-section, symmetrical about

both its axis constant along its length, and free to rotate around a vertical
axis over the supports. Our first case shall consist of vertical moments only.

¦4-DA*
T A ¦ M A «

2
A 1

dß fVIntroducing m'=-r7- and er =—7-n— and l—— ß
M, LI dx

Equation (3) becomes :

ßm'/c'-f-ß" — <x5ß"" 0. (4)

An exaet Solution is arrived at by a " trial and error " method : gues-
sing ß in ßm2 k2 and integrating this expression.

A satisfactory approximation, however, is found by inserting the
average ß, ßav^0.8 ßmai and solving the following two equations :

O.Sß^m'rCM.^-ß"
0.8ßmai^iA^ß"

and then using
/c=l//c.M,l+fc,©

1
is found as the maximum bending moment in a simple supported

beam with the distributed load 0.8 nr and -r—,- will be the maximum
/Cm,

deflection of the same beam (EI=1, length 1).
If the distributed load p and the single forces P of our rolled steel

joist do not act at the centre line of the beam but at a distance a above the
centre line, then we should load our simply supported beam once more

— this time with -p • (pl ©P^-jt ¦ The maximum moment should
[-•max *J

be 1 (producing /cpl) and the maximum deflection should be <x2

(producing kp2).
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The final factor k, including for all the effects we have now dealt
with, is found as the Solution to the equation :

1 1

\ fcM, / ^ fcP, \ kM,

1

We have not yet taken any longitudinal forces in the beam into
aecount. If we disregard them, I have just shewn how to find k, and
this value we will call /»-M If, on the other hand, we only let the longitu-

xB
dinal force N (which we will write as N=-tj-) act, we will then get

from the normal Euler formula xE tc©
If we finally include for both longitudinal force and bending moments,

our result will be found from the following equation :

-+(©)'=«¦
Time does not permit the füll proof of the various formulae I have

given. It must be sufficient to mention that they are based upon the shape
of the deflection being the same type for all the parts into which we split
the load and the beam. If the types differ, the result will be too small
values of x and /»-, which only means that we are on the safe side. It is
possible, however, in some of these special cases to give special formulae
taking this into aecount.

Finally I will show you an example of how to use our formulae.
xB

I choose a rolled steel joist subject to a longitudinal force N -rj-
and a Single force P acting at the centre of the beam on top of the upper
flange.

m is then simply a triangle

0.8 m~ will consist of two
2nd degree parabolas :

This is used as load on a simply supported beam.
1 1

Maximum moment:

Maximum dellection a

rC.M,

2

20

7

rCM)2 1440

This beam should next be loaded with —

„ k

rvM, =¦- 4.5

fcM,= 14.3 a

ß

ß
(pP + P£)«-,PI^-4M * Ari3B^i-4k'A-B

• 4fcAa
i.e., a Single force =r act ine at the centre.A — B
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1 4fcAa A —BMaximum moment 1 =—r- V —. rr ; kP ;4 A — B Aa

_ t.
1 fcAa 12 (A — B)aMaximum deflection a- =- —— X -7 5- ; /Vi> -

The result of P only is then
1

12 'N A — B ' *' A

1

«Ol \ ky\ I kyi \ kn
4.5/ ' A —B \ 14.3a/ ' 12(A— B) a

Aa Ä

and P and N together gives

*+(£)•-'¦
13

Assuming t ~ 1 cc^ - (as a special case) one gels
-A. 2.1,1rC.M \2 /CM / fc.M \2

|
rC.M

/cM =5.1

4.5/ 2 17.15/ ' 6

2
x

TT +
fc

1
5.1

X - - TT2 - 5 0 © 5 -j- 7t2

fc= 7.2 6.3 5.1 3.6 0
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Resume
i

L'auleur de ce memoire eiablit les equations fondamentales de la
stabilite au renversement lateral. II etablit des Solutions approchees pour
differents cas simples, par exemple : charges verticales ou charges normales;
l'effet de la poutre elle-meme (consideree comme une poutre rectangulaire
de faible epaisseur) ou l'effet des semelles; et meme l'influence des

charges appliquees au-dessus de la ligne des centres. Finalement, l'auteur
indique des formules applicables au cas oü plusieurs influences agissent
simultanement.

Zusammenfassung

Es werden die Hauplgleichungen des Kipproblems dargestellt. Eine
Näherungslösung wird gefunden, indem eine Reihe von Spezialfällen untersucht

wird, wie z.B.: lotrechte Belastung oder Normalkräfte; die Wirkung
des Balkens an sich selber (idealisiert als schmaler Rechleckquerschnitt),
contra die Wirkung der Flansche und ferner der Einfluss von Kräften, die
oberhalb der Verbindungslinie der Schwerpunkte des Trägers angreifen.
Schliesslich werden Formeln angegeben für den Fall, dass mehrere oder
alle der Einzelfälle gleichzeitig wirken.

Summary

The leading differential equations governing the lateral stability of
beams are put forward. An approximate Solution is found by dividing the
process into a series of " piain cases " such as vertical loading or
longitudinal force; further the effect of the beam itself (corresponding to that
of a narrow rectangular beam) against the special effect of the flanges; also
the effect produced by the loading acting above the centreline of the web.
Finally, formulae are produced giving the Joint effect of several or all
" plain cases " acting simultaneously.
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Considerations sui la flexion de poutres droites ä section variable
sous l'influence de charges exterieures

Betrachtungen über die Biegung von geraden Balken
mit veränderlichem Querschnitt unter äusseren Lasten

Considerations on bending straight beams
of variable cross section under action of external loads

J. NALESZKIEWICZ
M. E., Sc. D., Gdansk-Wrzeszcz

1. The method

The method which we will use in this case has been proposed by
S. Timoshenko ('). It consists in the expansion of the function repre-
senting the deflection curve of a simply supported beam (fig. 1) into a

trigonometric series. To all reputed advantages of this method we intend
to add a new one, obtained when not only the deflection curve, but also
when all functions representing the external loading and variable stiffness
in bending of the beam are resolved into similar series.

We will endeavour to resolve the problem of the general case of a

simply supported beam of variable cross section supported and loaded in
the plane of a prineipal axe of its cross section by all possible forms of
external loading, i.e. by concentrated forces and couples, as well as
distributed loads which might have normal as well as axial components, so
that the resulting compressive axial force might vary from section to
section either continuously or discontinuously.

(l) S. Timoshenko, Application of generalized coordinates to Solution of problems on bending
of bars and plates (Bull. Polyt. Inst., Kiev, 1909) (Russian).

S. Timoshenko, Bull. Soc. Eng. Techn., SI. Petersburg, 1913.
S. Timoshenko, Theory of Elastic Stability, New York and London, 1936 (see page 23); Strength

of Materials, Vol. 1, 1930 (see page 306).
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Let the variable stiffness in bending E-J F(;r) of our beam be
represented by either of two types of convergenl Fourier series :

2-x 2r,x
E-J F(a;) A0© Y A„-cos n —~-\- Y B„-sin n—j

or:

E-J: ¦+Zp cos
l

Y A „ • cos '-.n---x

(1)

(!')
it 1 2 ' ii u

We suppose further, that the external load consists of:

1. Lateral components of concentrated loads Q f, where p=l,2, ...,x,
acting at distances c„ from left support A of the beam;

2. Distributed lateral loads t;/=g(c), which are functions of the
distance c from the left support A;

3. Lateral couples, whose moments iM3, (<r= 1, 2, © acting in
the plane of fig. 1, are applied to the beam sections al distances from A
equal to h3,;

4. Compressive (when positive) axial forces P P(x), which may
continuously or discontinuously vary from section to section, because of
axial components of external concentrated or distributed loads.

We will furlher consider the expansion of the functions q(c) and P(x)
in following necessarily convergent trigonometrical series:

q=.q(c) ^ ßn/.sin
n 2 tzc
2 /

2t.z

vi o nizc

or:

P(«)= 2j P.,-cosn—©-© ^ -v„-sin n —^— ;

it 0 ii - 1

°° / 9 \ "

II -=0 2

cos-
n- z

(2)

(3)

(3')



BENDESC STRUGHT BEAMS OF VARIABLE CBOSS SECTION 317

Finally, we will accept the possibility of developing the ordinates of
the deflection curve into a similar " half-wave " series:

y X bjL'sin(T'~~r")~ X bJL "sin n"l'x ' (4)
n 1 2

^ ' n I 2

which is always possible, as Dirichlet's conditions for expanding into a
Fourier series are always fulfilled for a deflexion curve of a continuous
beam.

The series (4) satisfies all the end conditions of a beam, freely
supported at its ends.

We have introduced here four different terms x, z, c, h for the same
abscissae, for the sake of facilitaling some later integrations.

By differentiating once and twice the series (4) we obtain expressions

for the approximate values of the slope 5 and curvature — of the deflexion

curve:

2

CO

/ -j- • Jj n • b^ • cos "Kl'X ; (4')
n i

1
___ v -J- y =--jr

OD

£ .n*.bjL.sin±J^±. (4»)

2. Bending of the beam

We propose now to derive the equations of the deflexion curve of our
beam, subject to the external loads: Q, AI,, i/(c), P(z), by using the
general principle of the strain energy in bending. To obtain the expressions

for the Fourier series coefficienls b (n= 1, 2, co), we must

derive Ihe expressions for the change of strain energy SV, when the
coefficients bn are variated independently of each other by small increases

2

ob
n

We will further equate this change to the work ST of external forces

during this additional deflexion.

1. The strain energy of a beam (2) may be given in this case by
the equation:

*-rr«-'-rS4'- (5)

Suppose at first, that the stiffness in bending E • J of our beam is constant
on an extent from :r=0 to x z, Ihen for this part of the beam the partial
strain energy V will be:

(2) M. T. IIuuBn, On critical loads of axially compressed bars of discontinuously variable cross
sections (Publications of the Tech. Inst, for Acronautics, Warsaw, 1930) (Polish).
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«4-E-J f fv <

(6)

¦ sin n

+ 2 ^ n,-fc,-6JL.d^.si-
n,fc l 2

rc'-EJ v 3 ut rz t n---x (nnx\

n-j; fcrcx
sin —: sin

rt I

tc3-E-J
I3

kr.x
> n'-k'-b^-b^ I sm —— • sin —p- • d I —

Fl.fc 1

"3-E-J.iVn3.b,
2 p i 2j " ° in i

© 2 i©J©6,, -6

-•2 1 2*2
nTr-T-sinn-r

n,fc= 1

(n ^ *:)

1
• /l- V "___.sm(fc_n)_

__.sin(A: + n)__jr
t©E-J Uz v h m * V 3 M / 2«.

+ 2 re' ¦fc*-0.
n,fc= 1

1
• // \ ~-Z

sin (k — n) —i—

Having thus obtained the strain energy V for 0 < x < z, under the
condition that there was E-J=const, we may now suppose that E-J remains
constant only in the interval of z © a; <© z-|-dz, and afterwards integrate
the oblained differential for the füll length of the beam. We obtain in
this manner the füll strain energy V of the beam with variable stiffness:

+ Y n'.k'-b„ ¦b±jT—-^EJ-d sin(ic-fi)^-

i rl
k-\- n J0

(n^=fc)

sin (k -\- n) —r—
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tV- S"'-6'» /~EJ-d2-Y f©b'n /"EJ-cosn^.dz

+ 2 Y n'-fc'-b,, ¦ 6k \f EJ-cos(rc— n)~-dz
_ i. « n o I •' 0

319

n, fc 1

(n# fc)

4l3

— / EJ-cos (fc © n)©—-dz
Ja t

er- 00

A„2 a'ö^-y^ A„.^-6©
ri 1 2 »= 1 2

00

+ ^ n'-fc'-b„ -bfc/Afc_„-Afc + ll\
n,fc=I 2 2 \ 2 2 /

(7)

Here A, are the coefficients of the series (1), whereas the " half-wave"
coefficients A„^u, when (n ± k) are uneven numbers, belong to-k '

series (!'):

•-t/P'A„

o

EJdz,

¦I • cos n
2 rr?

2 /*'
ri±«= =-T- / E

2 I J0
E•J•cos

• dz

2 712

l
•d2 (8)

What concerns the integral (8), in the case when (n ± k) is an uneven
number, we way interprete the development (1') as an expansion of a sym-
metrical or antisymmetrical curve, consisting of two curves /(ar) symme-
trically or antisymmetrically disposed to each other into a normal Fourier
series (1) as shown in fig. 2.

We will calculate now the Variation SV of the strain energy, when
the deflexion is variated, while every coefficient b obtains a small increase

ob
n From the form of the series it may be deduced at once, that variations

ob
n may be considered as wholely independent from each other. Hence

~2~

/«

Fig. 2. Bi

-~-t/n

s \._s ©../
sin j
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we may regard 8V as consisting of a whole series of independenl " partial "

variations BVn obtained from each Variation ob separately. In fact, as

Sb are independent from each other, wre may take only one ob jz£0,
T T

ob
and all other ©=0 (for n =z£ fc). From the tvpe of equation (7) it is

evident, that

SV £ SV„.
n l

Such a " partial " Variation of V will be:

"„ -37 ob,,
dbn -

2

Sbn-
2 ¦©-" -¦A«+.v

2 />

(9)

We must still draw attention of the reader to the fact, thal since the
factor 2 has been taken in front of the double sum signs, these double sums
may not include bolh permutalions of every pair of values n and k, but
only one. It may be clearly seen from the second line of eq. (6), from
which had been deduced all the double sums of this Beport.

2. The work T of external loads consists of two prineipal parts,
namely, the work of lateral and axial loads:

T TL + TP.

TL is the sum of the works of all types of lateral loading: Qp, q{c), M3,
and we may separately calculate the work of every type of such load:

a) The work of concentrated lateral loads Qr,, is Ihe produet of their
values and respective transversal displacements ye:

TQ=£QP-yP £Qp.|>„-sinÄ;
p=l p=l n=l 2

b) The work of the continuous lateral load q(c) will be:

T
I

Y| bn f q-sian-^- -de =- Y -b^-ß^ ;

c) The work of concentrated couples, whose moments M3 are acting
in the plane of fig. 1, will be:
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Hence the general expression for the work of lateral loads of every possible
kind will be:

Tr. TQ+T, + TM

^¦yi^+ii^^+TS M^-n-cos — h, (12)

It remains to calculale the work of the variable axial loads along
the length of Ihe beam. This work will be represented by an integral,
taken along the length of the beam, of the axial force P over elementary
axial displacemenls due lo bending only. Such a displacement is equal
to the difference between the length of an element of the deflection curve
and the corresponding element of a straight line, parallel to the axe of
abscissae. Denolhing this displacement by d\, we obtain its value:

dl ds — dx 4 l-^-\ ¦ dx
2 \ dx j

Thus the elementary work of the compressive force will be:

dx
so that finally:

Cm

•P. (dy
\dx

dTp' TpT f|y.b'n.cos«7
\ n 1 2

+ 2 £ n-k-b^-b^
n-xx k-rzx \

cos —-— cos —;— dx
n,k l
(nptc)

We will assume at first, that the compressive force P is constant along
a certain part of the beam, within the limits: 0<©<©. Then the work
TP' will be:

TP'=- 2l2

IC-P
2 l

I©'
L« l

n= 1

-P

6*„ • cos2 it-x

+ 2 £ n./cb„.bfcy
(n Tfc fc)

COS
nszx

l
knx

cos —-— -dx

¦b\ n-Tiz 1 2-2__+ _sin.n__

+ 21
n, fc=l

(r. 7t fc)

k-b„ -b,
1

sin (k

1

n)

-z
k + n

-sin(/c + n) l

7©P-2
4 V

00
— p *

2 ß!'6V+TrS n-b\ sin n
-2
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l
t-- 2 n-k-b^ ¦b.

n.k=i
(n^=k)

k_

2 ~2

sin(/c —n)^—k — n l

___.sin(/c + n)^ • (13)

But in reality the axial load P may be considered as constant only along an
elementary length, say in the limits:

z© a;©(z-|-dz)
Hence, to obtain the true work T we must integrate the equation (13) for
a variable P P(a:) along the füll length of our beam, i.e. within the
limits 0 © z © l, in the following way:

T^wS^'^^.dz+ ^.gn.b^^P.dfsin,^

+yr'n£in-fc-bji-54lXifc^©r-d[sin(/c-n)-
TZZ

r
(n^=fc)

+ /-fcTF7T-d[sin(7c+n)
rcz

T
j 00 « «

ll--1 2

TC

n l

2 l
Y n-k-b n ¦ b k • / P • cos (fc — n) -©^-

• dz

-f- f P-cos (fc + n)^--d z\

k
(f>#"=)

TT
n l 2

*

00

© ^ n-rC-bn -bfc (Pk-n +Pk + n
n.k i 2 2 \ 2 2
(rt=^fc)

(14)

Now we may write the complete expression of the work T in füll
length:
T T,,+ T,

S ^i'^ + E Qp-sin-^-.Cp© ^jM,. Ü^Lcosn
Tt/lfT

n=1 2 \ 2 p=l

L" 1 TV " ' rt.fc=l 2 2\ 2 2 /.
(rt^fck)

(15)
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We must now calculate the additional work ST produced by the
external forces because of a small arbitrary Variation of the deflexion curve,
due to small changes ob of the coefficients b( The partial displacement

due to one change ob only, may be denoted ST„. These partial

displacemenls are all independent from each other, hence we may study the

whole process on the example of one Variation ob
fc while the others
o

ob k, (k^z£n) are zero. The sum of all such partial values will be the füll
~2~

Virtual work:

Now we obtain:

ST 2 ST-
n 1

5T
db JL

£ 2

(16)

3. As every component of STn depends only on the small arbitrary
increase ob

n
and, as we saw before, the same concerns the components

"2

of 8Vn, instead of writing
SV ST

we may write:
SV„ ST„ (n l,2,...,oo). (17)

Thus we obtain as many equations, as there are unknown coefficients
b By putting values (16) and (9) into eq. (17), we obtain:
T

J_
~2

2 p= 1
^ / 0=1 *

2 V
n' ¦ A

4 w

JTT'2k-bJL
fc=i

(fc^fcio

n-k-iAk_n

yA- -h'/'o + TP« b±
2

Afc + „ \— -Zr(Pk-n +Pfc + n'^)~©( (18)

These equations are the exaet Solution of the general problem of plane
bending a straight beam on two simple supporls, because they allow to
calculate all coefficients b one by one; first of all, we must compute the

If
coefficients A„, pn, Afc pfc + „ ß„ ; then, as first approximation,

2 —"2 ~
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we compute one by one the coefficients b
n from the transformed equation:

b =•
1

7t'- n' A'4A")4kiP"
2i3 i>*

+ 2 Qp ¦sin (nr • cp )+-^-f- • 2 M°-cos ("x"h
4 j" Tg

—jj— 2 A"'6^' [n-fc(Afc-n — Afc + „) — ^r(pfc_„ + Pfc+„)
fc l

(19)

neglecting the infinite series in the last term, as it is always much smaller
than the first expression in square brackets, because of the factor 2 l* in
front of it.

After having calculated in this manner the first approximation of the
values of b

n we put them into the last factor of the right side of eq. (19),
"o~

and then repeat the evalualion of b as a second approximation, etc.
2

The series (4) is in most cases sharply convergent, so that there is no
need in practice to compute more than two approximations. In general
we proceed the calculus so long, until the difference between two conse-
cutive approximate values of b

<i> <i+l) «)
Ab =b —b

becomes less than the allowable error.
If q Qp M3 0, the formula (19) will give the values b 0, as

it should be.
There may occur some simplifications in the calculus, if the distribution
of the stiffness E • J is such as to give above a certain value of n :

A-n-t-l -— An_i_2 0.

3. Elastic stability

An analysis of the equation (19) will prove, that every coefficient b
will become infinite (or eventually indefinite) as soon as the denominator
at the right side of the chosen n-th equation of the system (19) becomes
zero. There occurs then a case of instability, and the bar will have the
tendency to buckle in the shape of n half-waves:

_2

n

A, (20)
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Naturally in most cases of engineering practice the buckling will occur in
the form of one half-wave, because of the dominating factor n~ at the right
side of eq. (20). But there may certainly occur special cases, when a form
with n half-waves might also become dangerous; but we may accept as a

rule, that the most dangerous is the form buckling corresponding to the
value n 1 :

1 7C2 / 1 \
Po+-2-Pi=Jj2--^A0— 2 A,j (21)

When A1 p1 0, the eq. (21) reduces to the common Euler formula
for E-J=const and P const along the length of the bar. The more
general case (20) for n > 1 may be of interest to the designer in some
exceptional cases only, when the so obtained critical mean compressive
load p0 might become smaller, than some higher component p„ (n^>l).
This would be possible only if the value of A„ would be near to A0, what is
very improbable in practice, especially for higher values of n. In any
case, we must remember that the very simple conditions (20) and (21) are
exactly derived from the laws of Mechanics, and include neither
simplifications, nor approximations of any sort, although they are valable for
the most general case of load and stiffness distributions.

On the contrary, the eq. (19) involving infinite series, bear an
approximate characler; the conditions of stability, although deduced from
these equations, are absolutely exaet, and throw some new light upon the
instability effects in beams.

The condition (20) shows that for the buckling of a beam in the form
of n half-waves, only the n-th harmonics of the axial load and sliffness
distributions are decisive, and other harmonics have no influence on this
effect at all. This bears a deep analogy, to the effect of simple forced
harmonic vibrations, which has been pointed out before in some more
special case by M. T. Huber (3).

Therefore, we dare say, that the expansion inlo a Irigonomelric series
is not only a convenient method of mathematical computation of bending
problems of compressed beams, but this method divulges some new
aspects of the effect of instability itself, and has a deeper meaning in itself,
as it allowed to discover a new general law of static instability of inhomo-
geneous compressed beams.

4. Appendix

For practical use of equations (19), (20), (21) we need a method of
expanding functions E • J, q, P in trigonometric series. This may be done
by means of several methods, as for example : by Fischei'-Hirinen (4), or
bv F. M. Lewis (5) and, especially for lower values of n, bv P. V. Melen-
tiev(').

(3) M. T. Huber, On an analogy of some effects of stability of slightly curved elaslic bars
with a simple case of forced vibrations (Polish Academy of Sciences, P. A. U., Krakow, Poland,
1934) (Polish).

(4) FiscnuR-HivNEN, Elektrotechnische Ztg., Vol. 22 (1901), pages 396-398 (German).
A. Hussnumv, Rechnerische Vorfahren zur harnonischen Analyse und Synthese, Berlin, 1938

(German).
(5) F. M. Lewis, A method of harmonic analysis (J. Appl. Mech., Vol. 2 [1935], Vr. 4,

pages 137-140).
(*) P. V. Melektiev, Some New Methods in Approximate Calculus, Leningrad antl Moscow,

1937 (see pages 139-147) (Russian).
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The harmonic synthesis of the deflection curve, after obtaining the
values of bn may be done by means of Howrard's circles, or by simple

T
computation from goniometric tables.

Resume

L'auteur examine dans ce memoire des poutres dont les centres des
diverses sections droites constituent une ligne droite et les axes principaux
de ces mämes sections deux plans orthogonaux entre eux; toutes les charges
et reactions exterieures se trouvent dans Fun de ceux-ci.

Ces hypotheses admises, la rigidite a la flexion peut elre variable, meme
avec Solution de continuite. Les charges axiales peuvent egalement varier.
En exprimant tous les parametres sous la forme de series trigonometriques,
variables le long de la portee, on obtient la resolution de la ligne elastique
sous la forme d'une autre serie trigonometrique. On obtient ainsi un critere
Ires simple pour la stabilite elastique [Eq. (20)].

Zusammenfassung

Bei den Balken, die in diesem Beitrag betrachtet werden, liegen die
Schwerpunkte aller Querschnitte auf einer Geraden und die Hauptachsen
bilden zwei aufeinander senkrecht stehende Ebenen, deren eine auch die
äusseren Lasten und die Beaktionen enthält. Unter diesen Voraussetzungen

kann die Biegesteifigkeit noch beliebig kontinuierlich oder
diskontinuierlich veränderlich sein. Auch die Axiallasten können sich beliebig
ändern. Indem alle über die Spannweite veränderlichen Parameler des
Problems in trigonometrische Reihen entwickeil werden, erhält man die
Lösung der Gleichung der elastischen Linie auch in der Form von
trigonometrischen Reihen. Zugleich folgt aus dieser Entwicklung noch ein sehr
einfaches Kriterium für die elastische Stabilität [Gl. (20)1.

Summary

Beams taken under consideration in this paper have all cross-section
cenlers lying on one straight line, all prineipal axes of cross-sections are
contained in two perpendicular planes, one of which contains all external
loads and reactions acting on the beams.

Under assumption of these restrictions, the stiffness in bending may
be arbitrarily continuously or discontinuously variable. The axial loads
may also vary arbitrarily. By means of expansion into trigonometric series
of all parameters of this problem, variable along the span, a Solution for
the line of elastic deflection is obtained, in the shape of a trigonometric
series. By the way, a very simple criterion for the elastic stability
[Eq. (20)] is obtained.
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Procede pour augmenter la rigidite ä la torsion
des poutrelles en I

Eine Methode zur Vergrösserung der Verdrehungssteifigkeit
der doppelflanschigen Balken

Method to increase rigidity in torsion of double-flanged beams

H. NYLANDER
Techn. Dr Professor, Technische Hochschule, Stockholm

Für einen auf Verdrehen beanspruchten Balken mit dünnwandigem,
offenem Querschnitt gilt unter Voraussetzung, dass die Querschnittsform
unverändert bleibt, die Gleichung (';

d'-S d3 (£>M'=C4-C-"^ (1)

wo
MT Verdrehungsmoment;
C GK Verdrehungssteifigkeit (Nach St. Venant);
Cm Wölbwiderstand des Querschnittes ;

<p Verdrehungswinkel ;

z Koordinaten-Achse längs der Balken-Achse.

Bei einem doppelflanschigen Balken drückt das zweite Glied auf der
rechten Seite in Gl. (1) die Einwirkung der Flanschenbiegung aus.

Der Balken wird nach Abb. 1 verformt. Der obere und der untere
Flansch bilden in der Horizontalprojektion den Winkel

e „£ „
wo ht Abstand zwischen den Flanschenschwerpunkten.

Wenn man den oberen und den unteren Flansch mit einer Versteifung

(') Die Einwirkung iler Qucrschniltsverformung wurde in einigen Sonderfällen vom
Verfasser untersucht. Siehe H. Nylander, Diss. Stockholm 1942, sowie H. Nyi.ander, Drehungsvorgänge

und gebundene Kippung bei geraden, doppeltsymmetrischen l-Trägern, I. V. A., Abh.
Nr. 174, Stockholm 1943.

Die Gl. (1) wurde für den doppeltsymmetrischen I-Triiger zuerst von Timoshenko und, für
beliebigen Querschnitt, von Kappus angegeben.
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äs
Abb. 1. Verdrehungsverformung eines
doppelflanschigen Balkens.

do
verbindet, wird der Winkel 9 vermindert und auch —~ im \ersteifungs-dz
querschnitt wird verringert. Die seitliche Biegung der Flanschen wird
elastisch verhindert (siehe Abb 2 c). Die Flanschen werden von
Biegemomenten M belastet, die in der Flanschenebene wirken.

dw
M ist proportional zu ~— im Versleifungsquerschnitt

da
M c -V- (3)

dz
wo c eine Konstante ist.

d'yDie sprungweise Veränderung von —-5- an der Aussteifung (v seit-
dz

liehe Durchbiegung des Flansches) ist

dz2 D

wo D die seitliche Biegesleifigkeit des Flansches.

(1)

®
MT MT

<! 0

M M M M-c-

©

©

a
'

b

/
M
r

^ 1

D

Abb. 2 (links).
Verdrehung eines Balkens
•n i t wölbungsverhin-
dernden Aussteifungen

:

a) Torsionsbelastung eines
Balkens;

b) Belastung der Flanschen
durch Momente, die von
der Wölbungsverhinderung

durch die Aussteifungen

herrühren,-
c) Verlauf des Verdrehungswinke©

« längs der
Balkenachse.

Abb. 3 (rechts).
Bezeichnungen.
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Bei einem Balken mit ungleichen Flanschen gilt bei der Verdrehung
(siehe Abb. 3)

yi=a.o -^-.ht-f (5a)

und

yt b-<?=^-ht.<? (5b)

wo Bx die gesamte seitliche Biegesteifigkeit des Balkens.
Man erhält daraus

„ n
(6)

(4 a)

(4 b)

P)
2 "x

~ dz'~

Durch Vergleich der Gl. (6) und (7) ersieht man, dass die durch die
Momente M bedingte Verformung eine Verdrehuncsverformung ist.

Die Gl. (4a), (4b), (5a) und (5b) ergeben

1p —
y*

D2

D,
•

Die Gl. (4) wird für jeden Flansch ausgeschrieben

Ad2y,
dz'

M
4

A **
dz'

M
~~L\7

woraus

dz' D,
~~d7 •

Da

A
d'o 1 B,
dz' h, D,D2

M — c
do

Hz~

M (8)

wo c eine Konstante ist, kann Gl. (8) wie folgt geschrieben werden

d'y 1 B, dy
dz* 7ie D,D2 dz y '

Diese Gleichung ist die grundlegende Gleichung für die Berücksichtigung
der wölbungsverhindernden Einwirkung der Aussteifungen.

Die Grösse der Konstante c ist von der Formgebung der Aussteifungen
abhängig. Durch eingehende Untersuchungen hat der Verfasser gezeigt,
dass die Aussteifung nach Abb. 4 anderen Gestaltungen überlegen ist (©.

Für diese Aussteifung erhält man
c CH

wo CH die Verdrehungssteifigkeit des Hohlquerschnittes ist.
Die Gl. (9) wird also zu

d'o do
^=mlTz- (9)
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Abb. 4. Formgebung der wölbungsver-
hindernden Aussteifungen.

fl
6-B

F
rr

e
h

6-B

Pt»]

^mW
A-A

WO

m
~h<

B,

D.D,
¦C„ (10)

Die allgemeine Theorie für die
Berücksichtigung der Einwirkung
von mehreren Aussteifungen in
gleichen Abständen bei doppeltsymmetrischen

I-Balken ist in meiner
Dissertation angegeben (2).

Diese Dissertation enthält auch eine Näherungslösung, die für die
meisten praktischen Fälle genügend genau ist. Hier wird nur das Ergebnis
dieser Lösung kurz zusammengefasst und modifiziert, so dass es Gültigkeit
auch für einfachsymmetrischen Balken erhält.

Diese Näherungslösung zeigt, dass die Einwirkung der wölbungsver-
hindernden Aussteifungen durch eine Erhöhung der reinen Verdrehungssteifigkeit

C in Gl. (1) ausgedrückt werden kann :

mt=cp*L - d*"
dz

wo

C,

- C„
dz3 (10')

C

m 1
(11)

2 k kl
m

Yk coth kl

in ist durch Gl. (.10) bestimmt und k erhält man aus

CB,

I), I)ä
(i:k=V-c;=T;

2~k Abstand zwischen den Aussteifungen.

Die Erhöhung der Verdrehungssteifigkeit durch die wölbungsverhin-
dernden Aussteifungen vergrössert die Kippstabilität und vermindert die

(2) Siehe Fussnote (').
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Abb. 5. Beispiel :

a) Allgemeine Anordnung

:

A Wölbungsver-
hindernde Versteifung,

B -t= Flachstahlaussteifung;

L Laufschiene.
b) Einzelheiten der

wölbungs
verhindernden Versteifung.

Spannungen, die von den Verdrehungsmomenten herrühren. Als
Anwendungsbeispiel wird in Abb. 5 ein Kranbahnbalken gezeigt. Die wöl-
bungsverhindernden Versteifungen sind nur in den Viertelpunkten
angebracht. Dadurch werden die Verdrehungsspannungen am grössten an diesen
Stellen, wo die durch vertikale Biegung bedingten Spannungen klein sind.
In der Feldmitte, wo die gefährlichsten gesamten Spannungen auftreten,
werden die von der Verkehrslast verursachten Verdrehungsspannungen
durch die Versteifungen von 620 auf 230 kg/cm2 vermindert. Ausserdem
wird die Kippslabilität des Balkens wesentlich vergrössert.

Resume

Le voilement d'une poutre soumise ä torsion esl fonction, en regle
generale, de sa rigidite" ä la torsion. En plus, les tensions resullantes
sont relativemenl elevees dans certaines constructions, notamment pour les

poutres de ponls roulants. La rigidite ä la torsion peut etre augmenlee, tout
en reduisant les tensions, gräce a des raidisseurs. La deformation laterale
des semelles est evitee et ainsi la deformation par torsion est remplacee
par une deformation par flexion pure des semelles. Ce memoire elend la
theorie dejä exposee par l'auteur concernant les poutrelles symetriques [voir
note O] au cas d'une poutrelle dissymetrique el resume le resultat d'une
Solution approchee.

Zusammenfassung

Mit der geringen Verdrehungssteifigkeit der gewöhnlichen eisernen
I-Balken hängt deren Neigung zum Kippen zusammen. Ausserdem sind
die Verdrehungsspannungen bei gewissen Konstruktionen z.B. Kran-
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bahnbalken verhältnismässig gross. Eine Möglichkeit, die Verdrehungssteifigkeit

zu vergrössern und die Verdrehungsspannungen zu vermindern
besteht in der Verwendung wölbungsverhindernder Versteifungen. Die bei
der Verdrehung auftretende seitliche Ausbiegung der Flanschen wird
dadurch elastisch verhindert, so dass die reine Verdrehungsverformung in
Biegung der Flanschen umgesetzt wird. Die vom Verfasser früher entwik-
kelte Theorie für doppeltsymmetrische I-Balken (siehe Fussnote 1) wird
in diesem Bericht auf einfachsymmetrische I-Balken ausgedehnt und das
Ergebnis einer Näherungslösung wird kurz zusammengefasst.

Summary

Ordinary steel I girders are liable to lateral buckling in torsion on
aecount of their low torsional rigidity. Moreover, the torsional stresses are
relatively high in some structures, e.g. crane beams. The torsional rigidity
can be increased and the torsional stresses can be reduced by means of
warping stiffeners. The lateral deflection of the flanges is elastically pre-
vented by these stiffeners, so that the pure torsional deformation is con-
verted into bending of the flanges. In this paper, the theory of double sym-
metrical I girders previously advanced by the Author, see footnote 1, is
extended to single symmetrical I girders, and the result of an approximate
Solution is briefly summarised.
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