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IVal
Einführung in die allgemeine Theorie der biegungsfreien Schalen.

Etude des voiles minces courbes ne subissant pas de
flexion.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. es siences F. Aimond,
Ingenieur des Ponts et Chaussees detache au Ministere de l'Air, Paris.

1. Hinweis auf die allgemeinen Gleichgewichtsbedingungen der Schalen in
geradlinigen Koordinaten.

Die Gleichung der Oberfläche in geradlinigen, jedoch nicht unbedingt
rechtwinkligen Koordinaten sei z f (x, y). Der Spannungszustand in einem Punkte
m der Schale wird durch die Spannungen nv n2, © bestimmt, die auf die zu
den Ebenen zox und zoy parallelen Schnitte mmx und mm2 wirken. Auf den
Schnitt mm2 wirkt nx parallel zur Ebene zox, auf den Schnitt mra1 wirkt n2
parallel zu zoy und © wirkt sowohl auf den Schnitt mmx parallel zu zox als
auch auf mm2 parallel zu zoy. Die Richtungskoeffizienten der Tangenten an die
Schnitte mmx und mm2, also die in Richtung ox, oy, oz projizierten Einheitsvektoren

jeder dieser Tangenten bezeichnen wir mit av 0, yx und 0, ß2 und y2.
Wir denken uns nun die Schale beliebig belastet. Dann sind X • dx • dy, Y • dx • dy,
Z • dx- dy die Komponenten der aufgebrachten Last, die in den Richtungen ox,
oy, oz auf das Element mm1m'm2 wirken, das parallel zur Ebene zox durch
mmx und m2m' und parallel zur Ebene zoy durch mm2 und m^m' begrenzt wird.
Die Untersuchung der Gleichgewichtsbedingungen für diese Schnitte führt zu
folgenden Gleichungen:
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2. Geometrische Deutung der in den allgemeinen Gleichgeivichtsbrdingungen
enthaltenen Größen.

Die Größe £ im zweiten Glied der Gleichung (3) ist die schiefe Projektion
des Vektors (X, Y, Z) auf oz, wobei diese Projektion parallel zu der an die
Oberfläche gelegten Tangentialebene erfolgt. Zur Deutung der Größen vv v2
und ©, die die Unbekannten in den Gleichgewichtsbedingungen sind, soll
allgemein der Begriff der reduzierten Spannung definiert werden. Die an einem

Bogenelement angreifende reduzierte Spannung ist die Projektion der an diesem
Element angreifenden Kraft auf die xy-Ebene, dividiert durch die projizierte
Länge des zugehörigen Elementes. Es läßt sich einfach feststellen, daß der

Zusammenhang zwischen den in einem Punkt wirksamen reduzierten Spannungen
denselben Gesetzen folgt wie bei den wirklichen Spannungen und im Besonderen,
daß auch die /l/o/ir'sche Darstellung auf sie anwendbar ist. Die Größen v1, v2, ©

entsprechen den durch Parallelprojektion auf die x und y-Achse entstandenen
reduzierten Spannungen, die zu den Schnitten gehören. Die Schubspannungen ©
bleiben in der Projektion erhalten, während dies für die Spannungsgrößen nx
und n2 nicht der Fall ist.

3. Geometrische Deutung der Gleichgewichtsbedingungen.

Die Gleichungen (1) und (2) drücken augenscheinlich das Gleichgewicht in
der Projektion auf die Tangentialebene aus. Die Gleichung (3) dagegen gibt
das Gleichgewicht der normal zur Schale wirkenden Kräfte wieder. Um sie
geometrisch zu deuten, legen wir den Ursprung 0 des Dreiflächners oxyz auf die
Oberfläche und richten ox und oy nach den Richtungen von zwei willkürlich
gewählten Schnitten. Der Dreiflächner oxyz wird nun vollends bestimmt, wenn
man eine Annahme über die Richtung oz trifft. Die Gleichung (3) gibt den
linearen Zusammenhang zwischen den Spannungen, welche auf die willkürlich
gewählten Schnitte ox und oy wirken und der parallel zur Tangentialebene auf
oz erfolgten Projektion £ der Dichte der aufgebrachten Last. Solange man bei

festgehaltenem ox und oy die Richtung von oz ändert, ist nur jeder einzelne
Ausdruck der linearen Gleichung mit demselben Faktor zu multiplizieren.

Man kann die Unbestimmtheit der Richtungen der Schnitte ox und oy zur
Vereinfachung der Gleichung (3) benutzen. Richtet man nämlich diese Schnitte
nach zwei konjugierten Richtungen der Oberfläche aus (konjugierte Richtungen
im Verhältnis zur Indikatrix), so verschwindet der Koeffizient © und die
Gleichung (3) reduziert sich zu einer linearen Gleichung zwischen den

Längsspannungen v± und v2. Man kann sich nun fragen, ob es nicht möglich ist,
die Schnitte ox und oy so zu orientieren, daß in der Gleichung (3) überhaupt
nur noch eine einzige Spannungsgröße verbleibt. Man sieht aber sofort, daß
dies nicht möglich ist, solange die Oberfläche konvex ist, d. h. also, solange
die Hauptkrümmungsradien von gleichem Sinn sind. Wenn die Oberfläche nicht
konvex ist, wird dies im Gegensatz hierzu jedoch möglich.

Wenn wir uns mit der letzteren Annahme beschäftigen, so sind zwei Fälle
zu unterscheiden, je nachdem ob die in der Gleichung (3) verbleibende Spannung
eine Längsspannung oder eine Schubspannung © ist. Der erste Fall ist nur dann
möglich, wenn die Oberfläche abwickelbar ist, d. h. also, wenn man sie als die
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Umhüllende einer Gruppe von Tangentialebenen auffassen kann, die von einem
Parameter abhängen. Legt man den Schnitt ox in die Richtung der geradlinigen
Erzeugenden, die durch O geht, so vereinfacht sich die Gleichung (3) zu

r • Vi X> (4)

Der zweite Fall bezieht sich auf die Oberflächen mit gegensätzlichen
Krümmungen. Legt man ox und oy in die Richtung der Asymptoten, so vereinfacht
sich die Gleichung (3) zu

2 • s • © X. (5)

Die Gleichungen (4) und (5) sind einfach zu deuten. Betrachten wir zunächst

Gleichung (4). Man sieht sofort, daß von den an einem unendlich kleinen
Element der Fläche angreifenden Schnittkräften nur v1 eine Komponente ergibt,
die nicht in der Tangentialebene liegt, und Gleichung (4) drückt nur die Gleichheit

zwischen den parallel zur Tangentialebene erfolgten Projektionen der

Spannungen nx auf oz und der unter den gleichen Bedingungen erfolgten
Projektion der aufgebrachten Last aus.

Nun zur Deutung der Gleichung (5): Es genügt hierfür, ein viereckiges
Element zu betrachten, von dem zwei Seiten durch Asymptotenlinien gebildet
werden, die sich in 0 kreuzen. Die Resultierende der an dem Viereck angreifenden

Längsspannungen n± und n2 liegt in der Tangentialebene. Diese Resultierende
ist ja nur die geometrische Summe der Spannungsresultanten nx und n2, und

jede dieser Spannungsresultanten liegt notwendigerweise innerhalb der
Berührungsebene einer Asymptotenlinie, welche infolge der Definition der Asymptoten

mit der Tangentialebene zusammenfallen muß. Die außerhalb der Tangentialebene

liegende Komponente £ der auf die Oberfläche aufgebrachten Lasten hängt
also nur von der Schubspannung © ab und sie ist dieser auch direkt
proportional. Der Proportionalitätskoeffizient hat den Wert 2 s und ist einfach
geometrisch zu deuten. Er ist der Quotient aus dem doppelten Abstand der 0
gegenüberliegenden Ecke des Viereckes von der Tangentialebene durch O, parallel
zur Richtung oz gemessen, dividiert durch das Produkt der Seitenlängen der

Asymptotenlinien, welche das Viereck bilden.

4. Einteilung der Schalen in Bezug auf ihre mechanischen Eigenschaften.

Die vorstehenden Betrachtungen führen zu einer Einteilung der Schalen in drei
Gruppen. Die erste Gruppe umfaßt die abwickelbaren Oberflächen, wie Zylinder
und Kegel. Die zweite Gruppe umschließt die konvexen Oberflächen, wie die

Kugel, die elliptischen Paraboloide, die Ellipsoide, die zweischaligen
Hyperboloide und ganz allgemein alle doppelt gekrümmten Flächen, die durch eine
nach unten konkave Kurve erzeugt werden, wenn diese auf einer Leitlinie mit
ebenfalls nach unten konkaver Krümmung gleitet. Die dritte Gruppe umgrenzt
die gegensätzlich gekrümmten Flächen, wie die hyperbolischen Paraboloide,
die einschaligen Hyperboloide, die Konoide, alle nicht abwickelbaren
regelmäßigen Flächen und ganz allgemein alle Flächen, die durch eine nach oben
konkave Kurve erzeugt werden können, wenn sie auf einer nach unten konkaven
Leitlinie gleitet.

Zu dieser Einteilung wird man durch die geometrische Deutung der Gleichung
(3) geführt. In der ersten Gruppe findet man jene Schalen, für welche die
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Gleichung (3) in die Form der Gleichung (4) gebracht werden kann. Für die
zweite Gruppe kann Gleichung (3) in folgende Form gebracht werden:

r.yi + t.y2==Zi (6)

wobei r und t vom gleichen Vorzeichen sind. Die Schalen der dritten Gruppe
sind jene, für welche die Gleichung (3) in die Form (5) übergeführt werden
kann.

Wir bemerken, daß für die Schalen der dritten Gruppe die Gleichung (3)
ebenfalls in die der Gleichung (6) übergeführt werden kann; in diesem Falle
sind jedoch r und t von verschiedenem Vorzeichen. Außerdem kann noch für
die Schalen der zweiten Gruppe die Gleichung (3) die Form der Gleichung (5)
annehmen, wobei wiederum © die Schubspannung in den Asymptotenlinien
bedeutet. In diesem Falle sind jedoch s und t imaginäre Ausdrücke und die

Gleichung (5) stellt nicht mehr eine Bezeichnung zwischen reellen Größen dar.

Die Schalen der ersten Gruppe sind durch die Eigenschaft gekennzeichnet,
daß die normal zu den geradlinigen Erzeugenden wirkende Komponente des

Spannungszustandes in jedem Punkte porportional zur Normalkomponente der
Dichte der aufgebrachten Last ist. Die Schalen der zweiten Gruppe sind durch
die Eigenschaft gekennzeichnet, daß der rein imaginäre Schubspannungszustand,
der auf die in den imaginären Asymptotenlinien liegenden Elemente wirkt, in
jedem Punkte proportional zur Normalkomponente der Dichte der aufgebrachten
Last ist. Die Schalen der dritten Gruppe zeichnen sich durch die Eigenschaft
aus, daß der Schubspannungszustand, der auf die in den Asymptotenlinien
liegenden Elemente wirkt, in jedem Punkte proportional zur Normalkomponente
der Dichte der aufgebrachten Last ist.

Zwischen den Schalen der zweiten und dritten Gruppe kann man noch
folgenden Unterschied beobachten: Wenn man an einem beliebigen Punkte die

an zwei konjugierten Schnitten angreifenden Längsspannungen betrachtet, so
kann man die Normalkomponente der aufgebrachten Last, die ein linearer
Ausdruck dieser Längsspannungen ist, als den durch diese Längsspannungen
hervorgerufenen, nach außen wirkenden Druck betrachten. Dieser Ausdruck
enthält bei den Schalen der zweiten Gruppe Koeffizienten gleichen Vorzeichens
und bei den Schalen der dritten Gruppe Koeffizienten von verschiedenem
Vorzeichen. Daraus folgt, daß man bei den Schalen der zweiten Gruppe sich die

Tragfähigkeit durch die auf zwei konjugierte Schnitte wirkenden gleichsinnigen
Längsspannungen erzeugt denken kann. Bei einer Schale der dritten Gruppe
dagegen denkt man sich die Tragfähigkeit in analoger Weise durch die auf zwei

konjugierte Schnitte wirkenden gegensinnigen Längsspannungen erzeugt.
Handelt es sich um eine Schale der zweiten Gruppe, so kann man immer jene

konjugierten Schnitte auswählen, die symmetrisch im Verhältnis zu den
Hauptrichtungen liegen. Die zugehörigen Längsspannungskoeffizienten, die in dem
linearen Ausdruck die Normalkomponente der Dichte der aufgebrachten Last
darstellen, sind gleich. Man kann also sagen, daß bei den Schalen der zweiten

Gruppe die Normalkomponente der Dichte der aufgebrachten Last proportional
zu der Summe der Längsspannungen ist, welche auf die zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitte wirken.
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Die Verschiedenheit der Eigenschaften, welche, wie wir gesehen haben, die
Schalen der drei Gruppen unterscheidet, hat einen entscheidenden Einfluß auf
die Art der Stützung, welche man den Schalen an ihren Rändern geben kann, um
die Gleichgewichtsbedingungen zu erfüllen und desgleichen auch auf die Art der
Berechnung der Spannungen, die wiederum eine Funktion der Randstützung
sind.

5. Untersuchung der Schalen der ersten Gruppe.

Das Studium der Schalen der ersten Gruppe kommt einer Verallgemeinerung
der Untersuchung des Zylinders gleich. Die Gleichung (4) gibt für einen

beliebigen Punkt der Schale jene Komponente des Spannungszustandes an, die
normal zu der an diesem Punkt getroffenen geradlinigen Erzeugenden steht. Zieht
man also auf der Oberfläche eine Gruppe von geodätischen Linien, die die
verschiedenen geradlinigen Erzeugenden unter einem konstanten Winkel schneiden,
so kennt man die Längsspannungen, die parallel zu diesen geodätischen Linien
auf die geradlinigen Erzeugenden wirken. Aus Gleichung (2) erhält man durch
eine Integration sofort den Wert der Schubspannung an den Erzeugenden und

geodätischen Linien und durch eine weitere Integration erhält man aus Gleichung
(1) die Längsspannungen, die auf die geodätischen Linien parallel zu den

Erzeugenden wirken.
Der auf diese Weise bestimmte Spannungszustand ist erst dann vollständig,

wenn man auf einer bestimmten Kurve, die jede Erzeugende nur ein einziges Mal

trifft, eine Annahme über die Werte der auf die Schnittelemente dieser Kurve
wirkenden Spannungen trifft. Man kann übrigens auch auf zwei Kurven, von
denen beide jede Erzeugende nur ein einziges Mal schneiden, eine Annahme über
den Zusammenhang zwischen den Komponenten des Spannungszustandes treffen,
der auf jedes Schnittelement der beiden Kurven wirkt.

6. Studium der Schalen der zweiten Gruppe.

Wir betrachten nun eine Schale der zweiten Gruppe. Wir haben schon gesehen,
daß die Normalkomponente der Dichte der aufgebrachten Last an jedem Punkt
proportional der Summe der Längsspannungen ist, die auf die zu den
Hauptrichtungen symmetrisch liegenden konjugierten Schnitte wirken. Wir setzen nun
voraus, daß diese Längsspannungen gleich seien. Dann ist ihr Wert in jedem
Punkt durch die Größe der Normalkomponente der Dichte der Last bestimmt.
Damit haben wir die Gleichung (3) erfüllt. Die Gleichungen (1) und (2), welche
das Gleichgewicht in der Tangentialebene ausdrücken, sind allerdings erst dann

erfüllt, wenn die Tangentialkomponente der Dichte der Last einen bestimmten
Wert hat, welchen man dadurch erhält, daß man die Gleichgewichtsbedingungen
parallel zur Tangentialflache genau anschreibt. Wir wollen nun jedes Lastsystem
mit „Grundsystem'' bezeichnen, das den vorgenannten Bedingungen entspricht,
d. h. also, wenn gleich große Längsspannungen an den zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitten angreifen. Ein beliebiges
Lastsystem kann man sich dann aus einem Grundsystem und einem zusätzlichen

System zusammengesetzt denken, wobei das letztere nur Tangentialkräfte enthält
und als das zu dem Grundsystem komplementäre Lastsystem bezeichnet wird.
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Alan wird dabei nun zu dem Studium der komplementären S)steme geführt,
d. h. also jener Systeme, bei welchen die aufgebrachte Last tangential zur
Oberfläche wirkt. Bei solchen Systemen sind die Längsspannungen, welche auf die

symmetrisch zu den Hauptrichtungen liegenden konjugierten Schnitte wirken,
gleich groß. Der Spannungszustand an einem beliebigen Schnitt hängt also nur
von zwei Parametern ab, z. B. von den Komponenten des Spannungszustandes,
die auf einen der beiden konjugierten Schnitte einwirken. Es ist augenfällig, daß

man diese beiden Parameter beliebig wählen kann. Man sieht leicht, daß man
zwei unbestimmte konjugierte Funktionen cp und \\> so bestimmen kann, daß die
an einem beliebigen Element der Oberfläche angreifenden Kräfte eine lineare
Form der Differentialausdrücke S9- d\\> und S^dcp ergeben, wenn man als
Parameter zwei Größen wählt, die wir mit S9 und S^ bezeichnen wollen. Die
Gleichgewichtsbedingungen in der Tangentialebene zeigen dann, daß die partielle
Ableitung von S9 nach 9 und die partielle Ableitung von S^ nach i|? lineare Funktionen

von S9 und S^ sind. Eliminiert man einen der beiden Parameter, z. B.

S^ aus den beiden Gleichungen, so erhält man eine lineare partielle Differentialgleichung

zweiter Ordnung mit unbestimmten Variablen, welcher Gleichung der
noch enthaltene Parameter S9 genügen muß.

Um eine Lösung dieser Gleichung zu erhalten, kann man den Wert von S9
und einer Ableitung davon auf einer beliebig auf der Oberfläche gewählten Kurve
annehmen, natürlich unter der Bedingung, daß gewisse analytische Bedingungen
erfüllt sind, die damit zusammenhängen, daß es sich um eine Gleichung mit
unbestimmten Variablen handelt. Da man mit Hilfe der längs einer Kurve
angenommenen Werte von S

9
und einer Ableitung davon längs dieser Kurve S

9
und S^ bestimmen kann und damit auch den gesamten Spannungszustand für
ein beliebiges Element dieser Kurve, so sieht man, daß man den gesamten
Spannungszustand in der Schale erhält, sobald man die Spannungen längs einer
Kurve kennt, immer unter der Voraussetzung, daß gewisse analytische
Bedingungen erfüllt sind.

Diese analytischen Bedingungen sind nicht nur eine reine Formsache, sie

entsprechen folgender physikalischer Tatsache: Man weiß, daß bei allen Problemen,
wo eine Gleichung mit unbestimmten Variablen durch die Werte bestimmt ist,
welche eine diese Gleichung befriedigende Funktion und eine Ableitung davon
längs einer gegebenen Kurve annimmt, die Lösung keine stetige Funktion der
Anfangswerte ist. Wenn man die eingesetzten Werte nur wenig ändert, so kann
man an beliebigen Punkten beliebig große Werte der Funktion erhalten. Daraus
ergibt sich, daß bei einer konvexen Schale die zu den längs einer Kurve
gegebenen Spannungswerten gehörigen Gleichgewichtszustände im Verhältnis zu
diesen Spannungswerten nicht stabil sind.

Um zu stabilen Lösungen zu kommen, muß man andere Grenzbedingungen
untersuchen als die bisher angenommenen. Statt daß man eine Annahme über
den Spannungszustand längs einer Kurve trifft, nehmen wir auf einer bestimmten
Kurve einen Zusammenhang zwischen den Komponenten des auf die Elemente
dieser Kurve wirkenden Spannungszustandes an. In diesem Falle ist das Problem
eindeutig und seine Lösung eine stetige Funktion der angenommenen Größen.
Der zugehörige Gleichgewichtszustand wird ebenfalls stabil sein. Wir wollen
z. B. annehmen, daß die Normalkomponente des Spannungszustandes längs der
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gegebenen Kurve Null sei. Mit Hilfe der relativen Unbestimmtheit der Parameter
S9 und S^ kann man diese so bestimmen, daß S

9
der Normalkomponente des

Spannungszustandes längs der gegebenen Kurve entspricht. Die Theorie der

Differentialgleichungen erlaubt eine Bestimmung der Funktion S9 nach einer
ähnlichen Methode, wie sie von Fredholm und seinen Nachfolgern zur Lösung
ähnlich geformter Gleichungen mit unbestimmten Variablen angewandt wurde.

7. Studium der Schalen der dritten Gruppe.

Wir betrachten nun eine Schale der dritten Gruppe. Der Wert der
Normalkomponente der Dichte der Last bestimmt in erster Linie den Schubspannungszustand

für die in den Asymptotenlinien liegenden Schnitte. Wir wollen voraussetzen,

daß der Spannungszustand in der Schale nur aus diesen Schubspannungen
bestehe. Hierzu ist nur nötig und auch genügend, daß die Tangentialkomponente
der an einem zwischen den Asymptotenlinien liegenden Viereck angebrachten
Last in Gleichgewicht mit der Resultante der auf die Tangentialebene projizierten
Tangentialbeanspruchungen steht. Wir wollen nun jedes Lastsystem, das den
vorstehenden Bedingungen genügt, daß der an den Schnitt-Elementen der

Asymptotenlinien angreifende Spannungszustand nur aus Schubspannungen
besteht, als Grundsystem bezeichnen. Es ist nun leicht einzusehen, daß man sich

jedes beliebige Lastsystem durch eine Superposition aus einem Grundsystem
und einem anderen System, das wir Komplementärsystem nennen wollen,
entstanden denken kann.

Wir werden hierdurch zum Studium der Komplementärsysteme geführt. Wir
erinnern uns dabei, daß die an einem Schalenelement angreifende Schnittkraft
als eine Linearkombination der Differentialausdrüqke S9- dx|? und S^ dep

dargestellt werden kann, wobei cp und if> jetzt zwei reelle Funktionen sind und S
9

und S^ zwei reelle Parameter. Die Gleichgewichtsbedingungen in der Tangentialebene

erlauben es nun, die partiellen Ableitungen von S9 nach cp und von
S^ nach if> als lineare Funktionen von S9 und S^ auszudrücken. Die Elimination
von Sy führt zu einer linearen Differentialgleichung zweiter Ordnung von S9 mit
reellen Variablen. Die Variablen dieser Differentialgleichung stellen die
Asymptotenlinien dar.

Um eine Lösung der vorstehenden Gleichung zu erhalten, die für den durch
den Rand C begrenzten Bereich D gültig ist, zerlegen wir diesen Rand in zwei

Folgen von Bogenstücken T und T' derart, daß die von jedem Punkt des

Bereiches D ausstrahlenden Asymptotenlinien T nur ein einziges Mal treffen. Jetzt
unterteilen wir noch T in zwei Folgen von Bogenstücken T1 und T2 derart, daß

jeder gebrochene Zug von Asymptotenlinien, der irgend einen Punkt von T1 mit
einem Punkt von T' verbindet, seine dazwischenliegenden Ecken auf T2 oder

P hat und gleichzeitig noch die Bedingung erfüllt ist, daß kein gebrochener
Zug von Asymptotenlinien möglich ist, der seine Enden auf rx und seine

dazwischenliegenden Ecken auf T2 hat. Man wird eine für den Bereich D gültige
eindeutige Lösung erhalten, wenn man auf I\ den Wert des auf die
Schnittelemente T± einwirkenden Spannungszustandes und auf T2 einen Zusammenhang

zwischen den Komponenten des auf die Schnittelemente T2 wirkenden
Spannungszustandes annimmt. Diese Lösung erhält man durch eine wiederholte
Anwendung der Riemann'schen Formel auf die verschiedenen Unterbereiche des
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Bereiches D. Hierbei sind keine besonderen analytischen Bedingungen zu erfüllen
und die erhaltene Lösung ist immer eine stetige Funktion der Anfangswerte. Im
allgemeinen gibt es jedoch keine Lösung, die zu einem Zusammenhang zwischen
den Komponenten des auf die verschiedenen Schnittelemente der gegebenen
Kurve C einwirkenden Spannungszustandes gehörte.

Ist die betrachtete Schale eine regelmäßige Fläche, so kann die partielle
Differentialgleichung zweiter Ordnung auf eine lineare partielle Differentialgleichung
erster Ordnung zurückgeführt werden, welche nur eine Ableitung enthält. Diese

Gleichung kann integriert werden, da man sie als eine lineare Differentialgleichung

auffassen kann. In dem Sonderfall der über einem Viereck errichteten
regelmäßigen Flächen genügen zur Bestimmung der Parameter S9 und S^ zwei

Quadraturen.

8. Wahl der Stützungsarten bei den Schalen der dritten Gruppe.

Die Wahl der Stützungsarten hängt bei einer Schale wesentlich davon ab, zu
welcher Gruppe sie gehört. Wir unterscheiden zwei Stützungsarten: die einfache
Stützung, bei welcher die Stützkräfte nur von einem Parameter abhängen, und
die doppelte Stützung, bei welcher die Stützkräfte von zwei Parametern abhängen.
Die Spannungs-Komponenten, welche die Schale auf eine einfache Stützung
überträgt, müssen infolgedessen einem schon im Voraus bekannten Zusammenhang
genügen, während die Spannungs-Komponenten, welche auf eine doppelte
Stützung einwirken, unabhängige Werte annehmen können. Übrigens können
gewisse Randpartien der Schale auch ungestützt bleiben, so daß man einen freien
Rand erhält.

Wir wollen nun untersuchen, wie man über den Rand einer Schale freie
Ränder, einfache Stützungen und doppelte Stützungen verteilen kann, um noch
einen eindeutigen und stabilen Gleichgewichtszustand zu erhalten.

Wir beschäftigen uns zuerst mit einer Schale der ersten Gruppe. Man kann
einen freien Rand für jede Randpartie annehmen, die keine geradlinige Erzeugende

enthält, und einmal oder mehrmals von jeder Erzeugenden geschnitten
wird. Wenn der freie Rand von allen Erzeugenden geschnitten wird, ist die
Verteilung der Spannungen innerhalb der Schale bestimmt und die anderen Ränder
müssen doppelte Stützung erhalten. Der zugehörige Gleichgewichtszustand ist
stabil. Nun nehmen wir zwei Ränder an, von denen jeder nur einmal alle
Erzeugenden schneidet und einfach gestützt ist. Auch hier erhält man einen
stabilen Gleichgewichtszustand der Schale, wenn man die übrigen Randpartien,
welche nur noch Erzeugende enthalten, doppelt stützt.

Nun zu einer Schale der zweiten Gruppe. Hier sind keine freien Ränder möglich,

da der zugehörige Gleichgewichtszustand nicht stabil wäre. Man kann aber
den ganzen Rand der Schale einfach stützen. Der zugehörige Gleichgewichtszustand

ist eindeutig und stabil.

Wenn wir nun eine Schale der dritten Gruppe betrachten und ihren Rand in
drei Gattungen von Bogenstücken I\, T2 und T' unterteilen, die den Ausführungen

des Abs. 7 entsprechen, so kann man längs T1 einen freien Rand, längs
T2 einfache Stützung und längs T' doppelte Stützung annehmen. In diesem
Falle erhält man einen eindeutigen und stabilen Gleichgewichtszustand.
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9. Geometrische Eigenschaften und geometrische Berechnung der Schalen der
dritten Gruppe.

Die Schalen der dritten Gruppe zeigen bemerkenswerte geometrische
Eigenschaften, welche die Möglichkeit zu einer genauen graphischen Berechnung geben.

Es sollen zuerst die in Abs. 7 eingeführten Parameter S9 und S^ und die
Funktionen cp und xf> geometrisch gedeutet werden. S9 und S^ sind die Längs*
Spannungen, die bei einem komplementären Lastsystem auf die Asymptotenlinien
einwirken, cp und ij? sind krummlinige Koordinaten der Fläche, für welche die
Koordinatenlinien die Asymptotenlinien darstellen.

Wir ersetzen nun die Schale durch ein windschiefes Netz, dessen Maschen jene
schiefwinkligen geradlinigen Vierecke sind, welche die Asymptotenlinien
umgrenzen. Dieses System verhält sich gleich wie die gegebene Fläche und solange
die Maschen genügend klein sind, kann man die beiden Systeme miteinander
vertauschen. Die Lasten müssen an den Ecken dieses Netzwerkes tangential zur
Oberfläche angebracht werden.

Die an einer beliebigen Ecke des Netzwerkes angreifende Einzellast F kann
man nach den zwei Stabrichtungen von zwei verschiedenen Asymptotenlinien
zerlegen, die sich in der betrachteten Ecke schneiden. Man überträgt damit die Last
F nach zwei anderen Knotenpunkten der Fläche, wo man in derselben Weise
verfährt und so fort. Ist nun der Rand der Fläche in drei Gattungen von
Bogenstücken ri, T2 und T7 entsprechend den im Vorstehenden angegebenen
Bedingungen unterteilt und wählt man in passender Weise die beiden Anfangsstäbe,
nach denen man die gegebene Kraft F zerlegt, so kann die Übertragung der
Kraft F nach dem angegebenen Verfahren so erfolgen, daß kein freier Rand
getroffen wird. Kommt man dabei zu einem einfach gestützten Rand T2, so kann
man hier die Zerlegung nach der Richtung des zweiten Stabes, welcher zu der auf
T2 liegenden Ecke führt und nach der Richtung der Stützkraft vornehmen.
Diesen Vorgang nennt man die Rückstrahlung an der einfachen Stützung. Wenn
man in dieser Weise weiter fortfährt, überträgt man schließlich die Last F auf
die doppelt gestützten Zonen. Man hat damit einen Gleichgewichtszustand des

Systemes erhalten, der sich mit den Stützkräften verträgt, und damit also stabil
ist. Wenn man in derselben Weise für jeden belasteten Knoten des Netzwerkes
verfährt, bestimmt man durch eine einfache Zerlegung der Lasten nach der
Parallelogrammregel den zu einem komplementären Lastsystem gehörigen
Gleichgewichtszustand. Die zugehörige zeichnerische Darstellung kann leicht in der
Projektion auf eine beliebige Ebene vorgenommen werden.

An Hand der eben besprochenen geometrischen Bestimmung des
Kräfteverlaufes kann man sich das Gleichgewicht in einer Schale der dritten Gruppe
als durch einen Kräftefluß in Richtung der Asymptotenlinien erzeugt denken,
der von den freien Rändern ausstrahlt, an den einfachen Stützungen reflektiert
wird, um an den doppelten Stützungen zu enden. Die gleiche Eigenschaft wird
auch bei der Fortpflanzung von Wellen bei Erscheinungen beobachtet, die durch
lineare partielle Differentialgleichungen zweiter Ordnung mit reellen Variablen
bestimmt sind und wie diese hängt sie hauptsächlich damit zusammen, daß die
Variablen der Gleichungen, die das Gleichgewicht der Spannungen in der
betrachteten Schale bestimmen, reell sind.
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10. Einfache Beispiele für Schalen der dritten Gruppe.
Das einfachste Beispiel einer Schale der dritten Gruppe liefert das

hyperbolische Paraboloid. Diese Schale zeichnet sich durch die Eigenschaft aus, daß die
Schubspannung längs der geradlinigen Erzeugenden, abgesehen von einem für
die ganze Oberfläche nahezu konstanten Faktor, gleich der auf die Flächeneinheit

der Projektion auf eine beliebige, nicht zur Achse parallele Ebene

bezogenen Komponente der Last in Richtung der Achse des Paraboloids ist.

s\
mp

Fig. 1.

Andererseits pflanzen sich die aus dem Komplementärsystem der Lasten
herrührenden Beanspruchungen längs der Erzeugenden fort, ohne andere
Erzeugende in Mitleidenschaft zu ziehen. Die an einem kleinen Element der Schale

angebrachte tangentiale Beanspruchung ist also nur in den durch die
Erzeugenden gebildeten Streifen spürbar. Nach dem hyperbolischen Paraboloid ist die
einfachste Schale der dritten Gruppe das einschalige Hyperboloid. Diese Schale
hat mit dem Paraboloid die Eigenschaft gemein, daß die aus dem Komplementärsystem

herrührenden Lasten sich längs einzelnen Erzeugenden fortpflanzen, ohne
die anderen Erzeugenden in Mitleidenschaft zu ziehen. Sie unterscheidet sich

von dem hyperbolischen Paraboloid nur durch den komplizierteren Faktor der
Proportionalität zwischen der Schubspannung und der Dichte der aufgebrachten Last.

Nun zu den regelmäßigen, nicht abwickelbaren Flächen und in erster Linie
zu den Konoiden. Für diese Flächen hat der Koeffizient der Proportionalität
zwischen der Schubspannung auf die Asymptotenlinien und der Dichte der
aufgebrachten Last eine bedeutend kompliziertere Form als für die zuerst betrach-
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Fig. 2.

Fortpflanzungsart der Tangentialkräfte
in einem Regelviereck.

Fig. 3.

Fortpflanzungsweise der Tangentialkräfte in irgend
einer Oberfläche der 3. Gruppe.
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teten Flächen; sie zeichnen sich aber vor diesen Flächen dadurch aus, daß die
aus dem Komplementärsystem herrührenden Kräfte sich bei der Fortpflanzung
über die Oberfläche ausbreiten, wobei sich die krummen Asymptotenlinien auf
die geradlinigen Erzeugenden der Fläche abstützen, so daß die an einem kleinen
Element angreifende Tangentialkraft einen fächerförmigen Bereich der Oberfläche
zur Mitwirkung heranzieht, genau wie bei den allgemeinsten Flächen der dritten
Gruppe.

Die Fig. 2 und 3 zeigen den Unterschied zwischen den regelmäßigen über
einem Viereck errichteten Flächen und den anderen Flächen der dritten Gruppe
in Bezug auf den soeben besprochenen letzteren Punkt.

11. Schlußfolgerungen.
Wenn man von den regelmäßigen abwickelbaren Flächen, wie Zylinder und

Kegel absieht, die für sich eine besondere Klasse von Schalen bilden, so scheidet
sich die Gesamtzahl der übrigen doppelt gekrümmten Schalen je nach dem
Vorzeichen der Krümmungen in zwei große Gruppen. Bei diesen beiden Gruppen
von Schalen spielen die Asymptotenlinien die wesentliche Rolle bei der
Übertragung der Tangentialkräfte und infolgedessen auch bei der Bestimmung der Art
der zu einem eindeutigen und stabilen Gleichgewicht gehörigen Stützkräfte.
Wenn die Asymptotenlinien imaginär sind, kann die Schale keine freien Ränder
haben, sie kann jedoch am ganzen Umfang durch einfach gestützte Ränder
begrenzt werden. Das einfachste Beispiel einer solchen Stützung bildet eine ebene

Scheibe, die eine große Steifigkeit in Richtung der Ebene und keine nennenswerte
Steifigkeit normal zu der Ebene aufweist. Sind die Asymptotenlinien jedoch reell,
so kann man die Ränder der Schale in freie Ränder, einfach gestützte Ränder
und doppelt gestützte Ränder, wie im Vorstehenden angegeben, nach bestimmten
Regeln unterteilen. Da die doppelt gestützten Ränder vom konstruktiven Standpunkt

aus Schwierigkeiten bieten können, ist es von Vorteil, ihre Bedeutung auf
ein Minimum einzuschränken. Dies kann auf verschiedene Weise durch
entsprechende Formung der Fläche erreicht werden.

Im Hinblick auf die einfachste Form der Berechnung der Schale kann man
auf Grund der vorstehenden Betrachtungen ersehen, daß unter den doppelt
gekrümmten Schalen besonders die über einem Viereck errichteten regelmäßigen
Flächen zu ganz einfachen Rechenmethoden führen.

Zusammenfassung.
Bei der Konstruktion von Schalengewölben in Eisenbeton handelt es sich

zunächst um statisch bestimmte, von der Elastizitätstheorie unabhängige Probleme.
Der Gesamtbereich dieser Fragen wird unter Ausschluß anderer Probleme
behandelt, die bei der Ausführung von Schalen infolge der entstehenden
Verformungen auftauchen, vor allem aber auch unter Ausschluß der Probleme der
Verträglichkeit jener Verformungen, welche der auf statisch bestimmtem Wege
errechnete Spannungszustand bedingt.

Die allgemein angenommene Hypothese einer gleichmäßigen Verteilung der
Spannungen über die Querschnittsdicke wird benutzt, so daß man sich die Schale
in ihrer Mittelfläche vereinigt denken kann.
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