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Id1

Stabilité latérale des poutres a dme pleine
(Méthode par superposition)

Kipperscheinungen von I-Tragemm
(Eine Superpositionsmethode)

Lateral stability of I-beams
(Method of super-position)

ERIC INGERSLEV

London

The problem I am going to tackle is not a new one in technical litera-
lure, as it dates back to 1899, when it was first treated simultaneously by
A. G. Michell and Ludwig Prandtl.

Further development rests mainly upon works of S. Timoshenko,
presenting the special features of the rolled steel 101st and of H. Wao‘ner
who described the phenomenon, which he called “Drillknickung”, i.e.,
buckling by twist.

The problem is to-day fully solved mathematically, but the exact
solution is normally so involved that it has no practical bearing — which
brings us to the point of this discussion, the approximate methods.

Our joist with I Section has the following leading features :

Maximum flexural rigidity A =El,
Minimum flexural rigidity B =EI,
Torsional rigidity C=@GlI,
Flexural rigidity of one flange D~1B.

Its deflections will be measured from a system of co-ordinate axes =,
y, u; z along the centre line of the undeflected beam; y at right angles
to z in the web; and u at right angles to both « and y. The deflected beam
will at the point (z, y, u) be twisted an angle 8.

If vertical moments (i.e., acting in the plane of the web) M and
horizontal moments M, are applied to the centre line of the beam and if
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they are just sufficient to make the beam buckle, then the leading equations
will be:

dy A—B
d*u A—B
-—B-(i?—_—M,.—J,———:\—SM, (2)
M* M,? AB d dj d (1 , d*B
MM""HA"B)(A B )+ A—B dz 10 dz  dz (EDh dxﬂ) '
(3)
If the maximum value of M be M, , we will write our solution as :
k A —
M= x—pVBe

k is a constant characteristic of the case of loading, and [ is the span.

We will here confine ourselves to an I-cross-section, symmetrical about
both its axis constant along its length, and free to rotate around a vertical
axis over the supports. Our first case shall consist of vertical moments only.

B rere
Introducing m M and a’—-«-————?Dh and I—E—— g’
g M, =" ° dz _ F
Equation (3) becomes :
Bm! k! + ?)Il — az gmr - 0 . (4)

2

An exact solution is arrived at by a “trial and error’
sing B in Bm*k* and integrating this expression.

A satisfactory approximation, however, is found by inserting the
average f3, Bay 0.8 Buax and solving the following two equations :

method : gues-

0.8 Bpax MTky ' = — "
mz k' : "t
0.8Bpus —— 3 == 3"
and then using
k=Vku?+ ku

P is found as the maximum bending moment in a simple supported
M
! 2

beamn with the distributed load 0.8 m® and k“ = will be the maximom

M,

deflection of the same beam (EI=1, length=1).

If the distributed load p and the single forces P of our rolled steel
joist do not act at the centre line of the beam but at a distance « above the
centre line, then we should load our simply supported beam once more

a
— this time with B '(PIE—I—PI)—C" - The maximum moment should

be 1 (producing ky) and the maximum deflection should be &* (pro-
ducing kp.). '
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The final factor k, including for all the effects we have now dealt
with, is found as the solution to the equation :
1 1
k )’+ k +( k )2 kK .
( Ky, kp, ki, kp

3

We have not yet taken any longitudinal forces in the beam into
account. If we disregard them, I have just shewn how o find k, and
this value we will call ky . If, on the other hand, we only let the longitu-

dinal force N (which we will write as N = 7—123-) act, we will then gel

from the normal Euler formula xz==".
If we finally include for both longitudinal foree and bending moments,
our result will be found from the following equation :

% k \?
:+(kn)=1'

Time does not permit the full proof of the various formulae 1 have
given. It must be sufficient to mention that they are based upon the shape
of the deflection being the same type for all the parts into which we split
the load and the beam. If the types differ, the result will be too small
values of x and k, which only means that we are on the safe side. It is
possible, however, in some of these special cases to give special formulae
taking this into account.

Finally I will show you an example of how to use our formulae.

xB
T
and a single force P acting at the centre of the beam on top of the upper
flange.

m is then simply a triangle : /\

I choose a rolled steel joist subject to a longitudinal force N =

2 —5
0.8 m* will consist of two /Er
2nd degree parabolas : P \‘
This is used as load on a simply supported beam.
. 1 1
Maximum moment = P =5y 3 kv, =4.5.
Maximum deflection = o — ;. ky.=14.3
: PO T ket T 1440 0 LT R0
This beam should next be loaded with —
B a a h kK A = h A
_ 12 l —_— —_—F _— e — _—
o, (p +P)C PlC 4M‘2C 2lA—BVBCC 4kA__Ba

A—B

1.e., a single force acting at the centre.
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. o1 4 kAo __A—B
Maximum moment = | = Fi x A_B’ kp, =L
: 2 (A —
Maximum deflection = o = 112 k3 AkiaB ) kp = 12 (AA B) e
The result of P only is then —
1 1
‘ =1
( ks )2+ ki +( Ky * + Y
\ 4.5 A—B 14.3 a 12(A —B)a
Aa A

and P and N together gives

% k )2
?*(k.\_ =1

. A—B I -
Assuming —— 1, x~ - (as a special case) one gels
! T : —1 ky=5.1
(k.\l )2+ ks ( Fey 2_‘_ kv e
4.5 2 7.15 6
% k\*
T.? +(5.1 = ‘l
*= —= —5 0 +5 4=
k= 1.2 6.3 5.1 3.6 0
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Résumé

\
L’auteur de ce mémoire établit les ¢équations fondamentales de la
stabilité au renversement latéral. Il établit des solutions approchées pour
différents cas simples, par exemple : charges verticales ou charges normales;
I’effet de la poutre elle-méme (considérée comme une poutre rectangulaire
de faible épaisseur) ou l'effet des semelles; et méme l'influence des
charges appliquées au-dessus de la ligne des centres. Finalement, 1’auteur
indique des formules applicables au cas ou plusieurs influences agissent

simultanément.

Zusammenfassung

Es werden die Hauplgleichungen des Kipproblems dargestellt. Eine
Nidherungslosung wird gefunden, indem eine Reihe von Spezialfillen unter-
sucht wird, wie z.B.: lotrechte Belastung oder Normalkrifte; die Wirkung
des Balkens an sich selber (idealisiert als schmaler Rechteckquerschnitt),
contra die Wirkung der Flansche und ferner der Einfluss von Kréften, die
oberhalb der Verbindungslinie der Schwerpunkte des Triigers angreifen.
Schliesslich werden Formeln angegeben fiir den Fall, dass mehrere oder
alle der Einzelfille gleichzeitig wirken.

Summary

The leading differential equations governing the lateral stability of
beams are put forward. An approximate solution is found by dividing the
process into a series of “ plain cases ” such as vertical loading or longi-
tudinal force; further the effect of the beam itself (corresponding to that
of a narrow rectangular beam) against the special effect of the flanges; also
the effect produced by the loading acting above the centreline of the webh.
Finally, formulae are produced giving the joint effect of several or all
“ plain cases ” acting simultaneously.
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Considérations sur la flexion de poutres droites a section variable
sous l'influence de charges extérieures

Betrachtungen iiber die Biegung von geraden Balken
mit verianderlichem Querschnitt unter ausseren Lasten

Considerations on bending straight beams |
of variable cross section under action of external loads

J. NALESZKIEWICZ
M. E,, Sc. D., Gdansk-Wrzeszcz

1. The method

The method which we will use in this case has been proposed by
S. Timoshenko ('). It consists in the expansion of the function repre-
senting the deflection curve of a simply supported beam (fig. 1) into a
trigonometric series. To all reputed advantages of this method we intend
to add a new one, obtained when not only the deflection curve, but also
when all functions representing the external loading and variable stiffness
in bending of the beam are resolved into similar series.

We will endeavour to resolve the problem of the general case of a
simply supported beam of variable cross section supported and loaded in
the plane of a principal axe of its cross section by all possible forms of
external loading, i.e. by concentrated forces and couples, as well as dis-
tributed loads which might have normal as well as axial components, so
that the resulting compressive axial force might vary from section to
section either continuously or discontinuously.

(1) S. Timosuenko, Application of generalized coordinates to solution of problems on bending
of bars and plates (Bull. Polyt. Inst., Kiev, 1909) (Russian).

S. Trmosnenko, Bull. Soc. Eng. Techn., Sl. Pelersburg, 1913.

S. Timosmenko, Theory of Elastic Stability, New York and London, 1936 (see page 23); Strength
of Materials, Vol. 1, 1930 (see page 306).
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[N < -l
l-—‘—hé'——q ! q(9 i
R '.
| -_x-
Y
'r._z_..i |
| .
| 7 N Flg 1.
Yt

Let the variable stiffness in bending LE.J=F(xz) of our beam be
represented by either of two types of convergenl Fourier series :

. 2 ~x - . 2 "z
E-J=F(z)=A0-{—“ZIA,,-cosn 7 —{—"Zl B, -sin n T (1)
or:
S n 2=nr - n-=-x )
E’erxo_‘_’zzdl.‘\%‘coh(?' l )Z':ZUA%'COS—I—- (1)

We suppose further, that the external load consists of:

1. Lateral components of concentrated loads Q ,, where p=1,2, ..., %,
acting at distances ¢, from left support A of the beam;

2. Distributed lateral loads g= q(¢), which are functions of the
distance ¢ from the left support A;

3. Lateral couples, whose moments M,, (¢=1,2,...,7) acting in
the plane of fig. 1, are applied to the beam sections at distances from A

equal to h,;

4. Compressive (when positive) axial forces P=P(x), which may
continuously or discontinuously vary from section to section, because of
axial components of external concentrated or distributed loads.

We will further consider the expansion of the functions g(¢) and P(x)
in following necessarily convergent trigonometrical series:

3 . [(n 2m=c ~ . nwe .
=q(c)=EBL-_sm(?- i )EX,@,,-SIn 7 z (2)

n=1 2 n=1 2

o 27z |, % . 2mz
p_P(Z)z,Z P.-COS N — —{—"Zi-v,,-smn T (3)
or:
o no2mz\ O nwz ,
P_,;Zop%.cos(?. . ):’ZOP%'COS L &
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Finally, we will accept the possibility of developing the ordinates of
the deflection curve into a similar “ half-wave ” series:

o n 2=z >~ n-=-x

y:Z b,l-sin(—-—)EEb"-sin—, (4)
2 l - l
n=I| 2

which is always possible, as Dirichlet’s conditions for expanding into a
Fourier series are always fulfilled for a deflexion curve of a continuous
beam.

The series (4) satisfies all the end conditions of a beam, freely sup-
ported at its ends.

We have introduced here four different terms z, z, ¢, h for the same
abscissae, for the sake of facilitaling some later integrations.

By differentiating once and twice the series (4) we obtain expressions

1
for the approximate values of the slope £ and curvature — of the deflexion

°
curve:
o
o = n-w-x ’
;_:_y’—_—l -Z‘n-b,,-cos——l———; (4')
n=1 2
1 et < n-w-x
— =y = — i n®. b, . sin i (4"
P n=1 2

2. Bending of the beam

We propose now to derive the equations of the deflexion curve of our
beam, subject to the external loads: Q., M,, ¢(¢), P(z), by using the
general principle of the strain energy in bending. To obtain the expres-
sions for the Fourier series coefficients b, (n=1,2,...,,00), we must

derive the expressions for the change of strain energy 6V, when the coef-
ficients b are variated independently of each other by small increases

2

ob . We will further equate this change to the work 8T of exlernal forces

2
during this additional deflexion.

1. The strain energy of a beam (*) may be given in this case by

the equation:
l ] dzy 2
V=—— o J o | —=1] 5
[, E-J ((Ixz) dz (5)

Suppose at first, that the stiffness in bending E-J of our beam is constant
on an extent from =20 to ==z, then for this part of the beam the partial
strain energy V’/ will be:

_(2) M. T. Huser, On critical loads of axially compressed bars of discontinuously variable cross
sections (Publications of the Tech. Inst. for Aeronautics, Warsaw, 1930) (Polish).
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i l z dly 2
' -~ . F. s | s . 6
A% 5 E.J . (dx’) dz (6)
=t E.J z s & 1oe s ™
=—T J;dx[nztn b;_lsmn—L—
+ 2 nt-k*.b, - b sin m;x i +]
3 :
nd.EJ S ni s n-w-x nwx
=37 n:in b%jo- sin 7 d( 7 )
. E.J - 5 s . nnx . k=z rZT
+ B M\Zﬁin -k bT b_,;._./0 sin sin 7 d( i )
n'q&l - -
“EJ N rez 1. 2wz
=—3p {,Z, b 57 —I-smn i

(n %)
-sin (k n 2
— e e T
- w.E-J S'n:z S L . 1 Q. ., ) 272
=3P -821-'zin-b,z_,——zrzln-b%-sm(n I )

[ d ik — ) “iz

k+ -sin (k + n)—]s

Having thus obtained the strain energy V’ for 0 < x < z, under the con-
dition that there was E.J=const, we may now suppose that E.J remains
constant only in the interval of z < x < z-dz, and afterwards integrate
the oblained differential for the full length of the beam. We obtain in
this manner the full strain energy V of the beam with variable stiffness:

J— 71_3 @ 2 ? L : 2ﬁ2
V_Ql” 51 P n' b,. fEJ dz——zn-bifo E-J-d(amn l)

n=1{ 2
)
£ e, bt
nk=1 2 2
(n=£k)

fEJd

sin (k — n) %l

sin (k 4+ n) llz—] ;
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—.-_—:;.gin bz [EJ dz—in -b? fEJ cc}snr)lz -dz

n=1
+ 2 Z n*-k*.b, bklf EJ- cos(k—n)—'i dz
AR ’

—f EJ. cos(k-}—n)-iz— dzu

o

=I—l3 [A“E n"b’_,———z A,-n b2

n=+1 n=1

i
nk=1 2 2 2
(n=k)

Here A; are the coefficients of the series (1), whereas the “half-wave”
coefficients A when (n + k) are uneven numbers, belong to

4 Z nt-k-b -b%(Ak_,l— Hn)} (7)

n—+k’
2
series (1):
1 |
Ay =— E.J.dz,
L/,
9
A,,—T ) E-J.cosn l dz ,
2 l
Angr== E.J n+k .2112 d ®)
2 l 0 2 l

What concerns the integral (8), in the case when (n + k) is an uneven
number, we way interprete the development (1) as an expansion of a sym-
metrical or antisymmetrical curve, consisting of two curves f(z) symme-
trically or antisymmetrically disposed to each other into a normal Fourier
series (1) as shown in fig. 2.

We will calculate now the variation 8V of the strain energy, when
the deflexion is variated, while every coefficient b obtains a small increase

¢b . From the form of the series it may be deduced at once, that variations
2
6b . may be considered as wholely independent from each other. Hence

2

{MW%WW‘HTL' 2
I .o -
',’ ~~~~~ 3

! N LN
!

A AT AT L o7 TN 2]

3 A e B
sin '
AT —~y s
Fig. 2. Bi O R —
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we may regard 8V as consisting of a whole series of independent “ partial ”

variations 8V, , obtained from each variation cb  separately. In fact, as

8b _are independent from each other, we may take onlv one b =~ 0,
E] )

-

and all other Ob% =0 (for nz£ k). From the type of equation (7) il is
evident, that

ne

GV e Z 5V

n=1

Such a “partial ” variation of V will be:

-~y a\r -~
o\f,,zw-ob%
5
* S 1 + L \ * (
=5b_,,- 5 Z(Ag == 5 An) n bn +?n Z k bi (A k—n Ak-{-n){
z “ ) | 2 D) CEA

(9)

We must still draw attention of the reader to the fact, that since the
factor 2 has been taken in front of the double sum signs, these double sums
may not include both permutations of every pair of values n and k, but
only one. It may be clearly seen from the second line of eq. (6), from
which had been deduced all the double sums of this Report.

2. The work T of external loads consists of two principal parts,
namely, the work of lateral and axial loads:

rl'\ - rrL + rrP .

T, is the sum of the works of all types of lateral loading: Q., g(c), M~,
and we may separately calculate the work of every type of such load:

a) The work of concentrated lateral loads Q,, is the product of their
values and respective transversal displacements y,:

TQ—ZQP yp= ZQP Z" sin = ;

b) The work of the continuous lateral load g(c¢) will be:

bnqumn— dc_—a-Z

¢) The work of concentrated couples, whose moments M. are acting
in the plane of fig. 1, will be:

n )
'2_

m],..

n—i

@

L, = EM ‘Yo —%SM,- 2 n-b_g_cosn ﬂ;l’

E=1 n=1
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Hence the general expression for the work of lateral loads of every possible

kind will be:
=T 4TI

2 (2 r’u—JrEQo%n (,P-Jr—l ZM n. cos—l-—h). (12)

p=1

It remains to calculate the work of the variable axial loads along
the length of the beam. This work will be represented by an 1nte01al
taken along the length of the beam, of the axial force P over elementary
axial dlspl'icements due to bendmo' only. Such a displacement is equal
to the difference between the lencrth of an element of the deflection curve
and the corresponding element of a straight line, parallel to the axe of
abscissae. Denothing this displacement by di, we obtain its value:

1 dy \*

Thus the elementary work of the compressive force will be:

X 1 dy
! : e RPN
dTy =P-dr= 3 P. (dz) dz
so that finally:

: ; = 0 -
dTp’=%P e (E n*. b*, - cos’ ki

l
=1
-~ nw knzx
+ 2 n-k-b, b, cos oS dz
n,AZ:l el 2 L l
(n=k)- "

We will assume at first, that the compressive force P is constant along
a certam part of the beam, within the limits: 0 <z < z. Then the work
T w1ll be:

. P [ = . —
T 5 nwx
TPI___:_____ . |Z n- btn . 0082
)

212 n=1 l C
s krzx
+ 2 n-k-b, - b.f cos cos d:c]
| N.Z“l —5 2 0 l
(n =4 k)
w-P - n.-mwz 1 2wz
— 2
) nzln b%( 51 —[—45111 ] )
1 P N k-b - n (k Tz
5T ;zin %)5 Py sin (k — n) ]
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b« k
2 o

(n

=P % 1 194
n-k-b -sin (k — n) —
k2= - —n l
a&k)

(13)

1
T
But in reality the axial load P may be considered as constant only along an
elementary length, say in the limits:

2<x<(z-}+dz) .
Hence, to obtain the true work T we must integrate the equation (13) for
a variable P=—=P(z) along the full length of our beam, i.e. within the
limits 0 < z < I, in the following way:

LR N\ 5 : . 2wz
TP_Z_I'—E fP dz—{—8l Zn-b_of P-d(smn 7 )

n=1 n=1
2 il w
—{——ﬁ—l Z n-k- b - b, {f p—— [sm(k—n)Tz]
n,k=1
(n %= k)
l P . Tz
+./;m d Sln(k—’-‘n)—l-]z
dez+4l,- n*.b*, chosn -dz
n=1{ n—i
7!' nYyA
+2l.k;=in.k b2 -fP -cos (k — n)
(n=k)

f P. cos(k+n)— dz}

n'k'bﬂ_'bk(pk—m'+_pk+n)]' u4)
2 2 2

2

Now we may write the complete expression of the work T in full
length:

T —Ti+ Te
< 1 N . nw = n-mw nhe
:Zlb%(?-ﬁ_g——FEQp-sm—l——-cp—{— EM,- 7 cos n 7 )
n= p=1 a=1
= [ & 1 x :
+_—l[2 n’-b’n(po—}—?p,.)—}- Z n'k'bn ‘bk(pk—n +pk+n):|‘
n=1 7 nk=1 2 2 2 2

(15)
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We must now calculate the additional work 8T produced by the
external forces because of a small arbitrary variation of the deflexion curve,

due to small changes ¢b , of the coefficients b, . The partial displacement

—

2 2

due to one change ¢b only, may be denoted 8T,. These partial dis-

placements are all independent from each other, hence we may study the

whole process on the example of one variation ob while the others

k ,
ab ., (k3£ n) are zero. The sum of all such partial values will be the full

o

virtual work:

Now we obtain:

3T, = 3b . (16)

3. As every component of 8T, depends only on the small arbitrary
increase ob and, as we saw before, the same concerns the components

2
of 8V, , instead of writing

8V=23T,
we may write:

3V,=3T,  (n=12, ... c0). arn)

Thus we obtain as many equations, as there are unknown coefficients
b . By putting values (16) and (9) into eq. (17), we obtain:

%.@ +z Q, - sin (:zr—lc")_'_ﬁl;.z M, cos (“'ln' -h,,)

o= g=

. 1 A 1
—_—n -(Ao——?A,. = ?Po—l‘?Pn 'b_';.

I '
"" 4 13 Z k-b, [n k- (A —p == A k+n)_?(pk—n +pk+n)} . (18)
K 1) 2 A

These equations are the exact solution of the general problem of plane
bending a straight beam on two simple supports, because they allow to

calculate all coefficients b~ one by one; first of all, we must compute the

-

o

coefficients A,, p.,, A, Prin > g, ; then, as first approximation,

n
2

o
I~
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we compute one by one the coefficients 6  from the transformed equation:

1 l
— o p =
bl 4 1 2 1 1 1 ) : 2 ﬂ’—;
2 T -n"-(n- Ao__z—Au)_? po—f—?p")
c n= nT % n=
-+ Qp-sin(——-c)—{——- M,~cos(—-hc)]
el § k-b j Avin) 3 + ) (19)
— o [kl oy —Agin —=2 |Pk—n Diyn I
2 L‘:J) 5 { ( ) 5 752( — 2—]
(k&n

neglecting the infinite series in the last term, as it is always much smaller
than the first expression in square brackets, because of the factor 21° in
front of it.

After having calculated in this manner the first approximation of the
values of b, , we put them into the last factor of the right side of eq. (19),

2

and then r(;peat the evaluation of b as a second approximation, etc.

The series (4) is in most cases sharply convergent, so that there is no
need in practice to compule more than two approximations. In general
we proceed the calculus so long, until the difference between two conse-
cutive approximate values of b

() (t+1) ()

n n
2 2

bécomes less than the allowable error.
If g=Q,=M,;=0, the formula (19) will give the valuesb =0, as

]

it should be. .
There may occur some simplifications in the calculus, if the distribu-
tion of the stiffness E-J is such as to give above a certain value of n:

An+1:An+2:...:O.

3. Elastic stability

An analysis of the equation (19) will prove, that every coefficient b
will become infinite (or eventually indefinite) as soon as the denominator
at the right side of the chosen n-th equation of the system (19) becomes
zero. There occurs then a case of instability, and the bar will have the
tendency to buckle in the shape of n half-waves:

|

<

1 W'l'nz 1 l? 1
po‘{_?pn:_F—(Ao “‘_2‘A») == Rk (Ao_—z‘f\n) (20)
n
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Naturally in most cases of engineering practice the buckling will occur in
the form of one half-wave, because of the dominating factor n* at the right
side of eq. (20). But there may certainly occur special cases, when a form
with n half-waves might also become dangerous; but we may accept as a
rule, that the most dangerous is the form buckling corresponding to the
value n=1: ,

1 e 1 )
Po"I_EPl:T" A,— 9 AI) (21)

When A,=p,=0, the eq. (21) reduces to the common Euler formula
for E-J=const and P=const along the length of the bar. The more
general case (20) for n > 1 may be of interest to the designer in some
exceptional cases only, when the so obtained critical mean compressive
load p, might become smaller, than some higher component p, (n>1).
This would be possible only if the value of A, would be near to A,, what is
very improbable in practice, especially for higher values of n. In any
case, we must remember that the very simple conditions (20) and (21) are
exactly derived from the laws of Mechanics, and include neither simpli-
fications, nor approximations of any sort, although they are valable for
the most general case of load and stiffness distributions.

On the contrary, the eq. (19) involving infinite series, bear an
approximate character; the conditions of stability, altliough deduced from
these equations, are absolutely exact, and throw some new light upon the
instability effects in beams.

The condition (20) shows that for the buckling of a beam in the form
of n half-waves, only the n-th harmonics of the axial load and sliffness
distributions are decisive, and other harmonics have no influence on this
effect at all. This bears a deep analogy, to the effect of simple forced
harmonic vibrations, which has been pointed out before in some more
special case by M. T. Huber (*).

Therefore, we dare say, that the expansion inlo a trlgonomelrlc series
is not only a convenient method of mathematical computation of bending
problems of compressed beams, but this method divulges some new
aspects of the effect of instability itself, and has a deeper meaning in itself,
as it allowed to discover a new general law of static instability of inhomo-
geneous compressed beams.

4. Appendix

For practical use of equations (19), (20), (21) we need a method of
expanding functions E-J, g, P in trigonometric series. This may be done
by means of several methods, as for example : by Fischer-Hinnen (*), or
by F. M. Lewis (°) and, especially for lower values of n, by P. V. Melen-
tiev (°).

(®*) M. T. Huser, On an analogy of some effects of stability of slightly curved eclastic bars
with a simple case of forced vibrations (Polish Academy of Sciences, P. A. U., Krakdw, Poland,
1934) (Polish).

(*) Fiscner-Hinzen, Elektrotechnische Ztg., Vol. 22 (1901), pages 396-398 (German).

A. Hussmans, Rechnerische Varfahren zur harnonischen Analyse und Synthese, Berlin, 1938
{German).

(®)) F. M. Lewrs, A method of harmonic analysis (J. Appl. Mech., Vol. 2 [1935], N\r. 4,
pages 137-140).

(®) P. V. MeresTiev, Some New Methods in Approzimate Calculus, Leningrad and Moscow,
1937 (see pages 139- 147) (Russian).
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The harmonic synthesis of the deflection curve, after obtaining the
values of b, may be done by means of Howard’s circles, or by simple

2
computation from goniometric tables.

Résumé

L’auteur examine dans ce mémoire des poutres dont les centres des
diverses sections droites constituent une ligne droite et les axes principaux
de ces mémes sections deux plans orthogonaux entre eux; toutes les charges
et réactions extérieures se trouvent dans I’un de ceux-ci.

Ces hypothéses admises, la rigidité a la flexion peut étre variable, méme
avec solution de continuité. Les charges axiales peuvent également varier.
En exprimant tous les paramétres sous la forme de séries trigonométriques,
variables le long de la portée, on obtient la résolution de la ligne élastique
sous la forme d'une autre série trigonométrique. On obtient ainsi un critére
trés simple pour la stabilité élastique [Eq. (20)].

Zusammenfassung

Bei den Balken, die in diesem Beitrag betrachlet werden, liegen die
Schwerpunkte aller Querschnitte auf einer Geraden und die Hauptachsen
bilden zwei aufeinander senkrecht stehende Ebenen, deren eine auch die
dusseren Lasten und die Reaktionen enthilt. Unter diesen Voraussetzun-
gen kann die Biegesteifigkeit noch beliebig kontinuierlich oder diskonti-
nuierlich verénderlich sein. Auch die Axiallasten kénnen sich beliebig
dndern. Indem alle iiber die Spannweite veriinderlichen Parameter des
Problems in trigonometrische Reihen entwickelt werden, erhilt man die
Losung der Gleichung der elastischen Linie auch in der Form von trigo-
nometrischen Reihen. Zugleich folgt aus dieser Entwicklung noch ein sehr
einfaches Kriterium fiir die elastische Stabilitat [Gl. (20)].

Summary

Beams taken under consideration in this paper have all cross-section
cenlers lying on one straight line, all principal axes of cross-sections are
contained in two perpendicular planes, one of which contains all external
loads and reactions acting on the beams.

~ Under assumption of these restrictions, the stiffness in bending may
be arbitrarily continuously or discontinuously variable. The axial loads
may also vary arbitrarily. By means of expansion into trigonometric series
of all parameters of this problem, variable along the span, a solution for
the line of elastic deflection is obtained, in the shape of a trigonometric
series. By the way, a very simple criterion for the elastic stability
[Eq. (20)] is obtained.
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Procédé pour augmenter la rigidité a la torsion
des poutrelles en I

Eine Methode zur Vergrosserung der Verdrehungssteifigkeit
der doppelflanschigen Balken

Method to increase rigidity in torsion of double-flanged beams

H. NYLANDER

Techn. Dr Professor, Technische Hochschule, Stockholm

Fiir einen auf Verdrehen beanspruchten Balken mit diinnwandigem,
offenem Querschnitt gilt unter Voraussetzung, dass die Querschnittsform
unverindert bleibt, die Gleichung ()

do d*o

My=C—=-— Gyt (1)
WO
M; = Verdrehungsmoment ;
C =— GK = Verdrehungssteifigkeit (Nach St. Venant);
C, = Wolbwiderstand des Querschnittes ;
¢ = Verdrehungswinkel ;
z = Koordinaten-Achse lings der Balken-Achse.

Bei einem doppelflanschigen Balken driickt das zweite Glied auf der
rechten Seite in Gl. (1) die Einwirkung der Flanschenbiegung aus.

Der Balken wird nach Abb. 1 verformt. Der obere und der untere
Flansch bilden in der Horizontalprojekiion den Winkel

= h,— (2)

wo h, = Abstand zwischen den Flanschenschwerpunkten.
Wenn man den oberen und den unteren Flansch mit einer Versteifung

(*) Die Einwirkung der Querschnillsverformung wurde in einigen Sonderfillen vom Ver-
fasser untersucht. Siehe H. Nyranper, Diss. Stockholm 1942, sowie H. NyranpeEr, Drehungsvor-
génge und gebundene Kippung bei geraden, doppeltsymmetrischen I-Trigern, 1. V. A., Abh.
Nr. 174, Stockholm 1943.

Die Gl. (1) wurde fiir den doppeltsymmetrischen I-Triiger zucrst von Timoshenko und, fir
beliebigen Querschniit, von Kappus angegeben.
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he

Abb. 1. Verdrehungsverformung eines
doppelflanschigen Balkens.

d
8=htg‘£

~

verbindet, wird der Winkel § vermindert und auch dz im Versteifungs-

querschnitt wird verringert. Die seitliche Biegung der Flanschen wird
elastisch verhindert (siehe Abb 2c¢). Die Flanschen werden von Biege-
momenten M belastet, die in der Flanschenebene wirken.

[4

d
M ist proportional zu ? im Versteifungsquerschnitt

dz
deo
M=c- 3
dz ()
wo ¢ eine Konstante ist.
2
Die sprungweise Verinderung von d—z::’ an der Aussteifung (y= seit-
liche Durchbiegung des Flansches) ist
d*y M
A—f=—nv
dz* D &
wo D = die seitliche Biegesteifigkeit des I'lansches.
My M+ Y,
o i =l
v: v: a' !O )
/
i | 7
Ll % i i 3 K arige -~

@ “E D,
E
Abb. 2 (links). Ver-
drehung eines Balkens
mit woélbungsverhin-
dernden Aussteifun-

@ . gen :
a) Torsionsbelastung eines
Balkens;
l ‘ b) Belastung der Flanschen
: z durch Momente, die von

der Wolbungsverhinde-
rung durch die Ausstei-
fungen herrihren;

c) Verlauf des Verdrehungs-
winke's ¢ langs der Bal-
kenachse.

Abb. 3 (rechts). Be-
zeichnungen.

b}
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Bei einem Balken mit ungleichen Flanschen gilt bei der Verdrehung
(siehe Abb. 3)

yi—a-p=2t by (50)
1
und
yr—=b-g =100 hg (5 b)
1

wo B, = die gesamte seitliche Biegesteifigkeit des Balkens.
Man erhilt daraus

Y D,
S . 6
Yo D, ©)
Die Gl. (4) wird fiir jeden Flansch ausgeschrieben
d?y, M ‘
A =
dz* D S
d*y, M
A —F ——
dz? D, )
woraus
d*y,
A dz* D, (1)
A d’y, D’ '
dz?

Durch Vergleich der Gl. (6) und (7) ersieht man, dass die durch die
Momente M bedingte Verformung eine Verdrehungsverformung ist.
Die Gl. (4a), (4b), (ba) und (5b) ergeben

d*o 1 B,

@k DD, ®)
Da
do
M=car
wo ¢ eine Konstante ist, kann Gl. (8) wie folgt geschrieben werden
2 ’
A de 1 B, ,_di (9)

d2r _ nh, DD, ¢ dz

Diese Gleichung ist die grundlegende Gleichung fiir die Beriicksichtigung
der wolbungsverhindernden Einwirkung der Aussteifungen.

Die Grosse der Konstante ¢ ist von der Formgebung der Aussteifungen
abhiingig. Durch eingehende Untersuchungen hat der Verfasser gezeigt,
dass die Aussteifung nach Abb. 4 anderen Gestaltungen iiberlegen ist (').

Fiir diese Aussteifung erhélt man

e

wo Cy — die Verdrehungssteifigkeit des Hohlquerschnittes ist.
Die Gl. (9) wird also zu
d*¢ ds

. ' "z (%)
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A ..
——
k : e Abb. 4. Formgebung der wdlbungsver-
[ | h :} H hindernden Aussteifungen.
' | A
| b .
' r':-A—t—‘ :I :' §
B - s
' v !
I R
e A

A-A

Al

B-B
- A
}\\\\\\‘
i §
I i ! | i WO
] H
h--—4 - N
: rl ,1 ' { 1 B
! § 1 \
|5: -} ’ =R DD Gy . (10)
| N 2
1
1

Die allgemeine Theorie fiir die

Beriicksichtigung der Einwirkung

- von mehreren Aussteifungen in glei-

chen Abstinden bei doppeltsymme-

B-B trischen I-Balken ist in meiner Dis-
sertation angegeben (*).

Diese Dissertation enthilt auch eine Niherungslosung, die fiir die
meisten praktischen Fille gentigend genau ist. Hier wird nur das Ergebnis
dieser Losung kurz zusammengefasst und modifiziert, so dass es Giilligkeit
auch fiir einfachsymmetrischen Balken erhilt.

Diese Niherungslosung zeigt, dass die Einwirkung der woélbungsver-
hindernden Aussteifungen durch eine Erh6hung der reinen Verdrehungs-
steifigkeit C in Gl. (1) ausgedriickt werden kann :

=1

i
H :
ARVUMRARARRRANY
H H

dsz d*= ,
M, =C, -~ G (10"
WO
1 (‘
C, = —— (11)
| 2k ki
m
1+ 5k coth ki
m ist durch Gl. (10) bestimmt und % erhilt man aus
g (‘ "CB;
== o . 2
k= l l/ D, D, (12)

2 A = Abstand zwischen den Aussteifungen.

Die Erhohung der Verdrehungssteifigkeit durch die wélbungsverhin-
dernden Aussteifungen vergrossert die Kippstabilitit und vermindert die

(®) Siche Fussnote (1).
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A = Wélbungsver-
' hindernde Verstei-
“'ﬁ o8,
| steifung;
» 2 '_‘_!I L = Laufschiene.
| b) Einzelheiten der

Abb. 5. Beispiel :
40.0 .

3 9 l"—‘—'"l a) Allgemeine Anord-

1 | "L nung :

| T

fung;
B - Flachstahlaus-
S | wdlbungsverhin-
M 28.0, dernden  Verstei-

| 3 3I—3 fung.

68.2

Spannungen, die von den Verdrehungsmomenten herrithren. Als An-
wendungsbeispiel wird in Abb. 5 ein Kranbahnbalken gezeigt. Die wol-
bungsverhindernden Versteifungen sind nur in den Viertelpunkten ange-
bracht. Dadurch werden die Verdrehungsspannungen am grossten an diesen
Stellen, wo die durch vertikale Biegung bedingten Spannungen klein sind.
In der Feldmitte, wo die gefihrlichsten gesamten Spannungen auftreten,
werden die von der Verkehrslast verursachten Verdrehungsspannungen
durch die Versteifungen von 620 auf 230 kg/cm® vermindert. Ausserdem
wird die Kippstabilitit des Balkens wesentlich vergrdssert.

Résumé

Le voilement d'une poutre soumise a torsion est fonction, en reégle
générale, de sa rigidité a la torsion. En plus, les tensions résullantes
sont relativement élevées dans certaines constructions, notamment pour les
poutres de ponls roulants. La rigidité a la torsion peut élre augmentée, tout
en réduisant les tensions, grice a des raidisseurs. La déformation lalérale
des semelles est évitée et ainsi la déformation par torsion est remplacée
par une déformation par flexion pure des semelles. Ce mémoire étend la
théorie déja exposée par 'auteur concernant les poutrelles symétriques [voir
nole (*)] au cas d’'une poutrelle dissymétrique et résume le résultat d'une
solution approchée.

Zusammenfassung

Mit der geringen Verdrehungssteifigkeit der gewdhnlichen eisernen
I-Balken hiingt deren Neigung zum Kippen zusammen. Ausserdem sind
die Verdrehungsspannungen bei gewissen Konstruktionen z.B. Kran-
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bahnbalken verhdltnismissig gross. Eine Moglichkeit, die Verdrehungs-
steifigkeit zu vergrossern und die Verdrehungsspannungen zu vermindern
besteht in der Verwendung wiélbungsverhindernder Versteifungen. Die bei
der Verdrehung auftretende seitliche Ausbiegung der Flanschen wird
dadurch elastisch verhindert, so dass die reine Verdrehungsverformung in
Biegung der Flanschen umgesetzt wird. Die vom Verfasser friiher entwik-
kelte Theorie fiir doppeltsymmetrische I-Balken (siehe Fussnote 1) wird
in diesem Bericht auf einfachsymmetrische I-Balken ausgedehnt und das
Ergebnis einer Ndherungslosung wird kurz zusammengefasst.

Summary

Ordinary steel I girders are liable to lateral buckling in torsion on
account of their low torsional rigidity. Moreover, the torsional stresses are
relatively high in some structures, e.g. crane beams. The torsional rigidity
can be increased and the torsional stresses can be reduced by means of
warping stiffeners. The lateral deflection of the flanges is elastically pre-
vented by these stiffeners, so that the pure torsional deformation is con-
verted into bending of the flanges. In this paper, the theory of double sym-
metrical I girders previously advanced by the Author, see footnote 1, is
extended to single symmetrical I girders, and the result of an approximate
solution is briefly summarised.
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