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V16

Stability of Rectangular Plates Under Shear
and Bending Forces.

Die Stabilität rechteckiger Platten unter Schub* und
Biegebeanspruchung.

La stabilite des plaques rectangulaires soumises au cisaillement
et ä la flexion.

Dr. S. Way,
East Pittsburgh, Pa., U.S.A.

1) Introduction.

In the design bridge, ship and aircraft structures, problems arise having lo
do with the stability of rectangular plates with various types of edge loading.1
With loading higher than a certain critical value lateral deflection from the initial
plane of the plate takes place. It may sometimes be permissable for a strueture
to carry a load higher than the critical value but a knowledge of the critical
load is always desirable.
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Fig. 1. Fig. 2.

Two problems in the buckling of rectangular plates are discussed in this paper.
The first, Fig. 1, is that of a plate having two stiffeners. The loading consists
of uniformly distributed shearing forces on the edges. The second problem,
Fig. 2, is that of a plate loaded by uniform edge shear and linearly distributed
tension and compression at the ends. In both cases we assume all four edges are
simply supported.

1 An extensive bibliography on the stability of plates has been given by O. 8. Heck and
H. Ebner, Luftfahrtforschung, Vol. 11, 1935, p. 211.



632 V 16 S. Way

The method employed is the energy method, in which the critical load is
calculated from the condition that the work of the edge forces during buckling is

equal to the stored elastic energy. The form of the deflection must be that which
makes the critical load a minimum.

2) The Plate in Shear with Two Stiffeners.

The problem of a rectangular plate in shear having no stiffeners and that of
a plate with one stiffener have been solved by Timoshenko,2 while Southwell3
and Skan have treated the case of an infinitely long strip with edge shearing
forces. Transverse stiffeners serve to increase the critical load value for a plate,
and the greater the rigidity of the stiffeners the greater is this increase, in
general. It is found, however, that beyond a certain point increasing the rigidity
of the stiffeners in a plate with edge shear loading is useless, as the stiffeners
will remain straight and only the panels of the plate will deflect.

To solve the problem of the plate shown in Fig. 1, a general expression is
assumed for the deflection surface in the form of the double trigonometric
series

°o °o jrmx ;rny /1Nw= 2 2- Amnsin sin—rf- (1)
m=ln=l » D

each term of which satisfies the boundary condition of simply supported edges.

Using this expression three energy quantities may be calculated, the elastic energy
of the plate V, the elastic energy of the stiffeners Vsl -f- Vs2, and the work done

by the edge shearing forces during buckling, \v The torsional rigidity of the
stiffeners will be neglected. These three energy quantities in terms of the
derivatives of w are:

ab
V T S J«W« + W>'>')2 - 2 - M) (Wxx Wyv - Wxy2)} dx dy (2)

V-1+V«2=f/{(wyy)'=± + (wyy^ ^ dy (3)

a b

Vi — rh J J wx wy dx dy (4)

where h is the thickness of the plate, B the flexural rigidity of the stiffeners
and D the flexural rigidity of the plate,

r, Eh8 /-\D=120^P) <°>

2 S. Timoshenko: Eisenbau, Vol. 12 (1921), p. 147.
3 R. iV. Southwell and S. W. Skan, Proc. Ro\al Society, London, Series A, Vol. 105 (1924),

p. 582.
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The condition for buckling is that

V + vsl + v12 Vr (6)

Equation (6) leads to an expression for rcr, the critical shearing stress, in terms
of the constants Amn. The next step is to minimize trr by differentiation with
respect to the constants. The equations b xcr/b Amn 0 lead to a set of linear
equations for the constants Amn. The value of xcr is finally obtained by equating
to zero the determinant of this System. The greater the number of terms
considered in the infinite order determinant, the greater will be the accuracy of the

rcr value calculated.

It happens that the linear equations obtained by minimizing rcr with respect lo
the constants Amn consist of two groups, one group containing terms with
m + n odd and the other group containing terms with m + n even. That group
of equations should be used which leads to the lowest value of tcv.

It is convenient to measure the critical load by the ratio Tcr/öe, where öc is the
Euler stress D^2/hb2. In Table I values of Tcr/öc are given as found by
calculation from sixth order determinants for the two groups of equations, for the

particular case when B 04. The ratio -r- is designated by ß

Table I.

Tcr/Öe Values for Various ß Values. B 0.

ß 1 1.2 1.5 2 2.5 3

Tcr / °e
m -1- n even

9.42 8.06 7.14 6.59 6.32 6.14

Tcr / öe
m -\- n odd

11.55 8.09 6.74 6.21 6.04

Values of Tcr/öe for ß less than unity can easily be derived from the above
values and are given in Table II. The lowest Tcr/öe value of the two is given.

Table II.
xcr/öc for ß< 1. B 0.

ß 1 0.833 0.667 0.500 0.400 0.333

Tcr / °e 9.42 11.60 16.06 26.40 38.80 54.40

For any appreciable amount of stiffening the System with m + n odd leads
to the least values of Tcr. We equate to zero the determinant of the coefficients
of the constants

*21» A-12* ^32' ^23> A41, A14

4 The values for m -f- n even agree with those obtained by Timoshenko (note 2). The terms

used for m -\- n eveai were An, A2
¦^32» A23, A41, A14.

A-13 A31 and A42, and for m -|- n odd A21, A12,
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and the resulting equation enables us to calculate xcr/öe directly when ß and the
stiffener rigidity are given. The stiffener rigidity is, for convenience, measured
by the ratio y B/aD. Values of Tcr/öe are given in Table III. It will be noted
that increasing the stiffener rigidity increases the load necessary to buckle
the plate.

Table III.

Tcr/Öe Values for Various ß and y Values.

ß 1 ß 1,2 ß 1,5 OQ. 2 ß 2,5 ß 3

T Tcr/Öe y Tcr/Öe T Ter/öe T Wöe T Tcr/°e T Tcr/°e

0 11.55 20 36.7 0 8.09 0 6.74 0 6.21 0 6.04

10 32.75 25 40.1 5 19.43 2 13.07 1 10.3 0.2 7.29

20 41.6 30 43.2 10 25.2 5 18.2 2 13.1 0.4 8.32

30 48.5 15 29.5 10 23.8 3 15.1 0.6 9.21

40 54.4 0.7 9.59

If the stiffeners are made very rigid the calculated critical load for the plate
will be greater than the critical load for each of the three panels. The Situation
then is such that the stiffeners will remain straight and only the panels of the
plate will buckle. The condition that the stiffeners remain straight is that their
rigidity be greater than that necessary to make the critical load for the plale
equal that for one panel. The critical load for one panel is calculated by making
the assumption that all edges are simply supported. Actually, each panel is

partially constrained by the adjacent panel or panels.

We let ymin be the minimum value of y for which the stiffeners will remain
straight. To illustrate the method of calculation we shall consider the case of
,ß =- 1.2. The ß value for one panel of this plate is 0,400 and the corresponding
critical load ratio is 38.8 as given in Table IL By plotting graphically the values

given for Tcr/öe with ß 1.2 in Table III we find that Tcr/öc 38.8 when y
is 23. Hence ymin is 23 for ß 1.2. In the same manner values of ymi„ for
other values of ß may be found.

It is useful to present the results in terms of the dimensions of one panel
instead of the dimensions of the plate. Let c be the distance between the
stiffeners. We introduce the Symbols ß' and y' defined by

p-1 T cD

In Table IV, values of xcr/öe and Y'm.„ are given for various panel ratios. These
values have been plotted in the curves in Fig. 3. We note that the required
stiffener rigidity for two stiffeners is not very much greater than the required
rigidity for one stiffener. For three or more stiffeners, the Y'm,„ value would
probably be only very slightly larger than the value for two stiffeners.
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Table IV.
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One Stiffener Two Stiffeners

OQ. Tf min Tcr / öe ß' "V min Tcr / öe

0.500 30.4 26.4 0.333 120 54.4

0.625 12.6 17.9 0.400 69 38.8

0.750 5.8 13.3 0.500 34 26.4

1.000 1.66 9.42 0.667 10.8 16.06

0.833 4.2 11.61

1.000 2.0 9.42

8) Plates Loaded by Combined Shear and Bending Forces.

If, as shown in Fig. 2, the plate is loaded by uniformly distributed edge
shearing stress, t, and linearly distributed tension and compression at the ends,
ö ö0 (1—2y/b), the critical bending stress öocr will depend upon the magnitude

of the shearing stress. Similarly, the critical shearing stress may be said
to depend upon the magnitude of ö0. For convenience we introduce the
parameters x and p defined as follows:

Öocr

Öe

T

Öe'

To solve the problem, the expression (1) which satisfies the boundary
conditions for simply supported edges may again be assumed for the buckling
deflection. The elastic energy of the plate after buckling will be given, as

before, by Equation (2). The work Vx of the edge forces during buckling
will be, in this case,

V,=-/dyJ\j0(l—-^ w2xdx —rhJJ\vxwydxdy (7)

The condition for buckhng is that V \v This leads to an expression for
öocr, which is then minimized with respect to the constants Amn. The equations
bx/bAmn 0 became a linear system in Amn. The magnitude of x is obtained
by equating to zero the determinant of this System. The order of the determinant
used determines the accuracy of the result. We here use the determinant
of the coefficients of the eight5 terms Au, A12, A13, A21, A22, A23, A31, A 33»

and the calculated values of x for various values of ß and p are as given in
Table V.

These values have been plotted in the curves in Fig. 4. When x 0 we have
the condition for the buckling of a plate in pure shear, while for p 0 we have

5 Stein made calculations with four terms. Considerably lower x \alues are obtained abo>e

b\ using eight terms. 0. Stein: Der Stahlbau, Berlin, Vol. 7 (1934), p. 57.
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Table V.

Values of x and p For Various ß Values.

ß=l ß 4/i IICQ. 2/« ß v>

P * P X P X P X

0 25.6 0 24.5 0 23.9 0 25.6

2 24.6 4 22.8 4 23.05 4 25.4

4 22.2 8 17.7 8 20.35 8 24.3

6 18.4 10 13.25 12 15.23 12 22.55

8 12.4 11 10.01 14 11.04 16 19.94

9 6.85 12 4.61 15 8.0 20 16.13

9.42 0 12.26 0 16.09 0 24

26

26.9

10.26

5.44

0

the condition for the buckling of a plate with bending forces at the ends. The
values of p for x 0 agree very closely with those obtained by Timoshenko for
the case of pure shear. The slight disagreement for small values of ß is due to
the fact that among the eight terms used in these calculations there are only
five m -\- n even terms, while Timoshenko uses six terms. For pure shear and
ß 1/2 the difference in the values of Tcr/<je for five and six term calculations
is only 2 o/0. For pure bending (p 0) the values of x agree with those
obtained by Timoshenko using three terms.

4) Numerical Examples.

Suppose we have a plate with edge shear loading which we wish to
reinforce with two stiffeners. Let a 2000 mm, b 1000 mm, h 7 mm,
E 21,000 kg/mm2, jli 0.3. Let it be required to find the load causing lhe
plate to buckle and the proper rigidity for the stiffeners.

D

Öo

21,000 • 73

12(1—0.09)

660,000 - n2
_

1,000,000-7"

660,000 kg mm,

0.93 kg/mm2

For ß 2 we have ß' 0.667, and we have from Table IV, y'min 10.8 and
xcr/öe 16.06 from which xcr 14.94 kg/mm2 and B 10.8 • 0.667 • 660,000

4750 • IO6 kg/mm2. If one stiffener were used, the critical shearing stress
would be 8.77 kg/mm2, and the required stiffener rigidity 1096 • IO6 kg • mm2.

As a second example, take the case of the end portion of the web of a plate-

girder. Let the depth b, be 2000 mm and the thickness h 8 mm. Let it be

required to find the proper stiffener spacing for the end of the girder and also,

the stiffener rigidity so that buckling will occur when t 10 kg/mm2.
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D 2?'P°? ; ?' 985,000 kg mm12-OM

985,000 • n~

4 • 106•8

Ter 10 kg/mm2

0.3035 kg/mm2

^1 32.9.

By Fig. 3 we see that ß' 0.44 so that the proper stiffener spacing is given by

c 2000 • 0.44 880 mm.

To find the stiffener rigidity we assume that every third stiffener in the girder
is perfectly rigid. We then use the curve for y'm;n in Fig. 3 for two stiffenersl
and find Y'm;n 50. The required stiffener rigidity is therefore

B 50 • 880 • 985,000 43,300 • 10« kg • mm».
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Required stiffener rigidity for given panel proportions.

As a third example, suppose we have a rectangular panel with a 1000 mm,
b — 2000 mm, h 10 mm which is loaded by bending and. shearing forces as
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shown in Fig. 2. Let the benlding stress, ö0, be 10 kg/mm2 and let it be required
to find the shearing stress which will cause buckling. In this case ß 1/2 and

D 2\'^°°4}0i 1,923,000 kg mm12 • 0.91

1,923,000 ji2

4•106•10
0.474 kg/mm2

* =öm=2L1-
28
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Shear stress natio^

Fig. 4.

Critical loads combined shear and bending.

32

From Fig. 4 the value of p for ß 4/2 and x 21.1 is 14.3. The corresponding
value of x is 14.3 • 0.474 6.78 kg/mm2.
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