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V16

Stability of Rectangular Plates Under Shear
and Bending Forces.

Die Stabilitit rechteckiger Platten unter Schub: und
Biegebeanspruchung.

La stabilité des plaques rectangulaires soumises au cisaillement
et a la flexion. |

Dr. S. Way,
East Pittsburgh, Pa., U.S.A.

1) Introduction.

In the design bridge, ship and aircraft structures, problems arise having to
do with the stability of rectangular plates with various types of edge loading.!
With loading higher than a certain critical value lateral deflection from the initial
planc of the plate takes place. It may sometimes be permissable for a structure
to carry a load higher than the critical value but a knowledge of the critical
load is always desirable.
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Fig. 1. Fig. 2.

Two problems in the buckling of rectangular plates are discussed in this paper.
The first, Fig. 1, is that of a plate having two stiffeners. The loading consists
of uniformly distributed shearing forces on the edges. The second problem,
Fig. 2, is that of a plate loaded by uniform edge shear and linearly distribated
tension and compression at the ends. In both cases we assume all four edges are
simply supported.

! An extensive bibliography on the stability of plates has been given by 0. S. Heck and
H. Ebner, Luftfahrtforschung, Vol. 11, 1935, p. 211.
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The method employed is the energy method, in which the critical load is cal-
culated from the condition that the work of the edge forces during buckling is
equal to the stored elastic energy. The form of the deflection must be that which
makes the critical load a minimum.

2) The Plate in Shear with Two Stiffeners.

The problem of a rectangular plate in shear having no stiffeners and that of
a plate with one stiffener have been solved by Timoshenko,?2 while Southwell?
and Skan have treated the case of an infinitely long strip with edge shearing
forces. Transverse stiffeners serve to increase the critical load value for a plate,
and the greater the rigidity of the stiffeners the greater is this increase, in
general. It is found, however, that beyond a certain point increasing the rigidity
of the stiffeners in a plate with edge shear loading is useless, as the stiffeners
will remain straight and only the panels of the plate will deflect.

To solve the problem of the plate shown in Fig. 1, a general expression is
assumed for the deflection surface in the form of the double trigonometric
series

Apn sinﬁ:lx sin m;y (1)

=
I
B
It M8

I M8

1n=1

each term of which satisfies the boundary condition of simply supported edges.
Using this expression three energy quantities may be calculated, the elastic energy
of the plate V, the elastic energy of the stiffeners V,, 4 V,,, and the work done
by the edge shearing forces during buckling, V,. The torsional rigidity of the
stiffeners will be neglected. These three energy quantities in terms of the
derivatives of w are:

a b
gbf r {(Wxx + Wyy)? — 2 (1 — p) (Wax Wyy — Wxy®)} dxdy @)
b §
Vi1 + Vso :%J{(W”):i:% + (WYY):=23_H} dy (3)
V1=—thffwxwy dx dy 4)
0 0

where h is the thickness of the plate, B the flexural rigidity of the stiffeners
and D the flexural rigidity of the plate,

' Eh® -
b= i ?

2 S. Timoshenko: Eisenbau, Vol. 12 (1921), p. 147.

3 R.(V. Southwell and S. W. Skan, Proc. Royal Society, London, Series A, Vol 105 (1924),
p. 582.
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The condition for buckling is that
V+V,+V,=V,. (6)

Equation (6) leads to an expression for 7., the critical shearing stress, in terms
of the constants A... The next step is to minimize 7. by differentiation with
respect to the constants. The equations d7.,/dAn, = 0 lead to a set of linear
equations for the constants An,. The value of . is finally obtained by equating
to zero the determinant of this system. The greater the number of terms con-
sidered in the infinite order determinant, the greater will be the accuracy of the
T value calculated.

It happens that the linear equations obtained by minimizing t.. with respect to
the constants A, consist of two groups, one group containing terms with
m + n odd and the other group containing terms with m + n even. That group
of equations should be used which leads to the lowest value of ..

It is convenient to measure the critical load by the ratio t./c., where o, is the
Euler stress Dn2/hb2. In Table I values of t./o. are given as found by cal-
culation from sixth order determinants for the two groups of equations, for the

particular case when B = 0% The ratio% is designated by 3

Table 1. .
Tr/06. Values for Various 8 Values. B = 0.

3 1 1.2 15 2 25 3

Ter | Ce 9.42 8.06 7.14 6.59 6.32 6.14
m-+-n even

Ter | O 11.55 8.09 6.74 6.21 6.04
m+n odd

Values of t./c. for B less than unity can easﬂy be derived from the abow
values and are given in Table II. The lowest t../c. value of the two is given.

Table II.
T/ for < 1. B=0.
8 i 1 ! 0833 | 0.667 ' 0500 |  0.400 0.333
Ter | O ‘ 9.42 ! 11.60 ’ 16.06 ‘ 96.40 l 38.80 54.40

For any appreciable amount of stiffening the system with m -}- n odd lcads
to the least values of t... We equate to zero the determinant of the coefficients
of the constants

Ao, Args Az Agg Ay Ay

4 The values for m + n even agree with those obtained by Timoshenko (note 2). The terms
used for m - n even were Ajj, Ay, Ags Ay Aj and A42, and for m + n odd Ay, A,,,
Ages Aggy Ay Ay
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and the resulting equation enables us to calculate t../o, directly when 3 and the
stiffener rigidity are given. The stiffener rigidity is, for convenience, measured
by the ratio y = B/aD. Values of t../o. are given in Table III. It will be noted
that increasing the stiffener rigidity increases the load necessary to buckle
the plate.

Table III.

Tee/06e Values for Various B and y Values.

B=1 B=1.2 3=15 B=2 B=25 B=3

Y I Ter/%e| ¥ ' Ter [ Be Y Tor/ Oe 1 } Ter/ O Y \ Ter/ Oe Y Ter | Oe

0 | 1155 | 20 36.7 0 8.09 0 6.74 0 6.21 0 6.04
10 | 327 | 25 40.1 5 | 1943 2 | 13.07 1 | 103 0.2 7.29
20 | 41.6 30 43.2 10 | 25.2 5 | 182 2 131 0.4 8.32
30 | 485 15 | 295 10 | 238 3 | 151 0.6 9.21
40 | 544 : 0.7 9.59

If the stiffeners are made very rigid the calculated critical load for the plate
will be greater than the critical load for each of the three panels. The situation
then is such that the stiffeners will remain straight and only the panels of the
plate will buckle. The condition that the stiffeners remain straight is that their
rigidity be greater than that necessary to make the critical load for the plate
equal that for one panel. The critical load for one panel is calculated by making
the assumption that all edges are simply supported. Actually, each panel is
partially constrained by the adjacent panel or panels.

We let Ymin be the minimum value of y for which the stiffeners will remain
straight. To illustrate the method of calculation we shall consider the case of
B = 1.2. The 3 value for one panel of this plate is 0,400 and the corresponding
critical load ratio is 38.8 as given in Table II. By plotting graphically the values
given for t./oc. with B = 1.2 in Table III we find that t./o. = 38.8 when Y
1s 23. Hence Ymin is 23 for B = 1.2. In the same manner values of Yni. for
other values of 3 may be found.

It is useful to present the results in terms of the dimensions of one panel
instead of the dimensions of the plate. Let ¢ be the distance between the
stiffeners. We introduce the symbols ' and Y’ defined by

, ,_ B
Y=y YT

In Table IV, values of t../c. and Y'mi, are given for various panel ratios. These
values have been plotted in the curves in Fig. 3. We note that the required
stiffener rigidity for two stiffeners is not very much greater than the required
rigidity for one stiffener. For three or more stiffeners, the Y'nin value would
probably be only very slightly larger than the value for two stiffeners.
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Table IV.
One Stiffener Two Stiffeners
B’ ’ T min Ter / Ge B’ 1 Y'min Ter / Oe
0.500 ' 30.4 26.4 0.333 120 h4.4
0.625 12.6 17.9 0.400 69 38.8
0.750 5.8 13.3 0.500 34 26.4
1.000 1.66 9.42 0.667 10.8 16.06
0.833 4.2 11.61
1.000 2.0 9.42

8) Plates Loaded by Combined Shear and Bending Forces.

If, as shown in Fig. 2, the plate is loaded by uniformly distributed edge
shearing stress, t, and linearly distributed tension and compression at the ends,
6 =0, (1—2y/b), the critical bending stress o,.. will depend upon the magni-
tude of the shearing stress. Similarly, the critical shearing stress may be said
to depend upon the magnitude of o,. For convenience we introduce the para-
meters x and p defined as follows:

Coer T

Oe P= G

P At

To solve the problem, the expression (1) which satisfies the boundary con-
ditions for simply supported edges may again be assumed for the buckling
deflection. The elastic energy of the plate after buckling will be given, as
before, by Equation (2). The work V, of the edge forces during buckling
will be, 1in this case,

t\:I:r

(fd)(fdo( )W dX—'chffwst dx dy ()

The condition for buckling is that V = V,. This leads to an expression for
Gor, Which is then minimized with respect to the constants A... The equations
0%/ Amy = 0 became a linear system in An,. The magnitude of x is obtained
by equating to zero the determinant of this system. The order of the determinant
used determines the accuracy of the result. We here use the determinant
of the coefficients of the eight terms A;;, Ao, Az, Aoy, Auo, Agg, Agy, Agg,
and the calculated values of x for various values of 3 and p are as given in

Table V.

These values have been plotted in the curves in Fig. 4. When % = 0 we have
the condition for the buckling of a plate in pure shear, while for p = 0 we have

5 Stein made calculations with four terms. Considerably lower x values are obtained above
by using eight terms. O. Stein: Der Stahlbau, Berlin, Vol. 7 (1934), p. 57.

.
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Table V.
Values of x and p For Various B Values.
B=1 =" B="0s B="h
p ’ % p % P % p | %
0 25.6 0 24.5 0 23.9 0 25.6
2 24.6 4 22.8 4 23.05 4 25.4
4 22.2 8 17.7 8 20.35 8 24.3
6 18.4 10 13.25 12 15.23 12 22.55
8 124 11 10.01 14 11.04 16 19.94
9 6.85 12 4.61 15 8.0 20 16.13
9.42 0 12.26 0 16.09 0 24 10.26
26 5.44
26.9 0

the condition for the buckling of a plate with bending forces at the ends. The
values of p for » = 0 agree very closely with those obtained by Timoshenko for
the case of pure shear. The slight disagreement for small values of B is due to
the fact that among the eight terms used in these calculations there are only
five m - n even terms, while Timoshenko uses six terms. For pure shear and
B =1/, the difference in the values of t./o. for five and six term calculations
i1s only 2 0. For pure bending (p = 0) the values of x agree with those ob-
tained by Timoshenko using three terms.

4) Numerical Examples.

Suppose we have a plate with edge shear loading which we wish to
reinforce with two stiffeners. Let a = 2000 mm, b = 1000 mm, h = 7 mm,
E = 21,000 kg/mm2, p = 0.3. Let it be required to find the load causing the
plate to buckle and the proper rigidity for the stiffeners.

21,000-7°
D = 157 — oipg) = 060,000 kg mm,
L2
_ 6600007 _ gy e

¢ = 1,000,000 -7

For B =2 we have B’ = 0.667, and we have from Table 1V, ¥/, = 10.8 and
Ter/0. = 16.06 from which 1, = 14.94 kg/mm? and B = 10.8 - 0.667 - 660,000
= 4750 - 106 kg/mm2. If one stiffener were used, the critical shearing stress
would be 8.77 kg/mm?2, and the required stiffener rigidity 1096 - 106 kg - mm?.

As a second example, take the case of the end portion of the web of a plate
girder. Let the depth b, be 2000 mm and the thickness h = 8 mm. Let it be
required to find the proper stiffener spacing for the end of the girder and also
the stiffener rigidity so that buckling will occur when t = 10 kg/mm?2.
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21,000 - 8°*
D= 5. 001 — 985,000 kg mm
985,000 7* o
Ce == 1.1 8 — 0.3035 kg/mm

Ter = 10 kg/mm?

"Ter

— =32.9.

Ce

By Fig. 3 we see that B’ = 0.44 so that the proper stiffener spacing is given by
¢ = 2000 - 0.44 = 880 mm.
To find the stiffener rigidity we assume that every third stiffener in the girder

is perfectly rigid. We then use the curve for Y'mi, in Fig. 3 for two stiffeners
and find Y'min = 50. The required stiffener rigidity is therefore

B = 50 - 880 - 985,000 = 43,300 - 106 kg - mm2.
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Fig. 3.

Required stiffener rigidity for given panel proportions.

As a third example, suppose we have a rectangular panel with a = 1000 mm,
b = 2000 mm, h = 10 mm which is loaded by bending and. shearing forces as
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shown in Fig. 2. Let the bending stress, o,, be 10 kg/mm? and let it be required
to find the shearing stress which will cause buckling. In this case § =1/, and

21,000 - 10°

D= p—
19091 1,923,000 kg mm
~ 1,923,000 n’ _ 2
Ce — WW =0.474 kg/mm
10
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Fig. 4.

Critical loads combined shear and bending.

From Fig. 4 the value of p for B =1/, and x = 21.1 is 14.3. The correspon-
ding value of t is 14.3 - 0.474 = 6.78 kg/mm2.
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