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IVal

Einfithrung in die allgemeine Theorie der biegungsfreien Schalen.

Etude des voiles minces courbes ne subissant pas de
flexion.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. és siences F. Aimond,

Ingénieur des Ponts et Chaussées détaché au Ministére de I'Air, Paris.

1. Hinweis auf die allgemeinen Gleichgewichisbedingungen der Schalen in
geradlinigen Koordinaten.

Die Gleichung der Oberfliche in geradlinigen, jedoch nicht unbedingt recht-
winkligen Koordinaten sei z = f (x, y). Der Spannungszustand in einem Punkte
m der Schale wird durch die Spannungen n;, n,, ® bestimmt, die auf die zu
den Ebenen zox und zoy parallelen Schnitte mm, und mm, wirken. Auf den
Schnitt mm, wirkt n, parallel zur Ebene zox, auf den Schnitt mm, wirkt n,
parallel zu zoy und © wirkt sowohl auf den Schnitt mm, parallel zu zox als
auch auf mm, parallel zu zoy. Die Richtungskoeffizienten der Tangenten an die
Schnitte mm, und mm,, also die in Richtung ox, oy, oz projizierten Einheits-
vektoren jeder dieser Tangenten bezeichnen wir mit a;, O, y; und O, B, und y,.
Wir denken uns nun die Schale beliebig belastet. Dann sind X - dx - dy, Y - dx - dy,
Z - dx- dy die Komponenten der aufgebrachten Last, die in den Richtungen ox,
oy, oz auf das Element mm, m’m, wirken, das parallel zur Ebene zox durch
mm,; und mym’ und parallel zur Ebene zoy durch mm, und m;m’ begrenzt wird.
Die Untersuchung der Gleichgewichtsbedingungen fiir diese Schnitte fithrt zu
folgenden Gleichungen:

bv‘+— X (1)
tER=1 @
r-\l—I—QSB—{—th:Z_ (3)
Dabei bedeutet '
of _df _»f _ wf  of
P=ex 175y "7 8 ° 7 ox-oy’ oyt
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2. Geométrische Deutung der in den allgemeinen Gleichgewichtsbedingungen
enthaltenen GréfSen.

Die Grofie T im zweiten Glied der Gleichung (3) ist die schiefe Projektion
des Vektors (X, Y, Z) auf oz, wobei diese Projektion parallel zu der an die
Oberfliche gelegten Tangentialebene erfolgt. Zur Deutung der Grofien v, v,
und ®, die die Unbekannten in den Gleichgewichtsbedingungen sind, soll all-
gemein der Begriff der reduzierten Spannung definiert werden. Die an einem
Bogenelement angreifende reduzierte Spannung ist die Projektion der an diesem
Element angreifenden Kraft auf die xy-Ebene, dividiert durch die projizierte
Linge des zugehorigen Elementes. Es lifit sich einfach feststellen, daff der
Zusammenhang zwischen den in einem Punkt wirksamen reduzierten Spannungen
denselben Gesetzen folgt wie bei den wirklichen Spannungen und im Besonderen,
dafs auch die Mohr’sche Darstellung auf sie anwendbar ist. Die Grofien vy, v, ©
entsprechen den durch Parallelprojektion auf die x und y-Achse entstandenen
reduzierten Spannungen, die zu den Schnitten gehéren. Die Schubspannungen ©
bleiben in der Projektion erhalten, wihrend dies fir die Spannungsgrofien n;
und n, nicht der Fall ist.

3. Geometrische Deutung der Gleichgewichisbedingungen.

Die Gleichungen (1) und (2) driicken augenscheinlich das Gleichgewicht in
der Projektion auf die Tangentialebene aus. Die Gleichung (3) dagegen gibt
das Gleichgewicht der normal zur Schale wirkenden Krifte wieder. Um sie geo-
metrisch zu deuten, legen wir den Ursprung O des Dreiflichners oxyz auf die
Oberfliche und richten ox und oy nach den Richtungen von zwei willkiirlich
gewiihlten Schnitten. Der Dreiflichner oxyz wird nun vollends bestimmt, wenn
man eine Annahme iiber die Richtung oz trifft. Die Gleichung (3) gibt den
linearen Zusammenhang zwischen den Spannungen, welche auf die willkiirlich
gewihlten Schnitte ox und oy wirken und der parallel zur Tangentialebene auf
oz erfolgten Projektion T der Dichte der aufgebrachten Last. Solange man bei
festgehaltenem ox und oy die Richtung von oz &ndert, ist nur jeder einzelne
Ausdruck der linearen Gleichung mit demselben Faktor zu multiplizieren.

Man kann die Unbestimmtheit der Richtungen der Schnitte ox und oy zur
Vereinfachung der Gleichung (3) benutzen. Richtet man ndmlich diese Schnitte
nach zwei konjugierten Richtungen der Oberfliche aus (konjugierte Richtungen
im Verhiltnis zur Indikatrix), so verschwindet der Koeffizient ® und die
Gleichung (3) reduziert sich zu einer linearen Gleichung zwischen den Léangs-
spannungen v, und v,. Man kann sich nun fragen, ob es nicht mdéglich ist,
die Schnitte ox und oy so zu orientieren, dafl in der Gleichung (3) tberhaupt
nur noch eine einzige Spannungsgrofie verbleibt. Man sieht aber sofort, daf3
dies nicht moglich ist, solange die Oberfliche konvex ist, d. h. also, solange
die Hauptkrimmungsradien von gleichem Sinn sind. Wenn die Oberfliche nicht
konvex ist, wird dies im Gegensatz hierzu jedoch méglich.

Wenn wir uns mit der letzteren Annahme beschiftigen, so sind zwei Fille
zu unterscheiden, je nachdem ob die in der Gleichung (3) verbleibende Spannung
eine Lingsspannung oder eine Schubspannung ©® ist. Der erste Fall ist nur dann
moglich, wenn die Oberfliche abwickelbar ist, d. h. also, wenn man sie als die
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Umhiillende einer Gruppe von Tangentialebenen auffassen kann, die von ecinem
Parameter abhingen. Legt man den Schnitt ox in die Richtung der geradlinigen
Erzeugenden, die durch O geht, so vereinfacht sich die Gleichung (3) zu

r-v, =20 (4)
Der zweite Fall bezieht sich auf die Oberflichen mit gegensitzlichen Kriim-
mungen. Legt man ox und oy in die Richtung der Asymptoten, so vereinfacht

sich die Gleichung (3) zu
2.5-0=2¢ (5)

Die Gleichungen (4) und (5) sind einfach zu deuten. Betrachten wir zunichst
Gleichung (4). Man sieht sofort, dafl von den an einem unendlich kleinen
Element der Fliche angreifenden Schnittkriften nur v, eine Komponente ergibt,
die nicht in der Tangentialebene liegt, und Gleichung (4) drickt nur die Gleich-
heit zwischen den parallel zur Tangentialebene erfolgten Projektionen der
Spannungen n; auf oz und der unter den gleichen Bedingungen erfolgten Pro-
jektion der aufgebrachten Last aus.

Nun zur Deutung der Gleichung (5): Es geniigt hierfiir, ein viereckiges
Element zu betrachten, von dem zwei Seiten durch Asymptotenlinien gebildet
werden, die sich in O kreuzen. Die Resultierende der an dem Viereck angreifen-
den Lingsspannungen n, und n, liegt in der Tangentialebene. Diese Resultierende
ist ja nur die geometrische Summe der Spannungsresultanten n; und n,, und
jede dieser Spannungsresultanten liegt notwendigerweise innerhalb der Be-
rithrungsebene einer Asymptotenlinie, welche infolge der Definition der Asymp-
toten mit der Tangentialebene zusammenfallen muf3. Die aufierhalb der Tangential-
ebene liegende Komponente 7 der auf die Oberfliche aufgebrachten Lasten hingt
also nur von der Schubspannung © ab und sie ist dieser auch direkt pro-
portional. Der Proportionalititskoeffizient hat den Wert 2s und ist einfach
geometrisch zu deuten. Er ist der Quotient aus dem doppelten Abstand der O
gegeniiberliegenden Ecke des Viereckes von der Tangentialebene durch O, parallel
zur Richtung oz gemessen, dividiert durch das Produkt der Seitenlingen der
Asymptotenlinien, welche das Viereck bilden.

4. Einteilung der Schalen in Bezug auf thre mechanischen Eigenschaften.

Die vorstehenden Betrachtungen fiihren zu einer Einteilung der Schalen in drei
Gruppen. Die erste Gruppe umfafit die abwickelbaren Oberflichen, wie Zylinder
und Kegel. Die zweite Gruppe umschliefit die konvexen Oberflichen, wie die
Kugel, die elliptischen Paraboloide, die Ellipsoide, die zweischaligen Hyper-
boloide und ganz allgemein alle doppelt gekriimmten Flichen, die durch eine
nach unten konkave Kurve erzeugt werden, wenn diese auf einer Leitlinie mit
ebenfalls nach unten konkaver Kriimmung gleitet. Die dritte Gruppe umgrenzt
die gegensitzlich gekriimmten Flichen, wie die hyperbolischen Paraboloide,
dic einschaligen Hyperboloide, die Konoide, alle nicht abwickelbaren regel-
mifligen Flichen und ganz allgemein alle Flichen, die durch eine nach oben
konkave Kurve erzeugt werden kdnnen, wenn sie auf einer nach unten konkaven
Leitlinie gleitet.

Zu dieser Einteilung wird man durch die geometrische Deutung der Gleichung
(3) gefiihrt. In der ersten Gruppe findet man jene Schalen, fiir welche die
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Gleichung (3) in die Form der Gleichung (4) gebracht werden kann. Fiir die
zweite Gruppe kann Gleichung (3) in folgende Form gebracht werden:

rT-vy+t-vy=7 (6)

wobei r und t vom gleichen Vorzeichen sind. Die Schalen der dritten Gruppe
sind jene, fiir welche die Gleichung (3) in die Form (5) tibergefiihrt werden
kann.

Wir bemerken, dafy fiir die Schalen der dritten Gruppe die Gleichung (3)
ebenfalls in die der Gleichung (6) tbergefiilhrt werden kann; in diesem Falle
sind jedoch r und t von verschiedenem Vorzeichen. Auflerdem kann noch fiir
die Schalen der zweiten Gruppe die Gleichung (3) die Form der Gleichung (5)
annehmen, wobei wiederum © die Schubspannung in den Asymptotenlinien be-
deutet. In diesem Falle sind jedoch s und t imagindre Ausdriicke und die
Gleichung (5) stellt nicht mehr eine Bezeichnung zwischen reellen Grofien dar.

Die Schalen der ersten Gruppe sind durch die Eigenschaft gekennzeichnet,
daf3 die normal zu den geradlinigen Erzeugenden wirkende Komponente des
Spannungszustandes in jedem Punkte porportional zur Normalkomponente der
Dichte der aufgebrachten Last ist. Die Schalen der zweiten Gruppe sind durch
die Eigenschaft gekennzeichnet, daf3 der rein imaginire Schubspannungszustand,
der auf die in den imaginiren Asymptotenlinien liegenden Elemente wirkt. in
jedem Punkte proportional zur Normalkomponente der Dichte der aufgebrachten
Last ist. Die Schalen der dritten Gruppe zeichnen sich durch die Eigenschaft
aus, dafl der Schubspannungszustand, der auf die in den Asymptotenlinien
liegenden Elemente wirkt, in jedem Punkte proportional zur Normalkomponente
der Dichte der aufgebrachten Last ist.

Zwischen den Schalen der zweiten und dritten Gruppe kann man noch
folgenden Unterschied beobachten: Wenn man an einem beliebigen Punkte die
an zwei konjugierten Schnitten angreifenden Lingsspannungen betrachtet, so
kann man die Normalkomponente der aufgebrachten Last, die ein linearer
Ausdruck dieser Lingsspannungen ist, als den durch diese Lingsspannungen
hervorgerufenen, nach auflen wirkenden Druck betrachten. Dieser Ausdruck
enthilt bei den Schalen der zweiten Gruppe Koeffizienten gleichen Vorzeichens
und bei den Schalen der dritten Gruppe Koeffizienten von verschiedenem Vor-
zeichen. Daraus folgt, daf man bei den Schalen der zweiten Gruppe sich die
Tragfihigkeit durch die auf zwei konjugierte Schnitte wirkenden gleichsinnigen
Lingsspannungen erzeugt denken kann. Bei einer Schale der dritten Gruppe da-
- gegen denkt man sich die Tragfihigkeit in analoger Weise durch die auf zwei
konjugierte. Schnitte wirkenden gegensinnigen Lingsspannungen erzeugt.

Handelt es sich um eine Schale der zweiten Gruppe, so kann man immer jene
konjugierten Schnitte auswihlen, die symmetrisch im Verhiltnis zu den Haupt-
richtungen liegen. Die zugehérigen Langsspannungskoeffizienten, die in dem
linearen Ausdruck die Normalkomponente der Dichte der aufgebrachten Last
darstellen, sind gleich. Man kann also sagen, dafl bei den Schalen der zweiten
Gruppe die Normalkomponente der Dichte der aufgebrachten Last proportional
zu der Summe der Lingsspannungen ist, welche auf die zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitte wirken.
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Die Verschiedenheit der Eigenschaften, welche, wie wir gesehen haben, die
Schalen der drei Gruppen unterscheidet, hat einen entscheidenden Einfluf3 auf
die Art der Stiitzung, welche man den Schalen an ihren Réndern geben kann, um
die Gleichgewichtsbedingungen zu erfiillen und desgleichen auch auf die Art der
Berechnung der Spannungen, die wiederum eine Funktion der Randstiitzung
sind.

5. Untersuchung der Schalen der ersten Gruppe.

Das Studium der Schalen der ersten Gruppe kommt einer Verallgemeinerung
der Untersuchung des Zylinders gleich. Die Gleichung (4) gibt fiir einen
beliebigen Punkt der Schale jene Komponente des Spannungszustandes an, die
normal zu der an diesem Punkt getroffenen geradlinigen Erzeugenden steht. Zieht
man also auf der Oberfliche eine Gruppe von geoditischen Linien, die die ver-
schiedenen geradlinigen Erzeugenden unter einem konstanten Winkel schneiden,
so kennt man die Lingsspannungen, die parallel zu diesen geoditischen Linien
auf die geradlinigen Erzeugenden wirken. Aus Gleichung (2) erhilt man durch
eine Integration sofort den Wert der Schubspannung an den Erzeugenden und
" geoditischen Linien und durch eine weitere Integration erhilt man aus Gleichung
(1) die Lingsspannungen, die auf die geoditischen Linien parallel zu den Er-
zeugenden wirken.

Der auf diese Weise bestlmmte Spannungszustand ist erst dann vollstindig,
wenn man auf einer bestimmten Kurve, die jede Erzeugende nur ein einziges Mal
trifft, eine Annahme iiber die Werte der auf die Schnittelemente dieser Kurve
wirkenden Spannungen trifft. Man kann {ibrigens auch auf zwei Kurven, von
denen beide jede Erzeugende nur ein einziges Mal schneiden, eine Annahme iiber
den Zusammenhang zwischen den Komponenten des Spannungszustandes treffen,
der auf jedes Schnittelement der beiden Kurven wirkt.

6. Studium der Schalen der zweiten Gruppe.

Wir betrachten nun eine Schale der zweiten Gruppe. Wir haben schon gesehen,
dafy dic Normalkomponente der Dichte der aufgebrachten Last an jedem Punkt
proportional der Summe der Lingsspannungen ist, die auf die zu den Haupt-
richtungen symmetrisch liegenden konjugierten Schnitte wirken. Wir setzen nun
voraus, daf3 diese Lingsspannungen gleich seien. Dann ist ihr Wert in jedem
Punkt durch die Grofie der Normalkomponente der Dichte der Last bestimmt,
Damit haben wir die Gleichung (3) erfillt. Die Gleichungen (1) und (2), welche
das Gleichgewicht in der Tangentialebene ausdriicken, sind allerdings erst dann
erfillt, wenn die Tangentialkomponente der Dichte der Last einen bestimmten
Wert hat, welchen man dadurch erhilt, dal man die Gleichgewichtsbedingungen
parallel zur Tangentialfliche genau anschreibt. Wir wollen nun jedes Lastsystem
mit ,,Grundsystem* bezeichnen, das den vorgenannten Bedingungen entspricht,
d. h. also, wenn gleich grofie Lingsspannungen an den zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitten angreifen. Ein beliebiges Last-
system kann man sich dann aus einem Grundsystem und einem zusitzlichen
System zusammengesetzt denken, wobei das letztere nur Tangentialkrifte enthilt
und als das zu dem Grundsystem komplementire Lastsystem bezeichnet wird.
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Man wird dabet nun zu dem Studium der komplementiren Systeme gefiihrt,
d. h. also jener Systeme, bei welchen die aufgebrachte Last tangential zur Ober-
flaiche wirkt. Bei solchen Systemen sind die Lingsspannungen, welche auf die
symmetrisch zu den Hauptrichtungen liegenden konjugierten Schnitte wirken,
gleich grof3. Der Spannungszustand an einem beliebigen Schnitt hingt also nur
von zwei Parametern ab, z. B. von den Komponenten des Spannungszustandes,
die auf einen der beiden konjugierten Schnitte einwirken. Es ist augenfillig, daf3
man diese beiden Parameter beliebig wihlen kann. Man sieht leicht, daf3 man
zwei unbestimmte konjugierte Funktionen ¢ und 1 so bestimmen kann, dafy die
an einem beliebigen Element der Oberfliche angreifenden Kriifte eine lineare
Form der Differentialausdriicke S ,- d{ und S, d¢ ergeben, wenn man als Para-
meter zwei Gréfien wihlt, die wir mit S, und S,, bezeichnen wollen. Die Gleich-
gewichtsbedingungen in der Tangentialebene zeigen dann, daf3 die partielle Ab-
leitung von S, nach ¢ und die partielle Ableitung von S, nach ¥ lineare Funk-
tionen von S_ und Sq, sind. Eliminiert man einen der beiden Parameter, z. B.
Sl:, aus den beiden Gleichungen, so erhilt man eine lineare partielle Differential-
gleichung zweiter Ordnung mit unbestimmten Variablen, welcher Gleichung der
noch enthaltene Parameter S, geniigen muf3.

Um eine Losung dieser Gleichung zu erhalten, kann man den Wert von S
und einer Ableitung davon auf einer beliebig auf der Oberfliche gewihlten Kurve
annehmen, natiirlich unter der Bedingung, daf3 gewisse analytische Bedingungen
erfilllt sind, die damit zusammenhiingen, daf3 es sich um eine Gleichung mit
unbestimmten Variablen handelt. Da man mit Hilfe der lings einer Kurve an-
genommenen Werte von S, und einer Ableitung davon lings dieser Kurve 8 5
und S,, bestimmen kann und damit auch den gesamten Spannungszustand fiir
ein beliebiges Element dieser Kurve, so sieht man, dal man den gesamten
Spannungszustand in der Schale erhilt, sobald man die Spannungen lings einer
Kurve kennt, immer unter der Voraussetzung, daf3 gewisse analytische Be-
dingungen erfiillt sind.

Diese analytischen Bedingungen sind nicht nur eine reine Formsache, sie ent-
sprechen folgender physikalischer Tatsache: Man weif3, dafs bei allen Problemen,
wo eine Gleichung mit unbestimmten Variablen durch die Werte bestimmt ist,
welche eine diese Gleichung befriedigende Funktion und eine Ableitung davon
lings einer gegebenen Kurve annimmt, die Losung keine stetige Funktion der
Anfangswerte ist. Wenn man die eingesetzten Werte nur wenig édndert, so kann
man an beliebigen Punkten beliebig grofie Werte der Funktion erhalten. Daraus
ergibt sich, daf3 bei einer konvexen Schale die zu den lings einer Kurve
gegebenen Spannungswerten gehodrigen Gleichgewichtszustinde im Verhiltnis zu
diesen Spannungswerten nicht stabil sind.

Um zu stabilen Losungen zu kommen, muf3 man andere Grenzbedingungen
untersuchen als die bisher angenommenen. Statt daf3 man eine Annahme iiber
den Spannungszustand liangs einer Karve trifft, nehmen wir auf einer bestimmten
Kurve einen Zusammenhang zwischen den Komponenten des auf die Elemente
dieser Kurve wirkenden Spannungszustandes an. In diesem Falle ist das Problem
eindeutig und seine Losung eine stetige Funktion der angenommenen Grofien.
Der zugehorige Gleichgewichtszustand wird ebenfalls stabil sein. Wir wollen
z. B. annehmen, dafl die Normalkomponente des Spannungszustandes lings der
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gegebenen Kurve Null sei. Mit Hilfe der relativen Unbestimmtheit der Parameter
S, und S, kann man diese so bestimmen, dafy S, der Normalkomponente des
Spannungszustandes lings der gegebenen Kurve entspricht. Die Theorie der
Differentialgleichungen erlaubt eine Bestimmung der Funktion S, nach einer
dhnlichen Methode, wie sie von Fredholm und seinen Nachfolgern zur Losung
dhnlich geformter Gleichungen mit unbestimmten Variablen angewandt wurde.

7. Studium der Schalen der dritten Gruppe.

Wir betrachten nun eine Schale der dritten Gruppe. Der Wert der Normal-
komponente der Dichte der Last bestimmt in erster Linie den Schubspannungs-
zustand fiir die in den Asymptotenlinien liegenden Schnitte. Wir wollen voraus-
setzen, daf3 der Spannungszustand in der Schale nur aus diesen Schubspannungen
bestehe. Hierzu ist nur ndtig und auch geniigend, dafy die Tangentialkomponente
der an einem zwischen den Asymptotenlinien liegenden Viereck angebrachten
Last in Gleichgewicht mit der Resultante der auf die Tangentialebene projizierten
Tangentialbeanspruchungen steht. Wir wollen nun jedes Lastsystem, das den
vorstehenden Bedingungen geniigt, dafl der an den Schnitt-Elementen der
Asymptotenlinien angreifende Spannungszustand nur aus Schubspannungen be-
steht, als Grundsystem bezeichnen. Es ist nun leicht einzusehen, daff man sich
jedes beliebige Lastsystem durch eine Superposition aus einem Grundsystem
und einem anderen System, das wir Komplementirsystem nennen wollen,
entstanden denken kann.

Wir werden hierdurch zum Studium der Komplementirsysteme gefiihrt. Wir
erinnern uns dabei, daf3 die an einem Schalenelement angreifende Schnittkraft
als eine Linearkombination der Differentialausdriicke S,-d¢ und S,d¢ dar-
gestellt werden kann, wobei ¢ und ¥ jetzt zwei reelle Funktionen sind und S,
und S, zwei reelle Parameter. Die Gleichgewichtsbedingungen in der Tangential-
ebene erlauben es nun, die partiellen Ableitungen von S, nach ¢ und von
S, nach ¥ als lineare Funktionen von S, und S,, auszudriicken. Die Elimination
von S, fiihrt zu einer linearen Differentialgleichung zweiter Ordnung von S, mit
reellen Variablen. Die Variablen dieser Differentialgleichung stellen die Asymp-
totenlinien dar.

Um eine Losung der vorstehenden Gleichung zu erhalten, die fiir den durch
den Rand C begrenzten Bereich D giiltig ist, zerlegen wir diesen Rand in zwel
Folgen von Bogenstiicken I' und I"” derart, daf3 die von jedem Punkt des Be-
reiches D ausstrahlenden Asymptotenlinien I' nur ein einziges Mal treffen. Jetzt
unterteilen wir noch I' in zwei Folgen von Bogenstiicken I'; und T’y derart, dafd
jeder gebrochene Zug von Asymptotenlinien, der irgend einen Punkt von I'; mit
einem Punkt von I verbindet, seine dazwischenliegenden Ecken auf I'; oder
I hat und gleichzeitig noch die Bedingung erfillt ist, dafy kein gebrochener
Zug von Asymptotenlinien moglich ist, der seine Enden auf I'; und seine da-
zwischenliegenden Ecken auf I'y hat. Man wird eine fiir den Bereich D giiltige
eindeutige Losung erhalten, wenn man auf I'; den Wert des auf die Schnitt-
elemente T', einwirkenden Spannungszustandes und auf I’y einen Zusammen-
hang zwischen den Komponenten des auf die Schnittelemente I', wirkenden
Spannungszustandes annimmt. Diese Losung erhilt man durch eine wiederholte
Anwendung der Riemann’schen Formel auf die verschiedenen Unterbereiche des
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Bereiches D. Hierbei sind keine besonderen analytischen Bedingungen zu erfiillen
und die erhaltene Losung ist immer eine stetige Funktion der Anfangswerte. Im
allgemeinen gibt es jedoch keine Lgsung, die zu einem Zusammenhang zwischen
den Komponenten des auf die verschiedenen Schnittelemente der gegebenen
Kurve C einwirkenden Spannungszustandes gehorte.

Ist die betrachtete Schale eine regelmifige Fliche, so kann die partielle Dif-
ferentialgleichung zweiter Ordnung auf eine lineare partielle Differentialgleichung
erster Ordnung zuriickgefithrt werden, welche nur eine Ableitung enthilt. Diese
Gleichung kann integriert werden, da man sie als eine lineare Differential-
gleichung auffassen kann. In dem Sonderfall der iiber einem Viereck errichteten
regelmifigen Flichen geniigen zur Bestimmung der Parameter S, und S, zwei
Quadraturen.

8. Wahl der Stiitzungsarten bei den Schalen der dritten Gruppe.

Die Wahl der Stiitzungsarten héngt bei einer Schale wesentlich davon ab, zu
welcher Gruppe sie gehdrt. Wir unterscheiden zwei Stiitzungsarten: die einfache
Stitzung, bei welcher die Stiitzkrdfte nur von einem Parameter abhingen, und
die doppelte Stiitzung, bei welcher die Stiitzkrifte von zwei Parametern abhangen.
Die Spannungs-Komponenten, welche die Schale auf eine einfache Stiitzung tiber-
trigt, miissen infolgedessen einem schon im Voraus bekannten Zusammenhang
geniigen, wihrend die Spannungs-Komponenten, welche auf eine doppelte
Stitzung einwirken, unabhingige Werte annehmen konnen. Ubrigens konnen
gewisse Randpartien der Schale auch ungestiitzt bleiben, so daff man einen freien

Rand erhilt.

Wir wollen nun untersuchen, wie man iiber den Rand einer Schale freie
Rénder, einfache Stiitzungen und doppelte Stiitzungen verteilen kann, um noch
einen eindeutigen und stabilen Gleichgewichtszustand zu erhalten.

Wir beschiftigen uns zuerst mit einer Schale der ersten Gruppe. Man kann
einen freien Rand fiir jede Randpartie annehmen, die keine geradlinige Erzeu-
gende enthdlt, und einmal oder mehrmals von jeder Erzeugenden geschnitten
wird. Wenn der freie Rand von allen Erzeugenden geschnitten wird, ist die Ver-
teilung der Spannungen innerhalb der Schale bestimmt und die anderen Rinder
miissen doppelte Stiitzung erhalten. Der zugehérige Gleichgewichtszustand ist
stabil. Nun nehmen wir zwei Rinder an, von denen jeder nur einmal alle
Erzeugenden schneidet und einfach gestiitzt ist. Auch hier erhilt man einen
stabilen Gleichgewichtszustand der Schale, wenn man die ibrigen Randpartien,
welche nur noch Erzeugende enthalten, doppelt stiitzt.

Nua zu einer Schale der zweiten Gruppe. Hier sind keine freien Rinder még-
lich, da der zugehorige Gleichgewichtszustand nicht stabil wire. Man kann aber
den ‘ganzen Rand der Schale einfach stiitzen. Der zugehorige Gleichgewichts-
zustand ist eindeutig und stabil.

Wenn wir nun eine Schale der dritten Gruppe betrachten und ihren Rand in
drei Gattungen von Bogenstiicken I', I’y und I" unterteilen, die den Ausfiih-
rungen des Abs. 7 entsprechen, so kann man lings T'; einen freien Rand, lings
I', einfache Stiitzung und lings I” doppelte Stitzung annehmen. In diesem
Falle erhilt man einen eindeutigen und stabilen Gleichgewichtszustand.
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9. Geometrische Eigenschaften und geometrische Berechnung der Schalen der
dritten Gruppe.

Die Schalen der dritten Gruppe zeigen bemerkenswerte geometrische Eigen-
schaften, welche die Moglichkeit zu einer genauen graphischen Berechnung geben.

Es sollen zuerst die in Abs. 7 eingefiihrten Parameter S, und S, und die
Funktionen ¢ und ¢ geometrisch gedeutet werden. S, und S, sind die Langs.
spannungen, die bei einem komplementiren Lastsystem auf die Asymptotenlinien
einwirken. ¢ und ¥ sind krummlinige Koordinaten der Fliche, fiir welche die
Koordinatenlinien die Asymptotenlinien darstellen.

Wir ersetzen nun die Schale durch ein windschiefes Netz, dessen Maschen jene
schiefwinkligen geradlinigen Vierecke sind, welche die Asymptotenlinien um-
grenzen. Dieses System verhilt sich gleich wie die gegebene Fliche und solange
die Maschen geniigend klein sind, kann man die beiden Systeme miteinander ver-
tauschen. Die Lasten miissen an den Ecken dieses Netzwerkes tangential zur
Oberfliche angebracht werden. '

Die an einer beliebigen Ecke des Netzwerkes angreifende Einzellast F kann
man nach den zwei Stabrichtungen von zwei verschiedenen Asymptotenlinien zer-
legen, die sich in der betrachteten Ecke schneiden. Man iibertrigt damit die Last
F nach zwei anderen Knotenpunkten der Fliche, wo man in derselben Weise ver-
fahrt und so fort. Ist nun der Rand der Fliche in drei Gattungen von Bogen-
stiicken I'y, Ty und I entsprechend den im Vorstehenden angegebenen Be-
dingungen unterteilt und wihlt man in passender Weise die beiden Anfangsstibe,
nach denen man die gegebene Kraft I zerlegt, so kann die Ubertragung der
Kraft F nach dem angegebenen Verfahren so erfolgen, daf3 kein freier Rand
getroffen wird. Kommt man dabei zu einem einfach gestiitzten Rand I'y, so kann
man hier die Zerlegung nach der Richtung des zweiten Stabes, welcher zu der auf
I'; liegenden Ecke fithrt und nach der Richtung der Stiitzkraft vornehmen.
Diesen Vorgang nennt man die Riickstrahlung an der einfachen Stiitzung. Wenn -
man in dieser Weise weiter fortfihrt, iibertrigt man schlief3lich die Last F auf
die doppelt gestiitzten Zonen. Man hat damit einen Gleichgewichtszustand des
Systemes erhalten, der sich mit den Stiitzkriften vertrigt, und damit also stabil
ist. Wenn man in derselben Weise fiir jeden belasteten Knoten des Netzwerkes
verfahrt, besimmt man durch eine einfache Zerlegung der Lasten nach der
Parallelogrammregel den zu einem komplementiren Lastsystem gehérigen Gleich-
gewichtszustand. Die zugehorige zeichnerische Darstellung kann leicht in der
Projektion auf eine beliebige Ebene vorgenommen werden.

An Hand der eben besprochenen geometrischen Bestimmung des Krifte-
verlaufes kann man sich das Gleichgewicht in einer Schale der dritten Gruppe
als' durch einen Krifteflufy in Richtung der Asymptotenlinien erzeugt denken,
der von den freien Rindern ausstrahlt, an den einfachen Stiitzungen reflektiert
wird, um an den doppelten Stiitzungen zu enden. Die gleiche Eigenschaft wird
auch bei der Fortpflanzung von Wellen bei Erscheinungen beobachtet, die durch
lineare partielle Differentialgleichungen zweiter Ordnung mit reellen Variablen
bestimmt sind und wie diese héngt sie hauptsichlich damit zusammen, daf3 die
Variablen der Gleichungen, die das Gleichgewicht der Spannungen in der
« betrachteten Schale bestimmen, reell sind.
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10. Einfache Beispiele fiir Schalen der dritten Gruppe.

Das einfachste Beispiel einer Schale der dritten Gruppe liefert das hyper-
bolische Paraboloid. Diese Schale zeichnet sich durch die Eigenschaft aus, daf3 die
Schubspannung lings der geradlinigen Erzeugenden, abgesehen von einem fiir
die ganze Oberfliche nahezu konstanten Faktor, gleich der auf die Flichen-
einheit der Projektion auf eine beliebige, nicht zur Achse parallele Ebene
bezogenen Komponente der Last in Richtung der Achse des Paraboloids ist.

-

” i

Fig. 1.

'm' 2

Andererseits pflanzen sich die aus dem Komplementirsystem der Lasten her-
riihrenden Beanspruchungen lings der Erzeugenden fort, ohne andere Kr-
zeugende in Mitleidenschaft zu ziehen. Die an einem kleinen Element der Schale
angebrachte tangentiale Beanspruchung ist also nur in den durch die Erzeu-
genden gebildeten Streifen spiirbar. Nach dem hyperbolischen Paraboloid ist die
einfachste Schale der dritten Gruppe das einschalige Hyperboloid. Diese Schale
hat mit dem Paraboloid die Eigenschaft gemein, dafy die aus dem Komplementir-
system herriihrenden Lasten sich lings einzelnen Erzeugenden fortpflanzen, ohne
die anderen Erzeugenden in Mitleidenschaft zu ziehen. Sie unterscheidet sich
von dem hyperbolischen Paraboloid nur durch den komplizierteren Faktor der
Proportionalitiatzwischen der Schubspannung und der Dichte der aufgebrachten Last.
Nun zu den regelmifiigen, nicht abwickelbaren Flichen und in erster Linie
zu den Konoiden. Fiir diese Flichen hat der Koeffizient der Proportionalitit
zwischen der Schubspannung auf die Asymptotenlinien und der Dichte der auf-
gebrachten Last eine bedeutend kompliziertere Form als fiir die zuerst betrach-
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Fig. 2. Fig. 3.
Fortpflanzungsart der Tangentialkrifte Fortpflanzungsweise der Tangentialkrifte in irgend
in einem Regelviereck. einer Oberfliche der 3. Gruppe.
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teten Flichen; sie zeichnen sich aber vor diesen Flichen dgdurch aus, daf3 die
aus dem Komplementirsystem herriihrenden Kriifte sich bei der Fortpflanzung
tiber die Oberfliche ausbreiten, wobei sich die krummen Asymptotenlinien auf
die geradlinigen Erzeugenden der Fliche abstiitzen, so dafl die an einem kleinen
Element angreifende Tangentialkraft einen facherférmigen Bereich der Oberfliche
zur Mitwirkung heranzieht, genau wie bei den allgemeinsten Flichen der dritten
Gruppe.

Die Fig. 2 und 3 zeigen den Unterschied zwischen den regelmifligen iiber
einem Viereck errichteten Flichen und den anderen Flichen der dritten Gruppe
in Bezug auf den soeben besprochenen letzteren Punkt.

11. Schlufifolgerungen.

Wenn man von den regelmifiigen abwickelbaren Flichen, wie Zylinder und
Kegel absieht, die fiir sich eine besondere Klasse von Schalen bilden, so scheidet
sich die Gesamtzahl der ibrigen doppelt gekriimmten Schalen je nach dem Vor-
zeichen der Kriimmungen in zwei groffe Gruppen. Bei diesen beiden Gruppen
von Schalen spielen die Asymptotenlinien die wesentliche Rolle bei der Uber-
tragung der Tangentialkrifte und infolgedessen auch bei der Bestimmung der Art
der zu einem eindeutigen und stabilen Gleichgewicht gehdrigen Stiitzkrifte.
Wenn die Asymptotenlinien imaginér sind, kann die Schale keine freien Rénder
haben, sie kann jedoch am ganzen Umfang durch einfach gestiitzte Rander
begrenzt werden. Das einfachste Beispiel einer solchen Stiitzung bildet eine ebene
Scheibe, die eine grofe Steifigkeit in Richtung der Ebene und keine nennenswerte
Steifigkeit normal zu der Ebene aufweist. Sind die Asymptotenlinien jedoch reell,
so kann man die Rénder der Schale in freie Rinder, einfach gestitzte Réinder
und doppelt gestiitzte Rinder, wie im Vorstehenden angegeben, nach bestimmten
Regeln unterteilen. Da die doppelt gestiitzten Rénder vom konstruktiven Stand-
punkt aus Schwierigkeiten bieten konnen, ist es von Vorteil, ihre Bedeutung auf
ein Minimum einzuschrinken. Dies kann auf verschiedene Weise durch ent-
sprechende Formung der Fliche erreicht werden.

Im Hinblick auf die einfachste Form der Berechnung der Schale kann man
auf Grund der vorstehenden Betrachtungen ersehen, dafl unter den doppelt
gekriimmten Schalen besonders die iiber einem Viereck errichteten regelméf3igen
Flachen zu ganz einfachen Rechenmethoden fiihren.

Zusammenfassung.

Bei der Konstruktion von Schalengewdlben in Eisenbeton handelt es sich zu-
nichst um statisch bestimmte, von der Elastizititstheorie unabhingige Probleme.
Der Gesamtbereich dieser Fragen wird unter-Ausschluf3 anderer Probleme be-
handelt, die bei der Ausfiihrung von Schalen infolge der entstehenden Ver-
formungen auftauchen, vor allem aber auch unter Ausschluf3 der Probleme der
Vertriglichkeit jener Verformungen, welche der auf statisch bestimmtem Wege
errechnete Spannungszustand bedingt.

Die allgemein angenommene Hypothese einer gleichmifiigen Verteilung der
Spannungen tiber die Querschnittsdicke wird benutzt, so das man sich die Schale
m threr Mittelfliche vereinigt denken kann.
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