
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 2 (1936)

Artikel: Massive Kuppeln, zylindrische Behälter und ähnliche Konstruktionen

Autor: Granholm, H.

DOI: https://doi.org/10.5169/seals-2716

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-2716
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


IVa 3

Massive Kuppeln, zylindrische Behälter
und ähnliche Konstruktionen.

Coupoles massives, reservoirs cylindriques
et constructions semblables.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,
Dozent an der Königlichen Technischen Hochschule Stockholm.

Die exakte Berechnung der Biegungsspannungen in einer massiven Kuppel
ist mit sehr großer Mühe verknüpft. In einer der Kgl. Technischen Hochschule
zu Stockholm vorgelegten Doktorabhandlung1 kommen diese Schwierigkeiten
zum Vorschein, und man darf sich fragen, ob der in der Praxis tätige Ingenieur
jemals Zeit und Gelegenheit hat, die Abmessungen einer Kuppel an Hand der
exakten Theorien zu errechnen. Allein schon die Aufstellung der
Grundgleichungen ist ziemlich verwickelt, und ihre ganze Integrierung führt zu
Reihen, die häufig schwer zu handhaben sind und langsam konvergieren. Auch
wenn ihre Konvergenz für manche Wandstärken befriedigend ist, kann eine

Änderung der Wandstärke bewirken, daß die gute Konvergenz verloren geht.
Selbst wenn der Ingenieur den mathematischen Apparat für die Behandlung
des Problems vollkommen beherrscht, ist die für das Durchrechnen eines
bestimmten Belastungsfalles erforderliche Arbeit viel zu groß. Überhaupt dürfte
es unmöglich sein, auf dem von Meißner, Bolle, Dubois, Honegger, Ekström u. a.

angewiesenen Wege zu praktischen Methoden zu kommen. Beispielsweise für
sphärische Kuppeln ergeben sich beim Integrieren in den einfachsten Fällen
hypergeometrische Reihen, die wegen ihrer langsamen Konvergenz nicht das

richtige Werkzeug des Ingenieurs bilden.
In Anbetracht dieser Tatsachen ist es vor allem wichtig, daß man sich für

die weitere Entwicklung der Kuppeltheorie auf solche Lösungen einrichtet, die
den Anforderungen der Praxis Genüge leisten, auch wenn man dabei gewisse
Annäherungen einführt. Wie Geckeier2 gezeigt hat, läßt sich auch mit
verhältnismäßig einfachen mathematischen Hilfsmitteln eine Lösung finden, die sich

von der exakten nur unwesentlich unterscheidet und die ganz besonders einfach
und bequem anzuwenden ist, falls Wandstärke und Radius konstant sind. Die

gute Übereinstimmung zwischen Geckelers Theorie und der exakten Theorie

1 John Erik Ekström: Studien über dünne Schalen von rotationssymmetrischer Form und
Belastung mit konstanter und veränderlicher Wandstärke. Stockholm 1932.

2 Siehe z. B. Handbuch für Eisenbetonbau, Band 6. Berlin 1928.
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kann dazu berechtigen, jene ausführlicher zu erörtern, falls man sich darüber
klar ist, welche Annäherungen eingeführt werden. Noch einen Schritt näher
kommt man dem exakten Resultat, wenn man Blumenthals und Steuermanns

sogenanntes asymptotisches Integrationsverfahren benutzt, das auch bei beliebig
variabler Wandstärke der Kuppel anwendbar ist. Mit diesem Verfahren kommt
man tatsächlich weiter als mit den Methoden, die auf Lösungen in Form
unendlicher Reihen aufgebaut sind, wobei man bisher immer annehmen mußte,
daß die Wandstärke nach einer bestimmten Funktion veränderlich sei, damit
sich die Lösung durchführen ließ.

Eine nähere Prüfung der von Geckeier angegebenen Schlußgleichungen zeigt,
daß diese von genau derselben Art sind wie die Gleichungen für einen elastisch
unterstützten Träger. Die physikalische Analogie ist auch nicht schwer zu
erkennen. Den Meridian der Kuppel kann man nämlich als einen Träger
betrachten, der von den Parallelkreisen oder Ringen unterstützt ist. Da diese sich
zusammendrücken oder ausdehnen lassen, entsprechen sie in statischer Hinsicht
einer elastischen Unterlage.

Durch diese Betrachtungsweise kann man sich die Statik der * Kuppel mit
ausreichender Genauigkeit klarmachen. Für die Aufstellung der Gleichgewichtsgleichungen

braucht man dann auch nicht auf die Meißnersehen Differentialgleichungen

zurückgreifen, sondern man kann alle erforderlichen Gleichungen
direkt einfach mit Hilfe der Theorie des elastisch unterstützten Trägers
aufstellen. Dies bedeutet für den in der Praxis tätigen Ingenieur, daß er nicht erst
den Versuch zu machen braucht, die ziemlich komplizierte klassische Kuppeltheorie

zu begreifen; vielmehr kann er auf eigene Faust die erforderlichen
Gleichungen ableiten.

Aus den Arbeiten Geckelers geht hervor, daß er selbst die hohe Bedeutung der
von ihm vorgeschlagenen Annäherungen nicht vollständig erkannt hat; d. h. er
hat selbst nicht verstanden, daß die Kuppel im großen betrachtet wie eine stetige
Reihe von Trägern, auf federnder Unterlage wirkt. Die von mir hier
vorgeschlagene Betrachtungsweise kann natürlich in der Weise erweitert werden,
daß man den Meridian nicht als einen Träger, sondern als ein Gewölbe betrachtet,
das elastisch von den Ringelementen der Kuppel unterstützt wird.

Durch Einführung dieser genaueren Betrachtungsweise bekommt man einen
exikteren Einblick in die Statik der Kuppel, und die Gleichungen, die man dabei
erhält, sind dieselben wie nach Meißner.

Es ist offenkundig, daß man besonders bei sehr flachen Kuppeln, wo also die

Gewölbewirkung in den Meridianelementen stark hervortritt, zur Einführung
dieser letzteren Betrachtungsweise genötigt ist, um die erwünschte Genauigkeit
zu erzielen. Je steiler die Tangente der Kuppel an der Auflage geneigt ist, um
so genauer wird die angenäherte Betrachtungsweise mit dem Meridian als einem

Träger auf elastischer Unterlage, und in dem Sonderfall, daß die Tangente der

Kuppel überall senkrecht ist, wenn also die Kuppel in einen Zylinder übergeht,
ist die Betrachtungsweise vollkommen exakt.

Um näher zu erläutern, wie einfach das Kuppelproblem auf solche Weise
behandelt werden kann, habe ich einige Probleme durchgerechnet und die

Ergebnisse mit denjenigen verglichen, die man nach der exakten Theorie erhält.
Die Übereinstimmung ist überall erstaunlich gut.
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Als erstes Beispiel wählen wir eine sphärische Betonkuppel von gleichmäßiger
Dicke, Wandstärke b 16 cm, Radius r 1000 cm, Öffnungswinkel 40°. Die
Kuppel sei mit einem konstanten Flüssigkeitsdruck p 1,0 kg/cm2 belastet und
sei rund um die Kante fest eingespannt (siehe Fig. 1).
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Fig. 1.

Vergleich zwischen der Große des Meridianmomenles, berechnet erstens nach Gleichung 5
und zweitens nach der exakten Methode mittels hypergeometrischer Reihen. Die Abweichungen

sind fur praktische Falle belanglos.

Berechnet man die Spannungen in dieser Kuppel nach der Membrantheorie,

prso ergibt sich eine Meridiandrucksparwiung Tt — und eine Ringdruckspan-

nung T2 pr Diese Meridian- und Ringspannungen sind über die ganze Kuppel

konstant, und die „membrantheoretische" Lösung ist also sehr einfach. Unter
Einwirkung dieser Druckspannungen Tx und T2 wird die Kuppel zusammengepreßt,

sodaß sich ihr Radius um den Betrag
T- r p r
Eb"' ±h-2Eb vernn?ert-

Diese Verringerung des Radius ist nicht sehr groß, sie beläuft sich unter den

gegebenen Voraussetzungen und bei E 210000 kg/cm2 auf nur 0,15 cm. Da
die Kuppel rund um die Kante festgehalten wird, ist sie jedoch nicht imstande,

46



722 A. Granholm

ihre Form frei zu verändern; die der Kante am nächsten gelegenen Teile werden
den ursprünglichen Radius beibehalten, aber je weiter man sich von der Kante
entfernt, umso größer wird die Bewegungsfreiheit der Konstruktion und umso
freier kann die Formänderung vor sich gehen. Obgleich die Zusammendrückung
des Radius in diesem Falle ziemlich geringfügig ist, entstehen nahe an den
Kanten gewisse Störungen, die zu Biegungsmomenten von solcher
Größenordnung führen, daß man sie nicht vernachlässigen darf.

Wir wollen nun untersuchen, wie große Momente in einem elastisch
unterstützten Träger entstehen, wenn wir annehmen, er erhalte eine Ausbiegung

p r2
entsprechend dem oben berechneten Werte ^ Für den Zusammenhang

zwischen Moment und Ausbiegung gilt die Gleichung

ej-S=-m> w

und die Einwirkung der elastischen Unterstützung der Ringelemente wird
ausgedrückt durch die Gleichung

™L =*.y (2)

Eliminiert man M± aus diesen beiden Gleichungen, so erhält man

oder, wenn die Biegungssteifheit EI als konstant und gleich

vorausgesetzt wird

s
&_

m»—1 '
12

d^+4k4y °

3(m*-l) 1 (3 b)
worin _ _ m2 r* b*
ist.

Das allgemeine Integral der Gleichung 3b kann man bekanntlich in folgender
Form schreiben:

y e~kx (A cos kx + B sin kx) + e^kx (C cos kx + D sin kx) (4a)

d. h. die Ausbiegung kann man als die Summe zweier Sinusschwingungen
betrachten, die eine mit gedämpften, die andere mit zunehmenden Amplituden.
Bekanntlich kann man im allgemeinen die Koeffizienten C und D gleich 0 setzen,

vorausgesetzt, daß der Träger nicht gar zu kurz ist und daß der Ursprung in den
Punkt verlegt wird, von dem die Störung ausgeht. Für geschlossene Kuppeln
kann man daher das Integral mit ausreichender Genauigkeit in folgender Form
schreiben:

y e~kx (A cos kx + B sin kx) (4b)

Hier bezeichnet x die Bogenlänge des Meridians, von dem Kuppelrand aus
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gemessen. In diesem Falle sind die arbiträren Konstanten A und B leicht aus
der Randbedingung bestimmbar, daß

pry tttt und y o bei x o ist.J 2E& J

prDies ergibt A B — ^=— und die Ausbiegung des Meridians ist also

pr2
y — zf-nT ' e~kx (cos kx -f- sin kx).

Durch Einsetzen in Gleichung 1 erhält man den Ausdruck für das Meridianmoment

V3
M1 —— prbe_kx (—cos kx-)-sin kx) (5)

1 Li

In diesem Ausdruck ist die Einwirkung der Querzusammenziehung des Materials

vernachlässigt, d. h. die Poissonsche Zahl m ist gleich unendlich gesetzt.
Mit Hilfe der in Tabelle I angegebenen Werte der Funktionen e~kxcoskx und

e—kx sm kx jäßt sjcn Gleichung 5 leicht zeichnerisch wiedergeben. In Fig. 1

sieht man, wie das Meridianmoment M1 sich mit der Entfernung vom Kuppelrand

verändert. Zum Vergleich sind die nach Bolles Methode mit
hypergeometrischen Reihen berechneten exakten Werte angegeben.3 Wie man sieht, ist die

Übereinstimmung zwischen den exakten Resultaten und den Annäherungswerten
erstaunlich gut, weshalb kein Anlaß besteht, das Kuppelproblem zu einer
verwickelten mathematischen Aufgabe zu gestalten. Bei Kuppeln mit größerem
Öffnungswinkel als in diesem Falle, 40°, ist die Übereinstimmung zwischen den
exakten und den angenäherten Werten noch besser. Nur bei Kuppeln, deren
Neigungswinkel an den Auflagen sehr klein ist, erlangt der Einfluß der
gemachten Annäherungen praktische Bedeutung. Nebenbei bemerkt sind solche

Kuppeln unzweckmäßig wegen der sehr starken Randstörungen, die beim
Anschluß der Kuppel an ihren etwaigen Auflagering auftreten.

Für die Berechnung der Spannungen in der Kuppel ist nicht nur das
Meridianmoment M± von Bedeutung, sondern auch die Ringmomente M2 und die
Zuschüsse zur Meridiandruckspannung und Ringdruckspannung, die dadurch
entstehen, daß die Randbedingungen nicht den Voraussetzungen der Membrantheorie

entsprechen. Diese Größen, M2, ATX und AT2 lassen sich direkt aus den
nachstehenden Formeln berechnen. Die Übereinstimmung zwischen den nach
der hier gezeigten Annäherungsmethode erhalteinen Werten und den exakten ist
ebenfalls sehr gut, wie aus nachstehenden, in Tabelle 2 zusammengestellten
Vergleichen hervorgeht.

Die Ableitung der mathematischen Ausdrücke für die Zuschußkräfte ATX
und AT2 erfolgt am einfachsten unter Anwendung der Analogie, daß der
Meridian ein Träger mit elastischer Unterlage ist. Den Zuschuß in der
Meridiandruckspannung, AT1? kann man also betrachten als die Scherkraft im Träger,
multipliziert mit cota, wo a der Neigungswinkel des Meridians zur Horizontalebene

ist. Hierbei erhält man

AT1 cota-EJ.^J (6)

3 Siehe Ekström, a. a. O., S. 124.

46*



724 A. Granholm

Tabelle I.
Werte der Funktionen e-kxCoskx, e—kxsinkx, e—kx(coskx— sinkx) und e~kx (cos kx -f sinkx.

kx e-kx cos kx e—kx sin kx e—kx (cos kx — sin kx) e—kx (cos kx -f- sin kx)

0 1.0000 0.0000 1.0000 1,0000

*
~8~

0.6239 0.2584 0.3655 0.8823

*
T 0.3225 0.3225 0.0000 0.6450

3*
8

0.1179 0.2845 — 0.1665 0.4024

* 0.0000 0.2079 — 0.2079 0.2079

5*
8

— 0.0536 0.1297 — 0.1833 0.0761

3*
4

— 0.0671 0.0671 — 0.1342 0.0000

7*
8

— 0.0592 0.0245 — 0.0837 — 0.0347

TT — 0.0432 0.0000 — 0.0432 — 0.0432

9*
8

— 0.0269 — 0.0112 — 0.0157 — 0.0381

5*
4

— 0.0139 — 0.0139 0.0000 — 0.0279

11*
8

— 0.0051 — 0.0123 0.0072 — 0.0174

3tt
2

0.0000 — 0.0090 0.0090 — 0.0090

13*
8

0.0023 — 0.0056 0.0079 — 0.0033

7*
4

0.0029 — 0.0029 0.0058 0.0000

15*
8

0.0026 — 0.0011 0.0037 0.0015

2* 0.0019 0.0000 0.0019 0.0019
17

0.0011 0.0005 0.0006 0.0016

9
0.0006 0.0006 0.0000 0.0012

19
0.0002 0.0005 — 0.0003 0.0007

5
T71 0.0000 0.0004 — 0.0004 0.0004

21
— 0.0001 0.0003 — 0.0004 0.0002

11
— 0.0001 0.0001 — 0.0002 0.0000

23
— 0.0001 0.0001 — 0.0002 0.0000

3* — 0.0001 0.0000 — 0.0001 — 0.0001



Massive Kuppeln, zylindrische Behälter und ähnliche Konstruktionen 725

Der Zuschuß in der Ringdruckspannung, AT2, ist ein Maß für die elastisch
unterstützende Wirkung der Unterlage, und AT2 ist infolgedessen direkt
proportional der Durchbiegung y des Meridians, also

AT Eb
(7)

Das Ringmoment M2 schließlich ergibt sich am einfachsten durch Bestimmung
der Krümmungsänderung der Ringe,4 und man erhält bei Vernachlässigung des

Einflusses der Querzusammenziehung

* EJ dy
M2 cot a r~2 r dx

(8)

Setzt man in die Gleichungen 6, 7 und 8 die Gleichung für die Durchbiegung
des Meridians ein:

pr-
y — 2Eb

e—kx ^cos kx _|_ sm kx)

so erhält man folgende Ausdrücke für AT1? AT2 und M2

pr2&2
AT1

AT2 -

cot a ^—pr- k3 e "kx cos kx
o

pr£_ e~kx ^cos kx ^_ gm J^
Li

prb2, i ^
Mg cot a • hrr- k e_kx sin kx

1 u

(6 a)

(7 a)

(8a)

Tabelle 2 enthält die so errechneten Werte der Meridian- und Ringspannungen
und Ringmomente, verglichen mit den exaltten Werten.

Tabelle 2.

Vergleich zwischen den angenäherten und exakten Werten der Meridian- und Ringspannungen
und Ringmomente.

Neigungswinkel

a
des Meridians

Tj + ATi
angenähert

kg/cm

Ti + ATj
exakt
kg/cm

T2 + AT2
angenähert

T2 + AT2
exakt

M2
angenähert
kg cm/cm

M2
exakt

40° 443 439 0 0 0 0
35° 474 481 215 193 99 113
30° 503 504 437 427 62 73
25° 506 508 517 520 12 17

20° 503 504 518 523 — 8 — 10
15° 501 501 511 510 — 9 — 14
10° 499 499 501 501 — 5 — 9

5° 499 498 499 498 0 — 3

Das oben durchgerechnete Problem entspricht den denkbar einfachsten
Randbedingungen. Um die Anwendbarkeit der Methode auch bei komplizierteren

* Siehe z. B. Föppl: Drang und Zwang, Band 2. Berlin 1928.
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Randbedingungen nachzuweisen, habe ich eine Kuppel durchgerechnet, die an
einen umgebenden kreisrunden Zylinder gemäß Fig. 2 angeschlossen ist. Um
das Problem einigermaßen zu vereinfachen, wurde der Wasserdruck auf die

Kuppel als konstant angenommen. Dieses Problem ist von Ekström unter den

gleichen Annahmen ausführlich behandelt worden. Tabelle 3 enthält für das

Meridianmoment M± und für die Ringspannung T2 die berechneten Werte
verglichen mit den exakten.

Für alle Konstanten der Kuppel wird nachstehend der Index 1 benutzt, für
die Konstanten des Zylinders der Index 2.

Ar2=17?&?'

6/ *f6cm

f12Art

#
*

&2 =24vrt

Fig 2

Die Berechnung dieser Kuppelkonstruktion wird in folgender Weise
durchgeführt. Wenn die innere Kuppel und der Zylinder voneinander befreit werden
und sich unter Einwirkung der Belastung unbehindert deformieren dürfen,
ergibt sich nach der Membrantheorie

pr2 p-104
eine Abnahme des Kuppelradius um nrr<, *——— -3,12cm

2EcV E

pr 2
p • 104

und eine Zunahme des Zylinderradius um ^-~- —=— • 1,72 cm.
ri&2 E

Die Zj linderwand bildet dabei einen kleinen Winkel zur Senkrechten

y ' 1*72. (Siehe Fig. 2.)

Da dieser Deformationszustand mit den tatsächlichen Auflagerverhältnissen
unvereinbar ist, müssen gewisse Zuschußkräfte und Zuschußmomente eingeführt
werden, um den Stetigkeitsbedingungen Genüge zu leisten. Diese
Stetigkeitsbedingungen sind folgende:
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Zylinder und Kuppel sollen dieselbe Ausbiegung und Winkeländerung im
Vereinigungspunkte haben, und der Vereinigungspunkt soll außerdem hinsichtlich

der Momente und angreifenden Kräfte im Gleichgewicht sein. Dies bedeutet
vier Randbedingungen, die mittels vier Gleichungen ausgedrückt werden können,
wodurch sich alle unbekannten Formänderungen, Momente usw. bestimmen
lassen.

Um die Aufstellung der Gleichungen zu erleichtern, folgen hier die allgemeinen
Ausdrücke für die Ausbiegung und ihre Ableitungen. Man hat

y e~kx [A cos kx + B sin kx]
y' k e-kx [(B — A) cos kx — (A + B) sin kx]
y" 2k2 e"kx [— B cos kx + A sin kx]

^ '
y'" 2k3 e"kx [(A + B) cos kx + (B — A) sin kx]

Die erste Bedingung, daß die Ausbiegungen des Zylinders und der Kuppel
am Rande selbst gleich groß sein sollen, läßt sich durch folgende Gleichung
ausdrücken:

— Ax sin 40° + A2 P~- (3,12 sin 40° + 1,72).

Damit die Winkeländerungen gleich groß werden, muß

k. (B. - A.) k2 (B, - A2) -^ • 1,72

sein, und für das Momentgleichgewicht gilt außerdem

kt2 EJx Bx k22 E J2 B2.

Dia restliche Bedingung soll ausdrücken, daß die horizontale Reaktion wegen
Belastung der inneren Kuppel von der Scherkraft im Zylinder sowie von der
Scherkraft und der Meridianspannung in der Kuppel aufgenommen werden
soll, d. h.

— 2V EJX (Ax + B,). -riö — 2 ki* EJ2 (A2 + B2) P ' 500 • cos 40°.

Durch Elimination aus diesen vier Bedingungsgleichungen erhält man für
p — 1 kg/cm2 folgende Werte der Konstanten:

IO4 IO4
Ax - 15,35 ~ B, - 7,16 • ^~

10^ x. IO4

E
A2 — 6,13--^- B2= 2,05

Das Problem ist damit vollständig gelöst; die Momente usw. kann man nun
ohne Schwierigkeit für jeden beliebigen Punkt des Zylinders und der Kuppel
berechnen. In Tabelle 3 sieht man einen Vergleich der berechneten und der
exakten Werte für Meridianmoment und Ringspannung der Kuppel. Die
Übereinstimmung ist in allen Punkten befriedigend.
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Tabelle 3.

Meridianmomente und Ringdruckspannungen der Kuppel nach Fig. 2.

Neigungswinkel

a
des Meridians

M,
angenähert

kgcm/cm
exakt

kgcm/cm

Tf+ AT2
angenähert

kg/cm

T2 + AT2
exakt
kg/cm

40° — 5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
25° 597 764 618 639
20° — 6 9 572 593
15° — 99 — 141 520 526
10° — 54 — 80 498 498

5° — 8 — 15 495 % 493

Diese zwei Beispiele lassen also erkennen, daß die hier gezeigte Methode für
die Behandlung des Problems praktisch brauchbare und auch leicht zu findende
Resultate ergibt.

Wie eingangs erwähnt, kommt die Annäherungslösung den exakten Werten
umso näher, je steiler die Kuppel und auch je geringer ihre Wandstärke wird.
Besonders dieser letzte Umstand ist, wie u. a. Steuermann^ nachgewiesen hat,
von großer Bedeutung. Die exakte Gleichung für die Ausbiegung des Meridians
enthält nicht wie Gleichung 3 b nur Ausdrücke vierter und null ter Ordnung,
sondern auch Ausdrücke mit Derivaten erster, zweiter und dritter Ordnung, die
aber alle mit Polynomen von cota multipliziert sind. Mit zunehmendem a
verringert sich die Bedeutung dieser Ausdrücke, und für a 90°, also beim
Zylinder, fallen sie ganz weg, d. h. Gleichung 3b gilt exakt. Die Verringerung
der Kuppelwandstärke hat ähnlichen Einfluß auf die vollständige Differentialgleichung.

Warum dies der Fall sein muß, sieht man auch leicht direkt ein.
Es kommt einfach daher, daß bei geringer Wandstärke die Bedeutung der
Zusammendrückung des Meridians neben dem Einfluß der Krümmungsänderung
kleiu wird. Dies bedeutet mit anderen Worten, daß man die Arbeit der Normalkräfte

infolge Zusammendrückung des Meridians neben der Arbeit des Meridianmoments

und der Ringspannungen bei dünnen Kuppeln vernachlässigen kann.
In den bisher behandelten Problemen wurde die Wandstärke überall als

konstant angenommen. Wenn die Wandstärke b veränderlich ist, kann man
nicht von Gleichung 3 b ausgehen, sondern muß Gleichung 3 a anwenden. Da die
einfache Theorie des elastisch unterstützten Trägers in obigen Fällen, d. h. bei
konstanter Wandstärke, hinlänglich genaue Resultate ergab, besteht Grund zu
der Annahme, daß dies auch bei veränderlicher Wandstärke der Fall sein wird.

Die Theorie des elastisch unterstützten Trägers mit veränderlichem Trägheitsmoment

und veränderlicher Unterstützung wurde bisher von verschiedenen
Forschern6 hauptsächlich mit Hilfe von Reihen studiert. Die dabei zutage gekom-

ö E. Steuermann: Some Consideration on the Calculation of Elastic Shells. Internationale
Tagung für technische Mechanik. Stockholm 1930.

6 Siehe z. B. Hayashi: Theorie des Trägers auf elastischer Unterlage. Berlin 1921.
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menen Ergebnisse sind für die Praxis leider mehr oder weniger unbrauchbar.
Wegen der nahen Verwandtschaft der Gleichungen 3a und 3b ist es jedoch
recht natürlich, daß die Lösungen beider Gleichungen im großen ganzen den

gleichen mathematischen Aufbau haben. Deshalb liegt die Annahme nahe, daß

man die Lösung der Gleichung 3 a beispielsweise in folgender Form schreiben
kann:

y ue±z (A cos z + B sin z) (12)

worin u und z gewisse Funktionen von x sind. Unter Anwendung des Blumen-
thalschen sog. asymptotischen Integrationsverfahrens kann man die Funktionen
u und z bestimmen, sodaß Gleichung 12 mit sehr guter Annäherung wirklich
ein Integral der Gleichung 3 a darstellt.

Eb3
Wenn wir wie oben die Biegungssteifheit des Trägers EJ —— einführen,

1 Li

ergeben sich für die Funktionen u und z folgende Ausdrücke:

u i^= (13)
ib3

und *fjk ™

Dieses Resultat erhält man in folgender Weise. Führt man die Ableitung der
Gleichung 3 a aus, dann ergibt sich nach Vereinfachung die Gleichung

yiv + pi y.» + pä y + p3 y< + p4 y o (15)

Rb'worin p. b —-
o

Pä=3(-+-
Ps =0

12
Pi -77^1 r- bJ

ist. Multipliziert man die Gleichungen

v =f(z)
v' f z'

v" f z" + f" z'*

v"' f'z'" + 3f z'z" + f"z,J
VIV f< z!V _|_ f.- (4 z< z<» _|_ 3 z«2) ^_ g f..< z.2 zu + f 1V zi4f

worin f soviel wie -=- und z' soviel wie -=- bedeutet, der Reihe nach mit den
dz dx

Faktoren Q4, Q3, Q2, Qv und 1 und addiert sie, so erhält man, wenn das linke
Glied gleich Null gesetzt wird, erstens die Gleichung

VIV + Y.» Qj + y- Q2 + V' Q3 + v Q^ _ 0 (16)
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und zweitens, wenn die Faktoren f, f" und P" jeder für sich gleich Null
gesetzt werden

Z1V + Z'''Q1+Z''Q2 + Z'Q3:=0
(4 z' z'" + 3 z"2) + 3 z' z" - Q, + z'2 Q, o (17)

6z'2z" + z,3Q1 o

Aus diesen Gleichungen kann man Qv Q2 und Q3 lösen, während die Funktion

f (z) durch die übrige Bedingung

fIVV4 + Q4.f=0 (lg)
bestimmt wird.

Wählt man den Faktor Q4 gleich 4 z'4, dann verwandelt sich die Gleichung 18 in

T + 4f=0
d. h. f (z) e±z (A cos z + B sin z) (19)

worin z durch die Bedingung

bestimmt wird.
Wenn man in Gleichung 15 nun y uv einführt, erhält man beim Einsetzen

und nach Division durch u

^+^(^44~+34*.+4
(An'" -In" 2u' \+v'(^+^Pi + ^rP2 + Ps)+vp*=0 (21)

Durch Gleichstellen der Koeffizienten für v und v'" in den Gleichungen 16
und 21 kann man die unbekannten Funktionen Q4 und u bestimmen. Man erhält
demnach Q4 p4 und folglich nach Gleichung 20

oder, mit p4 -„—*; z y 3 j -= (14)

4u'
Aus der Bedingung 1- px Qx

erhält man unter Anwendung der letzten der Gleichungen 17

-u- —Pi—y(logPi)

oder u — (13)
l/ö3
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Faßt man das Ergebnis obiger Rechnungen zusammen, so kann man die

Lösung der Gleichung 3 a unter Vernachlässigung der Ausdrücke, die den

Faktor ez enthalten, also in folgender Form schreiben:

y -— e~z (A cos z + B sin z) (12a)

dx
worin z durch die Bedingung z ^= l/3 I -zr—-J Vrb
bestimmt wird.

Beim ersten Anblick erscheint vielleicht die Gleichung 12a umständlich und

wenig geeignet für praktischen Gebrauch wegen des verwickelten Aufbaues der
1

Funktion z und des zusätzlichen Faktors 4,— In der Praxis aber stellt sich der

Fall einfacher. Die Funktion z braucht nämlich nie anders als zahlenmäßig
angegeben zu werden und läßt sich deshalb leicht aus Gleichung 14 z. B. nach
der Trapezregel berechnen. Bei Berechnung der Ableitungen von Gleichung 12 a

ergeben sich, wenn man keine Annäherungen einführt, ziemlich komplizierte
Ausdrücke. Beachtet man aber, daß die Ableitungen z", z'", u" und u'" bei den
in der Praxis vorkommenden Abmessungen klein sind und daher vernachlässigt
werden können, erhält man die Ableitungen von y in folgender Form

y u e~z (A cos z + B sin z)

y' =uz' e-z [(B — ju A) cos z — (A + p B) sin z]

y" 2 u z'2 e~z [— (u B + yA) cos z + (juA — yB) sin z]

y'" 2 u z'3 e~z [(A + Ul B) cos z 4- (B — Ul A) sin z] (9a)

u'
worin v —;u z

ju =1 — v
Hi 1 — 3 v.

Für den Fall, daß die Wandstärke konstant ist, wird y 0 und jui ju1 1,

wobei obige Gleichungen genau dieselben werden wie die Gleichungen 9.

Die Gleichungen 9 a sind also in derselben Weise aufgebaut wie die in den

Gleichungen 9 angegebenen Ableitungen für einen Träger mit konstanter
Biegungssteifheit. Die Berechnung einer Kuppel mit veränderlicher Wandstärke
läßt sich demnach in gleicher Weise und mit wenig mehr Mühe durchführen
wie bei gleichmäßiger Wandstärke. Die oben durchgerechneten Beispiele (siehe
Fig. 1 und 2) sind also auch für den Fall vorbildlich, daß b veränderlich ist,
und die Gleichgewichtsgleichungen sind ebenso aufzustellen, nur mit den

Abänderungen, die durch den Unterschied zwischen den Gleichungen 9 und 9 a

bedingt sind.
Bisher haben wir bei der Behandlung des Kuppelproblems nicht

berücksichtigt, daß sich die Meridianträger nach oben hin verjüngen und im Scheitel
der Kuppel die Breite Null haben, vielmehr haben wir bei ihnen eine
konstante Breite angenommen. Dies entspricht der Wirklichkeit nur dann, wenn
die Kuppel zylindrisch ist, aber bei Kuppeln im allgemeinen liegt in jener
Annahme ein gewisses Annäherungsverfahren. Wenn wir die Verjüngung berück-
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sichtigen, können wir bei sphärischer Kuppel das Trägheitsmoment des Meridianträgers

in gewissem Winkelabstand a vom Scheitel folgendermaßen schreiben:

J ~^ (21)
12 sin a0

Mit diesem Ausdruck für das Trägheitsmoment erhalten wir für die
Funktionen u und z

1 1
u 1— ' ä

fb* ^sina

und z ^ 3 I T=^F ' 1/ — dx.
J y rb f sina

Die obigen Ableitungen, die sich hauptsächlich auf das Kuppelproblem
beziehen, lassen sich natürlich auch auf zylindrische Behälter und ähnliche
Konstruktionen anwenden, die als Sonderfälle der Kuppel aufzufassen sind. Die
für Berechnung solcher Behälter üblichen Methoden,7 denen Reihenentwicklungen
zugrunde liegen, lassen sich vorteilhaft durch die oben angegebene Methode
ersetzen. Einen interessanten Sonderfall dieses Problems begegnet man bei der
Berechnung von massiven Gewölbedämmen. Bisher ging man bei Behandlung
derartiger Probleme von Gleichung 3 b aus und führte einen Mittelwert der
Wandstärke ein.8

Bei Behandlung der Gleichung 3 a nach obiger Methode kann man ohne

Schwierigkeit die in verschiedenen Richtungen und an verschiedenen Punkten
vorkommende Anisotropie der Konstruktion berücksichtigen. Es kann sich dabei

um eine reine Materialerscheinung oder um eine rein konstruktive Anisotropie
handeln. Beispielsweise durch das Einlegen verschiedener Mengen von
Armierungseisen in verschiedenen Richtungen wird der scheinbare Elastizitätsmodul
des Baustoffes in verschiedenen Richtungen verschieden, was als
Materialanisotropie bezeichnet werden darf; und eine gewisse konstruktive Anisotropie
kann man in einem zylindrischen Behälter oder einer Kuppel zuwege bringen,
indem man in der Richtung der Generatrix oder des Meridians Verstärkungsträger

anbringt (Rippenkuppel). Unter solchen Umständen kann Gleichung 3 a

nicht in der Form geschrieben werden, die sie in Gleichung 15 erhalten hat.
vielmehr bekommen die Koeffizienten p4 bis p4 folgendes Aussehen

2jptjy

(E, J)"
I

_ E,b
P4 _ r* E. J

P>= EtJ

Pä~ EXJ

7 Siehe Lorenz: Technische Elastizitätslehre. Berlin 1913. H. Reißner: Beton und Eisen 7,

150, 1908. T. Pöschl und K. Terzaghi: Berechnung von Behältern. Berlin 1913.
8 A\ Royen: Tvärödammen vid Norrfors krafherk (Der Damm von Tvärö am Kraftweik

Norrfors). Zeitschrift Betong, Heft 2, 1926.
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und die Funktionen z und u erscheinen demnach in folgender Form

Da man weder für u noch für z einen mathematischen Ausdruck benötigt,
bringt die Einführung der Gleichungen 22 und 23 keine Erschwerung der
Berechnungen mit sich.

Zusammenfassung.

Durch die Aufteilung der Schale in zwei Scharen von einander kreuzenden

Trägern können wir ein klares Verständnis der statischen Wirkungsweise der
Konstruktion erhalten. Die auftretenden Momente und Spannungen können wie
bei dem Balken auf elastischer Unterlage berechnet werden. Da die strenge
Theorie zu Lösungen in Form von unendlichen Reihen führt, die unter gewissen
Bedingungen nur langsam konvergieren, sind durch die angegebene Methode
praktische Vorteile zu gewinnen.
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