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V3

Biegung, Drillung und Knickung von Stiben
aus diinnen Wanden.

Flexion, torsion et flambage des barres composées
de parois minces.

Bending, Torsion and Buckling of Bars Composed of Thin Walls.

Dr. Ing. F. Bleich und Dr. Ing. H. Bleich, Wien.

1. Einleitung.

Dic Tatsache, daf3 bei einzelnen Trigerformen die Verteilung der Lings-
spannungen im Querschnitt nicht mit der nach der Navier'schen Biegungstheorie
errechneten Verteilung iibereinstimmt, wurde zum erstenmal von Bachl ver-
suchsmiflig festgestellt. Etwa gleichzeitig und unabhingig von Bach hat R. Sonn-
tag? auf die Verdrehungserscheinungen bei Biegung von Stiben mit L, [ und
"L -Querschnitt hingewiesen und die tatsichlichen Spannungen errechnet. Die
Differentialgleichung des Verdrehungsproblems des symmetrischen I-Trigers
entwickelte Timoschenko.3 Weber* verallgemeinerte diese Untersuchung fiir be-
liebige zweigurtige Stibe, also fir [, L und 1 -Querschnitte. Das Kipproblem
des I -Triagers hat Timoshenko3 behandelt. Das Stabilitits- und Drillungs-
problem von 4, X, "L und [ -formigen Stiben untersuchte Ostenfeld.> Die Ver-
drehung von Stiben mit rechteckigem, kastenférmigem Querschnitt wurde von
Eggenschwyler © erortert.

Die klassische Theorie der Biegung und Verdrehung gerader prismatischer Stibe
geht von der Annahme aus, daf3 die Biegungslingsspannungen nach linearem
Gesetz iiber den Stabquerschnitt verteilt sind und dafl bei blofier Verdrehung,
wenn man von Grofien zweiter Kleinheitsordnung absieht, keine Lingsspannungen
auftreten. Bei Stiben, die aus diinnen Platten zusammengesetzt sind, trifft dies
aber, wie in den oben zitierten Arbeiten nachgewiesen wurde, nicht zu. Da im

1 C. Bach: Versuche iiber die tatsichliche Widerstandsfihigkeit von Balken mit [ -férmigem
Querschnitt. Zeitschrift des Vereins deutscher Ingenieure 1909, S. 1790 und 1910, S. 382.

2 R. Sonntag: Biegung, Schub und Scherung. Berlin 1909.

3 8. Timoschenko: Einige Stabilititsprobleme der Elastizititstheorie. Zeitschrift fiir Math.
u. Phys. 1910, S. 361.

¢ (. Weber: Ubertragung der Drehmomente in Balken mit doppelflanschigem Querschnitt.
Zeitschrift fir angew. Math. u. Mech. 1926, S. 85.

5 A. Ostenfeld: Mitt. Nr. 5 und Nr. 6 des Lab. fir Baustatistik der Techn. Hochschule
in Kopenhagen. Kopenhagen 1931 und 1932.

6 A. Eggenschwyler: Uber die Verdrehungsbeanspruchung rechteckiger Kastenquerschnitte.
Eisenbau 1918, S. 45.
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Stahlbau fast durchwegs Triger verwendet werden, die aus einzelnen Platten
zusammengesetzt sind, so erscheint es notwendig, das tatsichliche Verhalten
derartiger Triger, ohne Beschrinkung auf besondere Querschnittsformen, zu
untersuchen.

Dic folgende auszugsweise Darstellung ist der erste Versuch, das hier in Rede
stehende Problem der Biegung und Drillung diinnwandiger Stibe einer moglichst
allgemeinen Behandlung zuzufiihren. Diese Untersuchung erméglicht es, die
Zusammenhinge tiefer zu erfassen, und allgemein giiltige Grundgleichungen
fir die Behandlung der hier in Frage kommenden Sonderaufgaben des stabilen
und unstabilen Gleichgewichtes zu schaffen.

‘Gegenstand dieser Untersuchung sind demnach prismatische Stibe, die aus
-einzelnen langgestreckten rechteckigen Scheiben bestehen, und deren Querschnitte
etwa nach Fig. 1 gestaltet sind. Fig. 1a zeigt ein Beispiel eines offenen oder
einfach zusammenhdngenden Querschnittes. Fig. 1b das eines geschlossenen

Fig. 1.

a) ' b)

oder mehrfach zusammenhingenden Querschnittes. Die Dicke der einzelnen
Scheiben kann innerhalb einer Scheibe verinderlich sein, doch wird sie immer als
klein gegen die Scheibenhohe vorausgesetzt.

Aus der Navier'schen Biegungstheorie iibernehmen wir die Annahme, daf3 die
geometrische Form des Querschnittes auch bei der Verformung unter der Be-
lastung erhalten bleibt. Auf diesen grundlegenden Gesichtspunkt kommen wir
weiter unten nochmals zuriick. Nicht beibehalten wird aber die Bedingung des
Ebenbleibens der Querschnitte. Wir setzen nur voraus, daf3 fiir jede einzelne
Scheibe die Grundlagen der Navier’schen Biegungstheorie in Geltung sind. Diese
Annahme kann natiirlich dort, wo zwei oder mehr Scheiben zusammentreffen,
wegen der von Null verschiedenen Dicke der Scheiben nicht genau erfiillt sein,
doch soll diese Dicke so gering angenommen werden, daf3 diese Abweichungen
aufler Betracht bleiben konnen. Wir ziehen nur Verbiegungen der Scheibe in
ihrer Ebene in Betracht, wihrend Verbiegungen senkrecht zur Scheibenebene
wegen des geringen Biegungswiderstandes in dieser Richtung vernachlissigt
werden. Von den Schubspannungen wird nur jemer Teil in Rechnung gestellt,
der von der Verdrehung herriihrt, wihrend die Biegungsschubspannungen wegen
des untergeordneten Einflusses auf die Forminderungen des Stabes, wenn die
Stablinge groff gegen die Querschnittsabmessungen ist, vernachlissigt werden.
Die Ergebnisse gelten daher nicht fiir ganz kurze Stibe.

Um dic Differentialgleichung des Problems in allgemeinster Form zu gewinnen,
gehen wir von einem bekannten Variationsprinzip der Mechanik aus. Wir ge-
winner. so den Vorteil, das allgemeine Ergebnis auch fiir die Aufstellung von
Niaherungslosungen nach dem Verfahren von Ritz in jenen Fillen benutzen zu
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konnen, wo eine strenge Losung der aus der Variationsaufgabe hervorgehenden
Differentialgleichungen auf Schwierigkeiten’ stof3t.

Bezeichnet A, die Arbeit der duf3eren Krifte, A; die Arbeit der inneren Krifte
(Deformationsarbeit), so gilt die Extremalbedingung

5 (Ai— A A) =0 1)

wobei X ein von den besonderen Bedingungen des Problems abhingiger Multi-
plikator ist. In jenen Fillen, die wir hier in Betracht ziehen wollen, kann )\
von vorneherein festgelegt werden.

Handelt es sich um die Forminderungen erster Ordnung einer Verbiegqungs-
oder Verdrehungsaufgabe des geraden Stabes, so sind A; und A, homogene Funk-
tionen des zweiten bzw. ersten Grades der Forminderungsgrofien.” Aus dieser
Tatsache ergibt sich, wie bekannt, fiir den Multiplikator A der Wert 2.

Kommt ein Problem des instabilen Gleichgewichtes (Knickaufgabe) in Betracht,
so wird, falls nur Forminderungen erster Ordnung in den Gleichgewichts-
bedingungen auftreten, A = 1.

Die Bedingung (1) lautet daher:

Im Falle des stabilen Gleichgewichtes: ® (A; —2A,) = 0 (2)
Im Falle des instabilen Gleichgewichtes: & (A; — A,) = 0 (3)

Der wesentliche Teil der folgenden Untersuchung besteht nun darin, die Form-
dnderungsarbeit A; und die Arbeit der dufieren Krifte A, darzustellen. Bei der
Festlegung von A; ist hierbei zwischen Stiben mit einfach zusammenhéingendem
und solchen mit mehrfach zusammenhingendem Querschnitt zu unterscheiden.

2. Die Formidnderungsarbeit A;

Stibe mit einfach zusammenhdngendem Querschnitt.

Betrachtet man eine einzelne Scheibe eines Stabes, so wird ihre Mittellinie bei
der Verformung des ganzen Stabes im allgemeinen eine Krimmung K; in der
Scheibenebene und eine Dehnung g; erfahren. Gleichzeitig dreht sich die ganze
Scheibe um den Winkel ¢. Sei J; das Trigheitsmoment des Scheibenquer-
schnittes, mit der Hohe h; und der im allgemeinen der Hohe nach verinderlichen
Stirke d;, bezogen auf die winkelrecht zur Scheibenebene stehende Schwerpunkt-
achse, F; die Querschnittfliche, Ju der Verdrillungswiderstand der Scheibe, so
gilt fir die gesamte Forminderungsarbeit A; des aus n Scheiben zusammen-
gesetzten Stabes von der Linge 1 der Ausdruck |

1

m=g [| £ EaKe+ERE +GIagh) o @
s i=1

wobei dz der Abstand zweier unendlich nahe benachbarter Stabquerschnitte

bedeutet.

Die Grofien K; und g sind aber nicht unabhingig voneinander, sondern sind

" Dies gilt unter der Einschrinkung, dafl in den Gleichgewichtishedingungen die Form-
inderungen gegeniiber den Abmessungen des Trigers vernachlissigt werden.
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durch gewisse Ubergangsbedingungen aneinander gebunden. An der Kante, wo
zwei Scheiben zusammenstofien, miissen die Li#ngsspannungen und damit die
Lingsdehnungen der beiden Scheiben einander gleich sein. Fiir jede Stabkante
gilt, wenn a der Abstand der Schwerachse der Scheibe von der Kante ist, siehe
Fig. 2.

g+ aiKi=g 41— a4, Kiy (i=1,2...n—1) (5)

Bei n Scheiben konnen n derartige Gleichungen aufgestellt werden. Ist ferner S
die im Stabe wirkende Langskraft, so ist die mittlere Dehnung €,

S .
Em = g wobei F = ? F;.
Es besteht die Gleichgewichtsbeziehung
EXFi& =8 =EFeq (6)
i
Mit & — en + & gehen die Gleichungen (5) und (6) in die Beziehungen
et+aKi=e41—a1Kip (5)
2eF, =0 (6")
i

o
1

Fig. 2.

{iber. Fithrt man anderseits € = €q + g in die Gl (4) ein, so gewinnt man unter
Beachtung der Verkniipfung (6’), wenn man noch Js = Z Jq; setzt,

1
Ai=%J[Z(EJiKi2+EFisi’)+EFsm2+Gqu;‘2]dz )

Dic n Gleichungen (5’) und (6’) ermdglichen es, die n Groéflen e; durch die
n Groflen K; auszudriicken, so daf3 €; als lineare Funktion der K; erscheint.

Es ist nun notwendig, den Zusammenhang zwischen den Kriimmungen K; der
einzelnen Scheiben und der Verformung des ganzen Stabes herzustellen. Wir
wihlen fir die weiteren Betrachtungen ein linkshindiges Koordinatensystem,
dessen z-Achse mit der Schwerachse des Stabes zusammenfillt, und dessen x- und
y-Achse im jeweilig betrachteten Stabquerschnitt liegen und mit den Haupt-
trigheitsachsen desselben iibereinstimmen. Bei der Verformung unter der Be-
lastung verschiebt sich der Schwerpunkt S des betrachteten Querschnittes nach §’,
siche die Fig. 3. Die Komponenten dieser Verschiebung seien x und y. Ferner
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verdreht sich der Querschnitt um den Winkel ¢. Der Winkel ¢ wird in Richtung
von der positiven x-Achse zur positiven y-Achse positiv gezihlt. Da wir voraus-
gesetzt haben, dafy die geometrische Form des Querschnittes erhalten bleibt, so
geniigen die drei Gréfen x, y, ¢, um die Lage eines jeden Punktes im Querschnitt
festzulegen. In Fig. 3 ist die Scheibe i mit dem Schwerpunkt S; vor und nach der
Verschiebung und Verdrehung dargestellt. Bei beliebigem Lastangriff wird die
vorher gerade Stabachse in eine rdumliche Kurve iibergehen. Die Projektionen

dieser Linie auf die xz- bzw. yz-Ebene haben, wenn die Verformungen als klein an-
. d’x d®y : .
genommen werden, die Krimmungen x"” = 47 und y” = dzg' Nun ist aber die

Kriimmung K; der Scheibe i nichts anderes als die Projektion der Stabachsen-
krimmung auf die verdreht: Scheibenebene. Es folgt daraus, wenn man Fig. 3
beachtet, ,
K = x"sin (i + @) — y" cos (hi + ¢) — pi " (8)

Diese Gleichung gestattet eine Vereinfachung in jenen Fillen, wo ¢ gegeniiber
b vernachldssigt werden kann. Dies gilt z. B. fiir die meisten Aufgaben des
stabilen Gleichgewichtes. Die Beziehung (8) nimmt dann die einfachere Form

Ki — x” sin ‘bi . yll cos ‘bi _ Pi(P” (8!)

an. Fihrt man die Beziehung (8) in die Gl (7) ein, so gewinnt man A; in der

Gestalt
1

E k P " Y] [] ‘
Ai=?J[“XXX"2+ayy)""+axyX Yt axo X 9" + aye ¥ 9" +
(]

G \
+ e @' + Fen® + E Ja (p“] dz 9)

Es a3t sich nun in allgemeiner Form nachweisen, daf3
Oux = Jy, Oy =Js, 0y=Js =0,

wobei J. und J, die Trigheitsmomente des Stabquerschnittes in Bezug auf die
Hauptachsen x, y bedeuten. J., ist das Zentrifugalmoment. Ferner ist bei Quer-
schnitten, die Symmetrie hinsichtlich der x- bzw. y-Achse aufweisen, a., = 0
bzw. a,, = 0.8

Fiir Aufgaben des stabilen Gleichgewichtes lautet somit die Gleichung fiir die
innere Arbeit, wenn wir die endgiltigen Bezeibhnungen Uy = B., Cyo == B, und
o, = B, einfiihren,

PP
1
. (10)

2 ‘“ o “wo_ i 442 2 G [

Ai:-gf[.]yx“'-{-.]xy 24+ Bux" "+ Byy“o'+ B, + Fen® + EJd(p2]dz
o

- Geht man auf die genauere Gl. (8) zuriick, die bei manchen Stabilitdts-

problemen heranzuziehen ist, so kann man in dieser Gleichung wegen der voraus-

gesetzten Kleinheit von ¢

8 Auf die Beweisfilhrung kann hier wegen des knappen Raumes nicht eingegangen werden.
Sie wird an anderer Stelle verdffentlicht werden.
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sin (1 - ) = sin ; + @ cos b
cos (b; + @) = cos b; — @ sin P;
schreiben. Somit erhélt man fiir K; den Ausdruck
Ki=(x"+y"9) sin b + (x" ¢ — y”) cos b; — pip” (11)

Die Einfiilhrung der Beziehung (11) in die GL (7) liefert eine Formel fiir
A;, die den gleichen Bau hat wie Gl. (10) nur ist x” bzw. y” durch x” + y”¢

bzw. x”¢ — y” ersetzt. Die Gleichung fiir die innere Arbeit nimmt somit bei
Stabilititsproblemen die Gestalt an:

. 1
M= g [ [ 0y o I oy ) By ) 4 By (=Y )

o

+ Bq) (pld _|_ F8m2 +% Jd (PJZ] dZ (12)

Stibe mit mehrfach zusammenhingendem Querschnitt.

Bei geschlossenem Stabquerschnitt erzeugen die Schubspannungen, die bei der
Verdrehung des Stabes auftreten, eine Verbiegung der einzelnen Scheiben,
wihrend bei den Stiben mit offenem Querschnitt die Verbiegungen nur im Zu-
sammenhang mit den Lingsspannungen stehen. Im offenen Querschnitt fliefien
die Verdrehungsschubspannungen im Scheibenquerschnitt an den beiden Lings-
rindern in entgegengesetzter Richtung, bei geschlossenen Querschnitten in der
gleichen Richtung. Sie verlaufen im Letztfalle so wie die Biegeschubspannungen.
Die Kriimmung einer Scheibe in ihrer Ebene setzt sich sonach in den hier be-
trachteten Fiéllen aus zwei Teilen zusammen, aus den Kriimmungen infolge der

Léngsspannungen K: und den Kriimmungen infolge der Verdrehungsschub-

spannungen K; Die von der Verdrehung herriihrende Schubkraft je Lingen-
einheit des Scheibenquerschnitts sei T;, Fig. 4.

Fig. 4.

Der Ausdruck fiir die Forminderungsarbeit A; nimmt jetzt die Gestalt an:
1 1 5 —_ » 1 h
2 2 2 2
A= 28"‘[i(EJ1Ki + EFig®) + Fen® + iGEJiTl]dz’ (13)

wobei der Verdrehungswiderstand der einzelnen Scheiben vernachlissigt wurde,
da er klein ist gegeniiber dem Verdrehungswiderstand des geschlossenen Stab-
querschnittes, der durch das letzte Glied in Gl. (13) dargestellt wird.
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Zur weiteren Umgestaltung der Gl. (13) beniitzen wir wieder die Ubergangs-
bedingungen (5’) und die Gleichgewichtsbedingungen (6), die wir hier nochmals
ansetzen, B

s+ aiKi=eg41—aia Kigg (14)

2eFi=0 | (14

Ist der aus n Teilen bestehende Stabquerschnitt r-fach zusammenhéingend
(beim einfachen Ring ist r = 2), so gibt es n + r — 2 Gleichungen (14) und
eine Gleichung (14’), insgesamt n 4 r — 1 Beziehungen, denen n Grofien ¢ als
Unbekannte gegeniiberstehen. Die Zahl der Gleichungen ist um r — 1 grofler als
die Zahl der Unbekannten. Addiert man aber die zu den Ecken einer geschlossenen
Scheibenfolge gehorenden Gleichungen (14), so kiirzen sich die Grofien & und
man gewinnt bei einem r-fach zusammenhingenden Querschnitt r — 1 Be-
ziehungen von der Form

2'h K =0, (15)

wo h; die Scheibenhdhe ist und der Strich beim Summenzeichen anzeigen soll,
dafs die Summe nur iiber die Teile einer geschlossenen Scheibenfolge zu nehmen
ist. Diese Gleichungen sind frei von den ¢; und stellen r — 1 lineare Zusammen-

hinge zwischen den K; vor. Die Gl. (14) sind daher nicht unabhingig von-
einander. Es verbleiben nach dem Ausscheiden der GI. (15), die keine Unbe-
kannten € mehr enthalten insgesamt n Gleichungen zuriick, die aber nur dann

einc Losung haben, wenn die Bedingungen (15) erfiillt sind. Daf3 die K; den
Bedingungen (15) wirklich geniigen, werden wir am Schlusse nachweisen. Es
stellen daher die Gl. (14) und (14’) ein hinsichtlich der Unbekannten &; wider-
spruchsfreies, lineares Gleichungssystem vor. Bei der Ermittlung der ¢; kann
dann in jeder Gruppe der Gl. (14), die zu einem geschlossenen Scheibenring
gehort, eine der Gleichungen unterdriickt werden.

Die Gleichung fiir A; enthdlt noch die n Groflen T;. Um die noch fehlenden
Beziehungen fiir die T; aufzustellen, betrachten wir eine einzelne ringférmige
Scheibenfolge. Denkt man sich diese entlang einer Kante aufgeschnitten, so daf3
ein Stab mit offenem Querschnitt enfsteht, so werden sich bei der Belastung eines
solchen aufgeschnittenen Stabes die beiden Ufer des Schnittes gegeneinander in
der Richtung z verschieben. In der geschlossenen Scheibenfolge miissen aber
die beiden Schnittufer aneinander passen. Bezeichnet man die Verschiebung eines
Scheibenpunktes in der Langsrichtung des Stabes (Richtung der z-Achse) mit ¢,
so mufy beim Durchlaufen eines geschlossenen Querschnittes das Linienintegral

oL ,

L

sein. Fiir jede ringartige Scheibenfolge gilt eine solche Gleichung, sonach ver-
fiigen wir iiber r — 1 Bedingungen (16).

Wir setzen nun { = {’ 4 ", wobei T’ die Verschiebung infolge der Biegungs-
spannungen o, C” die Verschiebungen infolge der Schubspannungen T;/5; be-
deuten. In jeder Scheibe gilt



892 F. Bleich und H. Bleich

332 =fﬁdz und A =—T—i—_—-‘ P19,

(]

wenn p; der Abstand der Scheibe von der Stabschwerachse ist. Die Einfiihrung in
Gl. (16) liefert zunichst

fdst dz+jG‘ ds jpicp‘dS:O.

“Vertauscht man im ersten Gliede die Integrationsfolge, und fiihrt man die Linien-
integrale scheibenweise aus, so erhilt man

j(ZhK)dH— ?‘Tih‘ o2 pihy =0,

Die Summen beziehen sich jeweils auf eine ringférmige Scheibenfolge. Da
wegen Gl. (15) das erste Glied Null ist, so verbleiben die r — 1 Beziehungen

IZITihi Z:
b NP h; =0 17
G5 9o (17)

Den Schubkriften T; sind gleich grofie Schubkrifte in der Richtung z zuge-
ordnet. Fir jede Kante, in der zwei oder mehr Scheiben zusammentreffen,

besteht daher die Gleichgewichtsbeziehung
2'Ti=0, (18)
i

wobei die Summe sich nur auf die Schubkrifte der in der Kante zusammen-
stoflenden Scheiben bezieht. Insgesamt haben wir n — r 4 1 Gleichungen (18),
so daf3 die Gesamtheit der Gleichungen (17) und (18) gerade n betrigt. Da sie
linear sind, so liefert ihre Auflésung die Unbekannten T; in der einfachen Form

Die Beiwerte (; hiingen nur von der Querschnittsform ab.

Es bleibt noch iibrig das tatséchliche Bestehen der Gl. (15) nachzuweisen. Zu
diesem Zwecke berechnen wir die von den Schubkriften herriithrenden Kriim-

mungen K;, nimlich

= —E—, wobei Ty — a—Ti;

Gbi 02z

Die gesamte Krimmung ist K; = K; + K_—;, woraus K; — K; — IT: folgt. Fir
K; gilt Gl. (8), daher ist

— . Ty
Ki=x"sin (1 + ¢) — ¥ cos (hi+ ¢) — pio" + 5 (20)
Beziehung (20) in Gl. (15) eingefiihrt ergibt
“2 hism(q)i—l—cp) —-y“z h COS (L‘)iJr(p)——(p”Z p1h1+ Z

A

‘ Ti hi
Oi

=0.
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Die ersten beiden Summen sind die Linge der Projektion eines geschlossenen
Linienzuges auf die x- bzw. y-Achse und daher gleich Null. Der verbleibende Rest
entsteht aus Gl. (17) durch Differentiation nach z. Somit erscheint bewiesen, daf3
Gl. (15) identisch befriedigt ist.

Fiihrt man schliefilich Gl. (19) in Gl. (20) ein, so gewinnt man

K= x"sin (s + ¢) — y" cos (b + ) + (2 — i o (20)

d. i. die der Gl. (8) entsprechende Gleichung fiir geschlossene Querschnitte.
Unterdriickt man ¢ gegen ¥, so vereinfacht sich die Beziehung (2(0’) zu

K; = x‘* sin {; — y"* cos {; + (% — pi) Q" (20)

Aus den Gleichungen (14) und (14’) konnen nun die & als Funktion der K;
bestimmt werden. Man gelangt so auf Grund der Gl. (13), wenn man die Gl. (19)
und (20”) beachtet, zu der folgenden Gleichung fiir die innere Arbeit (Stabiles
Gleichgewicht ):

(21)
E

1
A= g [P 3oy B g 4 By o By el £ da?] a

Hierin ist
2h '
Jo—= 3 Pr (21°)
i O
Gl. (21) zeigt den gleichen Aufbau wie Gl. (10), nur hat Jq eine andere
Bedeutung wie in Gl. (10). Ebenso bleibt Gl. (12), die fir Stabilititsprobleme
in Betracht kommt, auch fiir geschlossene Stibe in Geltung, wenn man J4 durch

Gl (21’) definiert.

Bei veridnderlichem d; innerhalb einer Scheibe ist d; in allen Gleichungen der
vorangehenden Untersuchung fiir Stibe mit geschlossenem Querschnitt durch

Fi . : -
den Mittelwert dm — j Zu ersetzen. Eine genauere Berticksichtigung der Ver-
. i

dnderlichkeit von d; bietet keine grundsitzlichen Schwierigkeiten, doch wiirde
die genauere Berechnung zu unhandlichen Formeln fiihren.

3. Ermittlung der Querschnittsfunktionen B,, B, und B,.

Die Berechnung der Querschnittsfunktionen B,, B, und B, wird beispielsweise
an einem symmetrischen [T]-Querschnitt vorgefiihrt. Die x-Achse wird als
Symmetrieachse gewihlt. Die drei Scheiben dieses Querschnittes werden mit 1, 2,
3 bezeichnet. Siehe Fig. 5. Wir nehmen an, dafl die Scheiben 2 und 3 verdnder-

liche Stirke haben. Demgemif3 ist der Abstand a * g

Wir gehen von den Gl. (5’) und (6’) aus, die im vorliegenden Falle, wenn wir
bei Scheibe 2 beginnen und in positiver Zahlrichtung von x —+ y fortschreiten,
lauten:
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g, + aK, = ¢, — bK|
& + bK, = 33 — aK3 (a)
Fiey+Fy(ep4¢) =0 ]

4_1;'—’{#-1 } ~¥ Fig5.

[V S ——

Driickt man ¢, und €5 durch €, aus, so gewinnt man die Beziehungen
Die Einfiihrung in die dritte Gl. (a) liefert, mit F =F, + F, + F,4

€ = E;-E (K; —Ky), ()

womit auch €, und ¢; als Funktionen der K; festgelegt sind.
Nun berechnet man die Summe ZF;¢;2 in Gl. (7)

3
Z Fl Eiz - E [F,a (Kz - Ks)]g'*‘ Fz [2 szxz +2a b Kl (K2 +K3) + a® (K22 +Kss)] (d)

Die Kriimmungen K; sind nach Gl. (8) zu berechnen wobel fiir die Winkel
¥; folgende Zahlenwerte einzufiihren sind:
o4 3n
h=w =y =g

Mit diesen };-Werten erhilt man bei Beachtung von Fig. 5

Ky =y" — eg” K, =x" — bg™ K; = —x” —be”.
Damit ermittelt man die Summe
8
SIKE=1J,(y"' — 2ey o + e? g% + 2J5 (x'* 4+ b® ') (e)
1
und unter Beniitzung der oben entwickelten Gl. (d) die Summe
zFlel — _%F 2a2 “0+F2 [2b2(yuz 2eyu 0 + echuz) __4ab2 (yu (pu__ e(puz)
C barext2be) )

Greift man die Beiwerte der Produkte x”¢’” bzw. y”¢”, die wir oben mit
B. und B, bezeichnet haben, aus den Summen (e) und (f) heraus, so findet man

B, =0 ‘ (22)
B, = —2J,e — 4F,b? (a+e) = —2e (J. 4 Fb?)

Mit J. und J, seien die Haupttrigheitsmomente, bezogen auf die x- bzw.
y-Achse des [—1-Querschnittes bezeichnet.
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Faf3it man alle Beiwerte von ¢’’2 zusammen, so findet man in gleicher Weise

B,= J,e? + 2J,b? + 2b2F, (a + e)? = J,e2+ J,b? + 3 Fb2e.

(23)

Nachfolgend sind die Querschnittsfunktionen B,, B, und B, fiir einige weitere
im Stahlbau hiufig vorkommende Querschnittsformen mit einer Symmetrie-
achse, die auf dem vorangegebenen Wege berechnet wurden, zusammengestellt.

Symmetrischer I1-Querschnitt (Fig. 6).

B,—=0

B,=2{—Je+2J,(h —e)—2F,b? (a +e)
—2F,(b—c)[c(h—e)+b(hte)]}

B, =1J,e? +2J,b*+2J, (h — e)*+ 2b?*F, (a - e)?

+2F,[c(h— &)+ b (h + e)]

J;, J; und J, sind die Trigheitsmomente der Scheiben 1, 2 und 4, bezogen auf
die zu ihrer Ebene winkelrecht stehenden Schwerpunktachse, F,, F, und F, die
Flichen der betreffenden Scheibenquerschnitte.®

Unsymmetrischer X-Querschnitt (Fig. 7).

b b
1 ,
° ;\5/ ® _,_#_
- X _5'T"—' A i 4 io. 6. Ky
N T PO j“”“
< | [ & ‘L 3
| Se. f
Il 2o s i VAR
T "g’ .72"
b ¢ X
B, =0
B, — —2 [J;e — Jy(h — ¢)]

(24)

(25)

J; und J, sind die Trigheitsmomente der Gurte 1 und 2, bezogen auf die x-Achse.

T-Querschnitt (Fig. 8).
B, =
B, =
B, =

J, ist das Trigheitsmoment der

0
—2J);e
J, e

Scheibe 1, bezogen auf die x-Achse.

(26)

9 Liegen die Schwerpunkte der beiden Uniergurte auflerhalb der Stege, so isl c negativ ein-

zufiihren.
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Gleichschenkliger Winkel (Fig. 9).

B, =0

By p— 2 Vgen]x » (27)
B :2e2(J _Fb")

? 16

Hier ist J. das auf die x-Achse bezogene Trigheitsmoment, F die Querschnitts-
fliche des Winkels.

Die den vorstehenden Berechnungen zugrunde gelegten allgemeinen Entwick-
lungen wurden ausdriicklich unter der Voraussetzung verdnderlicher Scheiben-

Jy

L,

Fig. 8.

2

dicke abgeleitet. Die angefithrten Formeln (22) bis (27) gelten daher auch fiir
die iblichen genieteten Tragerquerschnitte, deren einzelne Winde stellenweise
durch anliegende Winkelschenkel oder sonstige Auflagen verstirkt sind. Dem-
gemifl sind die Schwerpunktsabstinde a;, die Trigheitsmomente J; und die
Flachen F; fiir die eben erwdhnten verstirkten Scheibenquerschnitte zu berechnen.
Die Abstinde a, b, ¢ usw. sind immer auf die Mittelebene der Scheiben zu
beziehen. Die Haupttrigheitsmomente J. und J, sind in der bekannten Weise
zu ermitteln.

Geschlossener Querschnitt nach Fig. 10.

Die tiberstehenden Teile miissen hier als eigene Scheiben aufgefaf3t werden,
da sie sich hinsichtlich der Aufnahme der Schubkrifte anders verhalten als die

2¢ 26 2c
I ' l e ]
L 2 b
A )
. °
— ") Fig.10.
I P
"}JS, ‘ AN
I 1B Ts L 24 1
29 ,’F’ * 2]
X

einen geschlossenen Scheibenring bildenden vier Winde des Kastenquerschnitts.
Wir setzen Symmetrie zur x-Achse voraus. ‘
Die Ermittlung von Jq im Ausdruck fiir die Arbeit A; Gl. (21) erfordert zu-
nichst die Bestimmung der Schubkrifte Ti. Diese Schubkrifte wirken nur in dem
geschlossenen rechteckigen Scheibenring, der von den vier Winden 1, 2, 3, 4
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gebildet wird. Wegen der Erhaltung des Gleichgewichtes der Langsschubkréfte
an den vier Kanten des Ringes missen die Schubkrifte in diesen vier Scheiben
untereinander gleich sein. Es ist daher nur eine Unbekannte zu bestimmen, die
durch Gl (17) als Funktion des Verdrehungswinkels ¢ festgelegt ist. Man
erhilt somit

T[b b  2h L
Lo tats, | —2hbe=0
woraus
. hb
T=pGe' mit B=1 2b oh (28)
5 5, 5,
folgt. Nach GI. (21’) ergibt sich damit
h2 b2 10
=4 s %9)
5 5 o

Dic Berechnung der Grofien B,, B, und B, erfolgt in der gleichen Weise wie
bei offenen Querschnitten. Da der Ausdruck fiir die Kriimmung K; infolge der
Biegung auch die Schubkrifte T; enthilt, so treten auch in den Querschnitts-
funktionen B Glieder auf, die mit den Schubkriften T zusammenhingen. Man
erhilt mit den Bezeichnungen der Fig. 10

B,=0
By=2[——- Ji+23)e+ I+ 275 (h~e)—}—%b2 (h — 2e)

—%<b+c)2e+%(b+d)2<h_e)] (30)
B, = (J, +2J) e+ (T, +2J) (h —e)* + 27, (bﬁ_ _52’_)2
F3

+§b2(h—2e)2+—};4*(b-|—c)“e2+ %(b-{—d)? (h — e)?

Man beachte, daff F;, J, bzw. F,, J, die Flichen und Trigheitsmomente der
Scheiben 1 und 2 von der Hohe 2b, F,, J, und F;, J, Flichen und Trig-
heitsmomente der abstehenden Scheiben 4 und 5 mit den Hoéhen 2c¢ bzw. 2d
sind.

Bei genieteten Trigern ist der Verdnderlichkeit des Querschnittes innerhalb
der einzelnen Scheiben derart Rechnung zu tragen, daf$ fiir d; in den Ausdriicken

~1 einzusetzen ist. Im tibrigen gilt hin-

hy
sichtlich der F;, J; und a; das oben bei den Stiben mit offenen Querschnitten
Gesagte.

fir B, Ju und B, ein Mittelwert d;, =

10 Gl. (29) stimmt mit der aus der Elastizititstheorie bekannten Formel fiir den recht-
eckigen Ring uberein. Siehe A. und L. Féppl: Drang und Zwang, Bd. II, 2, Aufl. Miinchen
und Berlin 1925.

57
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4. Die Differentialgleichungen der Biegung und Verdrehung.

Sind p« und p, die stetige oder unstetige duflere Belastung in der Richtung
der Hauptachsen x bzw. y und ist My das Verdrehungsmoment der #uf3eren

Krifte, wobei p,, p, und Mg als Funktionen der Koordinate z anzusehen sind, so
gilt fir die duBlere Arbeit A, der Ausdruck

1
1
Av=5 [ [pxx+pyy —Ma g dz (31)

A, ist eine lineare Funktion der Verschiebungen x, y, ¢.
Die Gleichgewichtsbedingung & (A; — 2 A,), Gl. (3), lautet daher, wenn
man A; aus Gl (10) einfihrt,

1
E 2 02 “ow__ 4 ] " "2 G ‘
bf[g(JyX"'+ny P+ Bex" + Byy” 0" + Bo ") + 1 Ja @™ —

o

(32)
— Pxx—Pyy+Mw’]dz,
wobei wir annehmen, dafl die Langskraft S — O ist, weshalb auch ¢, = 0

gesetzt wurde. Die Durchfithrung der Variation liefert die drei simultanen
Differentialgleichungen

d‘x EB, d*
Bly gty @t — =0
d'y  EBy d'¢ —
Bl gt g —P=0 (83)
EB, d*x EB, dty __ d‘o d*¢ dMy
7 a2 it TEBegr —Glagy — 5 =0

Durch eine Koordinatentransformation kann man die Gl. (33) wesentlich ver-
einfachen. Fiihrt man die Transformation

x—i— Dx =5 Tt
T r T YTEI TR

durch, d.h. verlegt man die z-Achse parallel zur Schwerpunktachse um die

Betriige
By By

Sy =— 2—.];, Sy = — ﬂ; (34)

und bezeichnet man das auf die neue Achse bezogene Drehmoment der dufleren
Krifte mit My, so gehen die Gleichungen (33) iiber in

dtx
By G —Px=0
dty
EJXE);-—-py-:O (35)
B,? B,,Z]d4(p ¢ dMg
E[BQ_AL—JY_ZJ; dz* —GJa dz2 ~ dz =0
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Die beiden ersten Gleichungen sind unabhingig von ¢ und sind formal
mit den Differentialgleichungen der Navier’schen Theorie identisch. Die dritte
Gleichung ist unabhingig von x und y. Die durchgefiihrte Hauptachsentrans-
formation gestattet sonach in allen Fillen Biegung und Verdrehung gesondert
zu behandeln und erméglicht so einen klaren Einblick in die Verformungs-
vorginge und in die Spannungsverteilung.

Aus der letzten der Gl. (35) erkennt man, daf3 fir Mg = O die Verdrehung
¢ Null wird. Wird anderseits p. = p, = 0, so verschwinden x und y, die Stab-
achse bleibt gerade, der ganze Stab dreht sich um den Winkel ¢. Hierbei ist die
Achse mit den Schwerpunktkoordinaten s, und s, nach Gl. (34) die Drehachse bei
der Torsion des Stabes. Wir wollen sie als Torsionsachse bezeichnen. Ihr Durch-
stofSpunkt mit dem Querschnitt heifdit Schubmittelpunkt oder Querkrafimittel-
punkt. Er wurde zum erstenmal beim [-Eisen festgestellt. Seine grundlegende
Bedeutung fiir die Berechnung der hier in Rede stehenden Stabformen ist aber
erst durch die voranstehend durchgefiihrte Transformation deutlich geworden.

Aus den Gleichungen (35) konnen wir bereits folgendes allgemeines Verhalten
von schlanken Stiben, die aus diinnen Platten bestehen, feststellen: Gehen die
dufleren Krifte durch die Torsionsachse, die im allgemeinen nicht mit der
Schwerpunktsachse zusammenfillt, so treten nur Biegungsspannungen, aber keine
Torsionsspannungen auf. Die Berechnung der Forminderungen und Span-
nungen erfolgt auf Grund der ersten beiden Gl. (35), also so wie nach der
Navier'schen Theorie bei Belastungen, die durch die Schwerpunktachse gehen.
In allen anderen Belastungsfillen treten sowohl Biegungsspannungen als auch
Verdrehungsspannungen auf, auch dann, wenn p, und p, verschwinden. Weist
der Querschnitt eine Symmetrieachse auf, so liegt der Schubmittelpunkt in dieser
Achse. Bei zwei Symmetrieachsen fillt die Torsionsachse mit der Schwerachse
zusammen.

Die Gl (34) und (35) gelten sowohl fiir Stibe mit offenem als auch
geschlossenem Querschnitt. Nur bei der Ermittlung der Querschnittsfunktionen
Ja, B,, By, B, ist darauf zu achten, ob es sich um einen einfach oder mehrfach
zusammenhingenden Querschnitt handelt.

Fiir die tiblichen Anwendungen koénnen die Gl. (35) durch Integration auch
auf die Form gebracht werden:

d2

X
EJy@‘f‘My:O
d¥y
EJxﬁ—i—Mx—O (36)
By* Byz]ds({’ do M. —
_E[B‘*’_uy“ux G — e g, —Ma=0

M. und M, sind die Momente der dufleren Krifte in den Ebenen zy bzw. zx.
¢ ist somit durch die Differentialgleichung dritter Ordnung
| dsqj_ 9 d(p Md

. dz" a H‘E'—'Y—=O ; (37)

: Glq [ B2 B 2] ‘
2 — —x ¥ 317
definiert, wo o ” und y=E “Bq, 13, 17, | 379

57*



900 F. Bleich und H. Bleich

Die von der Belastungsweise und den Auflagerbedingungen abhingige Losung
der Torsionsgleichung (37) hingt nur durch die Parameter a und y, die als
Festwerte in die Ldsung eingehen, von der Stabform ab. Die Ldsungen der
Gl. (37) konnen daher ebenso wie die Losungen der Navier’'schen Biege-
gleichungen unabhingig von der Stabform aufgestellt werden. Gl. (37) ist eine
Verallgemeinerung der von Timoschenko aufgestellten Differentialgleichung der
Verdrehung des symmetrischen X -Triigers.

Anschlieffend an die allgemeinen Erérterungen mégen noch einige Bemer-
kungen zu der eingangs gemachten wesentlichen Voraussetzung der Unveriinder-
lichkeit der Querschnittsform hinzugefiigt werden. Vereinigt man drei Scheiben zu
einem Stab, so iiberzeugt man sich leicht, daf3 jede dieser Scheiben beliebige
kleine Verformungen in ihrer Ebene erfahren kann, ohne daff der Zusammen-
hang zwischen den Scheiben aufhért und ohne dafy sich die Winkel, die je zwei
Scheiben miteinander einschlief3en, dndern. Bei mehr als drei Scheiben, allgemein
n Scheiben, #dndern sich n — 3 Winkel, wenn den einzelnen Scheiben Ver-
formungen in ihrer Ebene vorgeschrieben werden. Aus dieser Uberlegung folgt,
daf3 bei 4, L, [, T und L-férmigen Stiben die Bedingung von der Erhaltung
der Querschnittsform von Haus aus erfillt ist, da bei den Verformungen, die die
einzelnen Scheiben unter der Belastung erfahren, tiberhaupt kein Zwang bestet,
die Querschnittsform zu #ndern. Bei Stiben aber, die aus vier und mehr
Scheiben zusammengesetzt sind, gleichgiltig ob der Querschnitt einfach oder
mehrfach zusammenhingend ist, ist durch geeignete Maflnahmen Vorsorge
zu treffen, dafl die Querschnittsform erhalten bleibt. Es geniigen in der Regel
Querschotten in grofieren Abstinden. Sie sind, praktisch gesehen, natiirlich nur
dort notwendig, wo die Belastung bei nennenswerten Verdrehungswirkungen
stirkere Winkeldnderungen zwischen den einzelnen Scheiben erzwingen wiirde.

Verbindet man zwei Winde eines Stabes mit offenem Querschnitt durch Ver-
strebung, wie dies z. B. in Fig. 11 angedeutet ist, so kann ein solcher Stab als
geschlossener Stab berechnet werden. Bei der Ermittlung der B-Werte nach
den Formeln (30) ist fiir die Fachwerkscheibe im Falle Fig. 11a: J, =0, F, =0
zu setzen. Im Falle Fig.11b ist fiir J, das Ersatztrigheitsmoment der zwischen

a) b)

Verstrebung
Contre - fiche
L alicing

den beiden Stegen liegenden Fachwerkscheibe, fiir F, die Fliche der zwischen
den Stegen befindlichen Plattenstreifen einzufithren. Bei der Berechnung der
Schubkraft T mittels Formel (28) und J4 nach Formel (29) ist 5, gleich jener
ideellen Blechstirke zu setzen, die man erhilt, wenn man den Strebenquerschnitt

f (Fig. 11b) auf die .ganze Hohe 2b der Scheibe aufteilt.

)
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5. Spannungsermittlung bei Biegung und Verdrehung.

Die von den Momenten M, und M, hervorgerufenen Randspannungen o
werden in der iblichen Welse wie wenn die Lasten durch die Schwerachse des

Stabes gehen wiirden, berechnet. Ist Md von Null verschieden, d. h. gehen die
Lasten nicht gerade durch die Torsionsachse, so ist die dritte der Gl. (35) bzw.

Gl. (37) nach Einfiihrung von My als Funktion von z unter Beachtung der Rand-
bedingungen der Aufgabe zu integrieren. Ist ¢ als Funktion von z bekannt, so
konnen die von der Verdrehung herrithrenden zusitzlichen Randspannungen und
Schubbeanspruchungen ermittelt werden. Zu diesem Zwecke berechnet man die
Krimmung der einzelnen Wandscheiben des Stabes nach Gl. (8) bzw. (20”),
wobei x und y die Verschiebungen sind, die die Schwerachse erfihrt, wenn sich
der Stab um die Torsionsachse um den Winkel ¢ dreht. Es sind sonach in Gl. (8')
bzw. (20”) die Verschiebungen x = s, und y = — s.¢ einzufiihren, so daf3

allgemein
Ki= [sy sin P; + sx cos P; - (% — pi)] (p.” (38)

gilt. Bei Stiben mit offenem Querschnitt ist 3; = O.
Die Randspannungen o; in der Scheibe i sind durch die Beziehungen

— E (& - nK) (39)

festgelegt, wo n die Entfernung der Randpunkte vom Scheibenschwerpunkt ist.
n isl positiv im Sinne der positiven Zihlrichtung von x — y anzusetzen.
Fihrt man in Gl. (38) die Lingen e, s., b usw. ziffernmiflig ein, so erhilt
man fir die K; Ausdriicke in der Form K; = p;¢”. Damit berechnet man mit
Hilfe der Gl. (5’) die &;-Werte, die ebenfalls die Form & = v;¢” annehmen.
Damit sind alle Zahlenwerte bekannt, um mittels der Gl. (39) die Léngs-
spannungen o; in den in Frage kommenden Randpunkten zu berechnen. Hierbei
ist folgendes zu beachten: Wihrend alle bisher in der Rechnung beniitzten
Mafle, das sind die Grofien a, b, e, s, usw., sich auf die Scheibenmittelebenen
beziehen, sind die n auf die End- oder Aufienflichen der Scheiben einzustellen.
Bei einer Ecke nach Fig. 12 z. B. ist die Spannungsberechnung mit den Ab-

Fig. 12.

stinden n bzw. v’ durchzufiihren, je nachdem man die Spannung im Eckpunkte A
in der lotrechten oder waagrechten Scheibe bestimmt. Die beiden so errechneten
Spannungen stimmen natiirlich nicht genau iiberein, da die Losung des hier
vorliegenden Problems von der Voraussetzung unendlich diinner Scheiben aus-
gegangen ist. Ubereinstimmung wiirde die Rechnung nur fir den Schnittpunkt
A’ ergeben.

Die von der Verdrehung herriihrenden Langsspannungen o sind schhefSlldl
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mit den von den Momenten M, und M, hervorgerufenen Spannungen o, die in
der iiblichen Weise berechnet wurden, zusammenzusetzen.

Die Verdrehungsschubspannungen sind bei Stiben mit offenem Querschnitt
nach der Formel

— G’ max ; (40)

fiir jede der Scheiben zu berechnen. max d; ist die gréfSite Dicke der betrach-
teten Scheibe. Bei Stiaben mit geschlossenem Querschnitt ergeben sich die maf3-
gebenden Schubspannungen aus den T; nach der Formel

Ty — — (41)

Hier ist min d; die kleinste Dicke der betrachteten Scheibe.

Um die Richtigkeit der vorangehend entwickelten Theorie zu iiberpriifen,
wurden die Spannungsmessungen, die Bach an einem [ NP 30 vorgenommen
hatte, mit den Spannungen, di¢ die genaue Rechnung auf Grund der hier auf-
gestellten Gleichungen ergibt, verglichen. Der Versuchstriger hatte 3 m Stiitz-
weite und war in den Drittelpunkten mit je 1500 kg lotrecht belastet, wie dies
Fig. 13 im Querschnitt zeigt. Die Grofe und der Verlauf der Lingsspannungen

Randspannungen in 1, 2,3, 4
Tensions dans la Fibre exlreme en 1,2, 3 4
1500 kg Exfreme fibre slresses in 1, 2,3, 4.

Fig. 13.

Nach Bleich berechnet
Calcvides d'aprés Bleich
Calculated acc. to Blerch

Mesurees psr Bach
Measured by Bach

Nach Navier berechnet
ew====== | Calevlees dapres Navier
Calculated acc. to Navier

{Von Bach gemessen

im oberen und unteren Flansch des [-Stahles sind in der gleichen Figur dargestellt.
Die Ubereinstimmung zwischen den gemessenen und gerechneten Spannungen
ist befriedigend. In den Spannungsdiagrammen ist zum Vergleich auch die in der
tiblichen Weise errechnete gleichmiflige Biegespannung von 271 kg/cm? ein-
getragen. Es sei noch bemerkt, daf3 die Mef3punkte 1 bis 4 um 5 mm von den
AufBlenflichen der beiden Flanschen abgeriickt sind. Bei der Spannungsermittlung
wurde diese Lage der Punkte beriicksichtigt.11

11 Der Bachsche Versuch wurde bereits von C. Weber mit Hilfe der von ihm fur Slabe
mit zwei Gurten aufgestellten Formeln nachgerechnet.
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6. Die Differentialgleichungen des Knickproblems.

Der gerade Stab sei mit einer in der Schwerpunktachse wirkenden Lings-
kraft S belastet. Beachtet man, daff der Stab zundchst unter der Einwirkung
von S um &, zusammengedriickt wird, um nach Erreichen der Stabilititsgrenze
auszubiegen, so ergibt sich fiir die duflere Arbeit A, in bekannter Weise der
Ausdruck

1
Aa:f[%sem—l-—;S(xz—{—y'?)]dz

Bei den einfachen Knickproblemen, die wir in diesem Abschnitt im Auge
haben, geniigt es, als Ausdruck der inneren Arbeit Gl. (10) heranzuziehen, in
der die Forminderungsgréfien hoherer Kleinheitsordnung unterdriickt wurden.
Die Variationsbedingung (3) lautet sonach, wenn man beachtet, dafy das Glied
1

?Sem in A, auch durch - Fe,2 wegen S — EFe, ersetzt werden kann.

2
1

E G
6f[§(Jyx442+nyug+B X“ U_I_Byy (P +B(p(P”2+—Jd(P )

(o]

— % S (x*+ y'2)] dz = 0.

Die Durchfﬁhrung der Variation liefert die drei Differentialgleichungen

EB, d* d’
Jy d ey e TS =0
EBy d*q) d?y
X d 4 2 d 4 +S d 3 O (42)
EB; d*x A EBy d*y d?o d?o .
—5 W+—2_W+EB‘Pd4 GJddz—O,
die nach zweimaliger Integration die Form annehmen
d’x EB; 42
EJyd—2—+‘—2‘“ d?—{—SX:
EB, d2 Q '
: — 43
5 qp T5y=0 (43)
EB« d‘x EB, d2y d*e

+EB, S = GJap =0

2 d2 T 2 d2 T T de?
Mit diesen drei simultanen Differentialgleichungen ist das Knickproblem des
diinnwandigen Stabes in allgemeiner Form erledigt. Die Gl. (43) lassen bereits
folgendes erkennen: Besitzt der Stabquerschnitt keine Symmetrieachsen, d. h.
ist sowohl B, als auch B, von Null verschieden, so tritt eine Verdrehung des
Stabes ein, da ¢ nicht verschwindet. Hat der Querschnitt eine Symmetrieachse,
so knickt der Stab je nach den Steifigkeitsverhiltnissen in der Richtung der
Symmetrieachse oder senkrecht dazu aus. Ist das Letzte der Fall, dann verdreht

sich auch der Stab. Der Stab kippt also aus, obwohl er mittig belastet ist.
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Um einen weiteren Einblick in das Verhalten derartiger Stibe zu gewinnen,
untersuchen wir einen Stab von der Linge 1, dessen Querschnitt Symmetrie
zur x-Achse aufweist, und der fir Ausknicken in Richtung der y-Achse an den
Enden gelenkig gelagert und dort gegen Verdrehen um die z-Achse gesichert ist.

Mit dem Losungsansatz

nnz nnz
| 1

erhilt man nach Einfihrung in die zweite und dritte Gl (43) die Knick-
bedingung

y = C; sin ——, ¢ = C,sin n=1,23....)

n’xn? EB,
(- Ers) —T Tz .
n’x? EB n?x® =
— T 5 (_ Nt EB‘?"‘GJd)
: . n’x*EJy .
Mit der Abkiirzung Sg = — gewinnt man nach Ausrechnung der Deter-
_ minante die Knicklast Sk :
B 2
Sc = Se (1 o2 50 J)) (44)
e T —<
. . . p ?TzEJx i
Der kleinste Wert wird mit n = 1 erhalten, wenn also Sg = o Die tai-

sichliche Tragfihigkeit fiir Ausknicken winkelrecht zur Symmetrieachse ist daher
geringer als die Tragkraft nach Euler. Untersucht man die Groflenordnung des
zweiten Gliedes in der Klammer, so findet man, daf3 bei bestimmten Querschnitts-
formen wie bei T- und unsymmetrischen I Querschnitten nennenswerte Abmin-
derungen der in der iiblichen Weise berechneten Tragkraft des Stabes eintreten.12
In der folgenden Zusammenstellung ist Sk nach Gl. (44) fiir einige Querschnitts-
formen angegeben. Die Zahlen wurden unter der Voraussetzung berechnet, daf
die nach Euler ermittelte Knickspannung o. gerade 2000 kg/cm? betrigt. Mit
zunehmender Schlankheit des Stabes nihert sich Sx der Eulertragkraft. Der
Einfluf des Drillungswiderstandes des Stabquerschnittes ist sehr bedeutend. Je
grofSer derselbe ist umso grofer wird die Tragkraft Sk. Sein EinfluB3 wichst mit
zunehmendem Schlankheitsgrad. Bei geschlossenen Querschnitten ist wegen
des grofien Drillungswiderstandes der Unterschied zwischen Sx und Sg duflerst
geringfiigig.

Riickt die Last aus dem Stabschwerpunkt heraus und zwar gegen den
' Schubmittelpunkt, der z. B. beim T-Querschnitt im Schnittpunkt der beiden
Scheiben liegt, so wichst, wie wir im folgenden Absatz noch nachweisen werden,
Sk stetig an und erreicht den Grof3twert Sg, wenn die Last gerade in der Torsions-
achse wirkt. Fiir seitliches Ausknicken haben bei den hier betrachteten Stabformen
Schwerpunktachse und Torsionsachse ihre Rollen vertauscht. Einseitig mit dem
Flansch angeschlossene hochstegige 1-Stihle diirften daher nach diesen Uber-

12 Diese Abminderung der Tragfihigkeit hat bereits Ostenfeld festgestellt Siehe die in
Fufinole 5 angegebene Arbeit, S. 17. .
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Querschnittsform Verhaltnis der Tragkraft S bei Knicken in Richtung
y zur Eulertragkraft SE
-3 pinm _ 10 20 30
—— S— ::* J ) .
3004—0’ y SK
g — 0,699 0,930 0,974
; >
Joo |
o et T b= 10 20 30
a5
- —— y
500 10
150 10 S
- = 0,691 0,724 0,883
)’( E
200
AT 4 o= 10 20 40
TFT- ‘
| Joo-14 S
K -
300 5= 0,534 0,703 0,942
v E
X

legungen eine groflere Tragfihigkeit aufweisen, als sie die iibliche Rechnung
unter Beriicksichtigung des exzentrischen Krafteintrages ergibt.

Es sei ausdriicklich hervorgehoben, daf3 die vorangehenden Entwicklungen und
Schlu3folgerungen nur fiir den Fall des elastischen Knickens gelten.

7. Die Differentialgleichungen fiir Probleme des Kippens.

Unter Kippen versteht man den Eintritt eines labilen Gleichgewichtszustandes
eines auf Biegung beanspruchten Stabes, der dadurch gekennzeichnet ist, daff mit
Eintritt des unsicheren Gleichgewichtes der Stab unter-gleichzeitiger Verdrehung
seitlich, d. i. winkelrecht zur Ebene der Biegung, ausweicht. Um die Darstellung
etwas zu vereinfachen, betrachten wir nur Stibe mit einfach symmetrischem
Querschnitt, die in der xz-Ebene belastet sind. Der Stab wird in der Richtung
der y-Achse ausweichen, wenn J. nennenswert kleiner als J, ist, wie dies z. B.
bei einem in der Stegebene belasteten I -Triager der Fall ist.

Es sei p. die in der xz-Ebene wirkende Belastung, M, das von dieser Be-
lastung hervorgerufene Biegungsmoment, S eine in der Stabachse wirkende
duflere Lingskraft, a die Hohe des Angriffspunktes der Belastung p iiber dem
Querschnittsschwerpunkt, siehe Fig. 14, wobei a auch negativ sein kann. Die
gesamte Arbeit der dufleren Krifte, d.i. die Arbeit im stabilen und unstabilen
Gleichgewichtszustand ist durch den Ausdruck

A =L (TN 4 ge 1Syt apyot]d
8=y [EJY €m Yo+ px(P] z

festgelegt. Hinsichtlich der inneren Arbeit A; miissen wir auf Gl. (12) zuriick-
greifen, da der Einflufl der Forminderungsglieder héherer Ordnung nicht mehr
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Px

—4——*+Y Fig 14.

]
b 4

vernachléssigt werden darf. Demgemifl nimmt die Variationsbedingung (3), wenn
man beachtet, dafS wegen der vorausgesetzten Symmetrie B, =0 ist, die Gestalt an.

1

& §f[E (Jy " 4y @)+ Jx (X 9 —y*)* + By (x“ ¢ — ) 9+ By ¢* 2+ Fen® +
"9 My” ] 2

.+-E‘JdCP )_(E—Jy+58m+sy +apx@ )]dz (45)

Die Anderungen der Gréflen x und &, beim Auskippen sind klein gegeniiber
den Verschiebungsgrofien y und ¢, die erst beim Kippen auftreten. Wir be-
trachten daher die Gréflien x und e, fiir die Variation als unverinderlich; sie

My

behalten jene Werte x” = — £l und e, = % , die sie knapp vor Eintritt
y

des labilen Zustandes erreicht haben, auch wihrend des Auskippens bei. Fiihrt
man in Gl (45) diese Werte fiir x und €, ein, so erhdlt man die folgende Be-
dingungsglei,chung, in der aber alle Glieder von hdherer als von der zweiten
Kleinheitsordnung unterdriickt wurden:

Jx

Jy
—apo®— Sy"] dz.

Variiert man nach y und ¢, so gelangt man zu den beiden simultanen Diffe-
rentialgleichungen

d*y EBy d'g ( Jx) d? d’y
g —72 & 175 Mo +S5r=0 )
EB, d* d* Jx d? d?
—73" G B — (1= M I = 60 g —apee =0,

womit die allgemeine Kippaufgabe fiir Stibe, die wenigstens eine Symmetrieachse
aufweisen, grundsitzlich gelost ist.13

Fiir den einfachsten Sonderfall, S und M, konstant, p = 0, findet man fiir
einen Stab von der Liange 1, der an den Enden gegen Verdrehen um die z-Achse

13 Setzt man By=0, d. h. nimmt man an, daB der Querschnitt zwei Symmetrieachsen
- besitzt, so 1at sich in dem Sonderfall S =— 0 die Funktion y eliminieren und man erhilt die

von Timoschenko fiir das Kipproblem des I-Trigers aufgestellte leferentlalglelchung dritter
Ordnung. :
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festgehalten ist, sich aber um die x-Achse frei drehen kann, mit dem Lo&sungs-

ansatz
. TZ
¢ == Cg sin =—

y::Clsinnz 0

T;
die Stabilititsbedingung

72 nt EB, =t Jx ?

Aus dieser Gleichung kann S oder M, bestimmt werden. Denkt man sich die
Momente M, dadurch hervorgerufen, daf3 die Kraft S nicht im Schwerpunkt,

sondern im Abstande e = % davon angreift, so liegt ein Fall von Knickung
2
unter exzentrischem Druck vor. Mit Sg = n—llzi’ und (1 —%) ~ 1 nimmt
y
Gl. (47) die einfachere Gestalt
n B 2
(Se—9)(EB, T, + GJd) — (2_}’_ S — Se) =0 (48)

B
an. Nun ist 9 Jy =s,, der Abstand des Querkraftmittelpunktes vom Schwer-
punkt. Wahlt man e =s,, d. h. 13t man die Léngskraft S im Querkraftmittel-
punkt angreifen, so wird S = Sg, ein Maximum und gleich der Eulerknickkraft,

womit die im vorangehendem Absatz aufgestellte Behauptung bewiesen ist.
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Zusammenfassung.

Die iibliche Theorie der Biegung und Verdrehung gerader Stibe stiitzt sich
auf zwei Voraussetzungen: 1. Die bei der Biegung auftretenden Lingsspannungen
sind lineare Funktionen der Querschnittkoordinaten x und y. 2. Bei blof3er Ver-
drehung sind die Lingsspannungen, wenn man von kleinen Groflen zweiter
Ordnung absieht, Null. Diese Voraussetzungen sind bei Stiben, die aus diinnen
Platten zusammengesetzt sind, nicht immer erfiillt. Yon der Annahme ausgehend,
daf} in jeder Platte, die den Stab zusammensetzt, die Grundlagen der Navier’schen
Biegungstheorie in Geltung bleiben, werden die Differentialgleichungen der
Biegung und Verdrehung prismatischer Stibe mit Hilfe eines Variationsprinzipes
abgeleitet. Die Gleichungen gelten allgemein, sowohl fiir Stibe mit offenem
als auch fiir Stibe mit geschlossenem, zwei- oder mehrfach zusammenhingendein
Querschnitt. Durch eine zweckmiflige Koordinatentransformation gelingt es, die
Behandlung von Biegung und Verdrehung zu trennen. Diese Transformation lefrt
auch die Bedeutung des Querkraftmittelpunktes dar.

Nach der allgemeinen Darstellung der Spannungsermittlung bei Biegung und
Verdrehung werden die Differentialgleichungen des Knickproblems fiir die hier
in Betracht gezogenen Stabformen in allgemeinster Form entwickelt und der
einfache Knickfall eines Stabes mit einfach symmetrlschem Querschnitt behandelt.
Es erweist sich, dal ein zentrisch belasteter Stab u. U. eine Knicktragkraft auf-
weist, die oft um einen nennenswerten Betrag unterhalb der Eulerlast liegen
kann. Zum Schlusse werden die Differentialgleichungen des Kippens fiir Stibe,
deren Querschnitte mindestens eine Symmetrieachse haben, aufgestellt. Hier wird
nachgewiesen, daf3 bei Belastung des Stabes durch eine in der Symmetrieachse
wirkende Lingsdruckkraft S die kritische Last Sk einen Grofitwert erreicht, wenn
S durch den Querkraftmittelpunkt hindurchgeht.
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