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V3

Biegung, Drillung und Knickung von Stäben
aus dünnen Wänden.

Flexion, torsion et flambage des barres composees
de parois minces.

Bending, Torsion and Buckling of Bars Composed of Thin Walls.

Dr. Ing. F. Bleich und Dr. Ing. H. Bleich, Wien.

1. Einleitung.
Die Tatsache, daß bei einzelnen Trägerformen die Verteilung der

Längsspannungen im Querschnitt nicht mit der nach der /Vawer'schen Biegungstheorie
errechneten Verteilung übereinstimmt, wurde zum erstenmal von Bach1
versuchsmäßig festgestellt. Etwa gleichzeitig und unabhängig von Bach hat R. Sonntag2

auf die Verdrehungserscheinungen bei Biegung von Stäben mit L, C und
"T_ - Querschnitt hingewiesen und die tatsächlichen Spannungen errechnet. Die
Differentialgleichung des Verdrehungsproblems des symmetrischen I-Trägers
entwickelte Timoschenko.3 Weber* verallgemeinerte diese Untersuchung für
beliebige zweigurtige Stäbe, also für £, HL und X -Querschnitte. Das Kipproblem
des I-Trägers hat Timoshenko3 behandelt. Das Stabilitäts- und Drillungsproblem

von J., I, ~L und £ -förmigen Stäben untersuchte Ostenfeld.5 Die
Verdrehung von Stäben mit rechteckigem, kastenförmigem Querschnitt wurde von
Eggenschwyler 6 erörtert.

Die klassische Theorie der Biegung und Verdrehung gerader prismatischer Stäbe

geht von der Annahme aus, daß die Biegungslängsspannungen nach linearem
Gesetz über den Stabquerschnitt verteilt sind und daß bei bloßer Verdrehung,
wenn man von Größen zweiter Kleinheitsordnung absieht, keine Längsspannungen
auftreten. Bei Stäben, die aus dünnen Platten zusammengesetzt sind, trifft dies
aber, wie in den oben zitierten Arbeiten nachgewiesen wurde, nicht zu. Da im

1 C. Bach: Versuche über die tatsächliche Widerstandsfähigkeit von Balken mit Q -förmigem
Querschnitt. Zeitschrift des Vereins deutscher Ingenieure 1909, S. 1790 und 1910, S. 382.

2 R. Sonntag: Biegung, Schub und Scherung. Berlin 1909.
3 S. Timoschenko: Einige Stabilitätsprobleme der Elastizitätstheorie. Zeitschrift für Math,

u. Phys. 1910, S. 361.
4 C. Weber: Übertragung der Drehmomente in Balken mit doppelflanschigem Querschnitt.

Zeitschrift für angew. Math. u. Mech. 1926, S. 85.
5 A. Ostenfeld: Mitt. Nr. 5 und Nr. 6 des Lab. für Baustatistik der Techn. Hochschule-

in Kopenhagen. Kopenhagen 1931 und 1932.
6 A. Eggenschwyler: Über die Verdrehungsbeanspruchung rechteckiger Kastenquerschnitte.

Eisenbau 1918, S. 45.
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Stahlbau fast durchwegs Träger verwendet werden, die aus einzelnen Platten
zusammengesetzt sind, so erscheint es notwendig, das tatsächliche Verhalten
derartiger Träger, ohne Beschränkung auf besondere Querschnittsformen, zu
untersuchen.

Die folgende auszugsweise Darstellung ist der erste Versuch, das hier in Rede
stehende Problem der Biegung und Drillung dünnwandiger Stäbe einer möglichst
allgemeinen Behandlung zuzuführen. Diese Untersuchung ermöglicht es, die
Zusammenhänge tiefer zu erfassen, und allgemein gültige Grundgleichungen
für die Behandlung der hier in Frage kommenden Sonderaufgaben des stabilen
und unstabilen Gleichgewichtes zu schaffen.

Gegenstand dieser Untersuchung sind demnach prismatische Stäbe, die aus
einzelnen langgestreckten rechteckigen Scheiben bestehen, und deren Querschnitte
etwa nach Fig. 1 gestaltet sind. Fig. la zeigt ein Beispiel eines offenen oder
einfach zusammenhängenden Querschnittes. Fig. lb das eines geschlossenen

Fig. 1.

oder mehrfach zusammenhängenden Querschnittes. Die Dicke der einzelnen
Scheiben kann innerhalb einer Scheibe veränderlich sein, doch wird sie immer als
klein gegen die Scheibenhöhe vorausgesetzt.

Aus der Navierschen Biegungstheorie übernehmen wir die Annahme, daß die

geometrische Form des Querschnittes auch bei der Verformung unter der
Belastung erhalten bleibt. Auf diesen grundlegenden Gesichtspunkt kommen wir
weiter unten nochmals zurück. Nicht beibehalten wird aber die Bedingung des

Ebenbleibens der Querschnitte. Wir setzen nur voraus, daß für jede einzelne
Scheibe die Grundlagen der /Vawer'sehen Biegungstheorie in Geltung sind. Diese
Annahme kann natürlich dort, wo zwei oder mehr Scheiben zusammentreffen,
wegen der von Null verschiedenen Dicke der Scheiben nicht genau erfüllt sein,
doch soll diese Dicke so gering angenommen werden, daß diese Abweichungen
außer Betracht bleiben können. Wir ziehen nur Verbiegungen der Scheibe in
ihrer Ebene in Betracht, während Verbiegungen senkrecht zur Scheibenebene

wegen des geringen Biegungswiderstandes in dieser Richtung vernachlässigt
werden. Von den Schubspannungen wird nur jener Teil in Rechnung gestellt,
der von der Verdrehung herrührt, während die Biegungsschubspannungen wegen
des untergeordneten Einflusses auf die Formänderungen des Stabes, wenn die

Stablänge groß gegen die Querschnittsabmessungen ist, vernachlässigt werden.
Die Ergebnisse gelten daher nicht für ganz kurze Stäbe.

Um die Differentialgleichung des Problems in allgemeinster Form zu gewinnen,
gehen wir von einem bekannten Variationsprinzip der Mechanik aus. Wir
gewinnen so den Vorteil, das allgemeine Ergebnis auch für die Aufstellung von
Näherungslösungen nach dem Verfahren von Ritz in jenen Fällen benutzen zu
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können, wo eine strenge Lösung der aus der Variationsaufgabe hervorgehenden
Differentialgleichungen auf Schwierigkeiten* stößt.

Bezeichnet Aa die Arbeit der äußeren Kräfte, Ai die Arbeit der inneren Kräfte
(Deformationsarbeit), so gilt die Extremalbedingung

b (Ai — X Aa) 0 (1)

wobei X ein von den besonderen Bedingungen des Problems abhängiger
Multiplikator ist. In jenen Fällen, die wir hier in Betracht ziehen wollen, kann X

von vorneherein festgelegt werden.
Handelt es sich um die Formänderungen erster Ordnung einer Verbiegungs-

oder Verdrehungsaufgabe des geraden Stabes, so sind Ai und Aa homogene Funktionen

des zweiten bzw. ersten Grades der Formänderungsgrößen.7 Aus dieser
Tatsache ergibt sich, wie bekannt, für den Multiplikator X der Wert 2.

Kommt ein Problem des instabilen Gleichgewichtes (Knickaufgabe) in Betracht,
so wird, falls nur Formänderungen erster Ordnung in den Gleichgewichts-
bedingungen auftreten, X 1.

Die Bedingung (1) lautet daher:

Im Falle des stabilen Gleichgewichtes: b (Ai —2Aa) 0 (2)

Im Falle des instabilen Gleichgewichtes: b (Ai — Aa) 0 (3)

Der wesentliche Teil der folgenden Untersuchung besteht nun darin, die

Formänderungsarbeit Ai und die Arbeit der äußeren Kräfte Aa darzustellen. Bei der
Festlegung von Ai ist hierbei zwischen Stäben mit einfach zusammenhängendem
und solchen mit mehrfach zusammenhängendem Querschnitt zu unterscheiden.

2. Die Formänderungsarbeit Ai.

Stäbe mit einfach zusammenhängendem Querschnitt.

Betrachtet man eine einzelne Scheibe eines Stabes, so wird ihre Mittellinie bei
der Verformung des ganzen Stabes im allgemeinen eine Krümmung Ki in der
Scheibenebene und eine Dehnung £j erfahren. Gleichzeitig dreht sich die ganze
Scheibe um den Winkel cp. Sei Ji das Trägheitsmoment des Scheibenquerschnittes,

mit der Höhe hi und der im allgemeinen der Höhe nach veränderlichen
Stärke bi, bezogen auf die winkelrecht zur Scheibenebene stehende Schwerpunktachse,

Fi die Querschnittfläche, Jdi der Verdrillungswiderstand der Scheibe, so

gilt für die gesamte Formänderungsarbeit Ai des aus n Scheiben zusammengesetzten

Stabes von der Länge 1 der Ausdruck

-¦MU(EJ1Ki' + EFiii* + GJdicp'2) dz, (4)

wobei dz der Abstand zweier unendlich nahe benachbarter Stabquerschnitte
bedeutet.

Die Größen Kj und Ei sind aber nicht unabhängig voneinander, sondern sind

7 Dies gilt unter der Einschränkung, daß in den GleichgewLchtsbedingungen die
Formänderungen gegenüber den Abmessungen des Trägers vernachlässigt werden.
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durch gewisse Übergangsbedingungen aneinander gebunden. An der Kante, wo
zwei Scheiben zusammenstoßen, müssen die Längsspannungen und damit die

Längsdehnungen der beiden Scheiben einander gleich sein. Für jede Stabkante

gilt, wenn a der Abstand der Schwerachse der Scheibe von der Kante ist, siehe

Fig. 2.

Ei + a'jIQ 6i + i — ai + 1K1 + 1 (i l, 2, n-l) (5)

Bei n Scheiben können n derartige Gleichungen aufgestellt werden. Ist ferner S

die im Stabe wirkende Längskraft, so ist die mittlere Dehnung em

S
em p-p, wobei F I Fj.

Es besteht die Gleichgewichtsbeziehung

ESFiIi S EFem (6)

Mit £i em + Si gehen die Gleichungen (5) und (6) in die Beziehungen

ei + a'Ki ei-f-i — ai+1 Ki+1 (5')

ZeiFi 0 (6')
i

Fig. 2.

S \ i

rc—\
VU r*

i \

LUi
i t

Fig. 3.

über. Führt man anderseits ei em -f- 8i in die Gl. (4) ein, so gewinnt man unter
Beachtung der Verknüpfung (6'), wenn man noch Jd 2 Jdi setzt,

Ai y f[l (E Ji Ki2 + E Fi et4) + E F em2 + G Jd <p'2] dz (7)

Die n Gleichungen (5') und (6') ermöglichen es, die n Größen £i durch die

n Größen Ki auszudrücken, so daß £i als lineare Funktion der Ki erscheint.
Es ist nun notwendig, den Zusammenhang zwischen den Krümmungen K; der

einzelnen Scheiben und der Verformung des ganzen Stabes herzustellen. Wir
wählen für die weiteren Betrachtungen ein linkshändiges Koordinatensystem,
dessen z-Achse mit der Schwerachse des Stabes zusammenfällt, und dessen x- und

y-Achsc im jeweilig betrachteten Stabquerschnitt liegen und mit den

Hauptträgheitsachsen desselben übereinstimmen. Bei der Verformung unter der
Belastung verschiebt sich der Schwerpunkt S des betrachteten Querschnittes nach S',
siehe die Fig. 3. Die Komponenten dieser Verschiebung seien x und y. Ferner
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verdreht sich der Querschnitt um den Winkel cp. Der Winkel cp wird in Richtung
von der positiven x-Achse zur positiven y-Achse positiv gezählt. Da wir vorausgesetzt

haben, daß die geometrische Form des Querschnittes erhalten bleibt, so

genügen die drei Größen x, y, cp, um die Lage eines jeden Punktes im Querschnitt
festzulegen. In Fig. 3 ist die Scheibe i mit dem Schwerpunkt Si vor und nach der
Verschiebung und Verdrehung dargestellt. Bei beliebigem Lastangriff wird die
vorher gerade Stabachse in eine räumliche Kurve übergehen. Die Projektionen
dieser Linie auf die xz- bzw. yz-Ebene haben, wenn die Verformungen als klein an-

_|2 „ rl 2 -

genommen werden, die Krümmungen x"= -,-5 und y" -j-g. Nun ist aber die

Krümmung Ki der Scheibe i nichts anderes als die Projektion der Stabachsenkrümmung

auf die verdrehte Scheibenebene. Es folgt daraus, wenn man Fig. 3
beachtet,

Ki x" sin (i|)i + cp) — y" cos (t|)i + cp) — pi cp" (8)

Diese Gleichung gestattet eine Vereinfachung in jenen Fällen, wo cp gegenüber
\\> vernachlässigt werden kann. Dies gilt z. B. für die meisten Aufgaben des

stabilen Gleichgewichtes. Die Beziehung (8) nimmt dann die einfachere Form

Ki x" sin if>i — y" cos xfc — ^cp" (8')

an. Führt man die Beziehung (8') in die Gl. (7) ein, so gewinnt man A; in dev
Gestalt

1

Ai — j aXxx"2 + ayyy/,2 + aXyX,/y" + a.x9x"cp'< + ay9y< cp" +

+ aw cp"2 + Fem* + | Jd cp'2] dz (9)

Es läßt sich nun in allgemeiner Form nachweisen, daß

CXXX Jy, (Xjy =^ JX. CXxy J Xy U,

wobei Jx und Jy die Trägheitsmomente des Stabquerschnittes in Bezug auf die
Hauptachsen x, y bedeuten. Jxy ist das Zentrifugalmoment. Ferner ist bei
Querschnitten, die Symmetrie hinsichtlich der x- bzw. y-Achse aufweisen, axy 0
bzw. cxy9 0.8

Für Aufgaben des stabilen Gleichgewichtes lautet somit die Gleichung für die
innere Arbeit, wenn wir die endgültigen Bezeichnungen <xX(?=Bx, ay(?= By und

a9(p B9 einführen,

f r\ c <10>

Ai - I Jy x"2 + Jx y"2 + Bx x" cp" + By y" cp" + B, <p"2 + F em2 + ^ Jd cp'2J dz

O

Geht man auf die genauere Gl. (8) zurück, die bei manchen Stabilitäts^
Problemen heranzuziehen ist, so kann man in dieser Gleichung wegen der
vorausgesetzten Kleinheit von cp

8 Auf die Beweisführung kann hier wegen des knappen Raumes nicht eingegangen werden. t
Sie wird an anderer Stelle veröffentlicht werden.
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sin (ifc + cp) sin ifc + cp cos i|>i

cos (i|>i -f- cp) cos ifn — 9 sin 4>i

schreiben. Somit erhält man für Ki den Ausdruck

Ki (x" + y"cp) sin fc + (x"cp — y") cos fc — Picp" (11)

Die Einführung der Beziehung (11) in die Gl. (7) liefert eine Formel für
Ai, die den gleichen Bau hat wie Gl. (10) nur ist x" bzw. y" durch x" + y"<P
bzw. x"cp — y" ersetzt. Die Gleichung für die innere Arbeit nimmt somit bei
Stabilitätsproblemen die Gestalt an:

l
Ai |Jpy (x" + y" cp)2 + Jx (x" <p-Y'Y+ Bx (x" + y" cp) cp" + By (x" cp - y") cp"

+ B9 cp"* + Fsm2 + -| Jd cp'2] dz (12)

Stäbe mit mehrfach zusammenhängendem Querschnitt.

Bei geschlossenem Stabquerschnitt erzeugen die Schubspannungen, die bei der
Verdrehung des Stabes auftreten, eine Verbiegung der einzelnen Scheiben,
während bei den Stäben mit offenem Querschnitt die Verbiegungen nur im
Zusammenhang mit den Längsspannungen stehen. Im offenen Querschnitt fließen
die Verdrehungsschubspannungen im Scheibenquerschnitt an den beiden
Längsrändern in entgegengesetzter Richtung, bei geschlossenen Querschnitten in der
gleichen Richtung. Sie verlaufen im Letztfalle so wie die Biegeschubspannungen.
Die Krümmung einer Scheibe in ihrer Ebene setzt sich sonach in den hier
betrachteten Fällen aus zwei Teilen zusammen, aus den Krümmungen infolge der

Längsspannungen Ki und den Krümmungen infolge der Verdrehungsschubspannungen

Ki. Die von der Verdrehung herrührende Schubkraft je Längeneinheit

des Scheibenquerschnitts sei Ti, Fig. 4.

Fig. 4.

Der Ausdruck für die Formänderungsarbeit Ai nimmt jetzt die Gestalt an:

A, - yJ[2 (EJ, Kl* + EF, £,*) -f Fem2 + 21^ Tt»j dz, (13)
O

wobei der Verdrehungswiderstand der einzelnen Scheiben vernachlässigt wurde,
da er klein ist gegenüber dem Verdrehungswiderstand des geschlossenen
Stabquerschnittes, der durch das letzte Glied in Gl. (13) dargestellt wird.

> TV
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Zur weiteren Umgestaltung der Gl. (13) benützen wir wieder die
Übergangsbedingungen (5') und die Gleichgewichtsbedingungen (6'), die wir hier nochmals
ansetzen,

ei + a'iKi — ei + i— ai + 1KI + 1 (14)

IeiFi 0 (140

Ist der aus n Teilen bestehende Stabquerschnitt r-fach zusammenhängend
(beim einfachen Ring ist r 2), so gibt es n -f- r — 2 Gleichungen (14) und
eine Gleichung (14'), insgesamt n -f- r — 1 Beziehungen, denen n Größen e als
Unbekannte gegenüberstehen. Die Zahl der Gleichungen ist um r — 1 größer als
die Zahl der Unbekannten. Addiert man aber die zu den Ecken einer geschlossenen
Scheibenfolge gehörenden Gleichungen (14), so kürzen sich die Größen 8i und
man gewinnt bei einem r-fach zusammenhängenden Querschnitt r — 1

Beziehungen von der Form
2lh1Ki 0, (15)
i

wo hi die Scheibenhöhe ist und der Strich beim Summenzeichen anzeigen soll,
daß die Summe nur über die Teile einer geschlossenen Scheibenfolge zu nehmen
ist. Diese Gleichungen sind frei von den 6i und stellen r — 1 lineare Zusammenhänge

zwischen den Ki vor. Die Gl. (14) sind daher nicht unabhängig
voneinander. Es verbleiben nach dem Ausscheiden der Gl. (15), die keine
Unbekannten ej mehr enthalten insgesamt n Gleichungen zurück, die aber nur dann

eine Lösung haben, wenn die Bedingungen (15) erfüllt sind. Daß die Ki den

Bedingungen (15) wirklich genügen, werden wir am Schlüsse nachweisen. Es
stellen daher die Gl. (14) und (14') ein hinsichtlich der Unbekannten Si

widerspruchsfreies, lineares Gleichungssystem vor. Bei der Ermittlung der 8i kann
dann in jeder Gruppe der Gl. (14), die zu einem geschlossenen Scheibenring
gehört, eine der Gleichungen unterdrückt werden.

Die Gleichung für Ai enthält noch die n Größen Ti. Um die noch fehlenden
Beziehungen für die Ti aufzustellen, betrachten wir eine einzelne ringförmige
Scheibenfolge. Denkt man sich diese entlang einer Kante aufgeschnitten, so daß
ein Stab mit offenem Querschnitt entsteht, so werden sich bei der Belastung eines
solchen aufgeschnittenen Stabes die beiden Ufer des Schnittes gegeneinander in
der Richtung z verschieben. In der geschlossenen Scheibenfolge müssen aber
die beiden Schnittufer aneinander passen. Bezeichnet man die Verschiebung eines

Scheibenpunktes in der Längsrichtung des Stabes (Richtung der z-Achse) mit £,
so muß beim Durchlaufen eines geschlossenen Querschnittes das Linienintegral

S^ds 0 (16)
ds

sein. Für jede ringartige Scheibenfolge gilt eine solche Gleichung, sonach
verfügen wir über r — 1 Bedingungen (16).

Wir setzen nun f J' -f- £", wobei Xf die Verschiebung infolge der
Biegungsspannungen ö, V die Verschiebungen infolge der Schubspannungen Ti/bi
bedeuten. In jeder Scheibe gilt
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Vhf** und -^=Gbrpi(?>

wenn pi der Abstand der Scheibe von der Stabschwerachse ist. Die Einführung in
Gl. (16) liefert zunächst

z

Pds fKidz+ fJl-ds— fpiCp'ds 0.

L o L L

Vertauscht man im ersten Gliede die Integrationsfolge, und führt man die Linien-
integrale scheibenweise aus, so erhält man

z

J(2\ KT) dz + i- 2'^ - cp'2' Pi hi o,

o

Die Summen beziehen sich jeweils auf eine ringförmige Scheibenfolge. Da

wegen Gl. (15) das erste Glied Null ist, so verbleiben die r — 1 Beziehungen

i-2'^-cp'2'pihi:=o (i7)
<J i öi i

Den Schubkräften Ti sind gleich große Schubkräfte in der Richtung z
zugeordnet. Für jede Kante, in der zwei oder mehr Scheiben zusammentreffen,
besteht daher die Gleichgewichtsbeziehung

Z"Ti 0, (18)
i

wobei die Summe sich nur auf die Schubkräfte der in der Kante zusammenstoßenden

Scheiben bezieht. Insgesamt haben wir n — r + 1 Gleichungen (18),
so daß die Gesamtheit der Gleichungen (17) und (18) gerade n beträgt. Da sie

linear sind, so liefert ihre Auflösung die Unbekannten Ti in der einfachen Form

Ti ßiGcp' (19)

Die Beiwerte ßi hängen nur von der Querschnittsform ab.
Es bleibt noch übrig das tatsächliche Bestehen der Gl. (15) nachzuweisen. Zu

diesem Zwecke berechnen wir die von den Schubkräften herrührenden

Krümmungen Ki, nämlich

W IV 1 • rp, 9Ti
Ki — ttt-j wobei 1 i —G<y az

Die gesamte Krümmung ist Ki Ki + Ki, woraus Ki Ki — Ki folgt. Für
Ki gilt Gl. (8), daher ist

Kl x" sin (fc + cp) - y" cos (M + <?) - Pi <?" + -(^7 (*°)

Beziehung (20) in Gl. (15) eingeführt ergibt
1 T Vi

x" 2' hi sin (t|)i + cp) — y" 2' hi cos (^ + cp) — 9" 2' p, hi + -= 2' -j—' 0.
i i i {* i Oi
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Die ersten beiden Summen sind die Länge der Projektion eines geschlossenen
Linienzuges auf die x- bzw. y-Achse und daher gleich Null. Der verbleibende Rest
entsteht aus Gl. (17) durch Differentiation nach z. Somit erscheint bewiesen, daß
Gl. (15) identisch befriedigt ist.

Führt man schließlich Gl. (19) in Gl. (20) ein, so gewinnt man

Kl x- sin (fc + cp) - y" cos (fc + cp) + (| - p,) cp" (20')

d. i. die der Gl. (8) entsprechende Gleichung für geschlossene Querschnitte.
Unterdrückt man cp gegen fc so vereinfacht sich die Beziehung (20/) zu

Ki x- sin fc - y" cos fc + (| - Pi) cp" (20")

Aus den Gleichungen (14) und (14') können nun die 8i als Funktion der Ki
bestimmt werden. Man gelangt so auf Grund der Gl. (13), wenn man die Gl. (19)
und (20") beachtet, zu der folgenden Gleichung für die innere Arbeit (Stabiles
Gleichgewicht):

(21)

Ai | fijyx"* + Jx y"2 + Bx x" cp" + Byy" cp" + B9cp"2 + Fem2 +1 Jdcp'2] dz

Hierin ist

Ja 2 ^ (21')
1 Ol

Gl. (21) zeigt den gleichen Aufbau wie Gl. (10), nur hat Ja eine andere
Bedeutung wie in Gl. (10). Ebenso bleibt Gl. (12), die für Stabilitätsprobleme
in Betracht kommt, auch für geschlossene Stäbe in Geltung, wenn man Ja durch
Gl. (21') definiert.

Bei veränderlichem bi innerhalb einer Scheibe ist bi in allen Gleichungen der
vorangehenden Untersuchung für Stäbe mit geschlossenem Querschnitt durch

Fj
den Mittelwert bim t— zu ersetzen. Eine genauere Berücksichtigung der

Veränderlichkeit von bi bietet keine grundsätzlichen Schwierigkeiten, doch würde
die genauere Berechnung zu unhandlichen Formeln führen.

3. Ermittlung der Querschnittsfunktionen Bx, By und B9.

Die Berechnung der Querschnittsfunktionen Bx, By und B9 wird beispielsweise
an einem symmetrischen | | -Querschnitt vorgeführt. Die x-Achse wird als

Symmetrieachse gewählt. Die drei Scheiben dieses Querschnittes werden mit 1, 2,
3 bezeichnet. Siehe Fig. 5. Wir nehmen an, daß die Scheiben 2 und 3 Veränder¬

te

liehe Stärke haben. Demgemäß ist der Abstand a * -~-.

Wir gehen von den Gl. (5') und (6') aus, die im vorliegenden Falle, wenn wir
bei Scheibe 2 beginnen und in positiver Zählrichtung von x —? y fortschreiten,
lauten:
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e2 + aK2 ex — bKx |
ex + bKx e3 — aK3 J

F1e1 + F2(e2 + 63) =0 J
(a)

*, 5| 5,-4
,2

/ Fig. 5.

Drückt man e2 und e3 durch ex aus, so gewinnt man die Beziehungen

8« — 81 b^ — aK2, £3 6;,^ + b^ + aK3

Die Einführung in die dritte Gl. (a) liefert, mit F F± + F2 + F3

£i -jr (K2 — Ks)>

womit auch e2 und e3 als Funktionen der Ki festgelegt sind.
Nun berechnet man die Summe SFiE;2 in Gl. (7)

(¦>)

(c)

2F,e,2 [F8a(K2-K3)]«+F2[2b*K12 + 2abK1(K2 + K3) + a2(K82+K8')] (d)

Die Krümmungen Ki sind nach Gl. (8') zu berechnen, wobei für die Winkel
fc folgende Zahlenwerte einzuführen sind:

*i n,

Mit diesen fc-Werten erhält man bei Beachtung von Fig. 5

Ki y" - ecp" K, bep" Ka — x"

Damit ermittelt man die Summe

2 JiKi2 J, (y" - 2ey"cp" + e2 cp"2) + 2J, (x"2 + b2cp"2)

bep".

(e)

und unter Benützung der oben entwickelten Gl. (d) die Summe

£Fiei2=-^F2*a2x"HM2b^
+ a2(2x''2 + 2b2cp''2)]. (f)

Greift man die Beiwerte der Produkte x"cp" bzw. y"cp", die wir oben mit
Bx und By bezeichnet haben, aus den Summen (e) und (f) heraus, so findet man

Bx ° l (9Q\
By —2Jxe — 4F2b2 (a + e) —2e (Jx + Fb2) i W

Mit Jx und Jy seien die Hauptträgheitsmomente, bezogen auf die x- bzw.

y-Achse des | i-Querschnittes bezeichnet.
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Faßt man alle Beiwerte von cp"2 zusammen, so findet man in gleicher Weise

B^ Jie2 + 2J2b2 + 2b2F2 (a + e)2 Jxe2 + Jyb2 + 3 Fb2e2. (23)

Nachfolgend sind die Querschnittsfunktionen Bx, By und B^ für einige weitere
im Stahlbau häufig vorkommende Querschnittsformen mit einer Symmetrieachse,

die auf dem vorangegebenen Wege berechnet wurden, zusammengestellt.

Symmetrischer H-Querschnitt (Fig. 6).

Bx 0
By 2 {— Jxe + 2 J4 (h — e) — 2Fgb2 (a + e)

_2F4(b-c)[c(h-e) + b(h + e)]} } (24)
B(? J1e2-l-2J2b3 + 2J4(h —e)2 + 2b»FJ(a + e)2

+ 2F4[c(h-e) + b(h + e)]2

Jv J2 und J4 sind die Trägheitsmomente der Scheiben 1, 2 und 4, bezogen auf
die zu ihrer Ebene winkelrecht stehenden Schwerpunktachse, Fv F2 und F4 die
Flächen der betreffenden Scheibenquerschnitte.9

Unsymmetrischer I-Querschnitt (Fig. 7).

i

sr-
*4s

•i i* ± ¦* H
C * C

X

2 *i
Fig. 6.

Ji

*y Fig. 7.

Bx 0

B9= Jie2 + J2(h — e)2. J (25)

B, -2 [Jxe - J2(h - e)]

J± und J2 sind die Trägheitsmomente der Gurte 1 und 2, bezogen auf die x-Achse.

T-Querschnitt (Fig. 8).

Bx 0

By — 2J±e

B9= J±e*.

J± ist das Trägheitsmoment der Scheibe 1, bezogen auf die x-Achse.

(26)

9 Liegen die Schwerpunkte der beiden Unlergurte außerhalb der Stege, so isl c negativ
einzuführen.
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Gleichschenkliger Winkel (Fig. 9).

Bx 0

By 2K2eJx

B, 2e2(jx-^:)
(27)

Hier ist Jx das auf die x-Achse bezogene Trägheitsmoment, F die Querschnittsfläche

des Winkels.
Die den vorstehenden Berechnungen zugrunde gelegten allgemeinen Entwicklungen

wurden ausdrücklich unter der Voraussetzung veränderlicher Scheiben-

5t
Fig. 8.

-A.TX-*/ %• 9

dicke abgeleitet. Die angeführten Formeln (22) bis (27) gelten daher auch für
die üblichen genieteten Trägerquerschnitte, deren einzelne Wände stellenweise
durch anliegende Winkelschenkel oder sonstige Auflagen verstärkt sind.
Demgemäß sind die Schwerpunktsabstände ai, die Trägheitsmomente Ji und die
Flächen Fi für die eben erwähnten verstärkten Scheibenquerschnitte zu berechnen.
Die Abstände a, b, c usw. sind immer auf die Mittelebene der Scheiben zu
beziehen. Die Hauptträgheitsmomente Jx und Jy sind in der bekannten Weise
zu ermitteln.

Geschlossener Querschnitt nach Fig. 10.

Die überstehenden Teile müssen hier als eigene Scheiben aufgefaßt werden,
da sie sich hinsichtlich der Aufnahme der Schubkräfte anders verhalten als die

2C 2b 4-—^

/JA,
\2d

F,J,

[S

\F2J2
i
x

r^y ^g. 10.

2d\

einen geschlossenen Scheibenring bildenden vier Wände des Kastenquerschnitts.
Wir setzen Symmetrie zur x-Achse voraus.

Die Ermittlung von Ja im Ausdruck für die Arbeit Ai Gl. (21) erfordert
zunächst die Bestimmung der Schubkräfte Ti. Diese Schubkräfte wirken nur in dem

geschlossenen rechteckigen Scheibenring, der von den vier Wänden 1, 2, 3, 4
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gebildet wird. Wegen der Erhaltung des Gleichgewichtes der Längsschubkräfte
an den vier Kanten des Ringes müssen die Schubkräfte in diesen vier Scheiben
untereinander gleich sein. Es ist daher nur eine Unbekannte zu bestimmen, die
durch Gl. (17) als Funktion des Verdrehungswinkels cp festgelegt ist. Man
erhält somit

L
G L&! b2 03J

woraus

T ßGcp' mit

2hbcp' 0

2hb
_b_

&7
b 2Ji
b2 b3

folgt. Nach Gl. (21') ergibt sich damit

4h8b2
Jd ^ _b_ 2h

bi b2 b3

(28)

(29)

Die Berechnung der Größen Bx, By und B9 erfolgt in der gleichen Weise wie

bei offenen Querschnitten. Da der Ausdruck für die Krümmung Ki infolge der
Biegung auch die Schubkräfte Ti enthält, so treten auch in den Querschnittsfunktionen

B Glieder auf, die mit den Schubkräften T zusammenhängen. Man
erhält mit den Bezeichnungen der Fig. 10

Bx 0

By= 2[- (Jt + 2J4) e + (Jt + 2 J5) (h- e) + ^b2 (h - 2e)

_^(b + c)2e + ^(b + d)2(h-e)]

B,, (J, + 2 J4) e2 + (Jt + 2J5) (h - e)*+ 2 J3 (|— A)*

+ ^b2(h-2e)ä + ^(b + c)2e2+^(b + d)2(h-e)2

(30)

Man beachte, daß Fv J± bzw. F2, J2 die Flächen und Trägheitsmomente dec
Scheiben 1 und 2 von der Höhe 2 b, F4, J4 und F5, J5 Flächen und
Trägheitsmomente der abstehenden Scheiben 4 und 5 mit den Höhen 2 c bzw. 2d
sind.

Bei genieteten Trägern ist der Veränderlichkeit des Querschnittes innerhalb
der einzelnen Scheiben derart Rechnung zu tragen, daß für bi in den Ausdrücken

Fi
für ß, Ja und B9 ein Mittelwert bim ^— einzusetzen ist. Im übrigen gilt
hinsichtlich der Fi, Ji und a; das oben bei den Stäben mit offenen Querschnitten
Gesagte.

10 Gl. (29) stimmt mit der aus der Elastizitätstheorie bekannten Formel für den
rechteckigen Ring überein. Siehe A. und L. Föppl: Drang und Zwang, Bd. II, 2^ Aufl. München
und Berlin 1925.

57
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4. Die Differentialgleichungen der Biegung und Verdrehung.
Sind px und py die stetige oder unstetige äußere Belastung in der Richtung

der Hauptachsen x bzw. y und ist Ma das Verdrehungsmoment der äußeren
Kräfte, wobei px, py und Mj als Funktionen der Koordinate z anzusehen sind, so
gilt für die äußere Arbeit Aa der Ausdruck

Aa yJ [pxx + pyy —Mdcp']dz (31)
ü

Aa ist eine lineare Funktion der Verschiebungen x, y, cp.

Die Gleichgewichtsbedingung b (Ai — 2 Aa), Gl. (3), lautet daher, wenn
man Ai aus Gl. (10) einführt,

i

b f[y (Jy X" 2 + Jx y"2 + Bx x- cp" + By y" cp" + B9 cp"2) + -| Jd cp'* -
— px * — py y + Md ep' dz,

wobei wir annehmen, daß die Längskraft S 0 ist, weshalb auch em 0

gesetzt wurde. Die Durchführung der Variation liefert die drei simultanen
Differentialgleichungen

(32)

EJV
•x EBX d4 9

dz4 ^T—P« °dz

EJ:
d4y EBy d4cp

dz* 2 dz4

EBX d4x EBV dS

Py 0

d4cp

2 dz4 ' 2 dz4 ¦+EB9 dz4
GJd

d*cp
dz2

dMd
dz

0

(33)

Durch eine Koordinatentransformation kann man die Gl. (33) wesentlich
vereinfachen. Führt man die Transformation

x x 2J,
- Bv

durch, d. h. verlegt man die z-Achse parallel zur Schwerpunktachse um die

Beträge

(34)
By

2j;'
**
2JV

und bezeichnet man das auf die neue Achse bezogene Drehmoment der äußeren

Kräfte mit Ma, so gehen die Gleichungen (33) über in

FT d*£

EJ,
d4y
dz4 Py

:0

0

L 4Jy 4JXJ dz4 dz'
dMd

dz
0

(35)
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Die beiden ersten Gleichungen sind unabhängig von cp und sind formal
mit den Differentialgleichungen der Navier'schen Theorie identisch. Die dritte
Gleichung ist unabhängig von x und y. Die durchgeführte Hauptachsentransformation

gestattet sonach in allen Fällen Biegung und Verdrehung gesondert
zu behandeln und ermöglicht so einen klaren Einblick in die Verformungsvorgänge

und in die Spannungsverteüung.
Aus der letzten der Gl. (35) erkennt man, daß für Md 0 die Verdrehung

cp Null wird. Wird anderseits px py 0, so verschwinden x und y, die Stab-
achsc bleibt gerade, der ganze Stab dreht sich um den Winkel cp. Hierbei ist die
Achse mit den Schwerpunktkoordinaten sx und sy nach Gl. (34) die Drehachse bei
der Torsion des Stabes. Wir wollen sie als Torsionsachse bezeichnen. Ihr
Durchstoßpunkt mit dem Querschnitt heißt Schubmittelpunkt oder Querkraftmittelpunkt.

Er wurde zum erstenmal beim C-Eisen festgestellt. Seine grundlegende
Bedeutung für die Berechnung der hier in Rede stehenden Stabformen ist aber
erst durch die voranstehend durchgeführte Transformation deutlich geworden.

Aus den Gleichungen (35) können wir bereits folgendes allgemeines Verhalten
von schlanken Stäben, die aus dünnen Platten bestehen, feststellen: Gehen die
äußeren Kräfte durch die Torsionsachse, die im allgemeinen nicht mit der
Schwerpunktsachse zusammenfällt, so treten nur Biegungsspannungen, aber keine

Torsionsspannungen auf. Die Berechnung der Formänderungen und
Spannungen erfolgt auf Grund der ersten beiden Gl. (35), also so wie nach der
Navier sehen Theorie bei Belastungen, die durch die Schwerpunktachse gehen.
In allen anderen Belastungsfällen treten sowohl Biegungsspannungen als auch

Verdrehungsspannungen auf, auch dann, wenn px und py verschwinden. Weist
der Querschnitt eine Symmetrieachse auf, so liegt der Schubmittelpunkt in dieser
Achse. Bei zwei Symmetrieachsen fällt die Torsionsachse mit der Schwerachse

zusammen.
Die Gl. (34) und (35) gelten sowohl für Stäbe mit offenem als auch

geschlossenem Querschnitt. Nur bei der Ermittlung der Querschnittsfunktionen
Ja, Bx, By, B9 ist darauf zu achten, ob es sich um einen einfach oder mehrfach
zusammenhängenden Querschnitt handelt.

Für die üblichen Anwendungen können die Gl. (35) durch Integration auch
auf die Form gebracht werden:

d2x
EJy^ + My 0

d*v
EJx^ + Mx 0

*[«.-£-&]£-"¦£-«-«>
(36)

Mx und My sind die Momente der äußeren Kräfte in den Ebenen zy bzw. zx.
cp ist somit durch die Differentialgleichung dritter Ordnung

d35_a2d^_Mi 0 (37)
dz3 dz y

y
T

L ' 4Jy
definiert, wo a2 ^ und t e[b(P-^-M (37')

Y
' L v 4Jy 4JXJ

577*
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Die von der Belastungsweise und den Auflagerbedingungen abhängige Lösung
der Torsionsgleichung (37) hängt nur durch die Parameter a und y, die als
Festwerte in die Lösung eingehen, von der Stabform ab. Die Lösungen der
Gl. (37) können daher ebenso wie die Lösungen der /Vawer'schen
Biegegleichungen unabhängig von der Stabform aufgestellt werden. Gl. (37) ist eine

Verallgemeinerung der von Timoschenko aufgestellten Differentialgleichung der
Verdrehung des symmetrischen I-Trägers.

Anschließend an die allgemeinen Erörterungen mögen noch einige
Bemerkungen zu der eingangs gemachten wesentlichen Voraussetzung der Unveränder-
lichkeit der Querschnittsform hinzugefügt werden. Vereinigt man drei Scheiben zu
einem Stab, so überzeugt man sich leicht, daß jede dieser Scheiben beliebige
kleine Verformungen in ihrer Ebene erfahren kann, ohne daß der Zusammenhang

zwischen den Scheiben aufhört und ohne daß sich die Winkel, die je zwei
Scheiben miteinander einschließen, ändern. Bei mehr als drei Scheiben, allgemein
n Scheiben, ändern sich n — 3 Winkel, wenn den einzelnen Scheiben
Verformungen in ihrer Ebene vorgeschrieben werden. Aus dieser Überlegung folgt,
daß bei .1, L, C> I und "L-förmigen Stäben die Bedingung von der Erhaltung
der Querschnittsform von Haus aus erfüllt ist, da bei den Verformungen, die die
einzelnen Scheiben unter der Belastung erfahren, überhaupt kein Zwang besteht,
die Querschnittsform zu ändern. Bei Stäben aber, die aus vier und mehr
Scheiben zusammengesetzt sind, gleichgiltig ob der Querschnitt einfach oder
mehrfach zusammenhängend ist, ist durch geeignete Maßnahmen Vorsorge
zu treffen, daß die Querschnittsform erhalten bleibt. Es genügen in der Regel
Querschotten in größeren Abständen. Sie sind, praktisch gesehen, natürlich nur
dort notwendig, wo die Belastung bei nennenswerten Verdrehungswirkungen
stärkere Winkeländerungen zwischen den einzelnen Scheiben erzwingen würde.

Verbindet man zwei Wände eines Stabes mit offenem Querschnitt durch
Verstrebung, wie dies z. B. in Fig. 11 angedeutet ist, so kann ein solcher Stab als

geschlossener Stab berechnet werden. Bei der Ermittlung der B-Werte nach
den Formeln (30) ist für die Fachwerkscheibe im Falle Fig. lla:J2 0, F2 0

zu setzen. Im Falle Fig. IIb ist für J2 das Ersatzträgheitsmoment der zwischen

*)

Verstrebung
Contre - flehe

Lalticing

Fig. 11.

den beiden Stegen liegenden Fachwerkscheibe, für F2 die Fläche der zwischen
den Stegen befindlichen Plattenstreifen einzuführen. Bei der Berechnung der
Schubkraft T mittels Formel (28) und Jd nach Formel (29) ist b2 gleich jener
ideellen Blechstärke zu setzen, die man erhält, wenn man den Strebenquerschnitt
f (Fig. IIb) auf die ganze Höhe 2b der Scheibe aufteilt.
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5. Spannungsermittlung bei Biegung und Verdrehung.
Die von den Momenten Mx und Mv hervorgerufenen Randspannungen ö

werden in der üblichen Weise, wie wenn die Lasten durch die Schwerachse des

Stabes gehen würden, berechnet. Ist Md von Null verschieden, d. h. gehen die
Lasten nicht gerade durch die Torsionsachse, so ist die dritte der Gl. (35) bzw.

Gl. (37) nach Einführung von Md als Funktion von z unter Beachtung der
Randbedingungen der Aufgabe zu integrieren. Ist cp als Funktion von z bekannt, so
können die von der Verdrehung herrührenden zusätzlichen Randspannungen und
Schubbeanspruchungen ermittelt werden. Zu diesem Zwecke berechnet man die

Krümmung der einzelnen Wandscheiben des Stabes nach Gl. (8') bzw. (20"),
wobei x und y die Verschiebungen sind, die die Schwerachse erfährt, wenn sich
der Stab um die Torsionsachse um den Winkel cp dreht. Es sind sonach in Gl. (8')
bzw. (20") die Verschiebungen x sycp und y — sxcp einzuführen, so daß

allgemein

Ki I
sy sin ij)i + sx cos ^ + (Li _ pM <p" (38)

gilt. Bei Stäben mit offenem Querschnitt ist ßi 0.
Die Randspannungen öi in der Scheibe i sind durch die Beziehungen

CS; E (Ei + nK;) (39)

festgelegt, wo r\ die Entfernung der Randpunkte vom Scheibenschwerpunkt ist.
1\ isl positiv im Sinne der positiven Zählrichtung von x —? y anzusetzen.

Führt man in Gl. (38) die Längen e, sx, b usw. ziffernmäßig ein, so erhält
man für die Ki Ausdrücke in der Form Ki M^t"« Damit berechnet man mit
Hilfe der Gl. (5') die Ei -Werte, die ebenfalls die Form 8i vjcp" annehmen.
Damit sind alle Zahlenwerte bekannt, um mittels der Gl. (39) die

Längsspannungen öi in den in Frage kommenden Randpunkten zu berechnen. Hierbei
ist folgendes zu beachten: Während alle bisher in der Rechnung benützten
Maße, das sind die Größen a, b, e, sx usw., sich auf die Scheibenmittelebenen
beziehen, sind die t\ auf die End- oder Außenflächen der Scheiben einzustellen.
Bei einer Ecke nach Fig. 12 z. B. ist die Spannungsberechnung mit den Ab-

<—*
X\^-P^Z Fig. 12.

ständen r\ bzw. t\' durchzuführen, je nachdem man die Spannung im Eckpunkte A

in der lotrechten oder waagrechten Scheibe bestimmt. Die beiden so errechneten

Spannungen stimmen natürlich nicht genau überein, da die Lösung des hier
vorliegenden Problems von der Voraussetzung unendlich dünner Scheiben

ausgegangen ist. Übereinstimmung würde die Rechnung nur für den Schnittpunkt
A' ergeben.

Die von der Verdrehung herrührenden Längsspannungen ö sind schließlich
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mit den von den Momenten Mx und My hervorgerufenen Spannungen ö, die in
der üblichen Weise berechnet wurden, zusammenzusetzen.

Die Verdrehungsschubspannungen sind bei Stäben mit offenem Querschnitt
nach der Formel

^ Gc/max&i (40)

für jede der Scheiben zu berechnen, max di ist die größte Dicke der betrachteten

Scheibe. Bei Stäben mit geschlossenem Querschnitt ergeben sich die
maßgebenden Schubspannungen aus den Ti nach der Formel

min bi
(41)

Hier ist min&i die kleinste Dicke der betrachteten Scheibe.
Um die Richtigkeit der vorangehend entwickelten Theorie zu überprüfen,

wurden die Spannungsmessungen, die Bach an einem C NP 30 vorgenommen
hatte, mit den Spannungen, die die genaue Rechnung auf Grund der hier
aufgestellten Gleichungen ergibt, verglichen. Der Versuchs träger hatte 3 m Stützweite

und war in den Drittelpunkten mit je 1500 kg lotrecht belastet, wie dies

Fig. 13 im Querschnitt zeigt. Die Größe und der Verlauf der Längsspannungen

1500 kg

CtfSO

3

tf-

Randspannungen in /, 2, 3t 4
Tensions dans la Fibre extreme en f, 2, 3, 4
Extreme fibre stresses in 1, 2,3, 4.

f/m 472

- //
nt

271

50?

sta

(Nach
Bleich berechnet

Calculees d'apres Bleich
Calculated acc. to Bleich

Von Bach gemessen
Mesurees par Bach
Measured by Bach

Nach Navier berechnet
Calculees d'apres Navier
Calculated acc. to Navier

Fig. 13.

im oberen und unteren Flansch des Z- Stahles sind in der gleichen Figur dargestellt.
Die Übereinstimmung zwischen den gemessenen und gerechneten Spannungen
ist befriedigend. In den Spannungsdiagrammen ist zum Vergleich auch die in der
üblichen Weise errechnete gleichmäßige Biegespannung von 271 kg/cm2
eingetragen. Es sei noch bemerkt, daß die Meßpunkte 1 bis 4 um 5 mm von den
Außenflächen der beiden Flanschen abgerückt sind. Bei der Spannungsermittlung
wurde diese Lage der Punkte berücksichtigt.11

11 Der Bachsche Versuch wurde bereits von C. Weber mit Hilfe der von ihm für Släbe
mit zwei Gurten aufgestellten Formeln nachgerechnet.
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6. Die Differentialgleichungen des Knickproblems.

903

Der gerade Stab sei mit einer in der Schwerpunktachse wirkenden Längskraft

S belastet. Beachtet man, daß der Stab zunächst unter der Einwirkung
von S um em zusammengedrückt wird, um nach Erreichen der Stabilitätsgrenze
auszubiegen, so ergibt sich für die äußere Arbeit Aa in bekannter Weise der
Ausdruck

1

Aa J[ySem + j-S(x2 + y")]dz

Bei den einfachen Knickproblemen, die wir in diesem Abschnitt im Auge
haben, genügt es, als Ausdruck der inneren Arbeit Gl. (10) heranzuziehen, in
der die Formänderungsgrößen höherer Kleinheitsordnung unterdrückt wurden.
Die Variationsbedingung (3) lautet sonach, wenn man beachtet, daß das Glied

1 u
-zr S em in Aa auch durch — F em2 wegen S E F em ersetzt werden kann.

1

&f[^(jyx"2+Jxr2+Bxx"<p"+Byy"<p"+B<?<p"2+^Jd<pi_

_±S(x<2 + y'2)]dz-0.

Die Durchführung der Variation liefert die drei Differentialgleichungen

d4x EB, d4ct> „d2x
EJV

EJX

dz4

dz4

2 dz4 "*" dz'
0,

+ :

EBV d4

2 dzJ + sS o,

EB, d4x •h^SWÖ-gj. d2 1 —
2 dz4 ' 2 dz4 ' —9 dz4 Q dz2

die nach zweimaliger Integration die Form annehmen

¦ + Sx 0,

0,

(42)

pT d2x EBX d*

EJ*di« '

EBX d2x

+ Sy o,
2 dz

EBy d2y d2cp

2 dz2 '
2 dz

(43)

Mit diesen drei simultanen Differentialgleichungen ist das Knickproblem des

dünnwandigen Stabes in allgemeiner Form erledigt. Die Gl. (43) lassen bereits

folgendes erkennen: Besitzt der Stabquerschnitt keine Symmetrieachsen, d. h.
ist sowohl Bx als auch By von Null verschieden, so tritt eine Verdrehung des

Stabes ein, da cp nicht verschwindet. Hat der Querschnitt eine Symmetrieachse,
so knickt der Stab je nach den Steifigkeitsverhältnissen in der Richtung der

Symmetrieachse oder senkrecht dazu aus. Ist das Letzte der Fall, dann verdreht
sich auch der Stab. Der Stab kippt also aus, obwohl er mittig belastet ist.
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Um einen weiteren Einblick in das Verhalten derartiger Stäbe zu gewinnen,
untersuchen wir einen Stab von der Länge 1, dessen Querschnitt Symmetrie
zur x-Achse aufweist, und der für Ausknicken in Richtung der y-Achse an den

Enden gelenkig gelagert und dort gegen Verdrehen um die z-Achse gesichert ist.
Mit dem Lösungsansatz

y ci sin n^z
9 C9 sin njrz (n=l, 2,3

erhält man nach Einführung in die zweite und dritte Gl. (43) die

Knickbedingung

P
EJX4-S

n2:r2 EBV

n'jr

nzji

EBV

1* 2

Mit der Abkürzung Se

minante die Knicklast Sk

(-^EBv + GJd)

n2n2EJx
1* gewinnt man nach Ausrechnung der Deter-

SK Se /1 —
Bv

4J: :(ß* +
JxG Jd

Der kleinste Wert wird mit n 1 erhalten, wenn also Se
;EJX
1*

(44)

Die

talsächliche Tragfähigkeit für Ausknicken winkelrecht zur Symmetrieachse ist daher
geringer als die Tragkraft nach Euler. Untersucht man die Größenordnung des

zweiten Gliedes in der Klammer, so findet man, daß bei bestimmten Querschnittsformen

wie bei T- und unsymmetrischen I Querschnitten nennenswerte
Abminderungen der in der üblichen Weise berechneten Tragkraft des Stabes eintreten.12
In der folgenden Zusammenstellung ist Sk nach Gl. (44) für einige Querschnittsformen

angegeben. Die Zahlen wurden unter der Voraussetzung berechnet, daß
die nach Euler ermittelte Knickspannung ök gerade 2000 kg/cm2 beträgt. Mit
zunehmender Schlankheit des Stabes nähert sich Sk der Eulertragkraft. Der
Einfluß des Drillungswiderstandes des Stabquerschnittes ist sehr bedeutend. Je

größer derselbe ist umso größer wird die Tragkraft Sk. Sein Einfluß wächst mit
zunehmendem Schlankheitsgrad. Bei geschlossenen Querschnitten ist wegen
des großen Drillungswiderstandes der Unterschied zwischen Sk und Se äußerst
geringfügig.

Rückt die Last aus dem Stabschwerpunkt heraus und zwar gegen den

Schubmittelpunkt, der z. B. beim T- Querschnitt im Schnittpunkt der beiden
Scheiben liegt, so wächst, wie wir im folgenden Absatz noch nachweisen werden,
Sk stetig an .und erreicht den Größtwert Se, wenn die Last gerade in der Torsionsachse

wirkt. Für seitliches Ausknicken haben bei den hier betrachteten Stabformen
Schwerpunktachse und Torsionsachse ihre Rollen vertauscht. Einseitig mit dem
Flansch angeschlossene hochstegige ± -Stähle dürften daher nach diesen Über-

12 Diese Abminderung der Tragfähigkeit hat bereits Ostenfeld festgestellt. Siehe die in
Fußnote ö angegebene Arbeit, S. 17.
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Querschnittsform
Verhältnis der Tragkraft SK bei Knicke

y zur Eulertragkraft SE

n in Richtung

J00

300lo Y

bmm 10 20 30

0,699 0,930 0,974

300
¦

0 10 20
i

5
*y

S00J0
ISO 10

f

30

1

X
sE~

0,691 0,724 0,883

i. *00
.1

o 10 201

I
'

t r
40

'
300 '

r—•—i
X

SK

Se " 0,534 0,703 0,942

legungen eine größere Tragfähigkeit aufweisen, als sie die übliche Rechnung
unter Berücksichtigung des exzentrischen Krafteintrages ergibt.

Es sei ausdrücklich hervorgehoben, daß die vorangehenden Entwicklungen und
Schlußfolgerungen nur für den Fall des elastischen Knickens gelten.

7. Die Differentialgleichungen für Probleme des Kippens.
Unter Kippen versteht man den Eintritt eines labilen Gleichgewichtszustandes

eines auf Biegung beanspruchten Stabes, der dadurch gekennzeichnet ist, daß mit
Eintritt des unsicheren Gleichgewichtes der Stab unter gleichzeitiger Verdrehung
seitlich, d. i. winkelrecht zur Ebene der Biegung, ausweicht. Um die Darstellung
etwas zu vereinfachen, betrachten wir nur Stäbe mit einfach symmetrischem
Querschnitt, die in der xz-Ebene belastet sind. Der Stab wird in der Richtung
der y-Achse ausweichen, wenn Jx nennenswert kleiner als 3y ist, wie dies z. B.
bei einem in der Stegebene belasteten I-Träger der Fall ist.

Es sei px die in der xz-Ebene wirkende Belastung, My das von dieser
Belastung hervorgerufene Biegungsmoment, S eine in der Stabachse wirkende
äußere Längskraft, a die Höhe des Angriffspunktes der Belastung p über dem

Querschnittsschwerpunkt, siehe Fig. 14, wobei a auch negativ sein kann. Die
gesamte Arbeit der äußeren Kräfte, d. i. die Arbeit im stabilen und unstabilen
Gleichgewichtszustand ist durch den Ausdruck

Aa=y f[Ij;+Se-+sy'2 + aPx(p2]dz

festgelegt. Hinsichtlich der inneren Arbeit Ai müssen wir auf Gl. (12)
zurückgreifen, da der Einfluß der Formänderungsglieder höherer Ordnung nicht mehr
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Pk

4&n &{~y
L W-tll TnI

Fig. 14.

vernachlässigt werden darf. Demgemäß nimmt die Variationsbedingung (3), wenn
man beachtet, daß wegen der vorausgesetzten Symmetrie Bx 0 ist, die Gestalt an,

l

b i-J[E (jy (x" + y" cp)"+Jx (x" cp -y")2 + By (x" cp - y") cp"+B9cp' * + FEm* +

+ ^Jd<p'2)-(^+Sem + Sy'2 + apxcp)!)]dz (45)

Die Änderungen der Größen x und em beim Auskippen sind klein gegenüber
den Verschiebungsgrößen y und cp, die erst beim Kippen auftreten. Wir
betrachten daher die Größen x und em für idie Variation als unveränderlich; sie

M S
behalten jene Werte x" — ~~ und em ^, die sie knapp vor Eintritt
des labilen Zustandes erreicht haben, auch während des Auskippens bei. Führt
man in Gl. (45) diese Werte für x und em ein, so erhält man die folgende Be-
dingungsglei,chung, in der aber alle Glieder von höherer als von der zweiten

Kleinheitsordnung unterdrückt wurden:

l

&-^J[EJxy''*-EB^^^

— apcp2 — Sy'2 I dz.

Variiert man nach y und cp, so gelangt man zu den beiden simultanen
Differentialgleichungen

(46)

womit die allgemeine Kippaufgabe für Stäbe, die wenigstens eine Symmetrieachse
aufweisen, grundsätzlich gelöst ist.13

Für den einfachsten Sonderfall, S und My konstant, px 0, findet man für
einen Stab von der Länge 1, der an den Enden gegen Verdrehen um die z-Achse

13 Setzt man By ^ 0, d. h. nimmt man an, daß der Querschnitt zwei Symmetrieachsen
besitzt, so läßt sich in dem Sonderfall S 0 die Funktion y eliminieren und man erhält die

von Timoschenko für das Kipproblem des I-Trägers aufgestellte Differentialgleichung dritter
Ordnung.
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festgehalten ist, sich aber um die x-Achse frei drehen kann, mit dem Lösungsansatz

n nz ;tz
y LiX sin -p, cp — L2 sin -r-

die Stabilitätsbedingung

(EJx^-s)(EB^;+GJd)-[^^-(l-^My]=0 (47)

Aus dieser Gleichung kann S oder My bestimmt werden. Denkt man sich dia
Momente My dadurch hervorgerufen, daß die Kraft S nicht im Schwerpunkt,

M
sondern im Abstände e -^ davon angreift, so liegt ein Fall von Knickung

tt2EJ / Jx\
unter exzentrischem Druck vor. Mit Se =¦ —t^ und 11 — y^l « 1 nimmt

Gl. (47) die einfachere Gestalt

(SE _ S) (E B9 ^ + GJd) - (A- SE - Se)*= 0 (48)

an. Nun ist ^y- sx, der Abstand des Querkraftmittelpunktes vom Schwer-

punkl. Wählt man e sx, d. h. läßt man die Längskraft S im Querkraftmittelpunkt

angreifen, so wird S Se, ein Maximum und gleich der Eulerknickkraft,
womit die im vorangehendem Absatz aufgestellte Behauptung bewiesen ist.
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Zusammenfassung.

Die übliche Theorie der Biegung und Verdrehung gerader Stäbe stützt sich
auf zwei Voraussetzungen: 1. Die bei der Biegung auftretenden Längsspannungen
sind lineare Funktionen der Querschnittkoordinaten x und y. 2. Bei bloßer
Verdrehung sind die Längsspannungen, wenn man von kleinen Größen zweiter
Ordnung absieht, Null. Diese Voraussetzungen sind bei Stäben, die aus dünnen
Platten zusammengesetzt sind, nicht immer erfüllt. Von der Annahme ausgehend,
daß in jeder Platte, die den Stab zusammensetzt, die Grundlagen der Navier sehen

Biegungstheorie in Geltung bleiben, werden die Differentialgleichungen der
Biegung und Verdrehung prismatischer Stäbe mit Hilfe eines Variationsprinzipes
abgeleitet. Die Gleichungen gelten allgemein, sowohl für Stäbe mit offenem
als auch für Stäbe mit geschlossenem, zwei- oder mehrfach zusammenhängendem
Querschnitt. Durch eine zweckmäßige Koordinatentransformation gelingt es, die
Behandlung von Biegung und Verdrehung zu trennen. Diese Transformation legt
auch die Bedeutung des Querkraftmittelpunktes dar.

Nach der allgemeinen Darstellung der Spannungsermittlung bei Biegung und
Verdrehung werden die Differentialgleichungen des Knickproblems für die hier
in Betracht gezogenen Stabformen in allgemeinster Form entwickelt und der
einfache Knickfall eines Stabes mit einfach symmetrischem Querschnitt behandelt
Es erweist sich, daß ein zentrisch belasteter Stab u. U. eine Knicktragkraft
aufweist, die oft um einen nennenswerten Betrag unterhalb der Eulerlast liegen
kann. Zum Schlüsse werden die Differentialgleichungen des Kippens für Stäbe,
deren Querschnitte mindestens eine Symmetrieachse haben, aufgestellt. Hier wird
nachgewiesen, daß bei Belastung des Stabes durch eine in der Symmetrieachse
wirkende Längsdruckkraft S die kritische Last Sk einen Größtwert erreicht, wenn
S durch den Querkraftmittelpunkt hindurchgeht.
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