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Einfithrung in die allgemeine Theorie der biegungsfreien Schalen.

Etude des voiles minces courbes ne subissant pas de
flexion.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. és siences F. Aimond,

Ingénieur des Ponts et Chaussées détaché au Ministére de I'Air, Paris.

1. Hinweis auf die allgemeinen Gleichgewichisbedingungen der Schalen in
geradlinigen Koordinaten.

Die Gleichung der Oberfliche in geradlinigen, jedoch nicht unbedingt recht-
winkligen Koordinaten sei z = f (x, y). Der Spannungszustand in einem Punkte
m der Schale wird durch die Spannungen n;, n,, ® bestimmt, die auf die zu
den Ebenen zox und zoy parallelen Schnitte mm, und mm, wirken. Auf den
Schnitt mm, wirkt n, parallel zur Ebene zox, auf den Schnitt mm, wirkt n,
parallel zu zoy und © wirkt sowohl auf den Schnitt mm, parallel zu zox als
auch auf mm, parallel zu zoy. Die Richtungskoeffizienten der Tangenten an die
Schnitte mm, und mm,, also die in Richtung ox, oy, oz projizierten Einheits-
vektoren jeder dieser Tangenten bezeichnen wir mit a;, O, y; und O, B, und y,.
Wir denken uns nun die Schale beliebig belastet. Dann sind X - dx - dy, Y - dx - dy,
Z - dx- dy die Komponenten der aufgebrachten Last, die in den Richtungen ox,
oy, oz auf das Element mm, m’m, wirken, das parallel zur Ebene zox durch
mm,; und mym’ und parallel zur Ebene zoy durch mm, und m;m’ begrenzt wird.
Die Untersuchung der Gleichgewichtsbedingungen fiir diese Schnitte fithrt zu
folgenden Gleichungen:

bv‘+— X (1)
tER=1 @
r-\l—I—QSB—{—th:Z_ (3)
Dabei bedeutet '
of _df _»f _ wf  of
P=ex 175y "7 8 ° 7 ox-oy’ oyt
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2. Geométrische Deutung der in den allgemeinen Gleichgewichtsbedingungen
enthaltenen GréfSen.

Die Grofie T im zweiten Glied der Gleichung (3) ist die schiefe Projektion
des Vektors (X, Y, Z) auf oz, wobei diese Projektion parallel zu der an die
Oberfliche gelegten Tangentialebene erfolgt. Zur Deutung der Grofien v, v,
und ®, die die Unbekannten in den Gleichgewichtsbedingungen sind, soll all-
gemein der Begriff der reduzierten Spannung definiert werden. Die an einem
Bogenelement angreifende reduzierte Spannung ist die Projektion der an diesem
Element angreifenden Kraft auf die xy-Ebene, dividiert durch die projizierte
Linge des zugehorigen Elementes. Es lifit sich einfach feststellen, daff der
Zusammenhang zwischen den in einem Punkt wirksamen reduzierten Spannungen
denselben Gesetzen folgt wie bei den wirklichen Spannungen und im Besonderen,
dafs auch die Mohr’sche Darstellung auf sie anwendbar ist. Die Grofien vy, v, ©
entsprechen den durch Parallelprojektion auf die x und y-Achse entstandenen
reduzierten Spannungen, die zu den Schnitten gehéren. Die Schubspannungen ©
bleiben in der Projektion erhalten, wihrend dies fir die Spannungsgrofien n;
und n, nicht der Fall ist.

3. Geometrische Deutung der Gleichgewichisbedingungen.

Die Gleichungen (1) und (2) driicken augenscheinlich das Gleichgewicht in
der Projektion auf die Tangentialebene aus. Die Gleichung (3) dagegen gibt
das Gleichgewicht der normal zur Schale wirkenden Krifte wieder. Um sie geo-
metrisch zu deuten, legen wir den Ursprung O des Dreiflichners oxyz auf die
Oberfliche und richten ox und oy nach den Richtungen von zwei willkiirlich
gewiihlten Schnitten. Der Dreiflichner oxyz wird nun vollends bestimmt, wenn
man eine Annahme iiber die Richtung oz trifft. Die Gleichung (3) gibt den
linearen Zusammenhang zwischen den Spannungen, welche auf die willkiirlich
gewihlten Schnitte ox und oy wirken und der parallel zur Tangentialebene auf
oz erfolgten Projektion T der Dichte der aufgebrachten Last. Solange man bei
festgehaltenem ox und oy die Richtung von oz &ndert, ist nur jeder einzelne
Ausdruck der linearen Gleichung mit demselben Faktor zu multiplizieren.

Man kann die Unbestimmtheit der Richtungen der Schnitte ox und oy zur
Vereinfachung der Gleichung (3) benutzen. Richtet man ndmlich diese Schnitte
nach zwei konjugierten Richtungen der Oberfliche aus (konjugierte Richtungen
im Verhiltnis zur Indikatrix), so verschwindet der Koeffizient ® und die
Gleichung (3) reduziert sich zu einer linearen Gleichung zwischen den Léangs-
spannungen v, und v,. Man kann sich nun fragen, ob es nicht mdéglich ist,
die Schnitte ox und oy so zu orientieren, dafl in der Gleichung (3) tberhaupt
nur noch eine einzige Spannungsgrofie verbleibt. Man sieht aber sofort, daf3
dies nicht moglich ist, solange die Oberfliche konvex ist, d. h. also, solange
die Hauptkrimmungsradien von gleichem Sinn sind. Wenn die Oberfliche nicht
konvex ist, wird dies im Gegensatz hierzu jedoch méglich.

Wenn wir uns mit der letzteren Annahme beschiftigen, so sind zwei Fille
zu unterscheiden, je nachdem ob die in der Gleichung (3) verbleibende Spannung
eine Lingsspannung oder eine Schubspannung ©® ist. Der erste Fall ist nur dann
moglich, wenn die Oberfliche abwickelbar ist, d. h. also, wenn man sie als die



Einfithrung in die allgemeine Theorie der biegungsfreien Schalen 695

Umhiillende einer Gruppe von Tangentialebenen auffassen kann, die von ecinem
Parameter abhingen. Legt man den Schnitt ox in die Richtung der geradlinigen
Erzeugenden, die durch O geht, so vereinfacht sich die Gleichung (3) zu

r-v, =20 (4)
Der zweite Fall bezieht sich auf die Oberflichen mit gegensitzlichen Kriim-
mungen. Legt man ox und oy in die Richtung der Asymptoten, so vereinfacht

sich die Gleichung (3) zu
2.5-0=2¢ (5)

Die Gleichungen (4) und (5) sind einfach zu deuten. Betrachten wir zunichst
Gleichung (4). Man sieht sofort, dafl von den an einem unendlich kleinen
Element der Fliche angreifenden Schnittkriften nur v, eine Komponente ergibt,
die nicht in der Tangentialebene liegt, und Gleichung (4) drickt nur die Gleich-
heit zwischen den parallel zur Tangentialebene erfolgten Projektionen der
Spannungen n; auf oz und der unter den gleichen Bedingungen erfolgten Pro-
jektion der aufgebrachten Last aus.

Nun zur Deutung der Gleichung (5): Es geniigt hierfiir, ein viereckiges
Element zu betrachten, von dem zwei Seiten durch Asymptotenlinien gebildet
werden, die sich in O kreuzen. Die Resultierende der an dem Viereck angreifen-
den Lingsspannungen n, und n, liegt in der Tangentialebene. Diese Resultierende
ist ja nur die geometrische Summe der Spannungsresultanten n; und n,, und
jede dieser Spannungsresultanten liegt notwendigerweise innerhalb der Be-
rithrungsebene einer Asymptotenlinie, welche infolge der Definition der Asymp-
toten mit der Tangentialebene zusammenfallen muf3. Die aufierhalb der Tangential-
ebene liegende Komponente 7 der auf die Oberfliche aufgebrachten Lasten hingt
also nur von der Schubspannung © ab und sie ist dieser auch direkt pro-
portional. Der Proportionalititskoeffizient hat den Wert 2s und ist einfach
geometrisch zu deuten. Er ist der Quotient aus dem doppelten Abstand der O
gegeniiberliegenden Ecke des Viereckes von der Tangentialebene durch O, parallel
zur Richtung oz gemessen, dividiert durch das Produkt der Seitenlingen der
Asymptotenlinien, welche das Viereck bilden.

4. Einteilung der Schalen in Bezug auf thre mechanischen Eigenschaften.

Die vorstehenden Betrachtungen fiihren zu einer Einteilung der Schalen in drei
Gruppen. Die erste Gruppe umfafit die abwickelbaren Oberflichen, wie Zylinder
und Kegel. Die zweite Gruppe umschliefit die konvexen Oberflichen, wie die
Kugel, die elliptischen Paraboloide, die Ellipsoide, die zweischaligen Hyper-
boloide und ganz allgemein alle doppelt gekriimmten Flichen, die durch eine
nach unten konkave Kurve erzeugt werden, wenn diese auf einer Leitlinie mit
ebenfalls nach unten konkaver Kriimmung gleitet. Die dritte Gruppe umgrenzt
die gegensitzlich gekriimmten Flichen, wie die hyperbolischen Paraboloide,
dic einschaligen Hyperboloide, die Konoide, alle nicht abwickelbaren regel-
mifligen Flichen und ganz allgemein alle Flichen, die durch eine nach oben
konkave Kurve erzeugt werden kdnnen, wenn sie auf einer nach unten konkaven
Leitlinie gleitet.

Zu dieser Einteilung wird man durch die geometrische Deutung der Gleichung
(3) gefiihrt. In der ersten Gruppe findet man jene Schalen, fiir welche die
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Gleichung (3) in die Form der Gleichung (4) gebracht werden kann. Fiir die
zweite Gruppe kann Gleichung (3) in folgende Form gebracht werden:

rT-vy+t-vy=7 (6)

wobei r und t vom gleichen Vorzeichen sind. Die Schalen der dritten Gruppe
sind jene, fiir welche die Gleichung (3) in die Form (5) tibergefiihrt werden
kann.

Wir bemerken, dafy fiir die Schalen der dritten Gruppe die Gleichung (3)
ebenfalls in die der Gleichung (6) tbergefiilhrt werden kann; in diesem Falle
sind jedoch r und t von verschiedenem Vorzeichen. Auflerdem kann noch fiir
die Schalen der zweiten Gruppe die Gleichung (3) die Form der Gleichung (5)
annehmen, wobei wiederum © die Schubspannung in den Asymptotenlinien be-
deutet. In diesem Falle sind jedoch s und t imagindre Ausdriicke und die
Gleichung (5) stellt nicht mehr eine Bezeichnung zwischen reellen Grofien dar.

Die Schalen der ersten Gruppe sind durch die Eigenschaft gekennzeichnet,
daf3 die normal zu den geradlinigen Erzeugenden wirkende Komponente des
Spannungszustandes in jedem Punkte porportional zur Normalkomponente der
Dichte der aufgebrachten Last ist. Die Schalen der zweiten Gruppe sind durch
die Eigenschaft gekennzeichnet, daf3 der rein imaginire Schubspannungszustand,
der auf die in den imaginiren Asymptotenlinien liegenden Elemente wirkt. in
jedem Punkte proportional zur Normalkomponente der Dichte der aufgebrachten
Last ist. Die Schalen der dritten Gruppe zeichnen sich durch die Eigenschaft
aus, dafl der Schubspannungszustand, der auf die in den Asymptotenlinien
liegenden Elemente wirkt, in jedem Punkte proportional zur Normalkomponente
der Dichte der aufgebrachten Last ist.

Zwischen den Schalen der zweiten und dritten Gruppe kann man noch
folgenden Unterschied beobachten: Wenn man an einem beliebigen Punkte die
an zwei konjugierten Schnitten angreifenden Lingsspannungen betrachtet, so
kann man die Normalkomponente der aufgebrachten Last, die ein linearer
Ausdruck dieser Lingsspannungen ist, als den durch diese Lingsspannungen
hervorgerufenen, nach auflen wirkenden Druck betrachten. Dieser Ausdruck
enthilt bei den Schalen der zweiten Gruppe Koeffizienten gleichen Vorzeichens
und bei den Schalen der dritten Gruppe Koeffizienten von verschiedenem Vor-
zeichen. Daraus folgt, daf man bei den Schalen der zweiten Gruppe sich die
Tragfihigkeit durch die auf zwei konjugierte Schnitte wirkenden gleichsinnigen
Lingsspannungen erzeugt denken kann. Bei einer Schale der dritten Gruppe da-
- gegen denkt man sich die Tragfihigkeit in analoger Weise durch die auf zwei
konjugierte. Schnitte wirkenden gegensinnigen Lingsspannungen erzeugt.

Handelt es sich um eine Schale der zweiten Gruppe, so kann man immer jene
konjugierten Schnitte auswihlen, die symmetrisch im Verhiltnis zu den Haupt-
richtungen liegen. Die zugehérigen Langsspannungskoeffizienten, die in dem
linearen Ausdruck die Normalkomponente der Dichte der aufgebrachten Last
darstellen, sind gleich. Man kann also sagen, dafl bei den Schalen der zweiten
Gruppe die Normalkomponente der Dichte der aufgebrachten Last proportional
zu der Summe der Lingsspannungen ist, welche auf die zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitte wirken.
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Die Verschiedenheit der Eigenschaften, welche, wie wir gesehen haben, die
Schalen der drei Gruppen unterscheidet, hat einen entscheidenden Einfluf3 auf
die Art der Stiitzung, welche man den Schalen an ihren Réndern geben kann, um
die Gleichgewichtsbedingungen zu erfiillen und desgleichen auch auf die Art der
Berechnung der Spannungen, die wiederum eine Funktion der Randstiitzung
sind.

5. Untersuchung der Schalen der ersten Gruppe.

Das Studium der Schalen der ersten Gruppe kommt einer Verallgemeinerung
der Untersuchung des Zylinders gleich. Die Gleichung (4) gibt fiir einen
beliebigen Punkt der Schale jene Komponente des Spannungszustandes an, die
normal zu der an diesem Punkt getroffenen geradlinigen Erzeugenden steht. Zieht
man also auf der Oberfliche eine Gruppe von geoditischen Linien, die die ver-
schiedenen geradlinigen Erzeugenden unter einem konstanten Winkel schneiden,
so kennt man die Lingsspannungen, die parallel zu diesen geoditischen Linien
auf die geradlinigen Erzeugenden wirken. Aus Gleichung (2) erhilt man durch
eine Integration sofort den Wert der Schubspannung an den Erzeugenden und
" geoditischen Linien und durch eine weitere Integration erhilt man aus Gleichung
(1) die Lingsspannungen, die auf die geoditischen Linien parallel zu den Er-
zeugenden wirken.

Der auf diese Weise bestlmmte Spannungszustand ist erst dann vollstindig,
wenn man auf einer bestimmten Kurve, die jede Erzeugende nur ein einziges Mal
trifft, eine Annahme iiber die Werte der auf die Schnittelemente dieser Kurve
wirkenden Spannungen trifft. Man kann {ibrigens auch auf zwei Kurven, von
denen beide jede Erzeugende nur ein einziges Mal schneiden, eine Annahme iiber
den Zusammenhang zwischen den Komponenten des Spannungszustandes treffen,
der auf jedes Schnittelement der beiden Kurven wirkt.

6. Studium der Schalen der zweiten Gruppe.

Wir betrachten nun eine Schale der zweiten Gruppe. Wir haben schon gesehen,
dafy dic Normalkomponente der Dichte der aufgebrachten Last an jedem Punkt
proportional der Summe der Lingsspannungen ist, die auf die zu den Haupt-
richtungen symmetrisch liegenden konjugierten Schnitte wirken. Wir setzen nun
voraus, daf3 diese Lingsspannungen gleich seien. Dann ist ihr Wert in jedem
Punkt durch die Grofie der Normalkomponente der Dichte der Last bestimmt,
Damit haben wir die Gleichung (3) erfillt. Die Gleichungen (1) und (2), welche
das Gleichgewicht in der Tangentialebene ausdriicken, sind allerdings erst dann
erfillt, wenn die Tangentialkomponente der Dichte der Last einen bestimmten
Wert hat, welchen man dadurch erhilt, dal man die Gleichgewichtsbedingungen
parallel zur Tangentialfliche genau anschreibt. Wir wollen nun jedes Lastsystem
mit ,,Grundsystem* bezeichnen, das den vorgenannten Bedingungen entspricht,
d. h. also, wenn gleich grofie Lingsspannungen an den zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitten angreifen. Ein beliebiges Last-
system kann man sich dann aus einem Grundsystem und einem zusitzlichen
System zusammengesetzt denken, wobei das letztere nur Tangentialkrifte enthilt
und als das zu dem Grundsystem komplementire Lastsystem bezeichnet wird.
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Man wird dabet nun zu dem Studium der komplementiren Systeme gefiihrt,
d. h. also jener Systeme, bei welchen die aufgebrachte Last tangential zur Ober-
flaiche wirkt. Bei solchen Systemen sind die Lingsspannungen, welche auf die
symmetrisch zu den Hauptrichtungen liegenden konjugierten Schnitte wirken,
gleich grof3. Der Spannungszustand an einem beliebigen Schnitt hingt also nur
von zwei Parametern ab, z. B. von den Komponenten des Spannungszustandes,
die auf einen der beiden konjugierten Schnitte einwirken. Es ist augenfillig, daf3
man diese beiden Parameter beliebig wihlen kann. Man sieht leicht, daf3 man
zwei unbestimmte konjugierte Funktionen ¢ und 1 so bestimmen kann, dafy die
an einem beliebigen Element der Oberfliche angreifenden Kriifte eine lineare
Form der Differentialausdriicke S ,- d{ und S, d¢ ergeben, wenn man als Para-
meter zwei Gréfien wihlt, die wir mit S, und S,, bezeichnen wollen. Die Gleich-
gewichtsbedingungen in der Tangentialebene zeigen dann, daf3 die partielle Ab-
leitung von S, nach ¢ und die partielle Ableitung von S, nach ¥ lineare Funk-
tionen von S_ und Sq, sind. Eliminiert man einen der beiden Parameter, z. B.
Sl:, aus den beiden Gleichungen, so erhilt man eine lineare partielle Differential-
gleichung zweiter Ordnung mit unbestimmten Variablen, welcher Gleichung der
noch enthaltene Parameter S, geniigen muf3.

Um eine Losung dieser Gleichung zu erhalten, kann man den Wert von S
und einer Ableitung davon auf einer beliebig auf der Oberfliche gewihlten Kurve
annehmen, natiirlich unter der Bedingung, daf3 gewisse analytische Bedingungen
erfilllt sind, die damit zusammenhiingen, daf3 es sich um eine Gleichung mit
unbestimmten Variablen handelt. Da man mit Hilfe der lings einer Kurve an-
genommenen Werte von S, und einer Ableitung davon lings dieser Kurve 8 5
und S,, bestimmen kann und damit auch den gesamten Spannungszustand fiir
ein beliebiges Element dieser Kurve, so sieht man, dal man den gesamten
Spannungszustand in der Schale erhilt, sobald man die Spannungen lings einer
Kurve kennt, immer unter der Voraussetzung, daf3 gewisse analytische Be-
dingungen erfiillt sind.

Diese analytischen Bedingungen sind nicht nur eine reine Formsache, sie ent-
sprechen folgender physikalischer Tatsache: Man weif3, dafs bei allen Problemen,
wo eine Gleichung mit unbestimmten Variablen durch die Werte bestimmt ist,
welche eine diese Gleichung befriedigende Funktion und eine Ableitung davon
lings einer gegebenen Kurve annimmt, die Losung keine stetige Funktion der
Anfangswerte ist. Wenn man die eingesetzten Werte nur wenig édndert, so kann
man an beliebigen Punkten beliebig grofie Werte der Funktion erhalten. Daraus
ergibt sich, daf3 bei einer konvexen Schale die zu den lings einer Kurve
gegebenen Spannungswerten gehodrigen Gleichgewichtszustinde im Verhiltnis zu
diesen Spannungswerten nicht stabil sind.

Um zu stabilen Losungen zu kommen, muf3 man andere Grenzbedingungen
untersuchen als die bisher angenommenen. Statt daf3 man eine Annahme iiber
den Spannungszustand liangs einer Karve trifft, nehmen wir auf einer bestimmten
Kurve einen Zusammenhang zwischen den Komponenten des auf die Elemente
dieser Kurve wirkenden Spannungszustandes an. In diesem Falle ist das Problem
eindeutig und seine Losung eine stetige Funktion der angenommenen Grofien.
Der zugehorige Gleichgewichtszustand wird ebenfalls stabil sein. Wir wollen
z. B. annehmen, dafl die Normalkomponente des Spannungszustandes lings der
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gegebenen Kurve Null sei. Mit Hilfe der relativen Unbestimmtheit der Parameter
S, und S, kann man diese so bestimmen, dafy S, der Normalkomponente des
Spannungszustandes lings der gegebenen Kurve entspricht. Die Theorie der
Differentialgleichungen erlaubt eine Bestimmung der Funktion S, nach einer
dhnlichen Methode, wie sie von Fredholm und seinen Nachfolgern zur Losung
dhnlich geformter Gleichungen mit unbestimmten Variablen angewandt wurde.

7. Studium der Schalen der dritten Gruppe.

Wir betrachten nun eine Schale der dritten Gruppe. Der Wert der Normal-
komponente der Dichte der Last bestimmt in erster Linie den Schubspannungs-
zustand fiir die in den Asymptotenlinien liegenden Schnitte. Wir wollen voraus-
setzen, daf3 der Spannungszustand in der Schale nur aus diesen Schubspannungen
bestehe. Hierzu ist nur ndtig und auch geniigend, dafy die Tangentialkomponente
der an einem zwischen den Asymptotenlinien liegenden Viereck angebrachten
Last in Gleichgewicht mit der Resultante der auf die Tangentialebene projizierten
Tangentialbeanspruchungen steht. Wir wollen nun jedes Lastsystem, das den
vorstehenden Bedingungen geniigt, dafl der an den Schnitt-Elementen der
Asymptotenlinien angreifende Spannungszustand nur aus Schubspannungen be-
steht, als Grundsystem bezeichnen. Es ist nun leicht einzusehen, daff man sich
jedes beliebige Lastsystem durch eine Superposition aus einem Grundsystem
und einem anderen System, das wir Komplementirsystem nennen wollen,
entstanden denken kann.

Wir werden hierdurch zum Studium der Komplementirsysteme gefiihrt. Wir
erinnern uns dabei, daf3 die an einem Schalenelement angreifende Schnittkraft
als eine Linearkombination der Differentialausdriicke S,-d¢ und S,d¢ dar-
gestellt werden kann, wobei ¢ und ¥ jetzt zwei reelle Funktionen sind und S,
und S, zwei reelle Parameter. Die Gleichgewichtsbedingungen in der Tangential-
ebene erlauben es nun, die partiellen Ableitungen von S, nach ¢ und von
S, nach ¥ als lineare Funktionen von S, und S,, auszudriicken. Die Elimination
von S, fiihrt zu einer linearen Differentialgleichung zweiter Ordnung von S, mit
reellen Variablen. Die Variablen dieser Differentialgleichung stellen die Asymp-
totenlinien dar.

Um eine Losung der vorstehenden Gleichung zu erhalten, die fiir den durch
den Rand C begrenzten Bereich D giiltig ist, zerlegen wir diesen Rand in zwel
Folgen von Bogenstiicken I' und I"” derart, daf3 die von jedem Punkt des Be-
reiches D ausstrahlenden Asymptotenlinien I' nur ein einziges Mal treffen. Jetzt
unterteilen wir noch I' in zwei Folgen von Bogenstiicken I'; und T’y derart, dafd
jeder gebrochene Zug von Asymptotenlinien, der irgend einen Punkt von I'; mit
einem Punkt von I verbindet, seine dazwischenliegenden Ecken auf I'; oder
I hat und gleichzeitig noch die Bedingung erfillt ist, dafy kein gebrochener
Zug von Asymptotenlinien moglich ist, der seine Enden auf I'; und seine da-
zwischenliegenden Ecken auf I'y hat. Man wird eine fiir den Bereich D giiltige
eindeutige Losung erhalten, wenn man auf I'; den Wert des auf die Schnitt-
elemente T', einwirkenden Spannungszustandes und auf I’y einen Zusammen-
hang zwischen den Komponenten des auf die Schnittelemente I', wirkenden
Spannungszustandes annimmt. Diese Losung erhilt man durch eine wiederholte
Anwendung der Riemann’schen Formel auf die verschiedenen Unterbereiche des
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Bereiches D. Hierbei sind keine besonderen analytischen Bedingungen zu erfiillen
und die erhaltene Losung ist immer eine stetige Funktion der Anfangswerte. Im
allgemeinen gibt es jedoch keine Lgsung, die zu einem Zusammenhang zwischen
den Komponenten des auf die verschiedenen Schnittelemente der gegebenen
Kurve C einwirkenden Spannungszustandes gehorte.

Ist die betrachtete Schale eine regelmifige Fliche, so kann die partielle Dif-
ferentialgleichung zweiter Ordnung auf eine lineare partielle Differentialgleichung
erster Ordnung zuriickgefithrt werden, welche nur eine Ableitung enthilt. Diese
Gleichung kann integriert werden, da man sie als eine lineare Differential-
gleichung auffassen kann. In dem Sonderfall der iiber einem Viereck errichteten
regelmifigen Flichen geniigen zur Bestimmung der Parameter S, und S, zwei
Quadraturen.

8. Wahl der Stiitzungsarten bei den Schalen der dritten Gruppe.

Die Wahl der Stiitzungsarten héngt bei einer Schale wesentlich davon ab, zu
welcher Gruppe sie gehdrt. Wir unterscheiden zwei Stiitzungsarten: die einfache
Stitzung, bei welcher die Stiitzkrdfte nur von einem Parameter abhingen, und
die doppelte Stiitzung, bei welcher die Stiitzkrifte von zwei Parametern abhangen.
Die Spannungs-Komponenten, welche die Schale auf eine einfache Stiitzung tiber-
trigt, miissen infolgedessen einem schon im Voraus bekannten Zusammenhang
geniigen, wihrend die Spannungs-Komponenten, welche auf eine doppelte
Stitzung einwirken, unabhingige Werte annehmen konnen. Ubrigens konnen
gewisse Randpartien der Schale auch ungestiitzt bleiben, so daff man einen freien

Rand erhilt.

Wir wollen nun untersuchen, wie man iiber den Rand einer Schale freie
Rénder, einfache Stiitzungen und doppelte Stiitzungen verteilen kann, um noch
einen eindeutigen und stabilen Gleichgewichtszustand zu erhalten.

Wir beschiftigen uns zuerst mit einer Schale der ersten Gruppe. Man kann
einen freien Rand fiir jede Randpartie annehmen, die keine geradlinige Erzeu-
gende enthdlt, und einmal oder mehrmals von jeder Erzeugenden geschnitten
wird. Wenn der freie Rand von allen Erzeugenden geschnitten wird, ist die Ver-
teilung der Spannungen innerhalb der Schale bestimmt und die anderen Rinder
miissen doppelte Stiitzung erhalten. Der zugehérige Gleichgewichtszustand ist
stabil. Nun nehmen wir zwei Rinder an, von denen jeder nur einmal alle
Erzeugenden schneidet und einfach gestiitzt ist. Auch hier erhilt man einen
stabilen Gleichgewichtszustand der Schale, wenn man die ibrigen Randpartien,
welche nur noch Erzeugende enthalten, doppelt stiitzt.

Nua zu einer Schale der zweiten Gruppe. Hier sind keine freien Rinder még-
lich, da der zugehorige Gleichgewichtszustand nicht stabil wire. Man kann aber
den ‘ganzen Rand der Schale einfach stiitzen. Der zugehorige Gleichgewichts-
zustand ist eindeutig und stabil.

Wenn wir nun eine Schale der dritten Gruppe betrachten und ihren Rand in
drei Gattungen von Bogenstiicken I', I’y und I" unterteilen, die den Ausfiih-
rungen des Abs. 7 entsprechen, so kann man lings T'; einen freien Rand, lings
I', einfache Stiitzung und lings I” doppelte Stitzung annehmen. In diesem
Falle erhilt man einen eindeutigen und stabilen Gleichgewichtszustand.
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9. Geometrische Eigenschaften und geometrische Berechnung der Schalen der
dritten Gruppe.

Die Schalen der dritten Gruppe zeigen bemerkenswerte geometrische Eigen-
schaften, welche die Moglichkeit zu einer genauen graphischen Berechnung geben.

Es sollen zuerst die in Abs. 7 eingefiihrten Parameter S, und S, und die
Funktionen ¢ und ¢ geometrisch gedeutet werden. S, und S, sind die Langs.
spannungen, die bei einem komplementiren Lastsystem auf die Asymptotenlinien
einwirken. ¢ und ¥ sind krummlinige Koordinaten der Fliche, fiir welche die
Koordinatenlinien die Asymptotenlinien darstellen.

Wir ersetzen nun die Schale durch ein windschiefes Netz, dessen Maschen jene
schiefwinkligen geradlinigen Vierecke sind, welche die Asymptotenlinien um-
grenzen. Dieses System verhilt sich gleich wie die gegebene Fliche und solange
die Maschen geniigend klein sind, kann man die beiden Systeme miteinander ver-
tauschen. Die Lasten miissen an den Ecken dieses Netzwerkes tangential zur
Oberfliche angebracht werden. '

Die an einer beliebigen Ecke des Netzwerkes angreifende Einzellast F kann
man nach den zwei Stabrichtungen von zwei verschiedenen Asymptotenlinien zer-
legen, die sich in der betrachteten Ecke schneiden. Man iibertrigt damit die Last
F nach zwei anderen Knotenpunkten der Fliche, wo man in derselben Weise ver-
fahrt und so fort. Ist nun der Rand der Fliche in drei Gattungen von Bogen-
stiicken I'y, Ty und I entsprechend den im Vorstehenden angegebenen Be-
dingungen unterteilt und wihlt man in passender Weise die beiden Anfangsstibe,
nach denen man die gegebene Kraft I zerlegt, so kann die Ubertragung der
Kraft F nach dem angegebenen Verfahren so erfolgen, daf3 kein freier Rand
getroffen wird. Kommt man dabei zu einem einfach gestiitzten Rand I'y, so kann
man hier die Zerlegung nach der Richtung des zweiten Stabes, welcher zu der auf
I'; liegenden Ecke fithrt und nach der Richtung der Stiitzkraft vornehmen.
Diesen Vorgang nennt man die Riickstrahlung an der einfachen Stiitzung. Wenn -
man in dieser Weise weiter fortfihrt, iibertrigt man schlief3lich die Last F auf
die doppelt gestiitzten Zonen. Man hat damit einen Gleichgewichtszustand des
Systemes erhalten, der sich mit den Stiitzkriften vertrigt, und damit also stabil
ist. Wenn man in derselben Weise fiir jeden belasteten Knoten des Netzwerkes
verfahrt, besimmt man durch eine einfache Zerlegung der Lasten nach der
Parallelogrammregel den zu einem komplementiren Lastsystem gehérigen Gleich-
gewichtszustand. Die zugehorige zeichnerische Darstellung kann leicht in der
Projektion auf eine beliebige Ebene vorgenommen werden.

An Hand der eben besprochenen geometrischen Bestimmung des Krifte-
verlaufes kann man sich das Gleichgewicht in einer Schale der dritten Gruppe
als' durch einen Krifteflufy in Richtung der Asymptotenlinien erzeugt denken,
der von den freien Rindern ausstrahlt, an den einfachen Stiitzungen reflektiert
wird, um an den doppelten Stiitzungen zu enden. Die gleiche Eigenschaft wird
auch bei der Fortpflanzung von Wellen bei Erscheinungen beobachtet, die durch
lineare partielle Differentialgleichungen zweiter Ordnung mit reellen Variablen
bestimmt sind und wie diese héngt sie hauptsichlich damit zusammen, daf3 die
Variablen der Gleichungen, die das Gleichgewicht der Spannungen in der
« betrachteten Schale bestimmen, reell sind.
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10. Einfache Beispiele fiir Schalen der dritten Gruppe.

Das einfachste Beispiel einer Schale der dritten Gruppe liefert das hyper-
bolische Paraboloid. Diese Schale zeichnet sich durch die Eigenschaft aus, daf3 die
Schubspannung lings der geradlinigen Erzeugenden, abgesehen von einem fiir
die ganze Oberfliche nahezu konstanten Faktor, gleich der auf die Flichen-
einheit der Projektion auf eine beliebige, nicht zur Achse parallele Ebene
bezogenen Komponente der Last in Richtung der Achse des Paraboloids ist.

-

” i

Fig. 1.

'm' 2

Andererseits pflanzen sich die aus dem Komplementirsystem der Lasten her-
riihrenden Beanspruchungen lings der Erzeugenden fort, ohne andere Kr-
zeugende in Mitleidenschaft zu ziehen. Die an einem kleinen Element der Schale
angebrachte tangentiale Beanspruchung ist also nur in den durch die Erzeu-
genden gebildeten Streifen spiirbar. Nach dem hyperbolischen Paraboloid ist die
einfachste Schale der dritten Gruppe das einschalige Hyperboloid. Diese Schale
hat mit dem Paraboloid die Eigenschaft gemein, dafy die aus dem Komplementir-
system herriihrenden Lasten sich lings einzelnen Erzeugenden fortpflanzen, ohne
die anderen Erzeugenden in Mitleidenschaft zu ziehen. Sie unterscheidet sich
von dem hyperbolischen Paraboloid nur durch den komplizierteren Faktor der
Proportionalitiatzwischen der Schubspannung und der Dichte der aufgebrachten Last.
Nun zu den regelmifiigen, nicht abwickelbaren Flichen und in erster Linie
zu den Konoiden. Fiir diese Flichen hat der Koeffizient der Proportionalitit
zwischen der Schubspannung auf die Asymptotenlinien und der Dichte der auf-
gebrachten Last eine bedeutend kompliziertere Form als fiir die zuerst betrach-
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Fig. 2. Fig. 3.
Fortpflanzungsart der Tangentialkrifte Fortpflanzungsweise der Tangentialkrifte in irgend
in einem Regelviereck. einer Oberfliche der 3. Gruppe.
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teten Flichen; sie zeichnen sich aber vor diesen Flichen dgdurch aus, daf3 die
aus dem Komplementirsystem herriihrenden Kriifte sich bei der Fortpflanzung
tiber die Oberfliche ausbreiten, wobei sich die krummen Asymptotenlinien auf
die geradlinigen Erzeugenden der Fliche abstiitzen, so dafl die an einem kleinen
Element angreifende Tangentialkraft einen facherférmigen Bereich der Oberfliche
zur Mitwirkung heranzieht, genau wie bei den allgemeinsten Flichen der dritten
Gruppe.

Die Fig. 2 und 3 zeigen den Unterschied zwischen den regelmifligen iiber
einem Viereck errichteten Flichen und den anderen Flichen der dritten Gruppe
in Bezug auf den soeben besprochenen letzteren Punkt.

11. Schlufifolgerungen.

Wenn man von den regelmifiigen abwickelbaren Flichen, wie Zylinder und
Kegel absieht, die fiir sich eine besondere Klasse von Schalen bilden, so scheidet
sich die Gesamtzahl der ibrigen doppelt gekriimmten Schalen je nach dem Vor-
zeichen der Kriimmungen in zwei groffe Gruppen. Bei diesen beiden Gruppen
von Schalen spielen die Asymptotenlinien die wesentliche Rolle bei der Uber-
tragung der Tangentialkrifte und infolgedessen auch bei der Bestimmung der Art
der zu einem eindeutigen und stabilen Gleichgewicht gehdrigen Stiitzkrifte.
Wenn die Asymptotenlinien imaginér sind, kann die Schale keine freien Rénder
haben, sie kann jedoch am ganzen Umfang durch einfach gestiitzte Rander
begrenzt werden. Das einfachste Beispiel einer solchen Stiitzung bildet eine ebene
Scheibe, die eine grofe Steifigkeit in Richtung der Ebene und keine nennenswerte
Steifigkeit normal zu der Ebene aufweist. Sind die Asymptotenlinien jedoch reell,
so kann man die Rénder der Schale in freie Rinder, einfach gestitzte Réinder
und doppelt gestiitzte Rinder, wie im Vorstehenden angegeben, nach bestimmten
Regeln unterteilen. Da die doppelt gestiitzten Rénder vom konstruktiven Stand-
punkt aus Schwierigkeiten bieten konnen, ist es von Vorteil, ihre Bedeutung auf
ein Minimum einzuschrinken. Dies kann auf verschiedene Weise durch ent-
sprechende Formung der Fliche erreicht werden.

Im Hinblick auf die einfachste Form der Berechnung der Schale kann man
auf Grund der vorstehenden Betrachtungen ersehen, dafl unter den doppelt
gekriimmten Schalen besonders die iiber einem Viereck errichteten regelméf3igen
Flachen zu ganz einfachen Rechenmethoden fiihren.

Zusammenfassung.

Bei der Konstruktion von Schalengewdlben in Eisenbeton handelt es sich zu-
nichst um statisch bestimmte, von der Elastizititstheorie unabhingige Probleme.
Der Gesamtbereich dieser Fragen wird unter-Ausschluf3 anderer Probleme be-
handelt, die bei der Ausfiihrung von Schalen infolge der entstehenden Ver-
formungen auftauchen, vor allem aber auch unter Ausschluf3 der Probleme der
Vertriglichkeit jener Verformungen, welche der auf statisch bestimmtem Wege
errechnete Spannungszustand bedingt.

Die allgemein angenommene Hypothese einer gleichmifiigen Verteilung der
Spannungen tiber die Querschnittsdicke wird benutzt, so das man sich die Schale
m threr Mittelfliche vereinigt denken kann.
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Die Flichentragwerke des Eisenbetonbaues.
Les surfaces portantes dans la construction en béton armé.

Shell Construction in Reinforced Concrete.

Dr. Ing. Fr. Dischinger,

Professor an der Technischen Hochschule, Berlin.

Nachdem vor ca. 12 Jahren von der Dyckerhoff & Widmann AG. in Ver-
bindung mit der Firma Zeif3, Jena die Schalenbauweise geschaffen wurde, bei
welcher die Lastiibertragung im wesentlichen nur durch Dehnungskrifte erfolgt,
hat diese Bauweise in der Zwischenzeit einen gewaltigen Aufschwung genommen,
der nur dadurch ermdglicht wurde, daf3 nach grof3ziigigen Versuchen die Theorie
dieser rdumlichen Gebilde in iiberraschend kurzer Zeit weitgehend ausgebaut
wurde. In noch viel hoherem Mafle als durch die Theorie der kreuzweis
gespannten Platten und Pilzdecken wurden hierdurch dem monotolitischen Eisen-
beton auf dem Gebiet der weitgespannten Hallen neue Arbeitsgebiete geschaffen.
Mittels der Schalen und Faltwerke, die beide unter dem Namen Flichentragwerke
zusammengefafit werden, lassen sich Spannweiten erzielen, deren Verwirklichung
man friher in der Massivbauweise fiir unmoéglich gehalten hitte. Hierbei ist zu
beriicksichtigen, daf3 seit der Erfindung der Schalenbauweise erst ein Jahrzehnt
verflossen ist. In dieser kurzen Zeit wurden hunderttausende von Quadratmetern
grofie Hallen mit Sphnnweiten bis zu 100 m erstellt.

Das nachstehende Referat zerfillt in zwei Teile. In dem ersten Teil wird ein
Uberblick iber die Entwicklung der Theorie seit dem letzten Kongreff gegeben
und die bauliche Entwicklung an Hand einiger Ausfiihrungen gezeigt. In dem

zweiten Teil dagegen wird das Problem der durchlaufenden Zylinderschalen
bzw. Rohre behandelt.

1. Die Entwicklung der Theorie der Schalen seit dem letzten KongrefS in dem
Jahre 1932.

Beziiglich der verschiedenen Schalenformen, die nachstehend besprochen
werden, wird auf das Referat von W. Petry 1I/4 fiir den Kongref3 Paris 1932
hingewiesen. In dem im gleichen Jahre erschienenen Bd. 1 der ,,Abhand-
lungen hat U. Finsterwalder! das Problem der Zeif3-Dywidag-Tonne behandelt.
Diese setzt sich zusammen aus einer zylindrischen Schale und den beiderseitigen
Randbalken. Hierdurch ergibt sich ein einheitlicher Raumtriger, den man auch
als rdumlichen Plattenbalken bezeichnen kann, bei dem die Schale die Druckplatte
darstellt. Im Gegensatz zu den gewdhnlichen Plattenbalken, bei welchen bei
grofieren Abstéinden der Stege, die Platte sich nur in beschrinktem Maf3e an der

45
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Ubernahme der Druckkrifte beteiligt, wirkt bei diesen rdumlichen Plattenbalken
die gesamte Schale als Druckplatte mit. Das hingt damit zusammen, daf3 bei
den gewohnlichen Plattenbalken nach Fig. 1a die Mitwirkung der Platte an der
Ubernahme der Druckkrifte N, durch Schubkrifte N,y zwischen den Balken und
der Platte erzwungen werden muf}. Die mitwirkende Breite ist deshalb eine
Funktion der Trigerlinge. Die Druckspannungen verteilen sich aber nicht gleich-
méfig auf die gesamte Breite der Platte, weil sich die von den Balken weiter
entfernten Plattenstreifen infolge der Schubverzerrungen der Mitarbeit entziehen.

Fig. la. Fig. 1b.

Die Wirkungsweise bei den rdumlichen Plattenbalken nach Fig. 1b ist eine
wesentlich andere, denn in den Schalen sind, wie aus den Gl. 2 des nachfolgenden
Abschnittes II hervorgeht, auch bei Vernachlissigung der Schubkrifte N, zwi-
schen Schale und Randbalken, in den Schalen Druckkrifte N, vorhanden, die
bedingt sind durch die Massen- oder Flidchenlasten der Schale und infolgedessen
beteiligt sich die Schale in ihrer ganzen Breite an der Ubernahme der Druckkrifte
und zwar in um so héherem Mafle je mehr die Querschnittslinie der Schale
gegeniiber der Seillinie iiberhoht ist. Deshalb besitzen die Schalentréger, deren
Querschnittslinie nach flachen Ellipsensegmenten geformt sind, eine wesentlich
bessere Trigerwirkung von Binderscheibe zu Binderscheibe als die Kreiszylinder-
schalen. Des weiteren ergeben sich fiir diese stark tiberhéhten Schalentriger auch
viel geringere Biegungsmomente in der Gewdlberichtung, weil bei ihnen die zur
Ubernahme ‘des dufleren Biegungsmomentes notwendigen Druckkridfte N, zum
weitaus grofiten Teil durch die Flichenlasten der Schale selbst und nicht durch
die Schubkrifte Ny, erzeugt werden. Die Grofie der auftretenden Biegungs-
momente in der Gewdlberichtung sind abhéngig von dem Anteil der Druckkrifte
N,, die durch die Schubkrifte N, unter Zwang erzeugt werden miissen. Aus
diesen Uberlegungen ergibt sich ohne weiteres, daf3 sich bei den Schalentrigern
mit stark tberhohten Querschnittslinien wesentlich geringere Biegungsmomente
ergeben, als bei den Kreiszylinderschalen. Ich komme auf diesen Punkt spiter
nochmals zu sprechen.

Zwischen der Schale und dem Randtriger ergeben sich vier statisch un-
bestimmte Krifte. Diese sind: 1. Die Gewdlbekraft N, die Querkraft Q,, das
Biegungsmoment M, und die Schubkraft Ny,. Fiir die beiden Rénder zusammen
haben wir also acht statisch unbestimmte Gréfien, und infolgedessen mufl dem
Schalenproblem eine Diff.-Gl. achter Ordnung oder ein dieser entsprechendes
System von drei Diff.-Gl. zugrunde liegen, denn wir bendtigen, entsprechend den
acht statisch unbestimmten Grofien, fiir die Schliefung der beiden Fugen
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zwischen der Schale und den Randtrigern acht Konstante. Bei seiner Losung ging
U. Finsterwalder davon aus, daf3 bei groferen Binderabstinden die Schale nicht
in der Lage ist, durch Biegungsmomente M, Lasten nach den Binderscheiben
abzutragen und setzte dementsprechend das Moment M, und die zugehorige Quer-
kraft Q., sowie das Drillungsmoment M., zu Null. Infolge dieser Annéherung
gelang es, das Problem in Form einer Diff.-Gl. achter Ordnung unter Einfihrung
einer Spannungsfunktion darzustellen, bei der sich die inneren Krifte der Schale
in gleicher Weise wie bei der Airy’schen Spannungsfunktion der Scheibe als Ab-
leitungen dieser Spannungsfunktion darstellen lief3en.

Bei kleinen Binderabstinden im Verhiltnis zu dem Kriimmungsradius der
Kreiszylinderschale sind die von U. Finsterwalder getroffenen Vernachlassigungen
M. = Qx = M;, = 0 nicht mehr zuldssig. Aus diesem Grunde bemiihte sich der
Verfasser, fiir diese Fille, die fiir Hallenbauten mit grofien Gewdlbespannweiten
von Bedeutung sind, fiir die Kreiszylinderschale eine strenge Lésung zu schaffen.
Da bei diesen weitgespannten Gewdlben die Schale mit Riicksicht auf die Knick-
sicherheit durch Rippen verstirkt werden muf, habe ich meine Untersuchungen
auch auf anisotrope Schalen ausgedehnt.?2 Es ergeben sich hierbei drei lineare
simultane Diff.-Gl. mit konstanten Koeffizienten. Particulare Losungen dieser
Diff.-Gl. erhdlt man nach H. Reifiner3 dadurch, daf3 man die Flichenlasten
durch Kreisfunktionen in Form doppelter trigonometrischer Reihen darstellt.
Die Untersuchungen zeigen nun, daf3 bei einem in sich geschlossenen Rohr drei
Mboglichkeiten fiir die Lastiibertragung bestehen. Diese sind: 1. Die Ubertragung
der Lasten nach den Binderscheiben durch Dehnungskrifte (Membrantheorie),
2. die Ubertragung der Lasten nach den Bindern durch Biegungsmomente M, in
der Schale (Plattenwirkung), 3. ein Ausgleich der Lastanteile der héheren
Harmonischen durch Biegungsmomente in der Ringrichtung. Dieser Ausgleich in
der Ringrichtung ist nur deshalb mdglich, weil den hoheren Harmonischen
bezogen auf den gesamten Ringquerschnitt keine tatsichliche vertikale Last-
resultante entspricht. Die tatsichliche Belastung wird durch die Wirkungen 1
und 2 nach den Binderscheiben iibertragen. Um bei den Zei3-Dywidag-Tonnen
die Randbedingungen an den beiderseitigen Randbalken zu erfiillen, mufl die
obige Particular-Losung durch eine Lésung des homogenen Systems der Diff.-Gl.
erginzt werden. Das homogene System der Diff.-Gl. wird in gleicher Weise wie
bei dem weiter unten zu besprechenden schon 1930 gelsten Problem von
K. Miesel3 erfiillt durch den Exponential-Ansatz e=?cos Ax. Damit gehen die drei
Diff.-Gl. in drei gewohnliche homogene Gleichungen iiber, die auf eine Glei-
chung achten Grades fiihren, aus deren Losung wir die Wellenlingen und die
Diampfungen der von den beiden Réndern ausgehenden Doppelschwingungen
erhalten. Diese Gleichung achten Grades wurde fiir ca. hundert verschiedene
Fille gelost. Die sich daraus ergebenden Werte der Wellenlingen und
Diampfungen wurden in Diagrammen aufgetragen, die ein Abgreifen dieser Werte
ohne jede Rechnung ermoglichen. Durch den obigen Ansatz lassen sich jedoch
nicht nur die acht Randbedingungen an den Réndern lings der Erzeugenden,
sondern zugleich auch die Randbedingungen an die Binderscheiben erfiillen.

Das Randproblem des geschlossenen Kreiszylinderrohres an den Binderscheiben
wurde, wie oben erwihnt, schon 1930 von K. Miesel fiir eine ganz beliebige
Randstérung behandelt. Hierbei beriicksichtigte K. Miesel auch zugleich die Nach-
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giebigkeit der aussteifenden Scheiben, ein Problem, das bei dem U-Boot-Bau
eine grofie Rolle spielt. Auch U. Finsterwalder hat sich in seiner unter 1. an-
gezogenen Arbeit mit diesem Problem beschiftigt und dafiir eine Naherungs-
losung geschaffen, wieder in Form einer Spannungsfunktion, wobei jetzt im
Gegensatz zu der entsprechenden Lésung fiir die Zei3-Dywidag-Schalen, nicht
die GroBlen M,, Q,, M,,, sondern die Werte M, Q,, qu, vernachléssigt wurden.
Diese Naherungslosung ergibt bei wesentlich geringerer Rechenarbeit fiir nicht
allzu grofle Werte der Harmonischen eine sehr gute Ubereinstimmung mit der
strengen Losung von K. Miesel. Fiir unsere Bauaufgaben kommen jedoch keine
sehr hohen Werte der Harmonischen in Frage.

Je biegungssteifer die Schale in der Gewdlberichtung ausgebildet wird, umso
mehr nidhert sich bei den Zeifl-Dywidag-Tonnen das Gesetz der Spannungs-
verteilung der N,-Krifte dem Navier’'schen Geradlinien-Gesatz, weil dann die
Forminderungsarbeit der Biegungsmomente in der Gewdlberichtung gegeniiber
der der Dehnungskrifte keine Rolle mehr spielt. Je diinner aber die Schale ist,
um so mehr hat sie das Bestreben, die Biegungsmomente zu verkleinern bei
entsprechend ungiinstiger Verteilung der Dehnungskrifte. Um trotzdem eine
ginstigere Verteilung der N,-Krifte zu erhalten, miissen diese diinnen Schalen
mit entsprechend hohen Randbalken kombiniert werden.

Ich habe schon im Anfang meiner Darlegungen darauf hingewiesen, daf3 sich
bei den stark tiberhohten Querschnittskurven, wie z. B. bei dem flachen Ellipsen-
segment geringere Biegungsmomente bei wesentlich giinstigerer Trigerwirkung
ergeben. Je grofier die Schalentonnen werden, umso notwendiger wird es, die
Kreiszylinderschalen durch stirker iiberhéhte Schalenformen zu ersetzen. Bei
den grofien Hallenbauten des Reichsluftfahrtministeriums wurden deshalb fast
ausschlief3lich Schalen mit elliptischer Querschnittslinie verwendet, die nach einem
Voischlag von U. Finsterwalder mittels der Theorie der Kreiszylinderschale be-
rechnet wurden, dadurch, dafy das Ellipsensegment durch drei Kreis-Korbbdgen
angendhert wurde. Damit ergibt sich naturgemif eine sehr verwickelte Rechnung,
da sich hierbei vier Rénder ergeben und die von den Rindern ausgehenden
Schwingungen sich gegenseitig beeinflussen. Es ist deshalb ein starkes Bediirfnis
fiir eine geschlossene strenge Losung dieser Querschnittskurven vorhanden. Diese
ist einem meiner Assistenten gelungen und wird demniéchst in einer Dissertation
veroffentlicht werden.

Die Schalentriger werden vielfach als durchlaufende Triger {iber mehrere
Felder ausgefiihrt. Da diese Schalentriger im Verhiltnis zur Trigerspannweite
eine grofie Hohe besitzen, werden die Stiitzmomente durch die Schubverzerrungen
teilweise stark beeinfluf3t. Hierauf hat schon W. Fligge* hingewiesen. Bei den
schlanken Trigern werden bekanntlich die Einfliisse der Schubverzerrungen
bewuf3t als bedeutungslos vernachldssigt. Bei den Schalentrdgern ist diese Ver-
nachldssigung nicht immer zuldssig. Im Abschnitt II meines Referates habe ich
den Einfluf3 dieser Schubverzerrungen auf die Stiitzmomente ausfiihrlich nach-
gewiesen und mittels Dreimomentengleichungen ein Verfahren entwickelt, bei
dem die Stitzmomente bei beliebigen Trigerspannweiten und bei beliebigen
Belastungen sowohl in der Gewdlbe- als auch in der Lingsrichtung fiir isotrope
und anisotrope Schalentriger ermittelt werden konnen.

Mit den zunehmenden Spannweiten der Schalentriger gewinnt das Knick-
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problem immer mehr an Bedeutung. Hierbei haben wir zwei Fille zu unter-
scheiden: a) Das Knicken der Schale in der Gewdlberichtung, und b) das Knicken
in Richtung der Erzeugenden. Das erste Problem wurde schon 1914 von
R. von Mises® und das zweite noch friher von Lorenz® und Timoschenko?
behandelt. Bei den Schalentrigern mit grofien Gewélbe- und Trigerspannweiten
treten aber diese beiden Probleme in Kombination auf, sodaf3 man bei einer
gesonderten Berechnung der beiden Knickfille zu giinstige Resultate erhalten
wiirde. Dieser fiir die Schalentonnen so wichtige kombinierte Knickfall hat
W. Fliigge8 im Jahre 1932 gelost und in einer sehr ausfiihrlichen fiir die Praxis
gut verwendbaren Form dargestellt. Es zeigt sich hierbei, daf3 sich der Einfluf3
der kombinierten Knickung in ungiinstiger Weise bemerkbar macht. Die Unter-
suchungen Fliigges erstrecken sich auch auf den Fall der anisotropen Kreis-
zylinderschale, auf die man bei groflen Spannweiten unbedingt angewiesen ist.
Durch einen Grenziibergang zeigt W. Fliigge, daf3 sich seine Gleichungen auch
auf den Sonderfall der Plattenknickung iiberfithren lassen.

Da bei der Ableitung der Knickbedingungen vorausgesetzt ist, daff die Form-
dnderungen der Schale klein sind im Verhiltnis zu den Schalenstirken, dafy aber
andererseits bei den praktischen Ausfiithrungen diese Bedingung sehr schwer
einzuhalten ist, weil sich bei den grofien Spannweiten schon sehr merkbare De-
formationen ergeben, mufl verlangt werden, daf3 bei der Knicksicherheit der
Schalen wesentlich héhere Sicherheiten in Rechnungen gestellt werden, als bei
den einfachen Gewélben. Diese Sicherheiten lassen sich leicht erreichen durch
eine Verstirkung der Schale mittels Rippen. Diese Rippen haben zugleich den
Yorteil, daf3 durch sie die Deformationen sehr stark vermindert werden, und daf}
sie zugleich auch die Biegungsmomente der Schale aufnehmen.

In den letzten Jahren haben sich die Schalentonnen in immer gréfierem Malf3-
stab in fast allen Lindern durchgesetzt. Es sind zylindrische Schalen mit Triiger-
spannweiten bis zu 60 m und Gewdlbespannweiten bis zu 45 m, also bei Grund-
flichen von 2700 qm zur Ausfiihrung gelangt. Aus den obengenannten Griinden
wurden bei den Schalen mit grofier Gewdlbe- und grofier Spannweite elliptische
Querschnittslinien verwendet. Andererseits wurden eine Anzahl Hallen mit Ge-
wolbespannweiten bis zu 100 m bei verhiltnismiflig kleinen Binderabstinden aus-
gefihrt. Die Fig. 2 zeigt eine derartige Flugzeughalle mit grof3er Gewélbespann-
weite in der Auflenansicht, die Fig. 3 dagegen die Innenansicht einer Flugzeug-
halle mit grof3er Gewolbe- und Trigerspannweite, deren Wiedergabe mir von dem
Reichsluftfahrtministerium in entgegenkommender Weise gestattet wurde. Die
Fig. 4 und 5 zeigen die Verwendung der Schalen bei Industriebauten und zwar
ist in der Fig. 4 die Innenansicht der Postkraftwagenhalle Bamberg und in der
Fig. 5 die Verwendung der Kreiszylinderschalen in Form von Sheddichern fiir
eine Blechfabrik in Buenos Aires dargestellt.

2. Die Faltwerksddcher.

Bei den Faltwerksdidchern wird die gekrimmte Querschnittskurve der Schalen
durch ein Vieleck und damit die Schale durch ein Scheibenwerk ersetzt. Das
Problem ist naturgemifl genau das gleiche wie bei der Zylinderschale. An Stelle
der Diff.-Gl. treten Differenzgleichungen von der gleichen Ordnung. Hierbei
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Iig. 2.

kommen zu den Biegungsmomenten aus der Schalenwirkung noch solche aus der
Plattenwirkung hinzu, da die einzelnen Scheiben zuerst ihre Lasten durch
Biegungsmomente nach den Kanten des Faltwerkes ibertragen miissen, von wo
sie. dann durch die Schalen- bzw. Faltwerkswirkung mittels Dehnungskriften
nach den aussteifenden Binderscheiben iibertragen werden. Dieses Problem
wurde unter Beriicksichtigung der Biegungsmomente aus der Schalenwirkung
zuerst von E. Gruber? und G. Griining1® behandelt. Beide Verfasser haben
hierbei den Einfluf3 der Verdrehungssteifigkeit der Randbalken vernachlissigt.

Fig. 3.
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Fig. 4.

Postkraftwagenhalle Bamberg

In dieser Hinsicht wurden die obigen Arbeiten durch R. Ohlig'! vervollkommnet,
der in gleicher Weise, wie dies bei den Schalentragwerken schon immer durch-
gefithrt wurde, auch die Verdrehungssteifigkeit der Randbinder mit beriick-
sichtigte. Die Scheibentragwerke sind infolge ihrer gréfieren Biegungsmomente
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gegeniiber den Schalen weniger wirtschaftlich, und da das Bessere der Feind des
Guten ist, bis heute bei grofleren Bauten nicht ausgefiihrt worden. Das hingt
naturgemif auch damit zusammen, daf3 sich die Patente fiir die Schalen und
die Faltwerke in derselben Hand — der Dyckerhoff & Widmann AG. —

befinden.

3. Die aus Zylinderschalen zusammengesetzten Vieleckskuppeln.

Nach diesem System wurden, wie bekannt, die gréf3ten bis jetzt vorhandenen
Massivkuppeln der Grofimarkthalle Leipzig mit 76 m Spannweite und die Kuppel
der Grofimarkthalle Basel mit 60 m Spannweite in Form von Klostergewdlben
ausgefiihrt. Wihrend die Theorie dieser Klostergewélbe schon lange gelost und
veroffentlicht ist,12 ist dies beziiglich der Theorie der Kreuzgewdlbe nicht der
Fall. Mit diesen Kreuzgewdlben lassen sich architektonisch sehr schéne und in
akustischer Hinsicht einwandfreie Kuppeln herstellen. Die Fig. 6 zeigt eine der-
artige Kuppel in Achteckform. Abgesehen von der guten Akustik besitzen diese
Kuppeln eine sehr schone und gute Beleuchtung durch die grofien in den Kappen
anzuordnenden Fenster, durch die das Licht durch Spiegelung an den Zylinder-
schalen bis in die Mitte des Raumes getragen wird. Die Theorie dieser Kuppeln
habe ich im Jahre 1930 anldfilich des Preisausschreibens der Akademie des Bau-
wesens entwickelt und dabei gezeigt, dafs es moglich ist, die aussteifenden Grate
von Biegungsmomenten frei zu halten. Da mir im Rahmen des vorliegenden
Referates zu wenig Raum zur Verfiigung steht, soll die Veréffentlichung dieser
Theorie demnichst in einer Zeitschrift erfolgen.

WA A5

Fig. 6.

4. Die doppelt gekriimmten Schalen.

Dic Membran- und die Biegungstheorie der am Kédmpfer laufend unterstiitzten
Rotationsschale ist schon lange gelost. Bei der weiteren Entwicklung der doppelt
gekriimmten Schalen sind die nachstehenden Formen von Bedeutung: a) Die
nur auf wenigen Punkten gelagerten Rotationsschalen, bei denen die Kuppel-
wirkung durch eine Trigerwirkung der Schale iiberlagert wird, wodurch diese
befahigt wird, ihre Lasten nach den.in grofler Entfernung angeordneten Trag-
sdulen zu Gbertragen; b) die Rotationsschalen und Translationsschalen mit recht-
eckigen oder vieleckigen Grundrissen; c) die Absidenkuppeln.

Die Theorie dieser verschiedenen doppelt gekriimmten Schalenformen wurde
von mir im Jahre 1930 gelegentlich der schon erwihnten Preisarbeit entwickelt.
Die Veroffentlichung dieser Arbeiten, die in Form eines Buches von der Akademie
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vorgesehen war, mufite leider aus Mangel an Mitteln unterbleiben. Ich habe des-
halb diese Veroffentlichungen in verkiirzter Form im ,,Bauingenieur” durch-
gefiihrt.13 Beziiglich der Rotationsschalen auf Einzelstiitzen ist zu bemerken, daf}
sich fiir die Trigerwirkung dieser Schalen das iiberraschende mit den bekannten
Scheibenwirkungen {ibereinstimmende Resultat ergibt, daf3 die Triagerhohe und
damit die Hebelarme der inneren Kriifte zum Abtragen der Lasten nach den
Sdulen proportional den Trigerabstinden sind, sodafy also die Spannungen aus
der Tridgerwirkung unabhingig von der Trigerspannweite sind. Daraus folgt,
dafy sich mit diesen Schalen ebenso wie bei den Vieleckskuppeln sehr grofie
Trigerspannweiten erreichen lassen. Die Schalen bleiben hierbei jedoch nicht
biegungsfrei. Durch die Arbeit von A. Haversl%, die das Problem der Rand-
storung am Breitenkreis einer Kugelschale fiir eine beliebige Harmonische mit-
tels Kugelfunktion behandelt und 16st, ist es nunmehr moglich, auch die in den
Schalen entstehenden Biegungsmomente zu berechnen, deren Kenntnis fiir Grof3-
ausfiihrungen eine unbedingte Notwendigkeit darstellt. Die Durchrechnung eines
Beispiels, die natiirlich viel Mithe macht, wire sehr wiinschenswert, um Klarheit
zu erhalten, welche Spannweiten sich mit diesen Schalenformen erreichen lassen
und ob sie wirtschaftlich sind im Vergleich mit denen unter b) genannten Schalen-
formen, bei denen die Lastiibertragung fast ausschlieBlich durch Dehnungskrifte
erfolgt und bei denen also die Stirke der Schale nur von der Knicksicherheit ab-
hingig ist, denn selbst bei den gréfiten Spannweiten konnen bei diesen Schalen-
formen die zuldssigen Spannungen nicht ausgeniitzt werden. Die Berechnung
dieser Rotationsschalen mit rechteckigem oder vieleckigem Grundrify lif3t sich
von dem vom Verfasser angegebenen Verfahren in sehr einfacher Weise mittels
der Diff.-Gl. des Membranspannungszustandes durchfiihren.

Die Fig. 7 zeigt eine derartige, sehr flache Schale mit rechteckigem Grundrif3.
die fiir ein Gebdude der Technischen Hochschule Danzig ausgefithrt wurde. Bei
12 m Spannweite besitzt die Schale nur einen Pfeil von 0,77 m. Das Pfeil-
verhdltnis 1/f betrigt 15,6, ist also geringer als bei den flachsten Briicken. Diese
Figur 13t klar erkennen, daf3 ein derartiger Schalentriger nichts anderes ist, als
ein rdumlicher Plattenbalken, der sich von dem gewdhnlichen Plattenbalken aber
dadurch unterscheidet, dafy die gesamte Schale als Druckplatte wirksam ist. In
der Fig. 8 ist die Verwendung dieser doppelt gekriimmten Schalen mit recht-
eckigem Grundrif fiir eine Klinkerhalle in Beocin dargestellt. Diese Figur zeigt
auch die Anwendung der unter c) genannten Apsidenschalen. Wie ich in dem
obengenannten Aufsatz im ,,Bauingenieur13 dargelegt habe, ist in diesen halben
Kuppeln ein Membranspannungszustand vorhanden, wenn die Schale am Kampfer
durch Ringe ausgesteift wird. Da diese Halbkuppeln als selbstindige Bauglieder
hergestellt werden konnen, sind sie fiir den Hallenbau ein sehr wichtiges neues
Bauglied, da sie mit zylindrischen Tonnen zusammengesetzt die Herstellung
von Kuppeln mit anndhernd ovalen Grundrissen ermdglicht. Diese Halb-
kuppeln wurden deshalb auch in grofiem Umfang fiir Flugzeughallen als
Abschluf3bauten und zwar mit Spannweiten bis zu 40 m verwendet. Die in der
Fig. 3 dargestellte Flugzeughalle, die aus einer grofien Lingstonne besteht, ist in
dieser Weise an den Enden durch Apsidenkuppeln abgeschlossen. Die Fig. 9 end-
lich zeigt eine weitere derartige Apsidenkuppel fiir den Musikpavillon des Bades
Schwalbach.
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5. Das Prinzip des statischen Mafienausgleichs zur Berechnung wvon affinen
Schalen.

Die im vorhergehenden Abschnitt besprochenen Schalenformen lassen sich
mit Hilfe der Diff.-Gl. des Membranspannungszustandes berechnen, weil die
Kugelschale mathematisch leicht zu berechnen ist. Das Prinzip des statischen
Mafenausgleichs erméglicht es uns, in ganz einfacher Weise auch die dazu
alfinen Schalenformen zu berechnen. Ich habe dieses Prinzip im Jahre 1928
entwickelt und im Handbuch fiir Eisenbeton fiir bestimmte Fille dargestellt;!5
im Jahre 1930 habe ich dann gelegentlich der schon erwihnten Preisarbeit mit
Hilfe der Diff.-Gl. der beliebig geformten Schale eine allgemeine Darstellung
des Problems gegeben und nunmehr im ,,Bauingenieur™ 16 ver6ffentlicht. Hiermit
lilst sich z. B. die Berechnung einer Schale mit elliptischem Grundrifs auf die
Berechnung einer Rotationsschale als Grundschale zuriickfiihren. Die weiteren
zahlreichen Aufgaben, die sich damit lsen lassen, sind in dem obigen Aufsatz
gekennzeichnet; ‘es sei nur kurz darauf hingewiesen, dafs sich auch affine
Raumfachwerke in einfacher Weise berechnen lassen.

Fig. 9.

Musikpavillon Bad Schwalbach.

6. Schalen mit gan: beliebiger Krimmunyg.

Bei den doppelt gekriimmten Schalen, die nach beliebigen Flichen gekriimmt
sind, lassen sich mit Hilfe der Diff.-Gl. des Membranspannungszustandes keine
Losungen finden, weil wir die drei sich ergebenden partiellen Diff.-Gl. nicht
integrieren konnen. Wir miissen einen anderen Weg beschreiten und diese
Gleichungen mittels Differenzenrechnung losen.

Eine sehr tbersichtliche und leicht anwendbare Methode zur Losung derartiger
Probleme hat Pucher im Jahre 193117 gegeben. Diese einfache Losung wird da-
durch ermoglicht, dals gezeigt wird, daf3 sich die drei Diff.-Gl. in eine einzige
zusammenfassen lassen, durch Einfiihrung einer Spannungsfunktion, durch die
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der Spannungszustand vollstindig beschrieben wird. Die inneren Kriifte des
Membranspannungszustandes lassen sich in dhnlicher Weise wie bei der Airy’schen
Spannungsfunktion als Ableitung daraus gewinnen. Da iiber die Form der Fliche
nur die Voraussetzung der Stetigkeit getroffen ist, lassen sich damit alle im
Schalenbau auftretenden Formen berechnen, wenn die Randbedingungen gegeben
und mit dem Membranspannungszastand vertriiglich sind. Die Differenzen-
methode wird man immer da anwenden, wenn, wie schon oben erwiihnt, eine
Losung mittels der Diff.-Gl. unmdglich ist. Die spiiteren franzisischen Arbeiten
gehen im wesentlichen den von Pucher angegebenen Weg. Auf diese Theorie
baut sich die Entwicklung der Schalenbauweise in Frankreich in Form von nicht
abwickelbaren Regelflichen auf. Fiir den speziellen Fall der Riickungsfliche
hat Fliigge* in der gleichen Weise mittels Differenzengleichungen eine Losung
angegeben.

Zum Schluff méchte ich noch auf eine interessante Ausfiithrung hinweisen,
dic in Fig. 10 dargestellt ist. Es handelt sich um die Kuppel im Haus des
Deutschen Sports, die fiir die Olympiade hergestellt wurde. Der Entwurf stammt
vom Architekt March, die konstruktive Durchbildung von U. Finsterwalder. Das
Oberlicht ist ganz exzentrisch angeordnet., um fiir den Ring eine gute Beleuchtung
zu erhalten. Die Kuppel besitzt jedoch tatsichlich keine Kuppelwirkung, weil die
einzelnen Schalensektoren, die durch kriftige Rippen ausgesteift sind, von den
Kimpfern der Kuppel aus vorkragen, ohne sich gegenseitig abzustiitzen.

Mit Riicksicht auf den geringen im , Vorbericht” zur Verfiigung stehenden
Raum erscheint der zweite Teil des Referates iiber die durchlaufende Kreis-

zylinderschale im Band 4 der ,,Abhandlungen® der J.V.B.H. Ziirich, 1936.

Iig. 10.

Haus des deutschen Sports.  Berlin-Reichssportfeld.
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Zusammenfassung.

In dem Teil I des Referates wird eine Ubersicht iiber die Entwicklung der
Theorie der verschiedenen Schalenformen seit dem letzten Kongrefs im Jahre
1932 gegeben und es werden die mafigebenden Arbeiten in ihren Grundsitzen
besprochen.

In dem Teil II dagegen wird das Problem des ausgesteiften zylindrischen
Rohres bzw. Zei3-Dywidag-Daches behandelt und gezeigt, daf3 bei diesen
Schalentrigern der Einflufy der Schubverzerrung auf die Einspannungsmomente
nicht vernachlissigt werden darf, im Gegensatz zu den schlanken Balken des
Ingenieurwesens, bei welchem diese Einfliisse bewuf3t als sehr gering vernach-
lassigt werden.
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Massive Kuppeln, zylindrische Behalter
und idhnliche Konstruktionen.

Coupoles massives, réservoirs cylindriques
et constructions semblables.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,

Dozent an der Koéniglichen Technischen Hochschule Stockholm.

Die exakte Berechnung der Biegungsspannungen in einer massiven Kuppel
ist mit sehr grofier Mithe verkniipft. In einer der Kgl. Technischen Hochschule
" zu Stockholm vorgelegten Doktorabhandlung! kommen diese Schwierigkeiten
zum Vorschein, und man darf sich fragen, ob der in der Praxis titige Ingenieur
jemals Zeit und Gelegenheit hat, die Abmessungen einer Kuppel an Hand der
exakten Theorien zu errechnen. Allein schon die Aufstellung der Grund-
gleichungen ist ziemlich verwickelt, und ihre ganze Integrierung fiithrt zu
Reihen, die hdufig schwer zu handhaben sind und langsam konvergieren. Auch
wenn ihre Konvergenz fir manche Wandstirken befriedigend ist, kann eine
Anderung der Wandstirke bewirken, daf3 die gute Konvergenz verloren geht.
Selbst wenn der Ingenieur den mathematischen Apparat fiir die Behandlung
des Problems vollkommen beherrscht, ist die fiir das Durchrechnen eines be-
- stimmten Belastungsfalles erforderliche Arbeit viel zu grof. Uberhaupt diirfte
es unméglich sein, auf dem von Meifiner, Bolle, Dubois, Honegger, Ekstrom u. a.
angewiesenen Wege zu praktischen Methoden zu kommen. Beispielsweise fiir
sphirische Kuppeln ergeben sich beim Integrieren in den einfachsten Fillen
hypergeometrische Reihen, die wegen ihrer langsamen Konvergenz nicht das
richtige Werkzeug des Ingenieurs bilden.

In Anbetracht dieser Tatsachen ist es vor allem wichtig, dafl man sich fiir
die weitere Entwicklung der Kuppeltheorie auf solche Ldsungen einrichtet, die
den Anforderungen der Praxis Geniige leisten, auch wenn man dabei gewisse
Annéherungen einfiihrt. Wie Geckeler? gezeigt hat, 1afit sich auch mit ver-
hiltnismiflig einfachen mathematischen Hilfsmitteln eine Losung finden, die sich
von der exakten nur unwesentlich unterscheidet und die ganz besonders einfach
und bequem anzuwenden ist, falls Wandstirke und Radius konstant sind. Die
gute Ubereinstimmung zwischen Geckelers Theorie und der exakten Theorie

1 John Erik Ekstrom: Studien iber diinne Schalen von rotationssymmetrischer Form und
Belastung mit konstanter und verinderlicher Wandstirke. Stockholm 1932.
2 Siehe z. B. Handbuch fiir Eisenbetonbau, Band 6. Berlin 1928.
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kann dazu berechtigen, jene ausfiihrlicher zu erdrtern, falls man sich dariiber
klar ist, welche Anndherungen eingefiilhrt werden. Noch einen Schritt niher
kommt man dem exakten Resultat, wenn man Blumenthals und Steuermanns
sogenanntes asymptotisches Integrationsverfahren benutzt, das auch bei beliebig
variabler Wandstarke der Kuppel anwendbar ist. Mit diesem Verfahren kommt
man tatsichlich weiter als mit den Methoden, die auf Lésungen in Form un-
endlicher Reihen aufgebaut sind, wobei man bisher immer annehmen mufite,
dafy die Wandstirke nach einer bestimmten Funktion verdinderlich sei, damit
sich die Losung durchfiihren lie3.

Eine nihere Priifung der von Geckeler angegebenen Schlufigleichungen zeigt,
daf} diese von genau derselben Art sind wie die Gleichungen fiir einen elastisch
unterstiitzten Triger. Die physikalische Analogie ist auch nicht schwer zu er-
kennen. Den Meridian der Kuppel kann man némlich als einen Triger be-
trachten, der von den Parallelkreisen oder Ringen unterstiitzt ist. Da diese sich
zusemmendriicken oder ausdehnen lassen, entsprechen sie in statischer Hinsicht
einer elastischen Unterlage.

Durch diese Betrachtungsweise kann man sich die Statik der *Kuppel mit
ausreichender Genauigkeit klarmachen. Fiir die Aufstellung der Gleichgewichts-
gleichungen braucht man dann auch nicht auf die Meifinerschen Differential-
gleichungen zuriickgreifen, sondern man kann alle erforderlichen Gleichungen
direkt einfach mit Hilfe der Theorie des elastisch unterstiitzten Trigers auf-
stellen. Dies bedeutet fiir den in der Praxis tdtigen Ingenieur, dafl er nicht erst
den Versuch zu machen braucht, die ziemlich komplizierte klassische Kuppel-
theorie zu begreifen; vielmehr kann er auf eigene Faust die erforderlichen
Gleichungen ableiten.

Aus den Arbeiten Geckelers geht hervor, dal3 er selbst die hohe Bedeutung der
von ihm vorgeschlagenen Anndherungen nicht vollstindig erkannt hat; d. h. er
hat selbst nicht verstanden, daf} die Kuppel im grof3en betrachtet wie eine stetige
Reihe von Trédgern 6 auf federnder Unterlage wirkt. Die von mir hier vor-
geschlagene Betrachtungsweise kann natiirlich in der Weise erweitert werden,
dafl man den Meridian nicht als einen Triger, sondern als ein Gewdlbe betrachtet,
das elastisch von den Ringelementen der Kuppel unterstiitzt wird.

Durch Einfiihrung dieser genaueren Betrachtungsweise bekommt man einen
exckteren Einblick in die Statik der Kuppel, und die Gleichungen, die man dabei
erhilt, sind dieselben wie nach Meifiner.

Es ist offenkundig, daB man besonders bei sehr flachen Kuppeln, wo also die
Gewolbewirkung in den Meridianelementen stark hervortritt, zur Einfithrung
dieser letzteren Betrachtungsweise gendtigt ist, um die erwiinschte Genauigkeit
zu erzielen. Je steiler die Tangente der Kuppel an der Auflage geneigt ist, um
so genauer wird die angendherte Betrachtungsweise mit dem Meridian als einem
Triger auf elastischer Unterlage, und in dem Sonderfall, dafs die Tangente der
Kuppel iiberall senkrecht ist, wenn also die Kuppel in einen Zylinder tibergcht,
ist dic Betrachtungsweise vollkommen exakt.

Um ndher zu erldutern, wie einfach das Kuppelproblem auf solche Weise
behandelt werden kann, habe ich einige Probleme durchgerechnet und die Er-
gebnisse mit denjenigen verglichen, die man nach der exakten Theorie erhilt.
Die Ubereinstimmung ist iiberall erstaunlich gut.
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Als erstes Beispiel wihlen wir eine sphirische Betonkuppel von gleichmif3iger
Dicke, Wandstirke ® — 16 cm, Radius r = 1000 cm, Offnungswinkel 400. Die
Kuppel sei mit einem konstanten Fliissigkeitsdruck p = 1,0 kg/cm? belastet und
sei rund um die Kante fest eingespannt (siehe Fig. 1).

2500—

2000— Exact

1500 —

Moment My
-~
=)
S
AN

|
i

500—

40° 35° 30° 25° 20° 15° 10° s° 0°
1 | i 4

Exact
500—

Fig. 1.

Vergleich zwischen der Grofle des Meridianmomentes, berechnet erstens nach Gleichung 5
und zweitens nach der exakten Methode mittels hypergeometrischer Reihen. Die Abweichungen

sind fir praktische Fille belanglos.

Berechnet man die Spannungen in dieser Kuppel nach der Membrantheorie,

so ergibt sich eine Meridiandruckspannung T, — P25 und eine Ringdruckspan-

2

T Diese Meridian- und Ringspannungen sind iiber die ganze Kuppel

nung T, = £

2
konstant, und die ,,membrantheoretische” Ldsung ist also sehr einfach. Unter
Einwirkung dieser Druckspannungen T, und T, wird die Kuppel zusammen-

C ) T.r p r?
geprefdt, soda3 sich ihr Radius um den Betrag = s d. h. 2Es
Diese Verringerung des Radius ist nicht sehr grof3, sie belduft sich unter den
gegebenen Voraussetzungen und bei E = 210000 kg/cm2 auf nur 0,15 cm. Da
die Kuppel rund um die Kante festgehalten wird, ist sie jedoch nicht imstande,

46

verringert.
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thre Form frei zu veriindern; die der Kante am nichsten gelegenen Teile werden
den urspriinglichen Radius beibehalten, aber je weiter man sich von der Kante
entfernt, umso groéfler wird die Bewegungsfreiheit der Konstruktion und umso
freier kann die Forminderung vor sich gehen. Obgleich die Zusammendriickung
des Radius in diesem Falle ziemlich geringfiigig ist, entstehen nahe an den
Kanten gewisse Storungen, die zu Biegungsmomenten von solcher Gréf3en-
ordnung fiihren, daf8 man sie nicht vernachlissigen darf.

Wir wollen nun untersuchen, wie groffe Momente in einem elastisch unter-

stiitzten Triger entstehen, wenn wir annehmen, er erhalte eine Ausbiegung
2

entsprechend dem oben berechneten Werte QP}; 5 Fir den Zusammenhang
zwischen Moment und Ausbiegung gilt die Gleichung
dz
EJ. Z3=—M, (1)

und die Einwirkung der elastischen Unterstiitzung der Ringelemente wird aus-

gedriickt durch die Gleichung

d:M Ed
—dx—zl=?'y (2)

Eliminiert man M, aus diesen beiden Gleichungen, so erhilt man

d? d? Ebd
o [PE| =0 82)
— - . Em? 3%
oder, wenn die Biegungssteifheit EI als konstant und gleich w1 19
vorausgesetzt wird
dy 4
. L 3m—1 1 (3b)
worin = — =5 _

ist.
Das allgemeine Integral der Gleichung 3b kann man bekanntlich in folgender
Form schreiben: '

y = e~¥% (A cos kx + B sin kx) 4 e~¥* (C cos kx 4 D sin kx) (4a)

d. h. die Ausbiegung kann man als die Summe zweier Sinusschwingungen be-
trachten, die eine mit geddmpften, die andere mit zunehmenden Amplituden.
Bekanntlich kann man im-allgemeinen die Koeffizienten C und D gleich O setzen,
vorausgesetzt, dafy der Triger nicht gar zu kurz ist und dafl der Ursprung in den
Punkt verlegt wird, von dem die Storung ausgeht. Fiir geschlossene Kuppeln
kann man daher das Integral mit ausreichender Genauigkeit in folgender Form
schreiben:

' y = e~** (A cos kx 4+ B sin kx) (4b)

Hier bezeichnet x die Bogenlinge des Meridians, von dem Kuppelrand aus
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gemessen. In diesem Falle sind die arbitriren Konstanten A und B leicht aus
der Randbedingung bestimmbar, daf3

pr*

Y =~ %Fs und y’'=o bei x =o0 ist.
Dies ergibt A =B = — ;}; 6 und die Ausbiegung des Meridians ist also
pI‘2 —-kx 1
Y=—45%s (cos kx + sin kx).

Durch Einsetzen in Gleichung 1 erhilt man den Ausdruck fiir das Meridian-
moment

,o—
€

M, = Vl—g proe—kx (— cos kx + sin kx) (3)

In diesem Ausdruck ist die Einwirkung der Querzusammenziehung des Mate-
rials vernachlissigt, d. h. die Poissonsche Zahl m ist gleich unendlich gesetzt.

Mit Hilfe der in Tabelle I angegebenen Werte der Funktionen e~ ¥*cos kx und
e~ kX sin kx laf3t sich Gleichung 5 leicht zeichnerisch wiedergeben. In Fig. 1
sieht man, wie das Meridianmoment M, sich mit der Entfernung vom Kuppel-
rand verindert. Zum Vergleich sind die nach Bolles Methode mit hypergeo-
metrischen Reihen berechneten exakten Werte angegeben.3 Wie man sieht, ist die
Ubereinstimmung zwischen den exakten Resultaten und den Anndherungswerten
erstaunlich gut, weshalb kein Anlafl besteht, das Kuppelproblem zu einer ver-
wickelten mathematischen Aufgabe zu gestalten. Bei Kuppeln mit gréBerem
Offnungswinkel als in diesem Falle, 409, ist die Ubereinstimmung zwischen den
exakien und den angendherten Werten noch besser. Nur bei Kuppeln, deren
Neigungswinkel an den Auflagen sehr klein ist, erlangt der Einflufl der ge-
machten Anndherungen praktische Bedeutung. Nebenbei bemerkt sind solche
Kuppeln unzweckmif3ig wegen der sehr starken Randstérungen, die beim An-
schluff der Kuppel an ihren etwaigen Auflagering auftreten.:

Fiir die Berechnung der Spannungen in der Kuppel ist nicht nur das Meri-
dianmoment M, von Bedeutung, sondern auch die Ringmomente M, und die
Zuschiisse zur Meridiandruckspannung und Ringdruckspannung, die dadurch
entstehen, dafl die Randbedingungen nicht den Voraussetzungen der Membran-
theorie entsprechen. Diese Groffen, M,, AT, und AT, lassen sich direkt aus den
nachstehenden Formeln berechnen. Die Ubereinstimmung zwischen dén nach
der hier gezeigten Anniherungsmethode erhaltenen Werten und den exakten ist
ebenfalls sehr gut, wie aus nachstehenden, in Tabelle 2 zusammengestellten Ver-
gleichen hervorgeht.

Die Ableitung der mathematischen Ausdriicke fiir die Zuschufikrifte AT,
und AT, erfolgt am einfachsten unter Anwendung der Analogie, daf} der
Meridian ein Trager mit elastischer Unterlage ist. Den Zuschufl in der Meridian-
druckspannung, AT,, kann man also betrachten als die Scherkraft im Triger,
multipliziert mit coto, wo o der Neigungswinkel des Meridians zur Horizontal-

ebene ist. Hierbei erhilt man
3

.
AT, =cota-EJ- Tﬁx (6)

3 Siehe FEkstrém, a.a. O., S. 124.
46*
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Tabelle I.
Werte der Funktionén e—kxcos kx, e—kXsin kx, e—kx (coskx — sinkx) und e—-kx (cos kx + sinkx.
kx e—kx cos kx e—kx sin kx e—kX (cos kx — sin kx) | e—kX (cos kx 4 sin kx)
0 1.0000 0.0000 1.0000 1,0000
5 0.6239 0.2584 0.3655 0.8823
—Z— 0.3225 0.3225 0.0000 0.6450
% 0.1179 0.2845 —0.1665 0.4024
% 0.0000 0.2079 —0.2079 0.2079
5—8" —0.0536 0.1297 —0.1883 0.0761
i_" 00871 0.0671 — 01842 0.0000
% —0.0592 0.0245 — 0.0837 — 0.0347
x —0.0432 0.0000 —0.0482 —0.0432
9_;- — 0.0269 —0.0112 — 0.0157 — 0.0381
5’11 —0.0139 — 0.0139 0.0000 —0.0279
11; —0.0051 00123 0.0072 00174
%" 0.0000 — 0.0090 0.0090 —0.0090
13 =

S 0.0023 — 0.0056 0.0079 — 0.0033
7T" 0.0029 —0.0029 0.0058 0.0000
158" 0.0026 __0.0011 0.0037 0.0015
2x 0.0019 0.0000 0.0019 0.0019
%7 % 0.0011 0.0005 0.0006 0.0016
% 0.0006 0.0006 0.0000 0.0012
1—89 0.0002 0.0005 — 0.0003 0.0007
% 0.0000 0.0004 — 0.0004 0.0004
%1 x — 0.0001 0.0003 — 0.0004 0.0002
% n — 0.0001 0.0001 — 0.0002 0.0000
%3 x — 0.0001 0.0001 — 0.0002 0.0000
3n — 0.0001 0.0000 — 0.0001 — 0.0001
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Der Zuschufl in der Ringdruckspannung, AT,, ist ein Maf fiir die elastisch
unterstiitzende Wirkung der Unterlage, und AT, ist infolgedessen direkt pro-
portional der Durchbiegung y des Meridians, also

Ebd
ATz:'T'y _ (7)

Das Ringmoment M, schliefilich ergibt sich am einfachsten durch Bestimmung
der Kriimmungsinderung der Ringe,4 und man erhilt bei Vernachldssigung des
Einflusses der Querzusammenziehung

. EJ dy
M2__cota-—r-& (8)

Setzt man in die Gleichungen 6, 7 und 8 die Gleichung fir die Durchbiegung

des Meridians ein:
3

y=— QPE% e~kx (cos kx + sin kx)
so erhilt man folgende Ausdriicke fir AT,, AT, und M,
AT, = — cotonp—r;32 k3e -kx cos kx (64a)
ATy = — p_21‘ e~ % (cos kx ¢ sin kx) (7a)
M; =cota- pif k e—%x sin kx | (8a)

Tabelle 2 enthilt die so errechneten Werte der Meridian- und Ringspannungen
und Ringmomente, verglichen mit den exakten Werten.

Tabelle 2.

Vergleich zwischen den angeniiherten und exakten Werten der Meridian- und Ringspannungen
und Ringmomente.

Neigungs- T,+AT T T M

wifke'lgg an:g;tliihe;t 1e_)tait ! ale ;iﬁg‘:t T”;(—aﬁtTQ angenghert e;‘(\al\it
des Meridians kg/cm kg/cm g kg cm/cm

40° 443 439 0 0 0 0
35° 474 481 215 . 193 99 113
30° 503 504 437 427 62 3
23° 506 508 517 520 12 17
20° 503 504 b18 523 —8 — 10
15° 501 501 511 510 —9 — 14
10° 499 499 501 501 —5b — 9
50 499 498 499 498 0 — 3

Das oben durchgerechnete Problem entspricht den denkbar einfachsten Rand-
bedingungen. Um die Anwendbarkeit der Methode auch bei komplizierteren

¢ Siehe z. B. Féoppl: Drang und Zwang, Band 2. Berlin 1928.
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Randbedingungen nachzuweisen, habe ich eine Kuppel durchgerechnet, die an
einen umgebenden kreisrunden Zylinder gemidfi Fig. 2 angeschlossen ist. Um
das Problem einigermafien zu vereinfachen, wurde der Wasserdruck auf die
Kuppel als konstant angenommen. Dieses Problem ist von Ekstrém unter den
gleichen Annahmen ausfiihrlich behandelt worden. Tabelle 3 enthilt fiir das
Meridianmoment M; und fiir die Ringspannung T, die berechneten Werte ver-

glichen mit den exakten.
Fir alle Konstanten der Kuppel wird nachstehend der Index 1 benutzt, fiir

die Konstanten des Zylinders der Index 2.

B g
I :
Ik :
IH
I g
3 3
’ | dp =24cm
| | & =16cm il
| [ por ,
j ™~ \\'\ ;
LS arp=3.12- %
4
an 172 E
)
° S
R
3 ¢

Fig. 2.

Dic Berechnung dieser Kuppelkonstruktion wird in folgender Weise durch-
gefiihrt. Wenn die innere Kuppel und der Zylinder voneinander befreit werden
und sich unter Einwirkung der Belastung unbehindert deformieren diirfen,

ergibt sich nach der Membrantheorie

. 2 - 10*
eine Abnahme des Kuppelradius um Lol —P - 3,12 cm
PP 2E5,  E
2 L1048
und eine Zunahme des Zylinderradius um %: P éO - 1,712 cm.
: 2

Dic Zylinderwand bildet dabei einen kleinen Winkel zur Senkrechten

== IE(—) - 1,72. (Siehe Fig. 2.)

Da dieser Deformationszustand mit den tatséchlichen Auflagerverhiltnissen
unvereinbar ist, miissen gewisse Zuschuf3krifte und Zuschufimomente eingefiihrt
werden, um den Stetigkeitsbedingungen Geniige zu leisten. Diese Stetigkeits-

bedingungen sind folgende:
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Zylinder und Kuppel sollen dieselbe Ausbiegung und Winkelinderung im
Vereinigungspunkte haben, und der Vereinigungspunkt soll auf3erdem hinsicht-
lich der Momente und angreifenden Krifte im Gleichgewicht sein. Dies bedeutet
vier Randbedingungen, die mittels vier Gleichungen ausgedriickt werden kénnen,
wodurch sich alle unbekannten Forminderungen, Momente usw. bestimmen
lassen.

Um die Aufstellung der Gleichungen zu erleichtern, folgen hier die allgemeinen
Ausdriicke fir die Ausbiegung und ihre Ableitungen. Man hat

y =ekx [A cos kx 4 B sin kx]

y' =k e ¥x[(B— A) cos kx -— (A + B) sin kx] ©)
y' = 2k? e=*x[—- B cos kx + A sin kx]

y'" = 2k® e~%x[(A 4 B) cos kx 4+ (B — A) sin kx]

Die erste Bedingung, daf3 die Ausbiegungen des Zylinders und der Kuppel
am Rande selbst gleich grof3 sein sollen, lifit sich durch folgende Gleichung
ausdriicken:

p-10*

—A,;sin40°4+A, = 5 (3,12 sin 40° 4 1,72).

Damit die Winkelinderungen gleich grof3 werden, muf}

10
k, (B, —A,) =k, (B, — A) — - 172

sein, und fiir das Momentgleichgewicht gilt auflerdem
k,2EJ, B, =k,*EJ, B,.

Di2 restliche Bedingung soll ausdriicken, dafy die horizontale Reaktion wegen
Belastung der inneren Kuppel von der Scherkraft im Zylinder sowie von der
Scherkraft und der Meridianspannung in der Kuppel aufgenommen werden
soll, d. h.

1

— 2k, *EJ, (A, + B,)- sin 40°

55— 2ks* EJ, (Ay+ By) =p - 500 - cos 40°.

Durch Elimination aus diesen vier Bedingungsgleichungen erhilt man fir
p = 1 kg/cm? folgende Werte der Konstanten:

104 10*
AI:—15,35-——E BI:—7,16-—E
10* 10*
A2 = e 6,13 . —E— B2 == 2,05 . T*.

Das Problem ist damit vollstindig gelost; die Momente usw. kann man nun
ohne Schwierigkeit fiir jeden beliebigen Punkt des Zylinders und der Kuppel
berechnen. In Tabelle 3 sieht man einen Vergleich der berechneten und der
exakten Werte fiir Meridianmoment und Ringspannung der Kuppel. Die Uber-
einstimmung ist in allen Punkten befriedigend.
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Tabelle 3.

Meridianmomente und Ringdruckspannungen der Kuppel nach Fig. 2.
Neigungs- M, M, Ty+ ATy | To+ AT,
winkel o angenihert exakt angenihert exakt

des Meridians| kgem/cm kgem/cm kg/cm kg/cm

40° — 5280 — 5560 — 1950 — 1930
35H° 1450 2250 -— 800 — 540
30° 1980 2200 401 613
259 597 764 618 639
20° — 6 9 : h72 593
15° — 99 — 141 520 H26
10° — b4 — 80 498 498

5o — 8 — 15 495 ° 493

Diese zwei Beispiele lassen also erkennen, daf3 die hier gezeigte Methode fiir
die Behandlung des Problems praktisch brauchbare und auch leicht zu findende
Resultate ergibt.

Wie eingangs erwihnt, kommt die Anndherungslosung den exakten Werten
umso niher, je steiler die Kuppel und auch je geringer ihre Wandstirke wird.
Besonders dieser letzte Umstand ist, wie u. a. Steuermann® nachgewiesen hat,
von grofer Bedeutung. Die exakte Gleichung fiir die Ausbiegung des Meridians
enthilt nicht wie Gleichung 3b nur Ausdriicke vierter und nullter Ordnung,
sondern auch Ausdriicke mit Derivaten erster, zweiter und dritter Ordnung, die
aber alle mit Polynomen von cota multipliziert sind. Mit zunehmendem o ver-
ringert sich die Bedeutung dieser Ausdriicke, und fir o = 909, also beim
Zylinder, fallen sie ganz weg, d. h. Gleichung 3b gilt exakt. Die Verringerung
der Kuppelwandstirke hat dhnlichen Einfluff auf die vollstindige Differential-
gleichung. Warum dies der Fall sein muf}, sieht man auch leicht direkt ein.
Es kommt einfach daher, daf3 bei geringer Wandstirke die Bedeutung der
Zusammendriickung des Meridians neben dem Einfluff der Kriimmungsinderung
klein wird. Dies bedeutet mit anderen Worten, daf3 man die Arbeit der Normal-
krafte infolge Zusammendriickung des Meridians neben der Arbeit des Meridian-
moments und der Ringspannungen bei diinnen Kuppeln vernachlissigen kann.

In den bisher behandelten Problemen wurde die Wandstirke iiberall als
konstant angenommen. Wenn die Wandstirke d verdnderlich ist, kann man
nicht von Gleichung 3b ausgehen, sondern muf3 Gleichung 3a anwenden. Da die
einfache Theorie des elastisch unterstiitzten Trédgers in obigen Fillen, d. h. bei
konstanter Wandstirke, hinlinglich genaue Resultate ergab, besteht Grund zu
der Annahme, daf3 dies auch bei verinderlicher Wandstirke der Fall sein wird.

Die Theorie des elastisch unterstiitzten Trigers mit verinderlichem Triigheits-
moment und verinderlicher Unterstiitzung wurde bisher von verschiedenen For-
schern6 hauptsichlich mit Hilfe von Reihen studiert. Die dabei zutage gekom-

5 E. Steuermann: Some Consideration on the Calculation of Elastic Shells. Internationale

Tagung fir technische Mechanik. Stockholm 1930.
6 Siehe z. B. Hayashi: Theorie des Triigers auf clastischer Unterlage. Berlin 1921.
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menen Ergebnisse sind fiir die Praxis leider mehr oder weniger unbrauchbar.
Wegen der nahen Verwandtschaft der Gleichungen 3a und 3b ist es jedoch
recht natiirlich, daff die Losungen beider Gleichungen im grofien ganzen den
gleichen mathematischen Aufbau haben. Deshalb liegt die Annahme nahe, daf3
man dic Losung der Gleichung 3a beispielsweise in folgender Form schreiben

kann:
y — uet? (A cosz+ Bsin z) (12)

worin u und z gewisse Funktionen von x sind. Unter Anwendung des Blumen-
thalschen sog. asymptotischen Integrationsverfahrens kann man die Funktionen
u und z bestimmen, sodaf3 Gleichung 12 mit sehr guter Anndherung wirklich
ein Integral der Gleichung 3a darstellt.

3
Wenn: wir wie oben die Biegungssteifheit des Trigers EJ — —1-26— einfiithren,
ergeben sich fiir die Funktionen u und z folgende Ausdriicke:
u= 4i_ : (13)
yo?

and 1= f & (14)

Dieses Resultat erhilt man in folgender Weise. Fithrt man die Ableitung der
Gleichung 3a aus, dann ergibt sich nach Vereinfachung die Gleichung

YV p ¥y Py FpsY Fpiy=o (15)
worin Py = 6% |
YL
P2 = (52 T3
ps =0
12
Py = mee

ist. Multipliziert man die Gleichungen

v =1(z)

vi =12

v =1z 4+ 12"

vi=1fz"4+3f 2z +1"z3

vWV=1F2V 4 (42243246 222" + V2",
df

. . . . . dz . .
worin f' soviel wie — und z‘ soviel wie — bedeutet, der Reihe nach mit den

dz dx
Faktoren Q,, Qz, Qy, Q,, und 1 und addiert sie, so erhilt man, wenn das linke
Glied gleich Null gesetzt wird, erstens die Gleichung

MY v Qv Qv Qg ¥ Q0 (16)
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und zweitens, wenn die Faktoren f’, f” und {” jeder fiir sich gleich Null
gesetzt werden

A2 Qe Qb Q=0
(47 z'“+3z"2)+3z‘ z'-Q,4+2z%Q,=o (17)
6z2z"4+2%Q,=o
Aus diesen Gleichungen kann man Q;, Q, und Qg l6sen, wihrend die Funk-
tion f (z) durch die iibrige Bedingung
fiviz4 4+ Q,- f=o (18)
bestimmt wird.

Wihlt man den Faktor Q, gleich 42’4, dann verwandelt sich die Gleichung 18 in
d* f

E‘l— + 4 f =0
d. h. f (z) = e*” (A cos z + B sin z) (19)
worin z durch die Bedingung
. —
dz /Q,
by 0

bestimmt wird.

Wenn man in Gleichung 15 nun y = uv einfiihrt, erhdlt man beim Einsetzen
und nach Division durch u

4u’ 6u”’  3u .
v e = “ Qv
ViV v (u +P1)+V ( u + o p1+P2)
4 " :_; i 2 {
+W(z +—pi+ :pr+my+wn=0 (21)

Durch Gleichstellen der Koeffizienten fiir v und v in den Gleichungen 16
und 21 kann man die unbekannten Funktionen Q, und u bestimmen. Man erhalt
demnach Q, = p, und folglich nach Gleichung 20

o
z:f]/—%dx
12

oder, mit p, = gt LT 4|/3 qu:b (14)
r
. 4u’
Aus der Bedingung . +p.=0Q

erhdlt man unter Anwendung der letzten der Gleichungen 17

4w _

3 ,
=—p1— o (log p,)

u

oder u (13)
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Fat man das Ergebnis obiger Rechnungen zusammen, so kann man die
Losung der Gleichung 3a unter Vernachlassigung der Ausdriicke, die den
Faktor e* enthalten, also in folgender Form schreiben:

y= e (A cosz+ Bsinz) (12a)
63

worin z durch die Bedingung z = 1/.?5 —d—i
Vrd

bestimmt wird.
Beim ersten Anblick erscheint vielleicht die Gleichung 12a umstindlich und
wenig geeignet fiir praktischen Gebrauch wegen des verwickelten Aufbaues der

Funktion z und des zusitzlichen Faktors 4_§" In der Praxis aber stellt sich der

Fall einfacher. Die Funktion z braucht nimlich nie anders als zahlenmifdig
angegeben zu werden und la3t sich deshalb leicht aus Gleichung 14 z. B. nach
der Trapezregel berechnen. Bei Berechnung der Ableitungen von Gleichung 12a
ergeben sich, wenn man keine Anniherungen einfiihrt, ziemlich komplizierte
Ausdriicke. Beachtet man aber, daf3 die Ableitungen z”, z’”’, u” und u” bei den
in der Praxis vorkommenden Abmessungen klein sind und daher vernachlissigt
werden kénnen, erhilt man die Ableitungen von y in folgender Form

y =ue~?(A cosz- Bsinz)
y' —=uz'e?[(B—pA) cosz— (A+ uB) sin z]
vy =2uz?e?[— (uB 4 +yA)cosz+ (uA — yB) sin z]

y“=2uz®*e 2[(A+ p, B) cos z+ (B— p, A) sin z] (9a)
worin v = -
uz
p =1-—v
gy =1—3wv.

Fiir den Fall, daf3 die Wandstirke konstant ist, wird Yy =0 und p=p;, =1,
wobei obige Gleichungen genau dieselben werden wie die Gleichungen 9.

Die Gleichungen 9a sind also in derselben Weise aufgebaut wie die in den
Gleichungen 9 angegebenen Ableitungen fiir einen Triger mit konstanter
Biegungssteifheit. Die Berechnung einer Kuppel mit verdnderlicher Wandstirke
laB3t sich demnach in gleicher Weise und mit wenig mehr Miihe durchfiihren
wie bei gleichmifliger Wandstirke. Die oben durchgerechneten Beispiele (siche
Fig. 1 und 2) sind also auch fiir den Fall vorbildlich, daf3 ® verdnderlich ist,
und dic Gleichgewichtsgleichungen sind ebenso aufzustellen, nur mit den Ab-.
indcrungen, die durch den Unterschied zwischen den Gleichungen 9 und 9a
bedingt sind.

Bisher haben wir bei der Behandlung des Kuppelproblems nicht beriick-
sichtigt, dafy sich die Meridiantriger nach oben hin verjiingen und im Scheitel
der Kuppel die Breite Null haben, vielmehr haben wir bei ihnen eine kon-
stantc Breite angenommen. Dies entspricht der Wirklichkeit nur dann, wenn
dic Kuppel zylindrisch ist, aber bei Kuppeln im allgemeinen liegt in jener An-
nahme ein gewisses Anniherungsverfahren. Wenn wir die Verjiingung beriick-
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sichtigen, konnen wir bei sphirischer Kuppel das Trigheitsmoment des Meridian-
trigers in gewissem Winkelabstand o vom Scheitel folgendermafien schreiben:

5% sin a
12 sin Qo

J=

(21)

Mit diesem Ausdruck fiir das Trigheitsmoment erhalten wir fiir die Funk-
tionen u und z
1 1

Vo Vsina
S1N Ao
und 7 — st‘/l‘b VSIIICL

Die obigen Ableitungen, die sich hauptsichlich auf das Kuppelproblem be-
ziehen, lassen sich natiirlich auch auf zylindrische Behilter und dhnliche Kon-
struktionen anwenden, die als Sonderfille der Kuppel aufzufassen sind. Die
fir Berechnung solcher Behilter iiblichen Methoden,? denen Reihenentwicklungen
zugrunde liegen, lassen sich vorteilhaft durch die oben angegebene Methode
ersetzen. Einen interessanten Sonderfall dieses Problems begegnet man bei der
Berechnung von massiven Gewélbedimmen. Bisher ging man bei Behandlung
derartiger Probleme von Gleichung 3b aus und fiihrte einen Mittelwert de
Wandstiarke ein.8

Bei Behandlung der Gleichung 3 a nach obiger Methode kann man ohne
Schwierigkeit die in verschiedenen Richtungen und an verschiedenen Punkten
vorkommende Anisotropie der Konstruktion beriicksichtigen. Es kann sich dabei
um eine reine Materialerscheinung oder um eine rein konstruktive Anisotropie
handeln. Beispielsweise durch das Einlegen verschiedener Mengen von Armie-
rungseisen in verschiedenen Richtungen wird der scheinbare Elastizitdtsmodul
des Baustoffes in verschiedenen Richtungen verschieden, was als Material-
anisotropie bezeichnet werden darf; und eine gewisse konstruktive Anisotropie
kann man in einem zylindrischen Behilter oder einer Kuppel zuwege bringen,
indem man in der Richtung der Generatrix oder des Meridians Verstirkungs-
triger anbringt (Rippenkuppel). Unter solchen Umstinden kann Gleichung 3 a
nicht in der Form geschrieben werden, die sie in Gleichung 15 erhalten hat,
vielmehr bekommen die Koeffizienten p, bis p, folgendes Aussehen

_ 2(E )
T
——(_E—1J)11
2T EJ
py=0

— 4D
=R

7 Siehe Lorenz: Technische Elastizititslehre. Berlin 1913. H. Reifiner: Beton und Eisen 7,
150, 1908. T. Péschl und K. Terzaghi: Berechnung von Behiltern. Berlin 1913.

8 N. Royen: Tvirésdammen vid Norrfors kraftverk (Der Damm von Tviré am Kraftwerk
Norrfors). Zeitschrift Belong, Heft 2, 1926.
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und die Funktionen z und u erscheinen demnach in folgender Form

—
_ E; 5
z_f‘/tlr’El—de

8 —

d T
un Y=V ET E o0

Da man weder fiir u noch fiir z einen mathematischen Ausdruck benétigt,
bringt die Einfithrung der Gleichungen 22 und 23 keine Erschwerung der

Berechnungen mit sich.

Zusammenfassung.

Durch die Aufteilung der Schale in zwei Scharen von einander kreuzenden
Tragern konnen wir ein klares Verstindnis der statischen Wirkungsweise der
Konstruktion erhalten. Die auftretenden Momente und Spannungen konnen wie
bei dem Balken auf elastischer Unterlage berechnet werden. Da die strenge
Theorie zu Losungen in Form von unendlichen Reihen fiihrt, die unter gewissen
Bedingungen nur langsam konvergieren, sind durch die angegebene Methode
praktische Vorteile zu gewinnen.
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Versteifte oder unversteifte Flichentragwerke.

Ouvrages A parois minces reforcées ou non par
des raidisseurs.

Shell Structures with or without Stiffeners.

R. Vallette,

Ingénieur aux Chemins de fer de I'Etat, Paris.

Die Frage der Flichentragwerke wurde bereits auf dem Pariser Kongref3 be-
handelt; die seitherige Entwicklungsrichtung soll nunmehr hier erdrtert werden.

Man kann zwei Arten von Fliachentragwerken unterscheiden: Solche, bei denen
die Steifigkeit der Wand fiir die Widerstandsfihigkeit des Systems in Rechnung
gestellt wurde und solche, wo diese Widerstandsfihigkeit vernachldssigt wurde,
diec Wandung also nur fiir tangential zur Mantelfliche wirkende Krifte wider-
standsfihig ist, und als reine Membran wirkt.

Es sind also zu betrachten:

1. biegungsfeste diinne Wandungen,
2. Membranen.

Hier sollen nur Bauteile mit biegungsfesten diinnen Wandungen untersucht
werden; die Bauten mit Membranwandungen bilden den Gegenstand einer be-
sonderen Arbeit des Herrn Aimond (siehe IVa 1 dieses Vorberichtes).

1. Bauten mit biequngsfesten diinnen Wandungen.

A. Konstruktion.

Allgemeines. Schon seit Beginn des Eisenbetonbaues hat man die flichen-
artigen Wandungen (z. B. bei Hohlkorperdecken) fiir den allgemeinen Wider-
stand des Tragwerks zur Mitwirkung herangezogen. Diese Ausnutzung des
monolithischen Zusammenhanges ist schliefilich eine der wichtigen Eigenarten
des Eisenbetons. Spiter aber wurde eine vollstindigere Ausnutzung der Festig-
keit der Flichen in Betracht gezogen, indem die Wandungen zum Hauptelement
der Tragfihigkeit wurden, wie bei den tragenden Winden der Behilter, Silos,
Gewdlbe usw.

Anwendungen im Hoch- und Tiefbau.

1. Behdlterbauten. Bei den Behiltern wurde die in sich tragende Wand selb-
stindig fir die Boden, die Vorkragungen und die Dachgewélbe verwendet, aber
die Steifigkeit der Wand wurde nur ausnahmsweise in Rechnung gestellt.
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2. Silos. Fiir Silos wurde die Verwendung der tragenden Wand, die im Anfang
nur eine teilweise war, zu einer vollstindigen gemifl dem Verfahren von
M. Freyssinet, woriiber er auf dem Pariser Kongref3 einen Bericht gegeben hat.
Diesem Bericht haben wir nichts hinzuzufiigen, da sich seither keine neuen
Gesichtspunkte ergeben haben.

3. Gewolbebauten.

a) Gewdhnliche Gewolbe. Auf dem Gebiete der normalen Gewdlbe hat
M. Freyssinet schon auf dem Pariser Kongreff eine neue Richtung an-
gegeben, indem er erklirte, daf3 er fiir die Luftschiffhalle in Orly, wenn
er sie neu zu bauen hitte, ein Rippensystem mit einem Abstand von 25 m
zwischen den Tragrippen zur Anwendung bringen wiirde. Diese Erkldrung
ist umso beachtenswerter, als die Hallen von Orly (vergl. Génie Civil
22. September bis 6. Oktober 1923) in ihrer bestehenden Form (1922
errichtet) als das bemerkenswerteste Beispiel und als Vorldufer der selbst-
tragenden Systeme mit zahlreichen kleinen Tragwerken, wie sie spiter in
Mitteleuropa eingefiihrt wurden, betrachtet werden kénnen.

Tatséchlich verwendete man dort Triager von 7,50 m Offnung und 90m
Spannweite, bei denen die Tragfihigkeit der Winde die allgemeine Bie-
gung vollstindig tibernimmt. (Konstruktion Freyssinet-Limousin).

Seit dem Pariser Kongrefs hat sich diese Tendenz erhalten; in einem
Falle wurde ein Tonnengewélbe von 51,50 X 51,50 m entworfen, das nur
in den vier Ecken gestiitzt war, wihrend die Fliache vollig selbsttragend
war und nur kleine, ganz untergeordnete Versteifungsrippen erhielt, ohne

2 ©

10

e

Fig. 1.

Schnitt durch Axe
Coupe dans I'axe
Cross section throCentre line

Tonnengewdlbe von

51,50 m Spannweite

daf irgendwelche Randtriger zur Stiitzung herangezogen wurden (Fig. 1)
— (Entwurf Boussiron). Man kann diese Bauart als Grenzfall jener Ge-
wolbeart betrachten, die seit 1910 in Frankreich von mehreren Konstruk-
teuren verwendet wurde und bei der ein Teil der gewdlbten Fliche als
Tragbalken (Kdmpferbalken) zwischen den in mehr oder weniger grofiem
Abstand stehenden Sédulen der Lingsseite benutzt wird. Urspriinglich war
die ausgenutzte Gewdlbehohe OA gering (Fig. 2) und eine Randrippe ON
erhohte die Tragfahigkeit. Spiiter erhohte man die mitwirkende Hohe OA,
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lie} die mitwirkende Rippe ON verschwinden und vergrofierte die Trag-
fahigkeit zwischen den Stiitzen erheblich. Heute wird die ganze Wélbung
fir beliebige Spannweite ohne Randtriger ausgenutzt.

b) Andere Gewdlbetypen.

1. Eine Abart der Bauart von Orly wurde bei einem Doppel-Flugzeug-
schuppen in Cherbourg verwirklicht. Das Gewolbe besteht ganz aus
diinnen Elementen (Fig. 3), die, wie in Orly, allein die Tragfahigkeit des
Systems bestimmen. Die Wandung wirkt aufSerdem selbsttragend zwischen

den Randséulen. (S Rabut Subileau.)

2. Kegelfésrmige Gewolbe, die Sheddacher bilden (Freyssinet-Limousin),
wurden bei Bauten vielfach verwendet (Werke von Montrouge, Caen,

i 55m i
. [
| 6 3,01m %0 |
A A A i’ H
W Schnitt
0
v Coupe }a-b
N Section,
Fig. 2. Fig. 3.
Randtriger. Doppelschuppen in Cherbourg.

Fontenay usw.); sie waren Gegenstand einer Arbeit von Fauconnier in
Band 2 der Abhandlungen unserer Vereinigung, so daf3 sich eine ein-
gehende Betrachtung eriibrigt. Die Gewdlbe wirken als Triger zwischen
den Kampfersiulen.

4. Andere Bauarten. Andere Gewolbearten wie Kuppeln iiber rechteckigem
Grundrifs, Gratgewolbe, Klostergewslbe usw. wurden von verschiedenen Ent-
wurfsverfassern anlifilich - der offenen Wettbewerbe fiir die Ausfithrung von
Flugzeughallen auf den Flughifen vorgeschlagen. Aber diese Typen sind noch
nicht geniigend entwickelt, um schon eine bestimmte Ausrichtung erkennen zu
konnen oder viel Aufhebens davon zu machen.

Eine bemerkenswerte Konstruktion von ganz abweichender Art stellt der grofie
Windkanal von Chalais-Meudon dar, der in der Néhe von Paris fiir die Priifung
der Flugzeuge gebaut wurde.! Hier wurden verschiedene freitragende Flichen-
elemente verwendet, im besonderen ein Wind-Ausgleichsrohr mit iiberwiltigenden
Abmessungen (Fig. 4), das nur an zwei Stellen im Abstand von 34 m gelagert
ist und sich bei 7 cm Wandstirke und einer Versteifung durch kleine Rippen,
die im Abstand von 3,60 m stehen, vollkommen freitrigt. (Ausfiihrung Limousin.)

5. Schlufifolgerungen. Zusammenfassend kann man in Frankreich auf dem
Gebiet der biegungssteifen Flichentragwerke einerseits tastende Versuche zur
Auffindung neuer Gewslbeformen ohne eine bestimmte Ausrichtung nach einem
bestimmten Typ feststellen, anderseits aber besteht fiir die schon feststehenden

1 8§, ,,Génie Civil” vom 3. Nov. 1934.
47
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Typen die bestimmte Tendenz, die Tragfihigkeit der Flichen vollstindig auszu-
niitzen. Dabei geht man auch so weit, dafl man den ganzen Querschnitt zur
Tragwirkung mit heranzieht (grofie Dachgewolbe, Windkanal Chalais-Meudon),
wenn die Spannweite es erlaubt. Man kann es als kennzeichnend fiir die fran-
zosischen Bauten bezeichnen, daf3 im allgemeinen bei den Gewdlben das reine
Fliachentragwerk ohne Hinzufiigung von Randbalken oder anderen unterstiitzen-
den Traggliedern verwendet wird.

__ 7em 7cm

| 230m Fig. 4.

Diffusor im Windkanal
von Chalais-Meudon.

0
100m
|
|

150

B. Berechnung.

1. Ebene Winde. Fir die Berechnung der ebenen Winde verweisen wir auf
die Methode, die von L’Hermite im ,,Génie Civil“ vom 29. April 1933 angegeben
wurde.

2. Selbstiragende Gewdilbe verschiedener Ari. Unmittelbar nach den ersten
Ausfithrungen von gewolbten Eisenbetonddchern fing man an, die Flichen des
Gewolbes als Kampferbalken zur Aufnahme des Kampferdruckes heranzuziehen.2

Diesen Balken, der nur durch einen geringen Teil des Gewolbes gebildet wurde,
betrachteten die Konstrukteure als einen unabhingigen, gewohnlichen geraden
Balken und berechneten ihn auch als solchen. Dies fiihrte zu reichlichen Quer-
schnitten, aber der damit verbundene Mehrverbrauch an Material spielt bei
kleinen Stiitzenabstinden keine Rolle, so dafy man keine Ursache hat, auf ver-
wickeltere Berechnungssmethoden zuriickzugreifen.

In den allerdings selten vorkommenden Fillen, daff der Entwurf zu grofien
Stiitzenabstinden fiihrt, wird die mitwirkende Hohe des Gewdlbes einen ge-
kriimmten Querschnitt aufweisen, so dafl besondere Untersuchungen notwendig
werden. Wir wissen, dafl gewisse Konstrukteure (besonders Boussiron) eine
personliche Losung hierfiir hatten, wenn sie sie auch nicht veréffentlichten.
Ich habe darum selbst eine einfache Losung hierfiir entwickelt,3 welche einer-
seits die Berechnung eines solchen Balkens umfaf3t und andererseits auch die
Losung fiir das vollstindige Tonnengewdlbe von beliebiger Form gibt, das nur
an den Ecken gestiitzt ist.

Diese Methode fiihrt fiir die gekriimmten Querschnitte der Flichentragwerke
die Biegungstheorie ein und sucht hinsichtlich der eingefiihrten Nebenspan-
nungen die entsprechenden Folgerungen; sie bestimmt vor allem die Quer-
biegung, die in einem Gewélbering unter dem Einfluf3 der in Richtung der
Leitlinien des Tonnengewolbes wirkenden Tangentialkrifte entstehen. Bei der
Anwendung dieser Methode auf grofie Spannweiten hat sie sich als vollstindig
und sehr sicher erwiesen und ergab Resultate, die mit den an Modellen, an
einem Versuchsgewolbe und an ausgefiihrten Bauten gemachten Beobachtungen
tibereinstimmten.

2 S. ,,Génie Civil‘* vom 27. Jan. 1934.
3 S. ,,Génie Civil‘* vom 27. Jan. 1934.
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3. Andere Bauformen. Dieselbe Berechnungsart kann auch auf geschlossene
Rohre angewendet werden, und sie bildet auch die Grundlage fiir die Berech-
nung des im vorstehenden schon beschriebenen grofien Windkanals in Chalais-
Meudon, wie sie in dem Bericht iiber diese Arbeiten enthalten ist.3

Bei den Kuppeln geniigt im allgemeinen eine ganz einfache Rechnung, da die
Steifigkeit der Schale nur bei Einzellasten von Wichtigkeit ist. Ihr Einfluf$ ist
jedoch sehr begrenzt und da man in jedem Punkt auf Meridian- und Parallel-
kreise stof3t, wird man meistens wieder auf den Membranspannungszustand
zuriickgefiihrt.

Fir die anderen Bauformen mit biegungssteifer Schale sind in Frankreich
keine besonderen Berechnungsmethoden in der technischen Literatur zu finden;
sie sind noch nicht geniigend erforscht und bleiben einstweilen- noch das persén-
liche Arbeitsfeld einzelner Konstrukteure.

4. Schlufifolgerungen. In Frankreich haben die Berechnungsmethoden fiir
biegungssteife Flichentragwerke jenes Prinzip der Einfachheit bewahrt, das die
Regel fiir alle Fragen im Eisenbetonbau war. Hat man es doch in der Tat mit
einem Material und mit Bauformen zu tun, die zusammengesetzt und verédnder-
lich sind, so daf3 man umsonst nach Gesetzen suchen wiirde, die unter diesen
Arbeitsbedingungen alle Erscheinungen bei der Belastung kliren wiirden. Man
hat allen Grund, sich nur an die Grundtatsachen zu halten, welche sich aus
einfachen Gesetzen ableiten (Hook'sches Gesetz, Navier’sches Gesetz) und sich
in einfachen Gesetzen anndherungsweise, aber doch sicher ausdriicken lassen.

Das Ziel liegt tibrigens nicht darin, eine rein mathematische Losung zu er-
halten. Es handelt sich nur darum, die in einem bestimmten System auftreten-
den Beanspruchungen festzustellen, damit sowohl ein iibermifdiger Materialauf-
wand, wie auch eine nennenswerte Unterbemessung vermieden wird. Die Ab-
leitung solcher praktischen Losungen mufl also von den angefiihrten einfachen
Grundlagen ausgehen und alle Rechenméglichkeiten ausniitzen, um zu sicheren
partikuliren Losungen zu kommen, die einfach anzuwenden sind. Es diirfte
niitzlich sein, hier darauf hinzuweisen, daf in der Geschichte des Eisenbetonbaues
die endgiiltigen Berechnungsmethoden erst dann aufgestellt wurden, als durch
unsere grofden Konstrukteure schon solche Bauten ausgefiihrt waren.

Di¢ Phantasie, das technische Gefiihl, das Verstindnis fiir das Kriftespiel
sind von den Schépfungen der Baukunst nicht zu trennen und hatten dem Kon-
strukteur geniigt, um den neu geschaffenen Typ zu verstehen, festzulegen und
zu berechnen. In der Tat kann eine Kraft zahlenmifiig nur annihernd festgelegt
sein, wenn sie nur qualitativ richtig ist. Bei den vielen Einzelheiten, die bei
der Ausfiihrung eines Eisenbetonbaues zu bestimmen sind, ist hauptsichlich
diesem letzteren Punkte die grofite Aufmerksamkeit zuzuwenden und hier er-
fordert die Losung jenes Maf3 an technischem Gefiihl, das eben den guten Kon-
strukteur ausmacht.

Die Berechnung der biegungssteifen Flichentragwerke hat diese Entwicklung
genommen, bewahrt diese Richtung auch und wird bei der Bestimmung des
wesentlichen Kriftespieles dieser 'Konstruktionsart auch nie von der Einfach-
heit und Klarheit lassen.

47*
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Zusammenfassung.

Betrachtung der Schalenkonstruktionen unter Beriicksichtigung der wirklichen
Steifigkeit. ‘

Nach einer kurzen geschichtlichen Einleitung wird angegeben, daff in Frank-
reich im gegenwirtigen Stadium die Schalen einzig und allein als Tragelemente
verwendet werden ohne Zuhilfenahme irgend eines Randbalkens, ob es sich um
Systeme mit mehrfachen kleinen Gewdélben (Typus der Halle von Orly), um ein
einziges grofies Gewolbe oder um ein Gewolbe aus Ringen bestehend (Wind-
kanal von Mendon) handle.

Es wird ferner bemerkt, daf die Berechnung der Tragwerke mit der im Eisen-
betonbau in Frankreich iiblichen Klarheit durchgefiihrt wird. Dies erlaubt dem
Konstrukteur bei einer einwandfreien Beriicksichtigung der Krifte die neu-
geschaffenen Tragwerkstypen in freier Weise anzuwenden und zu entwickeln.
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