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IVa3

Massive Kuppeln, zylindrische Behalter
und idhnliche Konstruktionen.

Coupoles massives, réservoirs cylindriques
et constructions semblables.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,

Dozent an der Koéniglichen Technischen Hochschule Stockholm.

Die exakte Berechnung der Biegungsspannungen in einer massiven Kuppel
ist mit sehr grofier Mithe verkniipft. In einer der Kgl. Technischen Hochschule
" zu Stockholm vorgelegten Doktorabhandlung! kommen diese Schwierigkeiten
zum Vorschein, und man darf sich fragen, ob der in der Praxis titige Ingenieur
jemals Zeit und Gelegenheit hat, die Abmessungen einer Kuppel an Hand der
exakten Theorien zu errechnen. Allein schon die Aufstellung der Grund-
gleichungen ist ziemlich verwickelt, und ihre ganze Integrierung fiithrt zu
Reihen, die hdufig schwer zu handhaben sind und langsam konvergieren. Auch
wenn ihre Konvergenz fir manche Wandstirken befriedigend ist, kann eine
Anderung der Wandstirke bewirken, daf3 die gute Konvergenz verloren geht.
Selbst wenn der Ingenieur den mathematischen Apparat fiir die Behandlung
des Problems vollkommen beherrscht, ist die fiir das Durchrechnen eines be-
- stimmten Belastungsfalles erforderliche Arbeit viel zu grof. Uberhaupt diirfte
es unméglich sein, auf dem von Meifiner, Bolle, Dubois, Honegger, Ekstrom u. a.
angewiesenen Wege zu praktischen Methoden zu kommen. Beispielsweise fiir
sphirische Kuppeln ergeben sich beim Integrieren in den einfachsten Fillen
hypergeometrische Reihen, die wegen ihrer langsamen Konvergenz nicht das
richtige Werkzeug des Ingenieurs bilden.

In Anbetracht dieser Tatsachen ist es vor allem wichtig, dafl man sich fiir
die weitere Entwicklung der Kuppeltheorie auf solche Ldsungen einrichtet, die
den Anforderungen der Praxis Geniige leisten, auch wenn man dabei gewisse
Annéherungen einfiihrt. Wie Geckeler? gezeigt hat, 1afit sich auch mit ver-
hiltnismiflig einfachen mathematischen Hilfsmitteln eine Losung finden, die sich
von der exakten nur unwesentlich unterscheidet und die ganz besonders einfach
und bequem anzuwenden ist, falls Wandstirke und Radius konstant sind. Die
gute Ubereinstimmung zwischen Geckelers Theorie und der exakten Theorie

1 John Erik Ekstrom: Studien iber diinne Schalen von rotationssymmetrischer Form und
Belastung mit konstanter und verinderlicher Wandstirke. Stockholm 1932.
2 Siehe z. B. Handbuch fiir Eisenbetonbau, Band 6. Berlin 1928.
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kann dazu berechtigen, jene ausfiihrlicher zu erdrtern, falls man sich dariiber
klar ist, welche Anndherungen eingefiilhrt werden. Noch einen Schritt niher
kommt man dem exakten Resultat, wenn man Blumenthals und Steuermanns
sogenanntes asymptotisches Integrationsverfahren benutzt, das auch bei beliebig
variabler Wandstarke der Kuppel anwendbar ist. Mit diesem Verfahren kommt
man tatsichlich weiter als mit den Methoden, die auf Lésungen in Form un-
endlicher Reihen aufgebaut sind, wobei man bisher immer annehmen mufite,
dafy die Wandstirke nach einer bestimmten Funktion verdinderlich sei, damit
sich die Losung durchfiihren lie3.

Eine nihere Priifung der von Geckeler angegebenen Schlufigleichungen zeigt,
daf} diese von genau derselben Art sind wie die Gleichungen fiir einen elastisch
unterstiitzten Triger. Die physikalische Analogie ist auch nicht schwer zu er-
kennen. Den Meridian der Kuppel kann man némlich als einen Triger be-
trachten, der von den Parallelkreisen oder Ringen unterstiitzt ist. Da diese sich
zusemmendriicken oder ausdehnen lassen, entsprechen sie in statischer Hinsicht
einer elastischen Unterlage.

Durch diese Betrachtungsweise kann man sich die Statik der *Kuppel mit
ausreichender Genauigkeit klarmachen. Fiir die Aufstellung der Gleichgewichts-
gleichungen braucht man dann auch nicht auf die Meifinerschen Differential-
gleichungen zuriickgreifen, sondern man kann alle erforderlichen Gleichungen
direkt einfach mit Hilfe der Theorie des elastisch unterstiitzten Trigers auf-
stellen. Dies bedeutet fiir den in der Praxis tdtigen Ingenieur, dafl er nicht erst
den Versuch zu machen braucht, die ziemlich komplizierte klassische Kuppel-
theorie zu begreifen; vielmehr kann er auf eigene Faust die erforderlichen
Gleichungen ableiten.

Aus den Arbeiten Geckelers geht hervor, dal3 er selbst die hohe Bedeutung der
von ihm vorgeschlagenen Anndherungen nicht vollstindig erkannt hat; d. h. er
hat selbst nicht verstanden, daf} die Kuppel im grof3en betrachtet wie eine stetige
Reihe von Trédgern 6 auf federnder Unterlage wirkt. Die von mir hier vor-
geschlagene Betrachtungsweise kann natiirlich in der Weise erweitert werden,
dafl man den Meridian nicht als einen Triger, sondern als ein Gewdlbe betrachtet,
das elastisch von den Ringelementen der Kuppel unterstiitzt wird.

Durch Einfiihrung dieser genaueren Betrachtungsweise bekommt man einen
exckteren Einblick in die Statik der Kuppel, und die Gleichungen, die man dabei
erhilt, sind dieselben wie nach Meifiner.

Es ist offenkundig, daB man besonders bei sehr flachen Kuppeln, wo also die
Gewolbewirkung in den Meridianelementen stark hervortritt, zur Einfithrung
dieser letzteren Betrachtungsweise gendtigt ist, um die erwiinschte Genauigkeit
zu erzielen. Je steiler die Tangente der Kuppel an der Auflage geneigt ist, um
so genauer wird die angendherte Betrachtungsweise mit dem Meridian als einem
Triger auf elastischer Unterlage, und in dem Sonderfall, dafs die Tangente der
Kuppel iiberall senkrecht ist, wenn also die Kuppel in einen Zylinder tibergcht,
ist dic Betrachtungsweise vollkommen exakt.

Um ndher zu erldutern, wie einfach das Kuppelproblem auf solche Weise
behandelt werden kann, habe ich einige Probleme durchgerechnet und die Er-
gebnisse mit denjenigen verglichen, die man nach der exakten Theorie erhilt.
Die Ubereinstimmung ist iiberall erstaunlich gut.
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Als erstes Beispiel wihlen wir eine sphirische Betonkuppel von gleichmif3iger
Dicke, Wandstirke ® — 16 cm, Radius r = 1000 cm, Offnungswinkel 400. Die
Kuppel sei mit einem konstanten Fliissigkeitsdruck p = 1,0 kg/cm? belastet und
sei rund um die Kante fest eingespannt (siehe Fig. 1).
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Fig. 1.

Vergleich zwischen der Grofle des Meridianmomentes, berechnet erstens nach Gleichung 5
und zweitens nach der exakten Methode mittels hypergeometrischer Reihen. Die Abweichungen

sind fir praktische Fille belanglos.

Berechnet man die Spannungen in dieser Kuppel nach der Membrantheorie,

so ergibt sich eine Meridiandruckspannung T, — P25 und eine Ringdruckspan-

2

T Diese Meridian- und Ringspannungen sind iiber die ganze Kuppel

nung T, = £

2
konstant, und die ,,membrantheoretische” Ldsung ist also sehr einfach. Unter
Einwirkung dieser Druckspannungen T, und T, wird die Kuppel zusammen-

C ) T.r p r?
geprefdt, soda3 sich ihr Radius um den Betrag = s d. h. 2Es
Diese Verringerung des Radius ist nicht sehr grof3, sie belduft sich unter den
gegebenen Voraussetzungen und bei E = 210000 kg/cm2 auf nur 0,15 cm. Da
die Kuppel rund um die Kante festgehalten wird, ist sie jedoch nicht imstande,

46

verringert.
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thre Form frei zu veriindern; die der Kante am nichsten gelegenen Teile werden
den urspriinglichen Radius beibehalten, aber je weiter man sich von der Kante
entfernt, umso groéfler wird die Bewegungsfreiheit der Konstruktion und umso
freier kann die Forminderung vor sich gehen. Obgleich die Zusammendriickung
des Radius in diesem Falle ziemlich geringfiigig ist, entstehen nahe an den
Kanten gewisse Storungen, die zu Biegungsmomenten von solcher Gréf3en-
ordnung fiihren, daf8 man sie nicht vernachlissigen darf.

Wir wollen nun untersuchen, wie groffe Momente in einem elastisch unter-

stiitzten Triger entstehen, wenn wir annehmen, er erhalte eine Ausbiegung
2

entsprechend dem oben berechneten Werte QP}; 5 Fir den Zusammenhang
zwischen Moment und Ausbiegung gilt die Gleichung
dz
EJ. Z3=—M, (1)

und die Einwirkung der elastischen Unterstiitzung der Ringelemente wird aus-

gedriickt durch die Gleichung

d:M Ed
—dx—zl=?'y (2)

Eliminiert man M, aus diesen beiden Gleichungen, so erhilt man

d? d? Ebd
o [PE| =0 82)
— - . Em? 3%
oder, wenn die Biegungssteifheit EI als konstant und gleich w1 19
vorausgesetzt wird
dy 4
. L 3m—1 1 (3b)
worin = — =5 _

ist.
Das allgemeine Integral der Gleichung 3b kann man bekanntlich in folgender
Form schreiben: '

y = e~¥% (A cos kx + B sin kx) 4 e~¥* (C cos kx 4 D sin kx) (4a)

d. h. die Ausbiegung kann man als die Summe zweier Sinusschwingungen be-
trachten, die eine mit geddmpften, die andere mit zunehmenden Amplituden.
Bekanntlich kann man im-allgemeinen die Koeffizienten C und D gleich O setzen,
vorausgesetzt, dafy der Triger nicht gar zu kurz ist und dafl der Ursprung in den
Punkt verlegt wird, von dem die Storung ausgeht. Fiir geschlossene Kuppeln
kann man daher das Integral mit ausreichender Genauigkeit in folgender Form
schreiben:

' y = e~** (A cos kx 4+ B sin kx) (4b)

Hier bezeichnet x die Bogenlinge des Meridians, von dem Kuppelrand aus
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gemessen. In diesem Falle sind die arbitriren Konstanten A und B leicht aus
der Randbedingung bestimmbar, daf3

pr*

Y =~ %Fs und y’'=o bei x =o0 ist.
Dies ergibt A =B = — ;}; 6 und die Ausbiegung des Meridians ist also
pI‘2 —-kx 1
Y=—45%s (cos kx + sin kx).

Durch Einsetzen in Gleichung 1 erhilt man den Ausdruck fiir das Meridian-
moment

,o—
€

M, = Vl—g proe—kx (— cos kx + sin kx) (3)

In diesem Ausdruck ist die Einwirkung der Querzusammenziehung des Mate-
rials vernachlissigt, d. h. die Poissonsche Zahl m ist gleich unendlich gesetzt.

Mit Hilfe der in Tabelle I angegebenen Werte der Funktionen e~ ¥*cos kx und
e~ kX sin kx laf3t sich Gleichung 5 leicht zeichnerisch wiedergeben. In Fig. 1
sieht man, wie das Meridianmoment M, sich mit der Entfernung vom Kuppel-
rand verindert. Zum Vergleich sind die nach Bolles Methode mit hypergeo-
metrischen Reihen berechneten exakten Werte angegeben.3 Wie man sieht, ist die
Ubereinstimmung zwischen den exakten Resultaten und den Anndherungswerten
erstaunlich gut, weshalb kein Anlafl besteht, das Kuppelproblem zu einer ver-
wickelten mathematischen Aufgabe zu gestalten. Bei Kuppeln mit gréBerem
Offnungswinkel als in diesem Falle, 409, ist die Ubereinstimmung zwischen den
exakien und den angendherten Werten noch besser. Nur bei Kuppeln, deren
Neigungswinkel an den Auflagen sehr klein ist, erlangt der Einflufl der ge-
machten Anndherungen praktische Bedeutung. Nebenbei bemerkt sind solche
Kuppeln unzweckmif3ig wegen der sehr starken Randstérungen, die beim An-
schluff der Kuppel an ihren etwaigen Auflagering auftreten.:

Fiir die Berechnung der Spannungen in der Kuppel ist nicht nur das Meri-
dianmoment M, von Bedeutung, sondern auch die Ringmomente M, und die
Zuschiisse zur Meridiandruckspannung und Ringdruckspannung, die dadurch
entstehen, dafl die Randbedingungen nicht den Voraussetzungen der Membran-
theorie entsprechen. Diese Groffen, M,, AT, und AT, lassen sich direkt aus den
nachstehenden Formeln berechnen. Die Ubereinstimmung zwischen dén nach
der hier gezeigten Anniherungsmethode erhaltenen Werten und den exakten ist
ebenfalls sehr gut, wie aus nachstehenden, in Tabelle 2 zusammengestellten Ver-
gleichen hervorgeht.

Die Ableitung der mathematischen Ausdriicke fiir die Zuschufikrifte AT,
und AT, erfolgt am einfachsten unter Anwendung der Analogie, daf} der
Meridian ein Trager mit elastischer Unterlage ist. Den Zuschufl in der Meridian-
druckspannung, AT,, kann man also betrachten als die Scherkraft im Triger,
multipliziert mit coto, wo o der Neigungswinkel des Meridians zur Horizontal-

ebene ist. Hierbei erhilt man
3

.
AT, =cota-EJ- Tﬁx (6)

3 Siehe FEkstrém, a.a. O., S. 124.
46*
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Tabelle I.
Werte der Funktionén e—kxcos kx, e—kXsin kx, e—kx (coskx — sinkx) und e—-kx (cos kx + sinkx.
kx e—kx cos kx e—kx sin kx e—kX (cos kx — sin kx) | e—kX (cos kx 4 sin kx)
0 1.0000 0.0000 1.0000 1,0000
5 0.6239 0.2584 0.3655 0.8823
—Z— 0.3225 0.3225 0.0000 0.6450
% 0.1179 0.2845 —0.1665 0.4024
% 0.0000 0.2079 —0.2079 0.2079
5—8" —0.0536 0.1297 —0.1883 0.0761
i_" 00871 0.0671 — 01842 0.0000
% —0.0592 0.0245 — 0.0837 — 0.0347
x —0.0432 0.0000 —0.0482 —0.0432
9_;- — 0.0269 —0.0112 — 0.0157 — 0.0381
5’11 —0.0139 — 0.0139 0.0000 —0.0279
11; —0.0051 00123 0.0072 00174
%" 0.0000 — 0.0090 0.0090 —0.0090
13 =

S 0.0023 — 0.0056 0.0079 — 0.0033
7T" 0.0029 —0.0029 0.0058 0.0000
158" 0.0026 __0.0011 0.0037 0.0015
2x 0.0019 0.0000 0.0019 0.0019
%7 % 0.0011 0.0005 0.0006 0.0016
% 0.0006 0.0006 0.0000 0.0012
1—89 0.0002 0.0005 — 0.0003 0.0007
% 0.0000 0.0004 — 0.0004 0.0004
%1 x — 0.0001 0.0003 — 0.0004 0.0002
% n — 0.0001 0.0001 — 0.0002 0.0000
%3 x — 0.0001 0.0001 — 0.0002 0.0000
3n — 0.0001 0.0000 — 0.0001 — 0.0001
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Der Zuschufl in der Ringdruckspannung, AT,, ist ein Maf fiir die elastisch
unterstiitzende Wirkung der Unterlage, und AT, ist infolgedessen direkt pro-
portional der Durchbiegung y des Meridians, also

Ebd
ATz:'T'y _ (7)

Das Ringmoment M, schliefilich ergibt sich am einfachsten durch Bestimmung
der Kriimmungsinderung der Ringe,4 und man erhilt bei Vernachldssigung des
Einflusses der Querzusammenziehung

. EJ dy
M2__cota-—r-& (8)

Setzt man in die Gleichungen 6, 7 und 8 die Gleichung fir die Durchbiegung

des Meridians ein:
3

y=— QPE% e~kx (cos kx + sin kx)
so erhilt man folgende Ausdriicke fir AT,, AT, und M,
AT, = — cotonp—r;32 k3e -kx cos kx (64a)
ATy = — p_21‘ e~ % (cos kx ¢ sin kx) (7a)
M; =cota- pif k e—%x sin kx | (8a)

Tabelle 2 enthilt die so errechneten Werte der Meridian- und Ringspannungen
und Ringmomente, verglichen mit den exakten Werten.

Tabelle 2.

Vergleich zwischen den angeniiherten und exakten Werten der Meridian- und Ringspannungen
und Ringmomente.

Neigungs- T,+AT T T M

wifke'lgg an:g;tliihe;t 1e_)tait ! ale ;iﬁg‘:t T”;(—aﬁtTQ angenghert e;‘(\al\it
des Meridians kg/cm kg/cm g kg cm/cm

40° 443 439 0 0 0 0
35° 474 481 215 . 193 99 113
30° 503 504 437 427 62 3
23° 506 508 517 520 12 17
20° 503 504 b18 523 —8 — 10
15° 501 501 511 510 —9 — 14
10° 499 499 501 501 —5b — 9
50 499 498 499 498 0 — 3

Das oben durchgerechnete Problem entspricht den denkbar einfachsten Rand-
bedingungen. Um die Anwendbarkeit der Methode auch bei komplizierteren

¢ Siehe z. B. Féoppl: Drang und Zwang, Band 2. Berlin 1928.
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Randbedingungen nachzuweisen, habe ich eine Kuppel durchgerechnet, die an
einen umgebenden kreisrunden Zylinder gemidfi Fig. 2 angeschlossen ist. Um
das Problem einigermafien zu vereinfachen, wurde der Wasserdruck auf die
Kuppel als konstant angenommen. Dieses Problem ist von Ekstrém unter den
gleichen Annahmen ausfiihrlich behandelt worden. Tabelle 3 enthilt fiir das
Meridianmoment M; und fiir die Ringspannung T, die berechneten Werte ver-

glichen mit den exakten.
Fir alle Konstanten der Kuppel wird nachstehend der Index 1 benutzt, fiir

die Konstanten des Zylinders der Index 2.

B g
I :
Ik :
IH
I g
3 3
’ | dp =24cm
| | & =16cm il
| [ por ,
j ™~ \\'\ ;
LS arp=3.12- %
4
an 172 E
)
° S
R
3 ¢

Fig. 2.

Dic Berechnung dieser Kuppelkonstruktion wird in folgender Weise durch-
gefiihrt. Wenn die innere Kuppel und der Zylinder voneinander befreit werden
und sich unter Einwirkung der Belastung unbehindert deformieren diirfen,

ergibt sich nach der Membrantheorie

. 2 - 10*
eine Abnahme des Kuppelradius um Lol —P - 3,12 cm
PP 2E5,  E
2 L1048
und eine Zunahme des Zylinderradius um %: P éO - 1,712 cm.
: 2

Dic Zylinderwand bildet dabei einen kleinen Winkel zur Senkrechten

== IE(—) - 1,72. (Siehe Fig. 2.)

Da dieser Deformationszustand mit den tatséchlichen Auflagerverhiltnissen
unvereinbar ist, miissen gewisse Zuschuf3krifte und Zuschufimomente eingefiihrt
werden, um den Stetigkeitsbedingungen Geniige zu leisten. Diese Stetigkeits-

bedingungen sind folgende:



Massive Kuppeln, zylindrische Behilter und &hnliche Konstruktionen 727

Zylinder und Kuppel sollen dieselbe Ausbiegung und Winkelinderung im
Vereinigungspunkte haben, und der Vereinigungspunkt soll auf3erdem hinsicht-
lich der Momente und angreifenden Krifte im Gleichgewicht sein. Dies bedeutet
vier Randbedingungen, die mittels vier Gleichungen ausgedriickt werden kénnen,
wodurch sich alle unbekannten Forminderungen, Momente usw. bestimmen
lassen.

Um die Aufstellung der Gleichungen zu erleichtern, folgen hier die allgemeinen
Ausdriicke fir die Ausbiegung und ihre Ableitungen. Man hat

y =ekx [A cos kx 4 B sin kx]

y' =k e ¥x[(B— A) cos kx -— (A + B) sin kx] ©)
y' = 2k? e=*x[—- B cos kx + A sin kx]

y'" = 2k® e~%x[(A 4 B) cos kx 4+ (B — A) sin kx]

Die erste Bedingung, daf3 die Ausbiegungen des Zylinders und der Kuppel
am Rande selbst gleich grof3 sein sollen, lifit sich durch folgende Gleichung
ausdriicken:

p-10*

—A,;sin40°4+A, = 5 (3,12 sin 40° 4 1,72).

Damit die Winkelinderungen gleich grof3 werden, muf}

10
k, (B, —A,) =k, (B, — A) — - 172

sein, und fiir das Momentgleichgewicht gilt auflerdem
k,2EJ, B, =k,*EJ, B,.

Di2 restliche Bedingung soll ausdriicken, dafy die horizontale Reaktion wegen
Belastung der inneren Kuppel von der Scherkraft im Zylinder sowie von der
Scherkraft und der Meridianspannung in der Kuppel aufgenommen werden
soll, d. h.

1

— 2k, *EJ, (A, + B,)- sin 40°

55— 2ks* EJ, (Ay+ By) =p - 500 - cos 40°.

Durch Elimination aus diesen vier Bedingungsgleichungen erhilt man fir
p = 1 kg/cm? folgende Werte der Konstanten:

104 10*
AI:—15,35-——E BI:—7,16-—E
10* 10*
A2 = e 6,13 . —E— B2 == 2,05 . T*.

Das Problem ist damit vollstindig gelost; die Momente usw. kann man nun
ohne Schwierigkeit fiir jeden beliebigen Punkt des Zylinders und der Kuppel
berechnen. In Tabelle 3 sieht man einen Vergleich der berechneten und der
exakten Werte fiir Meridianmoment und Ringspannung der Kuppel. Die Uber-
einstimmung ist in allen Punkten befriedigend.
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Tabelle 3.

Meridianmomente und Ringdruckspannungen der Kuppel nach Fig. 2.
Neigungs- M, M, Ty+ ATy | To+ AT,
winkel o angenihert exakt angenihert exakt

des Meridians| kgem/cm kgem/cm kg/cm kg/cm

40° — 5280 — 5560 — 1950 — 1930
35H° 1450 2250 -— 800 — 540
30° 1980 2200 401 613
259 597 764 618 639
20° — 6 9 : h72 593
15° — 99 — 141 520 H26
10° — b4 — 80 498 498

5o — 8 — 15 495 ° 493

Diese zwei Beispiele lassen also erkennen, daf3 die hier gezeigte Methode fiir
die Behandlung des Problems praktisch brauchbare und auch leicht zu findende
Resultate ergibt.

Wie eingangs erwihnt, kommt die Anndherungslosung den exakten Werten
umso niher, je steiler die Kuppel und auch je geringer ihre Wandstirke wird.
Besonders dieser letzte Umstand ist, wie u. a. Steuermann® nachgewiesen hat,
von grofer Bedeutung. Die exakte Gleichung fiir die Ausbiegung des Meridians
enthilt nicht wie Gleichung 3b nur Ausdriicke vierter und nullter Ordnung,
sondern auch Ausdriicke mit Derivaten erster, zweiter und dritter Ordnung, die
aber alle mit Polynomen von cota multipliziert sind. Mit zunehmendem o ver-
ringert sich die Bedeutung dieser Ausdriicke, und fir o = 909, also beim
Zylinder, fallen sie ganz weg, d. h. Gleichung 3b gilt exakt. Die Verringerung
der Kuppelwandstirke hat dhnlichen Einfluff auf die vollstindige Differential-
gleichung. Warum dies der Fall sein muf}, sieht man auch leicht direkt ein.
Es kommt einfach daher, daf3 bei geringer Wandstirke die Bedeutung der
Zusammendriickung des Meridians neben dem Einfluff der Kriimmungsinderung
klein wird. Dies bedeutet mit anderen Worten, daf3 man die Arbeit der Normal-
krafte infolge Zusammendriickung des Meridians neben der Arbeit des Meridian-
moments und der Ringspannungen bei diinnen Kuppeln vernachlissigen kann.

In den bisher behandelten Problemen wurde die Wandstirke iiberall als
konstant angenommen. Wenn die Wandstirke d verdnderlich ist, kann man
nicht von Gleichung 3b ausgehen, sondern muf3 Gleichung 3a anwenden. Da die
einfache Theorie des elastisch unterstiitzten Trédgers in obigen Fillen, d. h. bei
konstanter Wandstirke, hinlinglich genaue Resultate ergab, besteht Grund zu
der Annahme, daf3 dies auch bei verinderlicher Wandstirke der Fall sein wird.

Die Theorie des elastisch unterstiitzten Trigers mit verinderlichem Triigheits-
moment und verinderlicher Unterstiitzung wurde bisher von verschiedenen For-
schern6 hauptsichlich mit Hilfe von Reihen studiert. Die dabei zutage gekom-

5 E. Steuermann: Some Consideration on the Calculation of Elastic Shells. Internationale

Tagung fir technische Mechanik. Stockholm 1930.
6 Siehe z. B. Hayashi: Theorie des Triigers auf clastischer Unterlage. Berlin 1921.
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menen Ergebnisse sind fiir die Praxis leider mehr oder weniger unbrauchbar.
Wegen der nahen Verwandtschaft der Gleichungen 3a und 3b ist es jedoch
recht natiirlich, daff die Losungen beider Gleichungen im grofien ganzen den
gleichen mathematischen Aufbau haben. Deshalb liegt die Annahme nahe, daf3
man dic Losung der Gleichung 3a beispielsweise in folgender Form schreiben

kann:
y — uet? (A cosz+ Bsin z) (12)

worin u und z gewisse Funktionen von x sind. Unter Anwendung des Blumen-
thalschen sog. asymptotischen Integrationsverfahrens kann man die Funktionen
u und z bestimmen, sodaf3 Gleichung 12 mit sehr guter Anndherung wirklich
ein Integral der Gleichung 3a darstellt.

3
Wenn: wir wie oben die Biegungssteifheit des Trigers EJ — —1-26— einfiithren,
ergeben sich fiir die Funktionen u und z folgende Ausdriicke:
u= 4i_ : (13)
yo?

and 1= f & (14)

Dieses Resultat erhilt man in folgender Weise. Fithrt man die Ableitung der
Gleichung 3a aus, dann ergibt sich nach Vereinfachung die Gleichung

YV p ¥y Py FpsY Fpiy=o (15)
worin Py = 6% |
YL
P2 = (52 T3
ps =0
12
Py = mee

ist. Multipliziert man die Gleichungen

v =1(z)

vi =12

v =1z 4+ 12"

vi=1fz"4+3f 2z +1"z3

vWV=1F2V 4 (42243246 222" + V2",
df

. . . . . dz . .
worin f' soviel wie — und z‘ soviel wie — bedeutet, der Reihe nach mit den

dz dx
Faktoren Q,, Qz, Qy, Q,, und 1 und addiert sie, so erhilt man, wenn das linke
Glied gleich Null gesetzt wird, erstens die Gleichung

MY v Qv Qv Qg ¥ Q0 (16)
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und zweitens, wenn die Faktoren f’, f” und {” jeder fiir sich gleich Null
gesetzt werden

A2 Qe Qb Q=0
(47 z'“+3z"2)+3z‘ z'-Q,4+2z%Q,=o (17)
6z2z"4+2%Q,=o
Aus diesen Gleichungen kann man Q;, Q, und Qg l6sen, wihrend die Funk-
tion f (z) durch die iibrige Bedingung
fiviz4 4+ Q,- f=o (18)
bestimmt wird.

Wihlt man den Faktor Q, gleich 42’4, dann verwandelt sich die Gleichung 18 in
d* f

E‘l— + 4 f =0
d. h. f (z) = e*” (A cos z + B sin z) (19)
worin z durch die Bedingung
. —
dz /Q,
by 0

bestimmt wird.

Wenn man in Gleichung 15 nun y = uv einfiihrt, erhdlt man beim Einsetzen
und nach Division durch u

4u’ 6u”’  3u .
v e = “ Qv
ViV v (u +P1)+V ( u + o p1+P2)
4 " :_; i 2 {
+W(z +—pi+ :pr+my+wn=0 (21)

Durch Gleichstellen der Koeffizienten fiir v und v in den Gleichungen 16
und 21 kann man die unbekannten Funktionen Q, und u bestimmen. Man erhalt
demnach Q, = p, und folglich nach Gleichung 20

o
z:f]/—%dx
12

oder, mit p, = gt LT 4|/3 qu:b (14)
r
. 4u’
Aus der Bedingung . +p.=0Q

erhdlt man unter Anwendung der letzten der Gleichungen 17

4w _

3 ,
=—p1— o (log p,)

u

oder u (13)
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Fat man das Ergebnis obiger Rechnungen zusammen, so kann man die
Losung der Gleichung 3a unter Vernachlassigung der Ausdriicke, die den
Faktor e* enthalten, also in folgender Form schreiben:

y= e (A cosz+ Bsinz) (12a)
63

worin z durch die Bedingung z = 1/.?5 —d—i
Vrd

bestimmt wird.
Beim ersten Anblick erscheint vielleicht die Gleichung 12a umstindlich und
wenig geeignet fiir praktischen Gebrauch wegen des verwickelten Aufbaues der

Funktion z und des zusitzlichen Faktors 4_§" In der Praxis aber stellt sich der

Fall einfacher. Die Funktion z braucht nimlich nie anders als zahlenmifdig
angegeben zu werden und la3t sich deshalb leicht aus Gleichung 14 z. B. nach
der Trapezregel berechnen. Bei Berechnung der Ableitungen von Gleichung 12a
ergeben sich, wenn man keine Anniherungen einfiihrt, ziemlich komplizierte
Ausdriicke. Beachtet man aber, daf3 die Ableitungen z”, z’”’, u” und u” bei den
in der Praxis vorkommenden Abmessungen klein sind und daher vernachlissigt
werden kénnen, erhilt man die Ableitungen von y in folgender Form

y =ue~?(A cosz- Bsinz)
y' —=uz'e?[(B—pA) cosz— (A+ uB) sin z]
vy =2uz?e?[— (uB 4 +yA)cosz+ (uA — yB) sin z]

y“=2uz®*e 2[(A+ p, B) cos z+ (B— p, A) sin z] (9a)
worin v = -
uz
p =1-—v
gy =1—3wv.

Fiir den Fall, daf3 die Wandstirke konstant ist, wird Yy =0 und p=p;, =1,
wobei obige Gleichungen genau dieselben werden wie die Gleichungen 9.

Die Gleichungen 9a sind also in derselben Weise aufgebaut wie die in den
Gleichungen 9 angegebenen Ableitungen fiir einen Triger mit konstanter
Biegungssteifheit. Die Berechnung einer Kuppel mit verdnderlicher Wandstirke
laB3t sich demnach in gleicher Weise und mit wenig mehr Miihe durchfiihren
wie bei gleichmifliger Wandstirke. Die oben durchgerechneten Beispiele (siche
Fig. 1 und 2) sind also auch fiir den Fall vorbildlich, daf3 ® verdnderlich ist,
und dic Gleichgewichtsgleichungen sind ebenso aufzustellen, nur mit den Ab-.
indcrungen, die durch den Unterschied zwischen den Gleichungen 9 und 9a
bedingt sind.

Bisher haben wir bei der Behandlung des Kuppelproblems nicht beriick-
sichtigt, dafy sich die Meridiantriger nach oben hin verjiingen und im Scheitel
der Kuppel die Breite Null haben, vielmehr haben wir bei ihnen eine kon-
stantc Breite angenommen. Dies entspricht der Wirklichkeit nur dann, wenn
dic Kuppel zylindrisch ist, aber bei Kuppeln im allgemeinen liegt in jener An-
nahme ein gewisses Anniherungsverfahren. Wenn wir die Verjiingung beriick-
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sichtigen, konnen wir bei sphirischer Kuppel das Trigheitsmoment des Meridian-
trigers in gewissem Winkelabstand o vom Scheitel folgendermafien schreiben:

5% sin a
12 sin Qo

J=

(21)

Mit diesem Ausdruck fiir das Trigheitsmoment erhalten wir fiir die Funk-
tionen u und z
1 1

Vo Vsina
S1N Ao
und 7 — st‘/l‘b VSIIICL

Die obigen Ableitungen, die sich hauptsichlich auf das Kuppelproblem be-
ziehen, lassen sich natiirlich auch auf zylindrische Behilter und dhnliche Kon-
struktionen anwenden, die als Sonderfille der Kuppel aufzufassen sind. Die
fir Berechnung solcher Behilter iiblichen Methoden,? denen Reihenentwicklungen
zugrunde liegen, lassen sich vorteilhaft durch die oben angegebene Methode
ersetzen. Einen interessanten Sonderfall dieses Problems begegnet man bei der
Berechnung von massiven Gewélbedimmen. Bisher ging man bei Behandlung
derartiger Probleme von Gleichung 3b aus und fiihrte einen Mittelwert de
Wandstiarke ein.8

Bei Behandlung der Gleichung 3 a nach obiger Methode kann man ohne
Schwierigkeit die in verschiedenen Richtungen und an verschiedenen Punkten
vorkommende Anisotropie der Konstruktion beriicksichtigen. Es kann sich dabei
um eine reine Materialerscheinung oder um eine rein konstruktive Anisotropie
handeln. Beispielsweise durch das Einlegen verschiedener Mengen von Armie-
rungseisen in verschiedenen Richtungen wird der scheinbare Elastizitdtsmodul
des Baustoffes in verschiedenen Richtungen verschieden, was als Material-
anisotropie bezeichnet werden darf; und eine gewisse konstruktive Anisotropie
kann man in einem zylindrischen Behilter oder einer Kuppel zuwege bringen,
indem man in der Richtung der Generatrix oder des Meridians Verstirkungs-
triger anbringt (Rippenkuppel). Unter solchen Umstinden kann Gleichung 3 a
nicht in der Form geschrieben werden, die sie in Gleichung 15 erhalten hat,
vielmehr bekommen die Koeffizienten p, bis p, folgendes Aussehen

_ 2(E )
T
——(_E—1J)11
2T EJ
py=0

— 4D
=R

7 Siehe Lorenz: Technische Elastizititslehre. Berlin 1913. H. Reifiner: Beton und Eisen 7,
150, 1908. T. Péschl und K. Terzaghi: Berechnung von Behiltern. Berlin 1913.

8 N. Royen: Tvirésdammen vid Norrfors kraftverk (Der Damm von Tviré am Kraftwerk
Norrfors). Zeitschrift Belong, Heft 2, 1926.
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und die Funktionen z und u erscheinen demnach in folgender Form

—
_ E; 5
z_f‘/tlr’El—de

8 —

d T
un Y=V ET E o0

Da man weder fiir u noch fiir z einen mathematischen Ausdruck benétigt,
bringt die Einfithrung der Gleichungen 22 und 23 keine Erschwerung der

Berechnungen mit sich.

Zusammenfassung.

Durch die Aufteilung der Schale in zwei Scharen von einander kreuzenden
Tragern konnen wir ein klares Verstindnis der statischen Wirkungsweise der
Konstruktion erhalten. Die auftretenden Momente und Spannungen konnen wie
bei dem Balken auf elastischer Unterlage berechnet werden. Da die strenge
Theorie zu Losungen in Form von unendlichen Reihen fiihrt, die unter gewissen
Bedingungen nur langsam konvergieren, sind durch die angegebene Methode
praktische Vorteile zu gewinnen.
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