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Einführung in die allgemeine Theorie der biegungsfreien Schalen.

Etude des voiles minces courbes ne subissant pas de
flexion.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. es siences F. Aimond,
Ingenieur des Ponts et Chaussees detache au Ministere de l'Air, Paris.

1. Hinweis auf die allgemeinen Gleichgewichtsbedingungen der Schalen in
geradlinigen Koordinaten.

Die Gleichung der Oberfläche in geradlinigen, jedoch nicht unbedingt
rechtwinkligen Koordinaten sei z f (x, y). Der Spannungszustand in einem Punkte
m der Schale wird durch die Spannungen nv n2, © bestimmt, die auf die zu
den Ebenen zox und zoy parallelen Schnitte mmx und mm2 wirken. Auf den
Schnitt mm2 wirkt nx parallel zur Ebene zox, auf den Schnitt mra1 wirkt n2
parallel zu zoy und © wirkt sowohl auf den Schnitt mmx parallel zu zox als
auch auf mm2 parallel zu zoy. Die Richtungskoeffizienten der Tangenten an die
Schnitte mmx und mm2, also die in Richtung ox, oy, oz projizierten Einheitsvektoren

jeder dieser Tangenten bezeichnen wir mit av 0, yx und 0, ß2 und y2.
Wir denken uns nun die Schale beliebig belastet. Dann sind X • dx • dy, Y • dx • dy,
Z • dx- dy die Komponenten der aufgebrachten Last, die in den Richtungen ox,
oy, oz auf das Element mm1m'm2 wirken, das parallel zur Ebene zox durch
mmx und m2m' und parallel zur Ebene zoy durch mm2 und m^m' begrenzt wird.
Die Untersuchung der Gleichgewichtsbedingungen für diese Schnitte führt zu
folgenden Gleichungen:
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2. Geometrische Deutung der in den allgemeinen Gleichgeivichtsbrdingungen
enthaltenen Größen.

Die Größe £ im zweiten Glied der Gleichung (3) ist die schiefe Projektion
des Vektors (X, Y, Z) auf oz, wobei diese Projektion parallel zu der an die
Oberfläche gelegten Tangentialebene erfolgt. Zur Deutung der Größen vv v2
und ©, die die Unbekannten in den Gleichgewichtsbedingungen sind, soll
allgemein der Begriff der reduzierten Spannung definiert werden. Die an einem

Bogenelement angreifende reduzierte Spannung ist die Projektion der an diesem
Element angreifenden Kraft auf die xy-Ebene, dividiert durch die projizierte
Länge des zugehörigen Elementes. Es läßt sich einfach feststellen, daß der

Zusammenhang zwischen den in einem Punkt wirksamen reduzierten Spannungen
denselben Gesetzen folgt wie bei den wirklichen Spannungen und im Besonderen,
daß auch die /l/o/ir'sche Darstellung auf sie anwendbar ist. Die Größen v1, v2, ©

entsprechen den durch Parallelprojektion auf die x und y-Achse entstandenen
reduzierten Spannungen, die zu den Schnitten gehören. Die Schubspannungen ©
bleiben in der Projektion erhalten, während dies für die Spannungsgrößen nx
und n2 nicht der Fall ist.

3. Geometrische Deutung der Gleichgewichtsbedingungen.

Die Gleichungen (1) und (2) drücken augenscheinlich das Gleichgewicht in
der Projektion auf die Tangentialebene aus. Die Gleichung (3) dagegen gibt
das Gleichgewicht der normal zur Schale wirkenden Kräfte wieder. Um sie
geometrisch zu deuten, legen wir den Ursprung 0 des Dreiflächners oxyz auf die
Oberfläche und richten ox und oy nach den Richtungen von zwei willkürlich
gewählten Schnitten. Der Dreiflächner oxyz wird nun vollends bestimmt, wenn
man eine Annahme über die Richtung oz trifft. Die Gleichung (3) gibt den
linearen Zusammenhang zwischen den Spannungen, welche auf die willkürlich
gewählten Schnitte ox und oy wirken und der parallel zur Tangentialebene auf
oz erfolgten Projektion £ der Dichte der aufgebrachten Last. Solange man bei

festgehaltenem ox und oy die Richtung von oz ändert, ist nur jeder einzelne
Ausdruck der linearen Gleichung mit demselben Faktor zu multiplizieren.

Man kann die Unbestimmtheit der Richtungen der Schnitte ox und oy zur
Vereinfachung der Gleichung (3) benutzen. Richtet man nämlich diese Schnitte
nach zwei konjugierten Richtungen der Oberfläche aus (konjugierte Richtungen
im Verhältnis zur Indikatrix), so verschwindet der Koeffizient © und die
Gleichung (3) reduziert sich zu einer linearen Gleichung zwischen den

Längsspannungen v± und v2. Man kann sich nun fragen, ob es nicht möglich ist,
die Schnitte ox und oy so zu orientieren, daß in der Gleichung (3) überhaupt
nur noch eine einzige Spannungsgröße verbleibt. Man sieht aber sofort, daß
dies nicht möglich ist, solange die Oberfläche konvex ist, d. h. also, solange
die Hauptkrümmungsradien von gleichem Sinn sind. Wenn die Oberfläche nicht
konvex ist, wird dies im Gegensatz hierzu jedoch möglich.

Wenn wir uns mit der letzteren Annahme beschäftigen, so sind zwei Fälle
zu unterscheiden, je nachdem ob die in der Gleichung (3) verbleibende Spannung
eine Längsspannung oder eine Schubspannung © ist. Der erste Fall ist nur dann
möglich, wenn die Oberfläche abwickelbar ist, d. h. also, wenn man sie als die
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Umhüllende einer Gruppe von Tangentialebenen auffassen kann, die von einem
Parameter abhängen. Legt man den Schnitt ox in die Richtung der geradlinigen
Erzeugenden, die durch O geht, so vereinfacht sich die Gleichung (3) zu

r • Vi X> (4)

Der zweite Fall bezieht sich auf die Oberflächen mit gegensätzlichen
Krümmungen. Legt man ox und oy in die Richtung der Asymptoten, so vereinfacht
sich die Gleichung (3) zu

2 • s • © X. (5)

Die Gleichungen (4) und (5) sind einfach zu deuten. Betrachten wir zunächst

Gleichung (4). Man sieht sofort, daß von den an einem unendlich kleinen
Element der Fläche angreifenden Schnittkräften nur v1 eine Komponente ergibt,
die nicht in der Tangentialebene liegt, und Gleichung (4) drückt nur die Gleichheit

zwischen den parallel zur Tangentialebene erfolgten Projektionen der

Spannungen nx auf oz und der unter den gleichen Bedingungen erfolgten
Projektion der aufgebrachten Last aus.

Nun zur Deutung der Gleichung (5): Es genügt hierfür, ein viereckiges
Element zu betrachten, von dem zwei Seiten durch Asymptotenlinien gebildet
werden, die sich in 0 kreuzen. Die Resultierende der an dem Viereck angreifenden

Längsspannungen n± und n2 liegt in der Tangentialebene. Diese Resultierende
ist ja nur die geometrische Summe der Spannungsresultanten nx und n2, und

jede dieser Spannungsresultanten liegt notwendigerweise innerhalb der
Berührungsebene einer Asymptotenlinie, welche infolge der Definition der Asymptoten

mit der Tangentialebene zusammenfallen muß. Die außerhalb der Tangentialebene

liegende Komponente £ der auf die Oberfläche aufgebrachten Lasten hängt
also nur von der Schubspannung © ab und sie ist dieser auch direkt
proportional. Der Proportionalitätskoeffizient hat den Wert 2 s und ist einfach
geometrisch zu deuten. Er ist der Quotient aus dem doppelten Abstand der 0
gegenüberliegenden Ecke des Viereckes von der Tangentialebene durch O, parallel
zur Richtung oz gemessen, dividiert durch das Produkt der Seitenlängen der

Asymptotenlinien, welche das Viereck bilden.

4. Einteilung der Schalen in Bezug auf ihre mechanischen Eigenschaften.

Die vorstehenden Betrachtungen führen zu einer Einteilung der Schalen in drei
Gruppen. Die erste Gruppe umfaßt die abwickelbaren Oberflächen, wie Zylinder
und Kegel. Die zweite Gruppe umschließt die konvexen Oberflächen, wie die

Kugel, die elliptischen Paraboloide, die Ellipsoide, die zweischaligen
Hyperboloide und ganz allgemein alle doppelt gekrümmten Flächen, die durch eine
nach unten konkave Kurve erzeugt werden, wenn diese auf einer Leitlinie mit
ebenfalls nach unten konkaver Krümmung gleitet. Die dritte Gruppe umgrenzt
die gegensätzlich gekrümmten Flächen, wie die hyperbolischen Paraboloide,
die einschaligen Hyperboloide, die Konoide, alle nicht abwickelbaren
regelmäßigen Flächen und ganz allgemein alle Flächen, die durch eine nach oben
konkave Kurve erzeugt werden können, wenn sie auf einer nach unten konkaven
Leitlinie gleitet.

Zu dieser Einteilung wird man durch die geometrische Deutung der Gleichung
(3) geführt. In der ersten Gruppe findet man jene Schalen, für welche die
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Gleichung (3) in die Form der Gleichung (4) gebracht werden kann. Für die
zweite Gruppe kann Gleichung (3) in folgende Form gebracht werden:

r.yi + t.y2==Zi (6)

wobei r und t vom gleichen Vorzeichen sind. Die Schalen der dritten Gruppe
sind jene, für welche die Gleichung (3) in die Form (5) übergeführt werden
kann.

Wir bemerken, daß für die Schalen der dritten Gruppe die Gleichung (3)
ebenfalls in die der Gleichung (6) übergeführt werden kann; in diesem Falle
sind jedoch r und t von verschiedenem Vorzeichen. Außerdem kann noch für
die Schalen der zweiten Gruppe die Gleichung (3) die Form der Gleichung (5)
annehmen, wobei wiederum © die Schubspannung in den Asymptotenlinien
bedeutet. In diesem Falle sind jedoch s und t imaginäre Ausdrücke und die

Gleichung (5) stellt nicht mehr eine Bezeichnung zwischen reellen Größen dar.

Die Schalen der ersten Gruppe sind durch die Eigenschaft gekennzeichnet,
daß die normal zu den geradlinigen Erzeugenden wirkende Komponente des

Spannungszustandes in jedem Punkte porportional zur Normalkomponente der
Dichte der aufgebrachten Last ist. Die Schalen der zweiten Gruppe sind durch
die Eigenschaft gekennzeichnet, daß der rein imaginäre Schubspannungszustand,
der auf die in den imaginären Asymptotenlinien liegenden Elemente wirkt, in
jedem Punkte proportional zur Normalkomponente der Dichte der aufgebrachten
Last ist. Die Schalen der dritten Gruppe zeichnen sich durch die Eigenschaft
aus, daß der Schubspannungszustand, der auf die in den Asymptotenlinien
liegenden Elemente wirkt, in jedem Punkte proportional zur Normalkomponente
der Dichte der aufgebrachten Last ist.

Zwischen den Schalen der zweiten und dritten Gruppe kann man noch
folgenden Unterschied beobachten: Wenn man an einem beliebigen Punkte die

an zwei konjugierten Schnitten angreifenden Längsspannungen betrachtet, so
kann man die Normalkomponente der aufgebrachten Last, die ein linearer
Ausdruck dieser Längsspannungen ist, als den durch diese Längsspannungen
hervorgerufenen, nach außen wirkenden Druck betrachten. Dieser Ausdruck
enthält bei den Schalen der zweiten Gruppe Koeffizienten gleichen Vorzeichens
und bei den Schalen der dritten Gruppe Koeffizienten von verschiedenem
Vorzeichen. Daraus folgt, daß man bei den Schalen der zweiten Gruppe sich die

Tragfähigkeit durch die auf zwei konjugierte Schnitte wirkenden gleichsinnigen
Längsspannungen erzeugt denken kann. Bei einer Schale der dritten Gruppe
dagegen denkt man sich die Tragfähigkeit in analoger Weise durch die auf zwei

konjugierte Schnitte wirkenden gegensinnigen Längsspannungen erzeugt.
Handelt es sich um eine Schale der zweiten Gruppe, so kann man immer jene

konjugierten Schnitte auswählen, die symmetrisch im Verhältnis zu den
Hauptrichtungen liegen. Die zugehörigen Längsspannungskoeffizienten, die in dem
linearen Ausdruck die Normalkomponente der Dichte der aufgebrachten Last
darstellen, sind gleich. Man kann also sagen, daß bei den Schalen der zweiten

Gruppe die Normalkomponente der Dichte der aufgebrachten Last proportional
zu der Summe der Längsspannungen ist, welche auf die zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitte wirken.
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Die Verschiedenheit der Eigenschaften, welche, wie wir gesehen haben, die
Schalen der drei Gruppen unterscheidet, hat einen entscheidenden Einfluß auf
die Art der Stützung, welche man den Schalen an ihren Rändern geben kann, um
die Gleichgewichtsbedingungen zu erfüllen und desgleichen auch auf die Art der
Berechnung der Spannungen, die wiederum eine Funktion der Randstützung
sind.

5. Untersuchung der Schalen der ersten Gruppe.

Das Studium der Schalen der ersten Gruppe kommt einer Verallgemeinerung
der Untersuchung des Zylinders gleich. Die Gleichung (4) gibt für einen

beliebigen Punkt der Schale jene Komponente des Spannungszustandes an, die
normal zu der an diesem Punkt getroffenen geradlinigen Erzeugenden steht. Zieht
man also auf der Oberfläche eine Gruppe von geodätischen Linien, die die
verschiedenen geradlinigen Erzeugenden unter einem konstanten Winkel schneiden,
so kennt man die Längsspannungen, die parallel zu diesen geodätischen Linien
auf die geradlinigen Erzeugenden wirken. Aus Gleichung (2) erhält man durch
eine Integration sofort den Wert der Schubspannung an den Erzeugenden und

geodätischen Linien und durch eine weitere Integration erhält man aus Gleichung
(1) die Längsspannungen, die auf die geodätischen Linien parallel zu den

Erzeugenden wirken.
Der auf diese Weise bestimmte Spannungszustand ist erst dann vollständig,

wenn man auf einer bestimmten Kurve, die jede Erzeugende nur ein einziges Mal

trifft, eine Annahme über die Werte der auf die Schnittelemente dieser Kurve
wirkenden Spannungen trifft. Man kann übrigens auch auf zwei Kurven, von
denen beide jede Erzeugende nur ein einziges Mal schneiden, eine Annahme über
den Zusammenhang zwischen den Komponenten des Spannungszustandes treffen,
der auf jedes Schnittelement der beiden Kurven wirkt.

6. Studium der Schalen der zweiten Gruppe.

Wir betrachten nun eine Schale der zweiten Gruppe. Wir haben schon gesehen,
daß die Normalkomponente der Dichte der aufgebrachten Last an jedem Punkt
proportional der Summe der Längsspannungen ist, die auf die zu den
Hauptrichtungen symmetrisch liegenden konjugierten Schnitte wirken. Wir setzen nun
voraus, daß diese Längsspannungen gleich seien. Dann ist ihr Wert in jedem
Punkt durch die Größe der Normalkomponente der Dichte der Last bestimmt.
Damit haben wir die Gleichung (3) erfüllt. Die Gleichungen (1) und (2), welche
das Gleichgewicht in der Tangentialebene ausdrücken, sind allerdings erst dann

erfüllt, wenn die Tangentialkomponente der Dichte der Last einen bestimmten
Wert hat, welchen man dadurch erhält, daß man die Gleichgewichtsbedingungen
parallel zur Tangentialflache genau anschreibt. Wir wollen nun jedes Lastsystem
mit „Grundsystem'' bezeichnen, das den vorgenannten Bedingungen entspricht,
d. h. also, wenn gleich große Längsspannungen an den zu den Hauptrichtungen
symmetrisch liegenden konjugierten Schnitten angreifen. Ein beliebiges
Lastsystem kann man sich dann aus einem Grundsystem und einem zusätzlichen

System zusammengesetzt denken, wobei das letztere nur Tangentialkräfte enthält
und als das zu dem Grundsystem komplementäre Lastsystem bezeichnet wird.
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Alan wird dabei nun zu dem Studium der komplementären S)steme geführt,
d. h. also jener Systeme, bei welchen die aufgebrachte Last tangential zur
Oberfläche wirkt. Bei solchen Systemen sind die Längsspannungen, welche auf die

symmetrisch zu den Hauptrichtungen liegenden konjugierten Schnitte wirken,
gleich groß. Der Spannungszustand an einem beliebigen Schnitt hängt also nur
von zwei Parametern ab, z. B. von den Komponenten des Spannungszustandes,
die auf einen der beiden konjugierten Schnitte einwirken. Es ist augenfällig, daß

man diese beiden Parameter beliebig wählen kann. Man sieht leicht, daß man
zwei unbestimmte konjugierte Funktionen cp und \\> so bestimmen kann, daß die
an einem beliebigen Element der Oberfläche angreifenden Kräfte eine lineare
Form der Differentialausdrücke S9- d\\> und S^dcp ergeben, wenn man als
Parameter zwei Größen wählt, die wir mit S9 und S^ bezeichnen wollen. Die
Gleichgewichtsbedingungen in der Tangentialebene zeigen dann, daß die partielle
Ableitung von S9 nach 9 und die partielle Ableitung von S^ nach i|? lineare Funktionen

von S9 und S^ sind. Eliminiert man einen der beiden Parameter, z. B.

S^ aus den beiden Gleichungen, so erhält man eine lineare partielle Differentialgleichung

zweiter Ordnung mit unbestimmten Variablen, welcher Gleichung der
noch enthaltene Parameter S9 genügen muß.

Um eine Lösung dieser Gleichung zu erhalten, kann man den Wert von S9
und einer Ableitung davon auf einer beliebig auf der Oberfläche gewählten Kurve
annehmen, natürlich unter der Bedingung, daß gewisse analytische Bedingungen
erfüllt sind, die damit zusammenhängen, daß es sich um eine Gleichung mit
unbestimmten Variablen handelt. Da man mit Hilfe der längs einer Kurve
angenommenen Werte von S

9
und einer Ableitung davon längs dieser Kurve S

9
und S^ bestimmen kann und damit auch den gesamten Spannungszustand für
ein beliebiges Element dieser Kurve, so sieht man, daß man den gesamten
Spannungszustand in der Schale erhält, sobald man die Spannungen längs einer
Kurve kennt, immer unter der Voraussetzung, daß gewisse analytische
Bedingungen erfüllt sind.

Diese analytischen Bedingungen sind nicht nur eine reine Formsache, sie

entsprechen folgender physikalischer Tatsache: Man weiß, daß bei allen Problemen,
wo eine Gleichung mit unbestimmten Variablen durch die Werte bestimmt ist,
welche eine diese Gleichung befriedigende Funktion und eine Ableitung davon
längs einer gegebenen Kurve annimmt, die Lösung keine stetige Funktion der
Anfangswerte ist. Wenn man die eingesetzten Werte nur wenig ändert, so kann
man an beliebigen Punkten beliebig große Werte der Funktion erhalten. Daraus
ergibt sich, daß bei einer konvexen Schale die zu den längs einer Kurve
gegebenen Spannungswerten gehörigen Gleichgewichtszustände im Verhältnis zu
diesen Spannungswerten nicht stabil sind.

Um zu stabilen Lösungen zu kommen, muß man andere Grenzbedingungen
untersuchen als die bisher angenommenen. Statt daß man eine Annahme über
den Spannungszustand längs einer Kurve trifft, nehmen wir auf einer bestimmten
Kurve einen Zusammenhang zwischen den Komponenten des auf die Elemente
dieser Kurve wirkenden Spannungszustandes an. In diesem Falle ist das Problem
eindeutig und seine Lösung eine stetige Funktion der angenommenen Größen.
Der zugehörige Gleichgewichtszustand wird ebenfalls stabil sein. Wir wollen
z. B. annehmen, daß die Normalkomponente des Spannungszustandes längs der
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gegebenen Kurve Null sei. Mit Hilfe der relativen Unbestimmtheit der Parameter
S9 und S^ kann man diese so bestimmen, daß S

9
der Normalkomponente des

Spannungszustandes längs der gegebenen Kurve entspricht. Die Theorie der

Differentialgleichungen erlaubt eine Bestimmung der Funktion S9 nach einer
ähnlichen Methode, wie sie von Fredholm und seinen Nachfolgern zur Lösung
ähnlich geformter Gleichungen mit unbestimmten Variablen angewandt wurde.

7. Studium der Schalen der dritten Gruppe.

Wir betrachten nun eine Schale der dritten Gruppe. Der Wert der
Normalkomponente der Dichte der Last bestimmt in erster Linie den Schubspannungszustand

für die in den Asymptotenlinien liegenden Schnitte. Wir wollen voraussetzen,

daß der Spannungszustand in der Schale nur aus diesen Schubspannungen
bestehe. Hierzu ist nur nötig und auch genügend, daß die Tangentialkomponente
der an einem zwischen den Asymptotenlinien liegenden Viereck angebrachten
Last in Gleichgewicht mit der Resultante der auf die Tangentialebene projizierten
Tangentialbeanspruchungen steht. Wir wollen nun jedes Lastsystem, das den
vorstehenden Bedingungen genügt, daß der an den Schnitt-Elementen der

Asymptotenlinien angreifende Spannungszustand nur aus Schubspannungen
besteht, als Grundsystem bezeichnen. Es ist nun leicht einzusehen, daß man sich

jedes beliebige Lastsystem durch eine Superposition aus einem Grundsystem
und einem anderen System, das wir Komplementärsystem nennen wollen,
entstanden denken kann.

Wir werden hierdurch zum Studium der Komplementärsysteme geführt. Wir
erinnern uns dabei, daß die an einem Schalenelement angreifende Schnittkraft
als eine Linearkombination der Differentialausdrüqke S9- dx|? und S^ dep

dargestellt werden kann, wobei cp und if> jetzt zwei reelle Funktionen sind und S
9

und S^ zwei reelle Parameter. Die Gleichgewichtsbedingungen in der Tangentialebene

erlauben es nun, die partiellen Ableitungen von S9 nach cp und von
S^ nach if> als lineare Funktionen von S9 und S^ auszudrücken. Die Elimination
von Sy führt zu einer linearen Differentialgleichung zweiter Ordnung von S9 mit
reellen Variablen. Die Variablen dieser Differentialgleichung stellen die
Asymptotenlinien dar.

Um eine Lösung der vorstehenden Gleichung zu erhalten, die für den durch
den Rand C begrenzten Bereich D gültig ist, zerlegen wir diesen Rand in zwei

Folgen von Bogenstücken T und T' derart, daß die von jedem Punkt des

Bereiches D ausstrahlenden Asymptotenlinien T nur ein einziges Mal treffen. Jetzt
unterteilen wir noch T in zwei Folgen von Bogenstücken T1 und T2 derart, daß

jeder gebrochene Zug von Asymptotenlinien, der irgend einen Punkt von T1 mit
einem Punkt von T' verbindet, seine dazwischenliegenden Ecken auf T2 oder

P hat und gleichzeitig noch die Bedingung erfüllt ist, daß kein gebrochener
Zug von Asymptotenlinien möglich ist, der seine Enden auf rx und seine

dazwischenliegenden Ecken auf T2 hat. Man wird eine für den Bereich D gültige
eindeutige Lösung erhalten, wenn man auf I\ den Wert des auf die
Schnittelemente T± einwirkenden Spannungszustandes und auf T2 einen Zusammenhang

zwischen den Komponenten des auf die Schnittelemente T2 wirkenden
Spannungszustandes annimmt. Diese Lösung erhält man durch eine wiederholte
Anwendung der Riemann'schen Formel auf die verschiedenen Unterbereiche des
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Bereiches D. Hierbei sind keine besonderen analytischen Bedingungen zu erfüllen
und die erhaltene Lösung ist immer eine stetige Funktion der Anfangswerte. Im
allgemeinen gibt es jedoch keine Lösung, die zu einem Zusammenhang zwischen
den Komponenten des auf die verschiedenen Schnittelemente der gegebenen
Kurve C einwirkenden Spannungszustandes gehörte.

Ist die betrachtete Schale eine regelmäßige Fläche, so kann die partielle
Differentialgleichung zweiter Ordnung auf eine lineare partielle Differentialgleichung
erster Ordnung zurückgeführt werden, welche nur eine Ableitung enthält. Diese

Gleichung kann integriert werden, da man sie als eine lineare Differentialgleichung

auffassen kann. In dem Sonderfall der über einem Viereck errichteten
regelmäßigen Flächen genügen zur Bestimmung der Parameter S9 und S^ zwei

Quadraturen.

8. Wahl der Stützungsarten bei den Schalen der dritten Gruppe.

Die Wahl der Stützungsarten hängt bei einer Schale wesentlich davon ab, zu
welcher Gruppe sie gehört. Wir unterscheiden zwei Stützungsarten: die einfache
Stützung, bei welcher die Stützkräfte nur von einem Parameter abhängen, und
die doppelte Stützung, bei welcher die Stützkräfte von zwei Parametern abhängen.
Die Spannungs-Komponenten, welche die Schale auf eine einfache Stützung
überträgt, müssen infolgedessen einem schon im Voraus bekannten Zusammenhang
genügen, während die Spannungs-Komponenten, welche auf eine doppelte
Stützung einwirken, unabhängige Werte annehmen können. Übrigens können
gewisse Randpartien der Schale auch ungestützt bleiben, so daß man einen freien
Rand erhält.

Wir wollen nun untersuchen, wie man über den Rand einer Schale freie
Ränder, einfache Stützungen und doppelte Stützungen verteilen kann, um noch
einen eindeutigen und stabilen Gleichgewichtszustand zu erhalten.

Wir beschäftigen uns zuerst mit einer Schale der ersten Gruppe. Man kann
einen freien Rand für jede Randpartie annehmen, die keine geradlinige Erzeugende

enthält, und einmal oder mehrmals von jeder Erzeugenden geschnitten
wird. Wenn der freie Rand von allen Erzeugenden geschnitten wird, ist die
Verteilung der Spannungen innerhalb der Schale bestimmt und die anderen Ränder
müssen doppelte Stützung erhalten. Der zugehörige Gleichgewichtszustand ist
stabil. Nun nehmen wir zwei Ränder an, von denen jeder nur einmal alle
Erzeugenden schneidet und einfach gestützt ist. Auch hier erhält man einen
stabilen Gleichgewichtszustand der Schale, wenn man die übrigen Randpartien,
welche nur noch Erzeugende enthalten, doppelt stützt.

Nun zu einer Schale der zweiten Gruppe. Hier sind keine freien Ränder möglich,

da der zugehörige Gleichgewichtszustand nicht stabil wäre. Man kann aber
den ganzen Rand der Schale einfach stützen. Der zugehörige Gleichgewichtszustand

ist eindeutig und stabil.

Wenn wir nun eine Schale der dritten Gruppe betrachten und ihren Rand in
drei Gattungen von Bogenstücken I\, T2 und T' unterteilen, die den Ausführungen

des Abs. 7 entsprechen, so kann man längs T1 einen freien Rand, längs
T2 einfache Stützung und längs T' doppelte Stützung annehmen. In diesem
Falle erhält man einen eindeutigen und stabilen Gleichgewichtszustand.
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9. Geometrische Eigenschaften und geometrische Berechnung der Schalen der
dritten Gruppe.

Die Schalen der dritten Gruppe zeigen bemerkenswerte geometrische
Eigenschaften, welche die Möglichkeit zu einer genauen graphischen Berechnung geben.

Es sollen zuerst die in Abs. 7 eingeführten Parameter S9 und S^ und die
Funktionen cp und xf> geometrisch gedeutet werden. S9 und S^ sind die Längs*
Spannungen, die bei einem komplementären Lastsystem auf die Asymptotenlinien
einwirken, cp und ij? sind krummlinige Koordinaten der Fläche, für welche die
Koordinatenlinien die Asymptotenlinien darstellen.

Wir ersetzen nun die Schale durch ein windschiefes Netz, dessen Maschen jene
schiefwinkligen geradlinigen Vierecke sind, welche die Asymptotenlinien
umgrenzen. Dieses System verhält sich gleich wie die gegebene Fläche und solange
die Maschen genügend klein sind, kann man die beiden Systeme miteinander
vertauschen. Die Lasten müssen an den Ecken dieses Netzwerkes tangential zur
Oberfläche angebracht werden.

Die an einer beliebigen Ecke des Netzwerkes angreifende Einzellast F kann
man nach den zwei Stabrichtungen von zwei verschiedenen Asymptotenlinien
zerlegen, die sich in der betrachteten Ecke schneiden. Man überträgt damit die Last
F nach zwei anderen Knotenpunkten der Fläche, wo man in derselben Weise
verfährt und so fort. Ist nun der Rand der Fläche in drei Gattungen von
Bogenstücken ri, T2 und T7 entsprechend den im Vorstehenden angegebenen
Bedingungen unterteilt und wählt man in passender Weise die beiden Anfangsstäbe,
nach denen man die gegebene Kraft F zerlegt, so kann die Übertragung der
Kraft F nach dem angegebenen Verfahren so erfolgen, daß kein freier Rand
getroffen wird. Kommt man dabei zu einem einfach gestützten Rand T2, so kann
man hier die Zerlegung nach der Richtung des zweiten Stabes, welcher zu der auf
T2 liegenden Ecke führt und nach der Richtung der Stützkraft vornehmen.
Diesen Vorgang nennt man die Rückstrahlung an der einfachen Stützung. Wenn
man in dieser Weise weiter fortfährt, überträgt man schließlich die Last F auf
die doppelt gestützten Zonen. Man hat damit einen Gleichgewichtszustand des

Systemes erhalten, der sich mit den Stützkräften verträgt, und damit also stabil
ist. Wenn man in derselben Weise für jeden belasteten Knoten des Netzwerkes
verfährt, bestimmt man durch eine einfache Zerlegung der Lasten nach der
Parallelogrammregel den zu einem komplementären Lastsystem gehörigen
Gleichgewichtszustand. Die zugehörige zeichnerische Darstellung kann leicht in der
Projektion auf eine beliebige Ebene vorgenommen werden.

An Hand der eben besprochenen geometrischen Bestimmung des
Kräfteverlaufes kann man sich das Gleichgewicht in einer Schale der dritten Gruppe
als durch einen Kräftefluß in Richtung der Asymptotenlinien erzeugt denken,
der von den freien Rändern ausstrahlt, an den einfachen Stützungen reflektiert
wird, um an den doppelten Stützungen zu enden. Die gleiche Eigenschaft wird
auch bei der Fortpflanzung von Wellen bei Erscheinungen beobachtet, die durch
lineare partielle Differentialgleichungen zweiter Ordnung mit reellen Variablen
bestimmt sind und wie diese hängt sie hauptsächlich damit zusammen, daß die
Variablen der Gleichungen, die das Gleichgewicht der Spannungen in der
betrachteten Schale bestimmen, reell sind.
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10. Einfache Beispiele für Schalen der dritten Gruppe.
Das einfachste Beispiel einer Schale der dritten Gruppe liefert das

hyperbolische Paraboloid. Diese Schale zeichnet sich durch die Eigenschaft aus, daß die
Schubspannung längs der geradlinigen Erzeugenden, abgesehen von einem für
die ganze Oberfläche nahezu konstanten Faktor, gleich der auf die Flächeneinheit

der Projektion auf eine beliebige, nicht zur Achse parallele Ebene

bezogenen Komponente der Last in Richtung der Achse des Paraboloids ist.

s\
mp

Fig. 1.

Andererseits pflanzen sich die aus dem Komplementärsystem der Lasten
herrührenden Beanspruchungen längs der Erzeugenden fort, ohne andere
Erzeugende in Mitleidenschaft zu ziehen. Die an einem kleinen Element der Schale

angebrachte tangentiale Beanspruchung ist also nur in den durch die
Erzeugenden gebildeten Streifen spürbar. Nach dem hyperbolischen Paraboloid ist die
einfachste Schale der dritten Gruppe das einschalige Hyperboloid. Diese Schale
hat mit dem Paraboloid die Eigenschaft gemein, daß die aus dem Komplementärsystem

herrührenden Lasten sich längs einzelnen Erzeugenden fortpflanzen, ohne
die anderen Erzeugenden in Mitleidenschaft zu ziehen. Sie unterscheidet sich

von dem hyperbolischen Paraboloid nur durch den komplizierteren Faktor der
Proportionalität zwischen der Schubspannung und der Dichte der aufgebrachten Last.

Nun zu den regelmäßigen, nicht abwickelbaren Flächen und in erster Linie
zu den Konoiden. Für diese Flächen hat der Koeffizient der Proportionalität
zwischen der Schubspannung auf die Asymptotenlinien und der Dichte der
aufgebrachten Last eine bedeutend kompliziertere Form als für die zuerst betrach-
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Fig. 2.

Fortpflanzungsart der Tangentialkräfte
in einem Regelviereck.

Fig. 3.

Fortpflanzungsweise der Tangentialkräfte in irgend
einer Oberfläche der 3. Gruppe.
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teten Flächen; sie zeichnen sich aber vor diesen Flächen dadurch aus, daß die
aus dem Komplementärsystem herrührenden Kräfte sich bei der Fortpflanzung
über die Oberfläche ausbreiten, wobei sich die krummen Asymptotenlinien auf
die geradlinigen Erzeugenden der Fläche abstützen, so daß die an einem kleinen
Element angreifende Tangentialkraft einen fächerförmigen Bereich der Oberfläche
zur Mitwirkung heranzieht, genau wie bei den allgemeinsten Flächen der dritten
Gruppe.

Die Fig. 2 und 3 zeigen den Unterschied zwischen den regelmäßigen über
einem Viereck errichteten Flächen und den anderen Flächen der dritten Gruppe
in Bezug auf den soeben besprochenen letzteren Punkt.

11. Schlußfolgerungen.
Wenn man von den regelmäßigen abwickelbaren Flächen, wie Zylinder und

Kegel absieht, die für sich eine besondere Klasse von Schalen bilden, so scheidet
sich die Gesamtzahl der übrigen doppelt gekrümmten Schalen je nach dem
Vorzeichen der Krümmungen in zwei große Gruppen. Bei diesen beiden Gruppen
von Schalen spielen die Asymptotenlinien die wesentliche Rolle bei der
Übertragung der Tangentialkräfte und infolgedessen auch bei der Bestimmung der Art
der zu einem eindeutigen und stabilen Gleichgewicht gehörigen Stützkräfte.
Wenn die Asymptotenlinien imaginär sind, kann die Schale keine freien Ränder
haben, sie kann jedoch am ganzen Umfang durch einfach gestützte Ränder
begrenzt werden. Das einfachste Beispiel einer solchen Stützung bildet eine ebene

Scheibe, die eine große Steifigkeit in Richtung der Ebene und keine nennenswerte
Steifigkeit normal zu der Ebene aufweist. Sind die Asymptotenlinien jedoch reell,
so kann man die Ränder der Schale in freie Ränder, einfach gestützte Ränder
und doppelt gestützte Ränder, wie im Vorstehenden angegeben, nach bestimmten
Regeln unterteilen. Da die doppelt gestützten Ränder vom konstruktiven Standpunkt

aus Schwierigkeiten bieten können, ist es von Vorteil, ihre Bedeutung auf
ein Minimum einzuschränken. Dies kann auf verschiedene Weise durch
entsprechende Formung der Fläche erreicht werden.

Im Hinblick auf die einfachste Form der Berechnung der Schale kann man
auf Grund der vorstehenden Betrachtungen ersehen, daß unter den doppelt
gekrümmten Schalen besonders die über einem Viereck errichteten regelmäßigen
Flächen zu ganz einfachen Rechenmethoden führen.

Zusammenfassung.
Bei der Konstruktion von Schalengewölben in Eisenbeton handelt es sich

zunächst um statisch bestimmte, von der Elastizitätstheorie unabhängige Probleme.
Der Gesamtbereich dieser Fragen wird unter Ausschluß anderer Probleme
behandelt, die bei der Ausführung von Schalen infolge der entstehenden
Verformungen auftauchen, vor allem aber auch unter Ausschluß der Probleme der
Verträglichkeit jener Verformungen, welche der auf statisch bestimmtem Wege
errechnete Spannungszustand bedingt.

Die allgemein angenommene Hypothese einer gleichmäßigen Verteilung der
Spannungen über die Querschnittsdicke wird benutzt, so daß man sich die Schale
in ihrer Mittelfläche vereinigt denken kann.
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Die Flächentragwerke des Eisenbetonbaues.

Les surfaces portantes dans la construction en beton arme.

Shell Construction in Reinforced Concrete.

Dr. Ing. Fr. Dischinger,
Professor an der Technischen Hochschule, Berlin.

Nachdem vor ca. 12 Jahren von der Dyckerhoff & Widmann AG. in
Verbindung mit der Firma Zeiß, Jena die Schalenbauweise geschaffen wurde, bei
welcher die Lastübertragung im wesentlichen nur durch Dehnungskräfte erfolgt,
hat diese Bauweise in der Zwischenzeit einen gewaltigen Aufschwung genommen,
der nur dadurch ermöglicht wurde, daß nach großzügigen Versuchen die Theorie
dieser räumlichen Gebilde in überraschend kurzer Zeit weitgehend ausgebaut
wurde. In noch viel höherem Maße als durch die Theorie der kreuzweis

gespannten Platten und Pilzdecken wurden hierdurch dem monotolitischen Eisenbeton

auf dem Gebiet der weitgespannten Hallen neue Arbeitsgebiete geschaffen.
Mittels der Schalen und Faltwerke, die beide unter dem Namen Flächentragwerke
zusammengefaßt werden, lassen sich Spannweiten erzielen, deren Verwirklichung
man früher in der Massivbauweise für unmöglich gehalten hätte. Hierbei ist zu
berücksichtigen, daß seit der Erfindung der Schalenbauweise erst ein Jahrzehnt
verflossen ist. In dieser kurzen Zeit wurden hunderttausende von Quadratmetern
große Hallen mit Spannweiten bis zu 100 m erstellt.

Das nachstehende Referat zerfällt in zwei Teile. In dem ersten Teil wird ein
Überblick über die Entwicklung der Theorie seit dem letzten Kongreß gegeben
und die bauliche Entwicklung an Hand einiger Ausführungen gezeigt. In dem
zweiten Teil dagegen wird das Problem der durchlaufenden Zylinderschalen
bzw. Rohre behandelt.

1. Die Entwicklung der Theorie der Schalen seit dem letzten Kongreß in dem
Jahre 1932.

Bezüglich der verschiedenen Schalenformen, die nachstehend besprochen
werden, wird auf das Referat von W. Petry II/4 für den Kongreß Paris 1932

hingewiesen. In dem im gleichen Jahre erschienenen Bd. 1 der „Abhandlungen"

hat U. Finsterwalder1 das Problem der Zeiß-Dywidag-Tonne behandelt.
Diese setzt sich zusammen aus einer zylindrischen Schale und den beiderseitigen
Randbalken. Hierdurch ergibt sich ein einheitlicher Raumträger, den man auch
als räumlichen Plattenbalken bezeichnen kann, bei dem die Schale die Druckplatte
darstellt. Im Gegensatz zu den gewöhnlichen Plattenbalken, bei welchen bei

größeren Abständen der Stege, die Platte sich nur in beschränktem Maße an der
45
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Übernahme der Druckkräfte beteiligt, wirkt bei diesen räumlichen Plattenbalken
die gesamte Schale als Druckplatte mit. Das hängt damit zusammen, daß bei
den gewöhnlichen Plattenbalken nach Fig. la die Mitwirkung der Platte an der
Übernahme der Druckkräfte Nx durch Schubkräfte Nxy zwischen den Balken und
der Platte erzwungen werden muß. Die mitwirkende Breite ist deshalb eine
Funktion der Trägerlänge. Die Druckspannungen verteilen sich aber nicht gleichmäßig

auf die gesamte Breite der Platte, weil sich die von den Balken weiter
entlernten Plattenstreifen infolge der Schubverzerrungen der Mitarbeit entziehen.

AkMxu
Nv Nx*

Nxy NvXV

XV XVXU

Fig. la. Fig. 1 b.

Die Wirkungsweise bei den räumlichen Plattenbalken nach Fig. lb ist eine
wesentlich andere, denn in den Schalen sind, wie aus den Gl. 2 des nachfolgenden
Abschnittes II hervorgeht, auch bei Vernachlässigung der Schubkräfte Nx<?
zwischen Schale und Randbalken, in den Schalen Druckkräfte Nx vorhanden, die

bedingt sind durch die Massen- oder Flächenlasten der Schale und infolgedessen
beteiligt sich die Schale in ihrer ganzen Breite an der Übernahme der Druckkräfte
und zwar in um so höherem Maße je mehr die Querschnittslinie der Schale

gegenüber der Seillinie überhöht ist. Deshalb besitzen die Schalenträger, deren

Querschnittslinie nach flachen Ellipsensegmenten geformt sind, eine wesentlich
bessere Trägerwirkung von Binderscheibe zu Binderscheibe als die Kreiszylinderschalen.

Des weiteren ergeben sich für diese stark überhöhten Schalenträger auch
viel geringere Biegungsmomente in der Gewölberichtung, weil bei ihnen die zur
Übernahme des äußeren Biegungsmomentes notwendigen Druckkräfte Nx zum
weitaus größten Teil durch die Flächenlasten der Schale selbst und nicht durch
die Schubkräfte NX(? erzeugt werden. Die Größe der auftretenden Biegungsmomente

in der Gewölberichtung sind abhängig von dem Anteil der Druckkräfte
Nx, die durch die Schubkräfte NX(? unter Zwang erzeugt werden müssen. Aus
diesen Überlegungen ergibt sich ohne weiteres, daß sich bei den Schalenträgern
mit stark überhöhten Querschnittslinien wesentlich geringere Biegungsmomente
ergeben, als bei den Kreiszylinderschalen. Ich komme auf diesen Punkt später
nochmals zu sprechen.

Zwischen der Schale und dem Randträger ergeben sich vier statisch
unbestimmte Kräfte. Diese sind: 1. Die Gewölbekraft N9, die Querkraft Q9, das

Biegungsmoment M9, und die Schubkraft NX(p. Für die beiden Ränder zusammen
haben wir also acht statisch unbestimmte Größen, und infolgedessen muß dem

Schalenproblem eine Diff.-Gl. achter Ordnung oder ein dieser entsprechendes
System von drei Diff.-Gl. zugrunde liegen, denn wir benötigen, entsprechend den
acht statisch unbestimmten Größen, für die Schließung der beiden Fugen
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zwischen der Schale und den Randträgern acht Konstante. Bei seiner Lösung ging
U. Finsterwalder davon aus, daß bei größeren Binderabständen die Schale nicht
in der Lage ist, durch Biegungsmomente Mx Lasten nach den Binderscheiben
abzutragen und setzte dementsprechend das Moment Mx und die zugehörige Querkraft

Qx, sowie das Drillungsmoment MX(p zu Null. Infolge dieser Annäherung
gelang es, das Problem in Form einer Diff.-Gl. achter Ordnung unter Einführung
einer Spannungsfunktion darzustellen, bei der sich die inneren Kräfte der Schale
in gleicher Weise wie bei der Airy'schen Spannungsfunktion der Scheibe als

Ableitungen dieser Spannungsfunktion darstellen ließen.
Bei kleinen Binderabständen im Verhältnis zu dem Krümmungsradius der

Kreiszylinderschale sind die von U. Finsterwalder getroffenen Vernachlässigungen
MX Qx Mx(p =0 nicht mehr zulässig. Aus diesem Grunde bemühte sich der
Verfasser, für diese Fälle, die für Hallenbauten mit großen Gewölbespannweiten
von Bedeutung sind, für die Kreiszylinderschale eine strenge Lösung zu schaffen.
Da bei diesen weitgespannten Gewölben die Schale mit Rücksicht auf die
Knicksicherheit durch Rippen verstärkt werden muß, habe ich meine Untersuchungen
auch auf anisotrope Schalen ausgedehnt.2 Es ergeben sich hierbei drei lineare
simultane Diff.-Gl. mit konstanten Koeffizienten. Particulare Lösungen dieser
Diff.-Gl. erhält man nach H. Reißner3 dadurch, daß man die Flächenlasten
durch Kreisfunktionen in Form doppelter trigonometrischer Reihen darstellt.
Die Untersuchungen zeigen nun, daß bei einem in sich geschlossenen Rohr drei
Möglichkeiten für die Lastübertragung bestehen. Diese sind: 1. Die Übertragung
der Lasten nach den Binderscheiben durch Dehnungskräfte (Membrantheorie),
2. die Übertragung der Lasten nach den Bindern durch Biegungsmomente Mx in
der Schale (Plattenwirkung), 3. ein Ausgleich der Lastanteile der höheren
Harmonischen durch Biegungsmomente in der Ringrichtung. Dieser Ausgleich in
der Ringrichtung ist nur deshalb möglich, weil den höheren Harmonischen
bezogen auf den gesamten Ringquerschnitt keine tatsächliche vertikale
Lastresultante entspricht. Die tatsächliche Belastung wird durch die Wirkungen 1

und 2 nach den Binderscheiben übertragen. Um bei den Zeiß-Dywidag-Tonnen
die Randbedingungen an den beiderseitigen Randbalken zu erfüllen, muß die
obige Particular-Lösung durch eine Lösung des homogenen Systems der Diff.-Gl.
ergänzt werden. Das homogene System der Diff.-Gl. wird in gleicher Weise wie
bei dem weiter unten zu besprechenden schon 1930 gelösten Problem von
K. Miesel3 erfüllt durch den Exponential-Ansatz em(P cos X x. Damit gehen die drei
Diff.-Gl. in drei gewöhnliche homogene Gleichungen über, die auf eine
Gleichung achten Grades führen, aus deren Lösung wir die Wellenlängen und die

Dämpfungen der von den beiden Rändern ausgehenden Doppelschwingungen
erhalten. Diese Gleichung achten Grades wurde für ca. hundert verschiedene
Fälle gelöst. Die sich daraus ergebenden Werte der Wellenlängen und

Dämpfungen wurden in Diagrammen aufgetragen, die ein Abgreifen dieser Werte
ohne jede Rechnung ermöglichen. Durch den obigen Ansatz lassen sich jedoch
nicht nur die acht Randbedingungen an den Rändern längs der Erzeugenden,
sondern zugleich auch die Randbedingungen an die Binderscheiben erfüllen.

Das Randproblem des geschlossenen Kreiszylinderrohres an den Binderscheiben
wurde, wie oben erwähnt, schon 1930 von K. Miesel für eine ganz beliebige
Randstörung behandelt. Hierbei berücksichtigte K. Miesel auch zugleich die Nach-

45*
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giebigkeit der aussteifenden Scheiben, ein Problem, das bei dem U-Boot-Bau
eine große Rolle spielt. Auch U. Finsterwalder hat sich in seiner unter 1.

angezogenen Arbeit mit diesem Problem beschäftigt und dafür eine Näherungslösung

geschaffen, wieder in Form einer Spannungsfunktion, wobei jetzt im
Gegensatz zu der entsprechenden Lösung für die Zeiß-Dywidag-Schalen, nicht
die Größen Mx, Qx, MX(?, sondern die Werte M9, Q9, MX(p vernachlässigt wurden.
Diese Näherungslösung ergibt bei wesentlich geringerer Rechenarbeit für nicht
allzu große Werte der Harmonischen eine sehr gute Übereinstimmung mit der
strengen Lösung von K. Miesel. Für unsere Bauaufgaben kommen jedoch keine
sehr hohen Werte der Harmonischen in Frage.

Je biegungssteifer die Schale in der Gewölberichtung ausgebildet wird, umso
mehr nähert sich bei den Zeiß-Dywidag-Tonnen das Gesetz der Spannungs-
verteilung der Nx-Kräfte dem /Vawer'schen Geradlinien-Gesetz, weil dann die
Formänderungsarbeit der Biegungsmomente in der Gewölberichtung gegenüber
der der Dehnungskräfte keine Rolle mehr spielt. Je dünner aber die Schale ist,
um so mehr hat sie das Bestreben, die Biegungsmomente zu verkleinern bei

entsprechend ungünstiger Verteilung der Dehnungskräfte. Um trotzdem eine

günstigere Verteilung der Nx-Kräfte zu erhalten, müssen diese dünnen Schalen
mit entsprechend hohen Randbalken kombiniert werden.

Ich habe schon im Anfang meiner Darlegungen darauf hingewiesen, daß sich
bei den stark überhöhten Querschnittskurven, wie z. B. bei dem flachen Ellipsensegment

geringere Biegungsmomente bei wesentlich günstigerer Trägerwirkung
ergeben. Je größer die Schalentonnen werden, umso notwendiger wird es, die
Krciszylinderschalen durch stärker überhöhte Schalenformen zu ersetzen. Bei
den großen Hallenbauten des Reichsluftfahrtministeriums wurden deshalb fast
ausschließlich Schalen mit elliptischer Querschnittslinie verwendet, die nach einem

\orschlag von U. Finsterwalder mittels der Theorie der Kreiszylinderschale
berechnet wurden, dadurch, daß das Ellipsensegment durch drei Kreis-Korbbögen
angenähert wurde. Damit ergibt sich naturgemäß eine sehr verwickelte Rechnung,
da sich hierbei vier Ränder ergeben und die von den Rändern ausgehenden
Schwingungen sich gegenseitig beeinflussen. Es ist deshalb ein starkes Bedürfnis
für eine geschlossene strenge Lösung dieser Querschnittskurven vorhanden. Diese
ist einem meiner Assistenten gelungen und wird demnächst in einer Dissertation
veröffentlicht werden.

Die Schalenträger werden vielfach als durchlaufende Träger über mehrere
Felder ausgeführt. Da diese Schalenträger im Verhältnis zur Trägerspannweite
eine große Höhe besitzen, werden die Stützmomente durch die Schubverzerrungen
teilweise stark beeinflußt. Hierauf hat schon W. Flügge4" hingewiesen. Bei den
schlanken Trägern werden bekanntlich die Einflüsse der Schubverzerrungen
bewußt als bedeutungslos vernachlässigt. Bei den Schalenträgern ist diese

Vernachlässigung nicht immer zulässig. Im Abschnitt II meines Referates habe ich
den Einfluß dieser Schubverzerrungen auf die Stützmomente ausführlich
nachgewiesen und mittels Dreimomentengleichungen ein Verfahren entwickelt, bei
dem die Stützmomente bei beliebigen Trägerspannweiten und bei beliebigen
Belastungen sowohl in der Gewölbe- als auch in der Längsrichtung für isotrope
und anisotrope Schalenträger ermittelt werden können.

Mit den zunehmenden Spannweiten der Schalenträger gewinnt das Knick-
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problem immer mehr an Bedeutung. Hierbei haben wir zwei Fälle zu
unterscheiden: a) Das Knicken der Schale in der Gewölberichtung, und b) das Knicken
in Richtung der Erzeugenden. Das erste Problem wurde schon 1914 von
R. von Mises^ und das zweite noch früher von Lorenz6 und Timoschenko1
behandelt. Bei den Schalenträgern mit großen Gewölbe- und Trägerspannweiten
treten aber diese beiden Probleme in Kombination auf, sodaß man bei einer
gesonderten Berechnung der beiden Knickfälle zu günstige Resultate erhalten
würde. Dieser für die Schalentonnen so wichtige kombinierte Knickfall hat
W. Flügge8 im Jahre 1932 gelöst und in einer sehr ausführlichen für die Praxis
gut verwendbaren Form dargestellt. Es zeigt sich hierbei, daß sich der Einfluß
der kombinierten Knickung in ungünstiger Weise bemerkbar macht. Die
Untersuchungen Flügges erstrecken sich auch auf den Fall der anisotropen
Kreiszylinderschale, auf die man bei großen Spannweiten unbedingt angewiesen ist.
Durch einen Grenzübergang zeigt W. Flügge, daß sich seine Gleichungen auch
auf den Sonderfall der Plattenknickung überführen lassen.

Da bei der Ableitung der Knickbedingungen vorausgesetzt ist, daß die
Formänderungen der Schale klein sind im Verhältnis zu den Schalenstärken, daß aber
andererseits bei den praktischen Ausführungen diese Bedingung sehr schwer
einzuhalten ist, weil sich bei den großen Spannweiten schon sehr merkbare
Deformationen ergeben, muß verlangt werden, daß bei der Knicksicherheit der
Schalen wesentlich höhere Sicherheiten in Rechnungen gestellt werden, als bei
den einfachen Gewölben. Diese Sicherheiten lassen sich leicht erreichen durch
eine Verstärkung der Schale mittels Rippen. Diese Rippen haben zugleich den
Vorteil, daß durch sie die Deformationen sehr stark vermindert werden, und daß
sie zugleich auch die Biegungsmomente der Schale aufnehmen.

In den letzten Jahren haben sich die Schalentonnen in immer größerem Maßstab

in fast allen Ländern durchgesetzt. Es sind zylindrische Schalen mit
Trägerspannweiten bis zu 60 m und Gewölbespannweiten bis zu 45 m, also bei Grundflächen

von 2700 qm zur Ausführung gelangt. Aus den obengenannten Gründen
wurden bei den Schalen mit großer Gewölbe- und großer Spannweite elliptische
Querschnittslinien verwendet. Andererseits wurden eine Anzahl Hallen mit
Gewölbespannweiten bis zu 100 m bei verhältnismäßig kleinen Binderabständen
ausgeführt. Die Fig. 2 zeigt eine derartige Flugzeughalle mit großer Gewölbespann-
weite in der Außenansicht, die Fig. 3 dagegen die Innenansicht einer Flugzeughalle

mit großer Gewölbe- und Trägerspannweite, deren Wiedergabe mir von dem
Reichsluftfahrtministerium in entgegenkommender Weise gestattet wurde. Die

Fig. 4 und 5 zeigen die Verwendung der Schalen bei Industriebauten und zwar
ist in der Fig. 4 die Innenansicht der Postkraftwagenhalle Bamberg und in der
Fig. 5 die Verwendung der Kreiszylinderschalen in Form von Sheddächern für
eine Blechfabrik in Buenos Aires dargestellt.

2. Die Faltwerksdächer.

Bei den Faltwerksdächern wird die gekrümmte Querschnittskurve der Schalen
durch ein Vieleck und damit die Schale durch ein Scheibenwerk ersetzt.. Das
Problem ist naturgemäß genau das gleiche wie bei der Zylinderschale. An Stelle
der Diff.-Gl. treten Differenzgleichungen von der gleichen Ordnung. Hierbei
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Fig, 2.

kommen zu den Biegungsmomenten aus der Schalenwirkung noch solche aus der
Plattenwirkung hinzu, da die einzelnen Scheiben zuerst ihre Lasten durch
Biegungsmomente nach den Kanten des Faltwerkes übertragen müssen, von wo
sie dann durch die Schalen- bzw. Faltwerkswirkung mittels Dehnungskräften
nach den aussteifenden Binderscheiben übertragen werden. Dieses Problem
wurde unter Berücksichtigung der Biegungsmomente aus der Schalenwirkung
zuerst von E. Gruber3 und G. Grüning10 behandelt. Beide Verfasser haben
hierbei den Einfluß der Verdrehungssteifigkeit der Bandbalken vernachlässigt.
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Fig. 4.

Postkraftwagenhalle Bamberg

In dieser Hinsicht wurden die obigen Arbeiten durch R. Ohlig11 vervollkommnet,
der in gleicher Weise, wie dies bei den Schalentragwerken schon immer
durchgeführt wurde, auch die Verdrehungssteifigkeit der Randbinder mit
berücksichtigte. Die Scheibentragwerke sind infolge ihrer größeren Biegungsmomente
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gegenüber den Schalen weniger wirtschaftlich, und da das Bessere der Feind des
Guten ist, bis heute bei größeren Bauten nicht ausgeführt worden. Das hängt
naturgemäß auch damit zusammen, daß sich die Patente für die Schalen und
die Faltwerke in derselben Hand — der Dyckerhoff & Widmann AG. —
befinden.

3. Die aus Zylinderschalen zusammengesetzten Vieleckskuppeln.

Nach diesem System wurden, wie bekannt, die größten bis jetzt vorhandenen
Massivkuppeln der Großmarkthalle Leipzig mit 76 m Spannweite und die Kuppel
der Großmarkthalle Basel mit 60 m Spannweite in Form von Klostergewölben
ausgeführt. Während die Theorie dieser Klostergewölbe schon lange gelöst und
veröffentlicht ist,12 ist dies bezüglich der Theorie der Kreuzgewölbe nicht der
Fall. Mit diesen Kreuzgewölben lassen sich architektonisch sehr schöne und in
akustischer Hinsicht einwandfreie Kuppeln herstellen. Die Fig. 6 zeigt eine
derartige Kuppel in Achteckform. Abgesehen von der guten Akustik besitzen diese

Kuppeln eine sehr schöne und gute Beleuchtung durch die großen in den Kappen
anzuordnenden Fenster, durch die das Licht durch Spiegelung an den Zylinderschalen

bis in die Mitte des Raumes getragen wird. Die Theorie dieser Kuppeln
habe ich im Jahre 1930 anläßlich des Preisausschreibens der Akademie des

Bauwesens entwickelt und dabei gezeigt, daß es möglich ist, die aussteifenden Grate
von Biegungsmomenten frei zu halten. Da mir im Rahmen des vorliegenden
Referates zu wenig Raum zur Verfügung steht, soll die Veröffentlichung dieser
Theorie demnächst in einer Zeitschrift erfolgen.

m^Cfig

Fig. 6.

4. Die doppelt gekrümmten Schalen.

Die Membran- und die Biegungstheorie der am Kämpfer laufend unterstützten
Rotationsschale ist schon lange gelöst. Bei der weiteren Entwicklung der doppelt
gekrümmten Schalen sind die nachstehenden Formen von Bedeutung: a) Die
nur auf wenigen Punkten gelagerten Rotationsschalen, bei denen die
Kuppelwirkung durch eine Trägerwirkung der Schale überlagert wird, wodurch diese

befähigt wird, ihre Lasten nach den in großer Entfernung angeordneten
Tragsäulen zu übertragen; b) die Rotationsschalen und Translationsschalen mit
rechteckigen oder vieleckigen Grundrissen; c) die Absidenkuppeln.

Die Theorie dieser verschiedenen doppelt gekrümmten Schalenformen wurde
von mir im Jahre 1930 gelegentlich der schon erwähnten Preisarbeit entwickelt.
Die Veröffentlichung dieser Arbeiten, die in Form eines Buches von der Akademie
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vorgesehen war, mußte leider aus Mangel an Mitteln unterbleiben. Ich habe
deshalb diese Veröffentlichungen in verkürzter Form im „Bauingenieur"
durchgeführt.13 Bezüglich der Rotationsschalen auf Einzelstützen ist zu bemerken, daß
sich für die Trägerwirkung dieser Schalen das überraschende mit den bekannten
Scheibenwirkungen übereinstimmende Resultat ergibt, daß die Trägerhöhe und
damit die Hebelarme der inneren Kräfte zum Abtragen der Lasten nach den
Säulen proportional den Trägerabständen sind, sodaß also die Spannungen aus
der Trägerwirkung unabhängig von der Trägerspannweite sind. Daraus folgt,
daß sich mit diesen Schalen ebenso wie bei den Vieleckskuppeln sehr große
Trägerspannweiten erreichen lassen. Die Schalen bleiben hierbei jedoch nicht
biegungsfrei. Durch die Arbeit von A. Havers1*, die das Problem der
Randstörung am Breitenkreis einer Kugelschale für eine beliebige Harmonische mittels

Kugelfunktion behandelt und löst, ist es nunmehr möglich, auch die in den
Schalen entstehenden Biegungsmomente zu berechnen, deren Kenntnis für
Großausführungen eine unbedingte Notwendigkeit darstellt. Die Durchrechnung eines

Beispiels, die natürlich viel Mühe macht, wäre sehr wünschenswert, um Klarheit
zu erhalten, welche Spannweiten sich mit diesen Schalenformen erreichen lassen
und ob sie wirtschaftlich sind im Vergleich mit denen unter b) genannten Schalenformen,

bei denen die Lastübertragung fast ausschließlich durch Dehnungskräfte
erfolgt und bei denen also die Stärke der Schale nur von der Knicksicherheit
abhängig ist, denn selbst bei den größten Spannweiten können bei diesen Schalenformen

die zulässigen Spannungen nicht ausgenützt werden. Die Berechnung
dieser Rotationsschalen mit rechteckigem oder vieleckigem Grundriß läßt sich

von dem vom Verfasser angegebenen Verfahren in sehr einfacher Weise mittels
der Diff.-Gl. des Membranspannungszustandes durchführen.

Die Fig. 7 zeigt eine derartige, sehr flache Schale mit rechteckigem Grundriß,
die für ein Gebäude der Technischen Hochschule Danzig ausgeführt wurde. Bei
12 m Spannweite besitzt die Schale nur einen Pfeil von 0,77 m. Das
Pfeilverhältnis 1/f beträgt 15,6, ist also geringer als bei den flachsten Brücken. Diese

Figur läßt klar erkennen, daß ein derartiger Schalenträger nichts anderes ist, als
ein räumlicher Plattenbalken, der sich von dem gewöhnlichen Plattenbalken aber
dadurch unterscheidet, daß die gesamte Schale als Druckplatte wirksam ist. In
der Fig. 8 ist die Verwendung dieser doppelt gekrümmten Schalen mit
rechteckigem Grundriß für eine Klinkerhalle in Beocin dargestellt. Diese Figur zeigt
auch die Anwendung der unter c) genannten Apsidenschalen. Wie ich in dem

obengenannten Aufsatz im „Bauingenieur"13 dargelegt habe, ist in diesen halben

Kuppeln ein Membranspannungszustand vorhanden, wenn die Schale am Kämpfer
durch Ringe ausgesteift wird. Da diese Halbkuppeln als selbständige Bauglieder
hergestellt werden können, sind sie für den Hallenbau ein sehr wichtiges neues
Bauglied, da sie mit zylindrischen Tonnen zusammengesetzt die Herstellung
von Kuppeln mit annähernd ovalen Grundrissen ermöglicht. Diese
Halbkuppeln wurden deshalb auch in großem Umfang für Flugzeughallen als
Abschlußbauten und zwar mit Spannweiten bis zu 40 m verwendet. Die in der
Fig. 3 dargestellte Flugzeughalle, die aus einer großen Längstonne besteht, ist in
dieser Weise an den Enden durch Apsidenkuppeln abgeschlossen. Die Fig. 9 endlich

zeigt eine weitere derartige Apsidenkuppel für den Musikpavillon des Bades
Schwalbach.
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Klinkerhalle Beocin.
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5. Das Prinzip des statischen Maßenausgleichs zur Berechnung von affinen
Schalen.

t
Die im vorhergehenden Abschnitt besprochenen Schalenformen lassen sich

mit Hilfe der Diff.-Gl. des Membranspannungszustandes berechnen, weil die

Kugelschale mathematisch leicht zu berechnen ist. Das Prinzip des statischen

Maßenausgleichs ermöglicht es uns, in ganz einfacher Weise auch die dazu
affinen Schalenformen zu berechnen. Ich habe dieses Prinzip im Jahre 1928
entwickelt und im Handbuch für Eisenbeton für bestimmte Fälle dargestellt;15
im Jahre 1930 habe ich dann gelegentlich der schon erwähnten Preisarbeit mit
Hilfe der Diff.-Gl. der beliebig geformten Schale eine allgemeine Darstellung
des Problems gegeben und nunmehr im „Bauingenieur" 16 veröffentlicht. Hiermit
läßt sich z. B. die Berechnung einer Schale mit elliptischem Grundriß auf die

Berechnung einer Botationsschale als Grundschale zurückführen. Die weiteren
zahlreichen Aufgaben, die sich damit lösen lassen, sind in dem obigen Aufsatz
gekennzeichnet; es sei nur kurz darauf hingewiesen, daß sich auch affine
Baumfachwerke in einfacher Weise berechnen lassen.
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Fig. 9.

Musikpavillon Bad Schwalbach.

6. Schalen mit ganz beliebiger Krümmung.

Bei den doppelt gekrümmten Schalen, die nach beliebigen Flächen gekrümmt
sind, lassen sich mit Hilfe der Diff.-Gl. des Mcmbranspannungszustandes keine

Lösungen finden, weil wir die drei sich ergebenden partiellen Diff.-Gl. nicht
integrieren können. Wir müssen einen anderen Weg beschreiten und diese

Gleichungen mittels Differenzenrechnung lösen.

Eine sehr übersichtliche und leicht anwendbare Methode zur Lösung derartiger
Probleme hat Pucher im Jahre 193117 gegeben. Diese einfache Lösung wird
dadurch ermöglicht, daß gezeigt wird, daß sich die drei Diff.-Gl. in eine einzige
zusammenfassen lassen, durch Einführung einer Spannungsfunktion, durch die
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der Spannungszustand vollständig beschrieben wird. Die inneren Kräfte des

Membranspannungszustandes lassen sich in ähnlicher Weise wie bei der Atry'schen
Spannungsfunktion als Ableitung daraus gewinnen. Da über die Form der Fläche
nur die Voraussetzung der Stetigkeit getroffen ist, lassen sich damit alle im
Schalenbau auftretenden Formen berechnen, wenn die Bandbedingungen gegeben
und mit dem Membranspannungszustand verträglich sind. Die Differenzenmethode

wird man immer da anwenden, wenn, wie schon oben erwähnt, eine

Lösung mittels der Diff.-Gl. unmöglich ist. Die späteren französischen Arbeiten
gehen im wesentlichen den von Pucher angegebenen Weg. Auf diese Theorie
baut sich die Entwicklung der Schalenbauweise in Frankreich in Form von nicht
abwickelbaren Regelflächen auf. Für den speziellen Fall der Rückungsflache
hat Flügge4 in der gleichen Weise mittels Differenzengleichungen eine Lösung
angegeben.

Zum Schluß möchte ich noch auf eine interessante Ausführung hinweisen,
die in Fig. 10 dargestellt ist. Es handelt sich um die Kuppel im Haus des

Deutschen Sports, die für die Olympiade hergestellt wurde. Der Entwurf stammt
vom Architekt March, die konstruktive Durchbildung von U. Finsterwalder. Das
Oberlicht ist ganz exzentrisch angeordnet, um für den Bing eine gute Beleuchtung
zu erhalten. Die Kuppel besitzt jedoch tatsächlich keine Kuppelwirkung, weil die
einzelnen Schalensektoren, die durch kräftige Bippen ausgesteift sind, von den

Kämpfern der Kuppel aus vorkragen, ohne sich gegenseitig abzustützen.
Mit Bücksicht auf den geringen im ,,Vorbericht" zur Verfügung stehenden

Baum erscheint der zweite Teil des Beferates über die durchlaufende
Kreiszylinderschale im Band 4 der „Abhandlungen" der J. V. B. H. Zürich, 1936.
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Fig. 10.

Haus des deutschen Sports. Berlin-Reichssportfeld



Die Flächentragwerke des Eisenbetonbaues 717

Literatur angaben
1 U Finsterwalder Die Theorie der zylindrischen Schalengewolbe, System Zeiß-D\widag

Intern Verein f Brücken- u Hochbau, Abh 1, 1932 und Diss München 1930, desgl Ing Arch
Bd IV (1933)

2 Fr Dischinger Die Strenge Theorie der Kreiszvlmderschale in ihrer Anwendung auf die
Zeiß-Dywidag-Schalen, Beton und Eisen 1935, H 16—18

3 K Miesel Über die Festigkeit von Kreiszylinderschalen bei nicht achsensymmetrischer
Belastung Ing Arch Bd 1 (1930)

4 \\ Flügge Statik und Dynamik der Schalen Jul Sprmger, Berlin 1934
6 R v Mises ZVDI 58, 1914 S 750ff
6 R Lorenz ZVDI 52, 1908 S 1766ff
7 S Timoschenko Z Math Ph}s 58 (1910), S 378ff
Zu 6 und 7 siehe auch K v Sanden und F Tolke Stabihta sprobleme dunner Kieis-

zylinderschalen Ing Arch Bd 3, 1932
8 W Flügge Die Stabilität der KreLszvlmderschale Ing Arch Bd 3 (1932)
9 E Gruber Berechnung prismatischer Scheibenwerke Int Verein f Brücken- u Hochbau

Abh 1 (1932), S 225 und Abh 2 (1934), S 206
10 G Grüning Die Nebenspannungen der prismatischen Scheibenwerke Ing Arch Bd 3

(1932)
11 R Ohhg Beitrag zur Theorie der Prismatischen Faltwerke Ing Arch Bd 6 ^1935)

und Die Nebenspannungen der Kandtrager prismatischer Faltwerke Diss Darmstadt H934)
Bezuglich der Membrantheorie zu 9 und u siehe auch H Craemer Allgemeine Theorie der

Faltwerke Beton und Eisen 1930, b 276 und G Ehlers Die Spannungsermittlung in Flachen-
tragwerken Beton und Eisen 1930, S 281

12 Fr Dischingei Theorie der Vieleckskuppeln Diss Dresden 1929 und Beton und Eisen
1929, S 100

13 br Dischinger Die Rotationsschalen mit unsymmetrischer Form und Belastung
Bauingenieur 1935, H 35—38

14 A Havers Asymtotische Biege heorie der unbelaste en Kugelschale Ing Arch 6, 1935
15 Fi Dischinger Der Spannungszustand in affinen Schalen und Raumflachwerken

Bauingenieur 1936, S 128, siehe hierzu auch
16 Fr Dischinger Hdbch fur E B, 3 Aufl Bd 12, 1928 und W Flügge*
17 A Pucher Beitrag zur Theorie tragender Flachen Diss Graz, 1931, und unter dem

Titel Über den Spannungszustand in doppell gekrümmten Flachen in abgekürzter Torrn Beton
und Eisen 1934 H 19

Zusammenfassung.

In dem Teil I des Referates wird eine Übersicht über die Entwicklung der
Theorie der verschiedenen Schalenformen seit dem letzten Kongreß im Jahre
1932 gegeben und es werden die maßgebenden Arbeiten in ihren Grundsätzen

besprochen.
In dem Teil II dagegen wird das Problem des ausgesteiften zylindrischen

Rohres bzw. Zeiß-Dywidag-Daches behandelt und gezeigt, daß bei diesen

Schalentragern der Einfluß der Schubverzerrung auf die Einspannungsmomente
nicht \einachlassigt meiden darf, im Gegensatz zu den schlanken Balken des.

Ingenieurwesens, bei welchem diese Einflüsse bewußt als sehr germg vernachlässigt

werden.
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Massive Kuppeln, zylindrische Behälter
und ähnliche Konstruktionen.

Coupoles massives, reservoirs cylindriques
et constructions semblables.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,
Dozent an der Königlichen Technischen Hochschule Stockholm.

Die exakte Berechnung der Biegungsspannungen in einer massiven Kuppel
ist mit sehr großer Mühe verknüpft. In einer der Kgl. Technischen Hochschule
zu Stockholm vorgelegten Doktorabhandlung1 kommen diese Schwierigkeiten
zum Vorschein, und man darf sich fragen, ob der in der Praxis tätige Ingenieur
jemals Zeit und Gelegenheit hat, die Abmessungen einer Kuppel an Hand der
exakten Theorien zu errechnen. Allein schon die Aufstellung der
Grundgleichungen ist ziemlich verwickelt, und ihre ganze Integrierung führt zu
Reihen, die häufig schwer zu handhaben sind und langsam konvergieren. Auch
wenn ihre Konvergenz für manche Wandstärken befriedigend ist, kann eine

Änderung der Wandstärke bewirken, daß die gute Konvergenz verloren geht.
Selbst wenn der Ingenieur den mathematischen Apparat für die Behandlung
des Problems vollkommen beherrscht, ist die für das Durchrechnen eines
bestimmten Belastungsfalles erforderliche Arbeit viel zu groß. Überhaupt dürfte
es unmöglich sein, auf dem von Meißner, Bolle, Dubois, Honegger, Ekström u. a.

angewiesenen Wege zu praktischen Methoden zu kommen. Beispielsweise für
sphärische Kuppeln ergeben sich beim Integrieren in den einfachsten Fällen
hypergeometrische Reihen, die wegen ihrer langsamen Konvergenz nicht das

richtige Werkzeug des Ingenieurs bilden.
In Anbetracht dieser Tatsachen ist es vor allem wichtig, daß man sich für

die weitere Entwicklung der Kuppeltheorie auf solche Lösungen einrichtet, die
den Anforderungen der Praxis Genüge leisten, auch wenn man dabei gewisse
Annäherungen einführt. Wie Geckeier2 gezeigt hat, läßt sich auch mit
verhältnismäßig einfachen mathematischen Hilfsmitteln eine Lösung finden, die sich

von der exakten nur unwesentlich unterscheidet und die ganz besonders einfach
und bequem anzuwenden ist, falls Wandstärke und Radius konstant sind. Die

gute Übereinstimmung zwischen Geckelers Theorie und der exakten Theorie

1 John Erik Ekström: Studien über dünne Schalen von rotationssymmetrischer Form und
Belastung mit konstanter und veränderlicher Wandstärke. Stockholm 1932.

2 Siehe z. B. Handbuch für Eisenbetonbau, Band 6. Berlin 1928.
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kann dazu berechtigen, jene ausführlicher zu erörtern, falls man sich darüber
klar ist, welche Annäherungen eingeführt werden. Noch einen Schritt näher
kommt man dem exakten Resultat, wenn man Blumenthals und Steuermanns

sogenanntes asymptotisches Integrationsverfahren benutzt, das auch bei beliebig
variabler Wandstärke der Kuppel anwendbar ist. Mit diesem Verfahren kommt
man tatsächlich weiter als mit den Methoden, die auf Lösungen in Form
unendlicher Reihen aufgebaut sind, wobei man bisher immer annehmen mußte,
daß die Wandstärke nach einer bestimmten Funktion veränderlich sei, damit
sich die Lösung durchführen ließ.

Eine nähere Prüfung der von Geckeier angegebenen Schlußgleichungen zeigt,
daß diese von genau derselben Art sind wie die Gleichungen für einen elastisch
unterstützten Träger. Die physikalische Analogie ist auch nicht schwer zu
erkennen. Den Meridian der Kuppel kann man nämlich als einen Träger
betrachten, der von den Parallelkreisen oder Ringen unterstützt ist. Da diese sich
zusammendrücken oder ausdehnen lassen, entsprechen sie in statischer Hinsicht
einer elastischen Unterlage.

Durch diese Betrachtungsweise kann man sich die Statik der * Kuppel mit
ausreichender Genauigkeit klarmachen. Für die Aufstellung der Gleichgewichtsgleichungen

braucht man dann auch nicht auf die Meißnersehen Differentialgleichungen

zurückgreifen, sondern man kann alle erforderlichen Gleichungen
direkt einfach mit Hilfe der Theorie des elastisch unterstützten Trägers
aufstellen. Dies bedeutet für den in der Praxis tätigen Ingenieur, daß er nicht erst
den Versuch zu machen braucht, die ziemlich komplizierte klassische Kuppeltheorie

zu begreifen; vielmehr kann er auf eigene Faust die erforderlichen
Gleichungen ableiten.

Aus den Arbeiten Geckelers geht hervor, daß er selbst die hohe Bedeutung der
von ihm vorgeschlagenen Annäherungen nicht vollständig erkannt hat; d. h. er
hat selbst nicht verstanden, daß die Kuppel im großen betrachtet wie eine stetige
Reihe von Trägern, auf federnder Unterlage wirkt. Die von mir hier
vorgeschlagene Betrachtungsweise kann natürlich in der Weise erweitert werden,
daß man den Meridian nicht als einen Träger, sondern als ein Gewölbe betrachtet,
das elastisch von den Ringelementen der Kuppel unterstützt wird.

Durch Einführung dieser genaueren Betrachtungsweise bekommt man einen
exikteren Einblick in die Statik der Kuppel, und die Gleichungen, die man dabei
erhält, sind dieselben wie nach Meißner.

Es ist offenkundig, daß man besonders bei sehr flachen Kuppeln, wo also die

Gewölbewirkung in den Meridianelementen stark hervortritt, zur Einführung
dieser letzteren Betrachtungsweise genötigt ist, um die erwünschte Genauigkeit
zu erzielen. Je steiler die Tangente der Kuppel an der Auflage geneigt ist, um
so genauer wird die angenäherte Betrachtungsweise mit dem Meridian als einem

Träger auf elastischer Unterlage, und in dem Sonderfall, daß die Tangente der

Kuppel überall senkrecht ist, wenn also die Kuppel in einen Zylinder übergeht,
ist die Betrachtungsweise vollkommen exakt.

Um näher zu erläutern, wie einfach das Kuppelproblem auf solche Weise
behandelt werden kann, habe ich einige Probleme durchgerechnet und die

Ergebnisse mit denjenigen verglichen, die man nach der exakten Theorie erhält.
Die Übereinstimmung ist überall erstaunlich gut.
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Als erstes Beispiel wählen wir eine sphärische Betonkuppel von gleichmäßiger
Dicke, Wandstärke b 16 cm, Radius r 1000 cm, Öffnungswinkel 40°. Die
Kuppel sei mit einem konstanten Flüssigkeitsdruck p 1,0 kg/cm2 belastet und
sei rund um die Kante fest eingespannt (siehe Fig. 1).

2500-

2000

1500

^ 1000—

500

exact

cm

40 35 30 25 20

Exact
500

Fig. 1.

Vergleich zwischen der Große des Meridianmomenles, berechnet erstens nach Gleichung 5
und zweitens nach der exakten Methode mittels hypergeometrischer Reihen. Die Abweichungen

sind fur praktische Falle belanglos.

Berechnet man die Spannungen in dieser Kuppel nach der Membrantheorie,

prso ergibt sich eine Meridiandrucksparwiung Tt — und eine Ringdruckspan-

nung T2 pr Diese Meridian- und Ringspannungen sind über die ganze Kuppel

konstant, und die „membrantheoretische" Lösung ist also sehr einfach. Unter
Einwirkung dieser Druckspannungen Tx und T2 wird die Kuppel zusammengepreßt,

sodaß sich ihr Radius um den Betrag
T- r p r
Eb"' ±h-2Eb vernn?ert-

Diese Verringerung des Radius ist nicht sehr groß, sie beläuft sich unter den

gegebenen Voraussetzungen und bei E 210000 kg/cm2 auf nur 0,15 cm. Da
die Kuppel rund um die Kante festgehalten wird, ist sie jedoch nicht imstande,
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ihre Form frei zu verändern; die der Kante am nächsten gelegenen Teile werden
den ursprünglichen Radius beibehalten, aber je weiter man sich von der Kante
entfernt, umso größer wird die Bewegungsfreiheit der Konstruktion und umso
freier kann die Formänderung vor sich gehen. Obgleich die Zusammendrückung
des Radius in diesem Falle ziemlich geringfügig ist, entstehen nahe an den
Kanten gewisse Störungen, die zu Biegungsmomenten von solcher
Größenordnung führen, daß man sie nicht vernachlässigen darf.

Wir wollen nun untersuchen, wie große Momente in einem elastisch
unterstützten Träger entstehen, wenn wir annehmen, er erhalte eine Ausbiegung

p r2
entsprechend dem oben berechneten Werte ^ Für den Zusammenhang

zwischen Moment und Ausbiegung gilt die Gleichung

ej-S=-m> w

und die Einwirkung der elastischen Unterstützung der Ringelemente wird
ausgedrückt durch die Gleichung

™L =*.y (2)

Eliminiert man M± aus diesen beiden Gleichungen, so erhält man

oder, wenn die Biegungssteifheit EI als konstant und gleich

vorausgesetzt wird

s
&_

m»—1 '
12

d^+4k4y °

3(m*-l) 1 (3 b)
worin _ _ m2 r* b*
ist.

Das allgemeine Integral der Gleichung 3b kann man bekanntlich in folgender
Form schreiben:

y e~kx (A cos kx + B sin kx) + e^kx (C cos kx + D sin kx) (4a)

d. h. die Ausbiegung kann man als die Summe zweier Sinusschwingungen
betrachten, die eine mit gedämpften, die andere mit zunehmenden Amplituden.
Bekanntlich kann man im allgemeinen die Koeffizienten C und D gleich 0 setzen,

vorausgesetzt, daß der Träger nicht gar zu kurz ist und daß der Ursprung in den
Punkt verlegt wird, von dem die Störung ausgeht. Für geschlossene Kuppeln
kann man daher das Integral mit ausreichender Genauigkeit in folgender Form
schreiben:

y e~kx (A cos kx + B sin kx) (4b)

Hier bezeichnet x die Bogenlänge des Meridians, von dem Kuppelrand aus
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gemessen. In diesem Falle sind die arbiträren Konstanten A und B leicht aus
der Randbedingung bestimmbar, daß

pry tttt und y o bei x o ist.J 2E& J

prDies ergibt A B — ^=— und die Ausbiegung des Meridians ist also

pr2
y — zf-nT ' e~kx (cos kx -f- sin kx).

Durch Einsetzen in Gleichung 1 erhält man den Ausdruck für das Meridianmoment

V3
M1 —— prbe_kx (—cos kx-)-sin kx) (5)

1 Li

In diesem Ausdruck ist die Einwirkung der Querzusammenziehung des Materials

vernachlässigt, d. h. die Poissonsche Zahl m ist gleich unendlich gesetzt.
Mit Hilfe der in Tabelle I angegebenen Werte der Funktionen e~kxcoskx und

e—kx sm kx jäßt sjcn Gleichung 5 leicht zeichnerisch wiedergeben. In Fig. 1

sieht man, wie das Meridianmoment M1 sich mit der Entfernung vom Kuppelrand

verändert. Zum Vergleich sind die nach Bolles Methode mit
hypergeometrischen Reihen berechneten exakten Werte angegeben.3 Wie man sieht, ist die

Übereinstimmung zwischen den exakten Resultaten und den Annäherungswerten
erstaunlich gut, weshalb kein Anlaß besteht, das Kuppelproblem zu einer
verwickelten mathematischen Aufgabe zu gestalten. Bei Kuppeln mit größerem
Öffnungswinkel als in diesem Falle, 40°, ist die Übereinstimmung zwischen den
exakten und den angenäherten Werten noch besser. Nur bei Kuppeln, deren
Neigungswinkel an den Auflagen sehr klein ist, erlangt der Einfluß der
gemachten Annäherungen praktische Bedeutung. Nebenbei bemerkt sind solche

Kuppeln unzweckmäßig wegen der sehr starken Randstörungen, die beim
Anschluß der Kuppel an ihren etwaigen Auflagering auftreten.

Für die Berechnung der Spannungen in der Kuppel ist nicht nur das
Meridianmoment M± von Bedeutung, sondern auch die Ringmomente M2 und die
Zuschüsse zur Meridiandruckspannung und Ringdruckspannung, die dadurch
entstehen, daß die Randbedingungen nicht den Voraussetzungen der Membrantheorie

entsprechen. Diese Größen, M2, ATX und AT2 lassen sich direkt aus den
nachstehenden Formeln berechnen. Die Übereinstimmung zwischen den nach
der hier gezeigten Annäherungsmethode erhalteinen Werten und den exakten ist
ebenfalls sehr gut, wie aus nachstehenden, in Tabelle 2 zusammengestellten
Vergleichen hervorgeht.

Die Ableitung der mathematischen Ausdrücke für die Zuschußkräfte ATX
und AT2 erfolgt am einfachsten unter Anwendung der Analogie, daß der
Meridian ein Träger mit elastischer Unterlage ist. Den Zuschuß in der
Meridiandruckspannung, AT1? kann man also betrachten als die Scherkraft im Träger,
multipliziert mit cota, wo a der Neigungswinkel des Meridians zur Horizontalebene

ist. Hierbei erhält man

AT1 cota-EJ.^J (6)

3 Siehe Ekström, a. a. O., S. 124.
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Tabelle I.
Werte der Funktionen e-kxCoskx, e—kxsinkx, e—kx(coskx— sinkx) und e~kx (cos kx -f sinkx.

kx e-kx cos kx e—kx sin kx e—kx (cos kx — sin kx) e—kx (cos kx -f- sin kx)

0 1.0000 0.0000 1.0000 1,0000

*
~8~

0.6239 0.2584 0.3655 0.8823

*
T 0.3225 0.3225 0.0000 0.6450

3*
8

0.1179 0.2845 — 0.1665 0.4024

* 0.0000 0.2079 — 0.2079 0.2079

5*
8

— 0.0536 0.1297 — 0.1833 0.0761

3*
4

— 0.0671 0.0671 — 0.1342 0.0000

7*
8

— 0.0592 0.0245 — 0.0837 — 0.0347

TT — 0.0432 0.0000 — 0.0432 — 0.0432

9*
8

— 0.0269 — 0.0112 — 0.0157 — 0.0381

5*
4

— 0.0139 — 0.0139 0.0000 — 0.0279

11*
8

— 0.0051 — 0.0123 0.0072 — 0.0174

3tt
2

0.0000 — 0.0090 0.0090 — 0.0090

13*
8

0.0023 — 0.0056 0.0079 — 0.0033

7*
4

0.0029 — 0.0029 0.0058 0.0000

15*
8

0.0026 — 0.0011 0.0037 0.0015

2* 0.0019 0.0000 0.0019 0.0019
17

0.0011 0.0005 0.0006 0.0016

9
0.0006 0.0006 0.0000 0.0012

19
0.0002 0.0005 — 0.0003 0.0007

5
T71 0.0000 0.0004 — 0.0004 0.0004

21
— 0.0001 0.0003 — 0.0004 0.0002

11
— 0.0001 0.0001 — 0.0002 0.0000

23
— 0.0001 0.0001 — 0.0002 0.0000

3* — 0.0001 0.0000 — 0.0001 — 0.0001



Massive Kuppeln, zylindrische Behälter und ähnliche Konstruktionen 725

Der Zuschuß in der Ringdruckspannung, AT2, ist ein Maß für die elastisch
unterstützende Wirkung der Unterlage, und AT2 ist infolgedessen direkt
proportional der Durchbiegung y des Meridians, also

AT Eb
(7)

Das Ringmoment M2 schließlich ergibt sich am einfachsten durch Bestimmung
der Krümmungsänderung der Ringe,4 und man erhält bei Vernachlässigung des

Einflusses der Querzusammenziehung

* EJ dy
M2 cot a r~2 r dx

(8)

Setzt man in die Gleichungen 6, 7 und 8 die Gleichung für die Durchbiegung
des Meridians ein:

pr-
y — 2Eb

e—kx ^cos kx _|_ sm kx)

so erhält man folgende Ausdrücke für AT1? AT2 und M2

pr2&2
AT1

AT2 -

cot a ^—pr- k3 e "kx cos kx
o

pr£_ e~kx ^cos kx ^_ gm J^
Li

prb2, i ^
Mg cot a • hrr- k e_kx sin kx

1 u

(6 a)

(7 a)

(8a)

Tabelle 2 enthält die so errechneten Werte der Meridian- und Ringspannungen
und Ringmomente, verglichen mit den exaltten Werten.

Tabelle 2.

Vergleich zwischen den angenäherten und exakten Werten der Meridian- und Ringspannungen
und Ringmomente.

Neigungswinkel

a
des Meridians

Tj + ATi
angenähert

kg/cm

Ti + ATj
exakt
kg/cm

T2 + AT2
angenähert

T2 + AT2
exakt

M2
angenähert
kg cm/cm

M2
exakt

40° 443 439 0 0 0 0
35° 474 481 215 193 99 113
30° 503 504 437 427 62 73
25° 506 508 517 520 12 17

20° 503 504 518 523 — 8 — 10
15° 501 501 511 510 — 9 — 14
10° 499 499 501 501 — 5 — 9

5° 499 498 499 498 0 — 3

Das oben durchgerechnete Problem entspricht den denkbar einfachsten
Randbedingungen. Um die Anwendbarkeit der Methode auch bei komplizierteren

* Siehe z. B. Föppl: Drang und Zwang, Band 2. Berlin 1928.
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Randbedingungen nachzuweisen, habe ich eine Kuppel durchgerechnet, die an
einen umgebenden kreisrunden Zylinder gemäß Fig. 2 angeschlossen ist. Um
das Problem einigermaßen zu vereinfachen, wurde der Wasserdruck auf die

Kuppel als konstant angenommen. Dieses Problem ist von Ekström unter den

gleichen Annahmen ausführlich behandelt worden. Tabelle 3 enthält für das

Meridianmoment M± und für die Ringspannung T2 die berechneten Werte
verglichen mit den exakten.

Für alle Konstanten der Kuppel wird nachstehend der Index 1 benutzt, für
die Konstanten des Zylinders der Index 2.

Ar2=17?&?'

6/ *f6cm

f12Art

#
*

&2 =24vrt

Fig 2

Die Berechnung dieser Kuppelkonstruktion wird in folgender Weise
durchgeführt. Wenn die innere Kuppel und der Zylinder voneinander befreit werden
und sich unter Einwirkung der Belastung unbehindert deformieren dürfen,
ergibt sich nach der Membrantheorie

pr2 p-104
eine Abnahme des Kuppelradius um nrr<, *——— -3,12cm

2EcV E

pr 2
p • 104

und eine Zunahme des Zylinderradius um ^-~- —=— • 1,72 cm.
ri&2 E

Die Zj linderwand bildet dabei einen kleinen Winkel zur Senkrechten

y ' 1*72. (Siehe Fig. 2.)

Da dieser Deformationszustand mit den tatsächlichen Auflagerverhältnissen
unvereinbar ist, müssen gewisse Zuschußkräfte und Zuschußmomente eingeführt
werden, um den Stetigkeitsbedingungen Genüge zu leisten. Diese
Stetigkeitsbedingungen sind folgende:
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Zylinder und Kuppel sollen dieselbe Ausbiegung und Winkeländerung im
Vereinigungspunkte haben, und der Vereinigungspunkt soll außerdem hinsichtlich

der Momente und angreifenden Kräfte im Gleichgewicht sein. Dies bedeutet
vier Randbedingungen, die mittels vier Gleichungen ausgedrückt werden können,
wodurch sich alle unbekannten Formänderungen, Momente usw. bestimmen
lassen.

Um die Aufstellung der Gleichungen zu erleichtern, folgen hier die allgemeinen
Ausdrücke für die Ausbiegung und ihre Ableitungen. Man hat

y e~kx [A cos kx + B sin kx]
y' k e-kx [(B — A) cos kx — (A + B) sin kx]
y" 2k2 e"kx [— B cos kx + A sin kx]

^ '
y'" 2k3 e"kx [(A + B) cos kx + (B — A) sin kx]

Die erste Bedingung, daß die Ausbiegungen des Zylinders und der Kuppel
am Rande selbst gleich groß sein sollen, läßt sich durch folgende Gleichung
ausdrücken:

— Ax sin 40° + A2 P~- (3,12 sin 40° + 1,72).

Damit die Winkeländerungen gleich groß werden, muß

k. (B. - A.) k2 (B, - A2) -^ • 1,72

sein, und für das Momentgleichgewicht gilt außerdem

kt2 EJx Bx k22 E J2 B2.

Dia restliche Bedingung soll ausdrücken, daß die horizontale Reaktion wegen
Belastung der inneren Kuppel von der Scherkraft im Zylinder sowie von der
Scherkraft und der Meridianspannung in der Kuppel aufgenommen werden
soll, d. h.

— 2V EJX (Ax + B,). -riö — 2 ki* EJ2 (A2 + B2) P ' 500 • cos 40°.

Durch Elimination aus diesen vier Bedingungsgleichungen erhält man für
p — 1 kg/cm2 folgende Werte der Konstanten:

IO4 IO4
Ax - 15,35 ~ B, - 7,16 • ^~

10^ x. IO4

E
A2 — 6,13--^- B2= 2,05

Das Problem ist damit vollständig gelöst; die Momente usw. kann man nun
ohne Schwierigkeit für jeden beliebigen Punkt des Zylinders und der Kuppel
berechnen. In Tabelle 3 sieht man einen Vergleich der berechneten und der
exakten Werte für Meridianmoment und Ringspannung der Kuppel. Die
Übereinstimmung ist in allen Punkten befriedigend.
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Tabelle 3.

Meridianmomente und Ringdruckspannungen der Kuppel nach Fig. 2.

Neigungswinkel

a
des Meridians

M,
angenähert

kgcm/cm
exakt

kgcm/cm

Tf+ AT2
angenähert

kg/cm

T2 + AT2
exakt
kg/cm

40° — 5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
25° 597 764 618 639
20° — 6 9 572 593
15° — 99 — 141 520 526
10° — 54 — 80 498 498

5° — 8 — 15 495 % 493

Diese zwei Beispiele lassen also erkennen, daß die hier gezeigte Methode für
die Behandlung des Problems praktisch brauchbare und auch leicht zu findende
Resultate ergibt.

Wie eingangs erwähnt, kommt die Annäherungslösung den exakten Werten
umso näher, je steiler die Kuppel und auch je geringer ihre Wandstärke wird.
Besonders dieser letzte Umstand ist, wie u. a. Steuermann^ nachgewiesen hat,
von großer Bedeutung. Die exakte Gleichung für die Ausbiegung des Meridians
enthält nicht wie Gleichung 3 b nur Ausdrücke vierter und null ter Ordnung,
sondern auch Ausdrücke mit Derivaten erster, zweiter und dritter Ordnung, die
aber alle mit Polynomen von cota multipliziert sind. Mit zunehmendem a
verringert sich die Bedeutung dieser Ausdrücke, und für a 90°, also beim
Zylinder, fallen sie ganz weg, d. h. Gleichung 3b gilt exakt. Die Verringerung
der Kuppelwandstärke hat ähnlichen Einfluß auf die vollständige Differentialgleichung.

Warum dies der Fall sein muß, sieht man auch leicht direkt ein.
Es kommt einfach daher, daß bei geringer Wandstärke die Bedeutung der
Zusammendrückung des Meridians neben dem Einfluß der Krümmungsänderung
kleiu wird. Dies bedeutet mit anderen Worten, daß man die Arbeit der Normalkräfte

infolge Zusammendrückung des Meridians neben der Arbeit des Meridianmoments

und der Ringspannungen bei dünnen Kuppeln vernachlässigen kann.
In den bisher behandelten Problemen wurde die Wandstärke überall als

konstant angenommen. Wenn die Wandstärke b veränderlich ist, kann man
nicht von Gleichung 3 b ausgehen, sondern muß Gleichung 3 a anwenden. Da die
einfache Theorie des elastisch unterstützten Trägers in obigen Fällen, d. h. bei
konstanter Wandstärke, hinlänglich genaue Resultate ergab, besteht Grund zu
der Annahme, daß dies auch bei veränderlicher Wandstärke der Fall sein wird.

Die Theorie des elastisch unterstützten Trägers mit veränderlichem Trägheitsmoment

und veränderlicher Unterstützung wurde bisher von verschiedenen
Forschern6 hauptsächlich mit Hilfe von Reihen studiert. Die dabei zutage gekom-

ö E. Steuermann: Some Consideration on the Calculation of Elastic Shells. Internationale
Tagung für technische Mechanik. Stockholm 1930.

6 Siehe z. B. Hayashi: Theorie des Trägers auf elastischer Unterlage. Berlin 1921.
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menen Ergebnisse sind für die Praxis leider mehr oder weniger unbrauchbar.
Wegen der nahen Verwandtschaft der Gleichungen 3a und 3b ist es jedoch
recht natürlich, daß die Lösungen beider Gleichungen im großen ganzen den

gleichen mathematischen Aufbau haben. Deshalb liegt die Annahme nahe, daß

man die Lösung der Gleichung 3 a beispielsweise in folgender Form schreiben
kann:

y ue±z (A cos z + B sin z) (12)

worin u und z gewisse Funktionen von x sind. Unter Anwendung des Blumen-
thalschen sog. asymptotischen Integrationsverfahrens kann man die Funktionen
u und z bestimmen, sodaß Gleichung 12 mit sehr guter Annäherung wirklich
ein Integral der Gleichung 3 a darstellt.

Eb3
Wenn wir wie oben die Biegungssteifheit des Trägers EJ —— einführen,

1 Li

ergeben sich für die Funktionen u und z folgende Ausdrücke:

u i^= (13)
ib3

und *fjk ™

Dieses Resultat erhält man in folgender Weise. Führt man die Ableitung der
Gleichung 3 a aus, dann ergibt sich nach Vereinfachung die Gleichung

yiv + pi y.» + pä y + p3 y< + p4 y o (15)

Rb'worin p. b —-
o

Pä=3(-+-
Ps =0

12
Pi -77^1 r- bJ

ist. Multipliziert man die Gleichungen

v =f(z)
v' f z'

v" f z" + f" z'*

v"' f'z'" + 3f z'z" + f"z,J
VIV f< z!V _|_ f.- (4 z< z<» _|_ 3 z«2) ^_ g f..< z.2 zu + f 1V zi4f

worin f soviel wie -=- und z' soviel wie -=- bedeutet, der Reihe nach mit den
dz dx

Faktoren Q4, Q3, Q2, Qv und 1 und addiert sie, so erhält man, wenn das linke
Glied gleich Null gesetzt wird, erstens die Gleichung

VIV + Y.» Qj + y- Q2 + V' Q3 + v Q^ _ 0 (16)
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und zweitens, wenn die Faktoren f, f" und P" jeder für sich gleich Null
gesetzt werden

Z1V + Z'''Q1+Z''Q2 + Z'Q3:=0
(4 z' z'" + 3 z"2) + 3 z' z" - Q, + z'2 Q, o (17)

6z'2z" + z,3Q1 o

Aus diesen Gleichungen kann man Qv Q2 und Q3 lösen, während die Funktion

f (z) durch die übrige Bedingung

fIVV4 + Q4.f=0 (lg)
bestimmt wird.

Wählt man den Faktor Q4 gleich 4 z'4, dann verwandelt sich die Gleichung 18 in

T + 4f=0
d. h. f (z) e±z (A cos z + B sin z) (19)

worin z durch die Bedingung

bestimmt wird.
Wenn man in Gleichung 15 nun y uv einführt, erhält man beim Einsetzen

und nach Division durch u

^+^(^44~+34*.+4
(An'" -In" 2u' \+v'(^+^Pi + ^rP2 + Ps)+vp*=0 (21)

Durch Gleichstellen der Koeffizienten für v und v'" in den Gleichungen 16
und 21 kann man die unbekannten Funktionen Q4 und u bestimmen. Man erhält
demnach Q4 p4 und folglich nach Gleichung 20

oder, mit p4 -„—*; z y 3 j -= (14)

4u'
Aus der Bedingung 1- px Qx

erhält man unter Anwendung der letzten der Gleichungen 17

-u- —Pi—y(logPi)

oder u — (13)
l/ö3
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Faßt man das Ergebnis obiger Rechnungen zusammen, so kann man die

Lösung der Gleichung 3 a unter Vernachlässigung der Ausdrücke, die den

Faktor ez enthalten, also in folgender Form schreiben:

y -— e~z (A cos z + B sin z) (12a)

dx
worin z durch die Bedingung z ^= l/3 I -zr—-J Vrb
bestimmt wird.

Beim ersten Anblick erscheint vielleicht die Gleichung 12a umständlich und

wenig geeignet für praktischen Gebrauch wegen des verwickelten Aufbaues der
1

Funktion z und des zusätzlichen Faktors 4,— In der Praxis aber stellt sich der

Fall einfacher. Die Funktion z braucht nämlich nie anders als zahlenmäßig
angegeben zu werden und läßt sich deshalb leicht aus Gleichung 14 z. B. nach
der Trapezregel berechnen. Bei Berechnung der Ableitungen von Gleichung 12 a

ergeben sich, wenn man keine Annäherungen einführt, ziemlich komplizierte
Ausdrücke. Beachtet man aber, daß die Ableitungen z", z'", u" und u'" bei den
in der Praxis vorkommenden Abmessungen klein sind und daher vernachlässigt
werden können, erhält man die Ableitungen von y in folgender Form

y u e~z (A cos z + B sin z)

y' =uz' e-z [(B — ju A) cos z — (A + p B) sin z]

y" 2 u z'2 e~z [— (u B + yA) cos z + (juA — yB) sin z]

y'" 2 u z'3 e~z [(A + Ul B) cos z 4- (B — Ul A) sin z] (9a)

u'
worin v —;u z

ju =1 — v
Hi 1 — 3 v.

Für den Fall, daß die Wandstärke konstant ist, wird y 0 und jui ju1 1,

wobei obige Gleichungen genau dieselben werden wie die Gleichungen 9.

Die Gleichungen 9 a sind also in derselben Weise aufgebaut wie die in den

Gleichungen 9 angegebenen Ableitungen für einen Träger mit konstanter
Biegungssteifheit. Die Berechnung einer Kuppel mit veränderlicher Wandstärke
läßt sich demnach in gleicher Weise und mit wenig mehr Mühe durchführen
wie bei gleichmäßiger Wandstärke. Die oben durchgerechneten Beispiele (siehe
Fig. 1 und 2) sind also auch für den Fall vorbildlich, daß b veränderlich ist,
und die Gleichgewichtsgleichungen sind ebenso aufzustellen, nur mit den

Abänderungen, die durch den Unterschied zwischen den Gleichungen 9 und 9 a

bedingt sind.
Bisher haben wir bei der Behandlung des Kuppelproblems nicht

berücksichtigt, daß sich die Meridianträger nach oben hin verjüngen und im Scheitel
der Kuppel die Breite Null haben, vielmehr haben wir bei ihnen eine
konstante Breite angenommen. Dies entspricht der Wirklichkeit nur dann, wenn
die Kuppel zylindrisch ist, aber bei Kuppeln im allgemeinen liegt in jener
Annahme ein gewisses Annäherungsverfahren. Wenn wir die Verjüngung berück-
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sichtigen, können wir bei sphärischer Kuppel das Trägheitsmoment des Meridianträgers

in gewissem Winkelabstand a vom Scheitel folgendermaßen schreiben:

J ~^ (21)
12 sin a0

Mit diesem Ausdruck für das Trägheitsmoment erhalten wir für die
Funktionen u und z

1 1
u 1— ' ä

fb* ^sina

und z ^ 3 I T=^F ' 1/ — dx.
J y rb f sina

Die obigen Ableitungen, die sich hauptsächlich auf das Kuppelproblem
beziehen, lassen sich natürlich auch auf zylindrische Behälter und ähnliche
Konstruktionen anwenden, die als Sonderfälle der Kuppel aufzufassen sind. Die
für Berechnung solcher Behälter üblichen Methoden,7 denen Reihenentwicklungen
zugrunde liegen, lassen sich vorteilhaft durch die oben angegebene Methode
ersetzen. Einen interessanten Sonderfall dieses Problems begegnet man bei der
Berechnung von massiven Gewölbedämmen. Bisher ging man bei Behandlung
derartiger Probleme von Gleichung 3 b aus und führte einen Mittelwert der
Wandstärke ein.8

Bei Behandlung der Gleichung 3 a nach obiger Methode kann man ohne

Schwierigkeit die in verschiedenen Richtungen und an verschiedenen Punkten
vorkommende Anisotropie der Konstruktion berücksichtigen. Es kann sich dabei

um eine reine Materialerscheinung oder um eine rein konstruktive Anisotropie
handeln. Beispielsweise durch das Einlegen verschiedener Mengen von
Armierungseisen in verschiedenen Richtungen wird der scheinbare Elastizitätsmodul
des Baustoffes in verschiedenen Richtungen verschieden, was als
Materialanisotropie bezeichnet werden darf; und eine gewisse konstruktive Anisotropie
kann man in einem zylindrischen Behälter oder einer Kuppel zuwege bringen,
indem man in der Richtung der Generatrix oder des Meridians Verstärkungsträger

anbringt (Rippenkuppel). Unter solchen Umständen kann Gleichung 3 a

nicht in der Form geschrieben werden, die sie in Gleichung 15 erhalten hat.
vielmehr bekommen die Koeffizienten p4 bis p4 folgendes Aussehen

2jptjy

(E, J)"
I

_ E,b
P4 _ r* E. J

P>= EtJ

Pä~ EXJ

7 Siehe Lorenz: Technische Elastizitätslehre. Berlin 1913. H. Reißner: Beton und Eisen 7,

150, 1908. T. Pöschl und K. Terzaghi: Berechnung von Behältern. Berlin 1913.
8 A\ Royen: Tvärödammen vid Norrfors krafherk (Der Damm von Tvärö am Kraftweik

Norrfors). Zeitschrift Betong, Heft 2, 1926.
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und die Funktionen z und u erscheinen demnach in folgender Form

Da man weder für u noch für z einen mathematischen Ausdruck benötigt,
bringt die Einführung der Gleichungen 22 und 23 keine Erschwerung der
Berechnungen mit sich.

Zusammenfassung.

Durch die Aufteilung der Schale in zwei Scharen von einander kreuzenden

Trägern können wir ein klares Verständnis der statischen Wirkungsweise der
Konstruktion erhalten. Die auftretenden Momente und Spannungen können wie
bei dem Balken auf elastischer Unterlage berechnet werden. Da die strenge
Theorie zu Lösungen in Form von unendlichen Reihen führt, die unter gewissen
Bedingungen nur langsam konvergieren, sind durch die angegebene Methode
praktische Vorteile zu gewinnen.
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IVa 4

Versteifte oder unversteifte Flächentragwerke.

Ouvrages ä parois minces reforcees ou non par
des raidisseurs.

Shell Structures with or without Stiffeners.

R. Vallette,
Ingenieur aux Chemins de fer de l'Etat, Paris.

Die Frage der Flächentragwerke wurde bereits auf dem Pariser Kongreß
behandelt; die seitherige Entwicklungsrichtung soll nunmehr hier erörtert werden.

Man kann zwei Arten von Flächentragwerken unterscheiden: Solche, bei denen
die Steifigkeit der Wand für die Widerstandsfähigkeit des Systems in Rechnung
gestellt wurde und solche, wo diese Widerstandsfähigkeit vernachlässigt wurde,
die Wandung also nur für tangential zur Mantelfläche wirkende Kräfte
widerstandsfähig ist, und als reine Membran wirkt.

Es sind also zu betrachten:
1. biegungsfeste dünne Wandungen,
2. Membranen.

Hier sollen nur Bauteile mit biegungsfesten dünnen Wandungen untersucht
werden; die Bauten mit Membranwandungen bilden den Gegenstand einer
besonderen Arbeit des Herrn Aimond (siehe IVa 1 dieses Vorberichtes).

/. Bauten mit biegungsfesten dünnen Wandungen.

A. Konstruktion.

Allgemeines. Schon seit Beginn des Eisenbetonbaues hat man die flächenartigen

Wandungen (z. B. bei Hohlkörperdecken) für den allgemeinen Widerstand

des Tragwerks zur Mitwirkung herangezogen. Diese Ausnutzung des

monolithischen Zusammenhanges ist schließlich eine der wichtigen Eigenarten
des Eisenbetons. Später aber wurde eine vollständigere Ausnutzung der Festigkeit

der Flächen in Betracht gezogen, indem die Wandungen zum Hauptelement
der Tragfähigkeit wurden, wie bei den tragenden Wränden der Behälter, Silos,
Gewölbe usw.

Anwendungen im Hoch- und Tiefbau.

1. Behälterbauten. Bei den Behältern wurde die in sich tragende Wand
selbständig für die Böden, die Vorkragungen und die Dachgewölbe verwendet, aber
die Steifigkeit der Wand wurde nur ausnahmsweise in Rechnung gestellt.
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2. Silos. Für Silos wurde die Verwendung der tragenden W'and, die im Anfang
nur eine teilweise war, zu einer vollständigen gemäß dem Verfahren von
M. Freyssinet, worüber er auf dem Pariser Kongreß einen Bericht gegeben hat.
Diesem Bericht haben wir nichts hinzuzufügen, da sich seither keine neuen
Gesichtspunkte ergeben haben.

3. Gewölbebauten.

a) Gewöhnliche Gewölbe. Auf dem Gebiete der normalen Gewölbe hat
M. Freyssinet schon auf dem Pariser Kongreß eine neue Richtung
angegeben, indem er erklärte, daß er für die Luftschiffhalle in Orly, wenn
er sie neu zu bauen hätte, ein Rippensystem mit einem Abstand von 25 m
zwischen den Tragrippen zur Anwendung bringen würde. Diese Erklärung
ist umso beachtenswerter, als die Hallen von Orly (vergl. Genie Civil
22. September bis 6. Oktober 1923) in ihrer bestehenden Form (1922
errichtet) als das bemerkenswerteste Beispiel und als Vorläufer der
selbsttragenden Systeme mit zahlreichen kleinen Tragwerken, wie sie später in
Mitteleuropa eingeführt wurden, betrachtet werden können.

Tatsächlich verwendete man dort Träger von 7,50 m Öffnung und 90 m
Spannweite, bei denen die Tragfähigkeit der Wände die allgemeine
Biegung vollständig übernimmt. (Konstruktion Freyssinet-Limousin).

Seit dem Pariser Kongreß hat sich diese Tendenz erhalten; in einem
Falle wurde ein Tonnengewölbe von 51,50 X 51,50 m entworfen, das nur
in den vier Ecken gestützt war, während die Fläche völlig selbsttragend
war und nur kleine, ganz untergeordnete Versteifungsrippen erhielt, ohne

*

51,50 m

Schnitt durch fixe
Coupe dans l'axe

Cross section thro Centre line

Fig. 1.

Tonnengewölbe von
51,50 m Spannweite

daß irgendwelche Randträger zur Stützung herangezogen wurden (Fig. 1)

— (Entwurf Boussiron). Man kann diese Bauart als Grenzfall jener
Gewölbeart betrachten, die seit 1910 in Frankreich von mehreren Konstrukteuren

verwendet wurde und bei der ein Teil der gewölbten Fläche als

Tragbalken (Kämpferbalken) zwischen den in mehr oder weniger großem
Abstand stehenden Säulen der Längsseite benutzt wird. Ursprünglich war
die ausgenutzte Gewölbehöhe OA gering (Fig. 2) und eine Randrippe ON
erhöhte die Tragfähigkeit. Später erhöhte man die mitwirkende Höhe OA,
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ließ die mitwirkende Rippe ON verschwinden und vergrößerte die
Tragfähigkeit zwischen den Stützen erheblich. Heute wird die ganze Wölbung
für beliebige Spannweite ohne Randträger ausgenutzt.

b) Andere Gewölbetypen.

1. Eine Abart der Bauart von Orly wurde bei einem Doppel-Flugzeug-
schuppen in Cherbourg verwirklicht. Das Gewölbe besteht ganz aus
dünnen Elementen (Fig. 3), die, wie in Orly, allein die Tragfähigkeit des

Systems bestimmen. Die Wandung wirkt außerdem selbsttragend zwischen
den Randsäulen. (Ste Rabut Subileau.)

2. Kegelförmige Gewölbe, die Sheddächer bilden (Freyssinet-Limousin),
wurden bei Bauten vielfach verwendet (Werke von Montrouge, Caen,

6.0m f55m

Fig. 2.

Randträger.

i t« x6 w» 1 iao i

Schnitt J
Coupe (a-b
Section)

Fig. 3.

Doppelschuppen in Cherbourg.

Fontenay usw.); sie waren Gegenstand einer Arbeit von Fauconnier in
Band 2 der Abhandlungen unserer Vereinigung, so daß sich eine
eingehende Betrachtung erübrigt. Die Gewölbe wirken als Träger zwischen
den Kämpfersäulen.

4. Andere Bauarten. Andere Gewölbearten wie Kuppeln über rechteckigem
Grundriß, Gratgewölbe, Klostergewölbe usw. wurden von verschiedenen
Entwurfsverfassern anläßlich der offenen Wettbewerbe für die Ausführung von
Flugzeughallen auf den Flughäfen vorgeschlagen. Aber diese Typen sind noch
nicht genügend entwickelt, um schon eine bestimmte Ausrichtung erkennen zu
können oder viel Aufhebens davon zu machen.

Eine bemerkenswerte Konstruktion von ganz abweichender Art stellt der große
Windkanal von Chalais-Meudon dar, der in der Nähe von Paris für die Prüfung
der Flugzeuge gebaut wurde.1 Hier wurden verschiedene freitragende Flächenelemente

verwendet, im besonderen ein Wind-Ausgleichsrohr mit überwältigenden
Abmessungen (Fig. 4), das nur an zwei Stellen im Abstand von 34 m gelagert
ist und sich bei 7 cm Wandstärke und einer Versteifung durch kleine Rippen,
die im Abstand von 3,60 m stehen, vollkommen freiträgt. (Ausführung Limousin.)

5. Schlußfolgerungen. Zusammenfassend kann man in Frankreich auf dem
Gebiet der biegungssteifen Flächentragwerke einerseits tastende Versuche zur
Auffindung neuer Gewölbeformen ohne eine bestimmte Ausrichtung nach einem
bestimmten Typ feststellen, anderseits aber besteht für die schon feststehenden

1 S. „Genie Civil" vom 3. Nov. 1934.
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Typen die bestimmte Tendenz, die Tragfähigkeit der Flächen vollständig
auszunützen. Dabei geht man auch so weit, daß man den ganzen Querschnitt zur
Tragwirkung mit heranzieht (große Dachgewölbe, Windkanal Chalais-Meudon),
wenn die Spannweite es erlaubt. Man kann es als kennzeichnend für die
französischen Bauten bezeichnen, daß im allgemeinen bei den Gewölben das reine
Flachentragwerk ohne Hinzufügung von Randbalken oder anderen unterstützenden

Traggliedern verwendet wird.

Fig. 4.

Diffusor im Windkanal
von Chalais-Meudon.

B. Berechnung.
1. Ebene Wände. Für die Berechnung der ebenen Wände verweisen wir auf

die Methode, die von UHermite im ,,Genie Civil" vom 29. April 1933 angegeben
wurde.

2. Selbsttragende Gewölbe verschiedener Art. Unmittelbar nach den ersten
Ausführungen von gewölbten Eisenbetondächern fing man an, die Flächen des

Gewölbes als Kämpferbalken zur Aufnahme des Kämpferdruckes heranzuziehen.2
Diesen Balken, der nur durch einen geringen Teil des Gewölbes gebildet wurde,

betrachteten die Konstrukteure als einen unabhängigen, gewöhnlichen geraden
Balken und berechneten ihn auch als solchen. Dies führte zu reichlichen
Querschnitten, aber der damit verbundene Mehrverbrauch an Material spielt bei
kleinen Stützenabständen keine Rolle, so daß man keine Ursache hat, auf
verwickeitere Berechnungssmethoden zurückzugreifen.

In den allerdings selten vorkommenden Fällen, daß der Entwurf zu großen
Stülzenabständen führt, wird die mitwirkende Höhe des Gewölbes einen
gekrümmten Querschnitt aufweisen, so daß besondere Untersuchungen notwendig
werden. Wir wissen, daß gewisse Konstrukteure (besonders Boussiron) eine

persönliche Lösung hierfür hatten, wenn sie sie auch nicht veröffentlichten.
Ich habe darum selbst eine einfache Lösung hierfür entwickelt,3 welche einerseits

die Berechnung eines solchen Balkens umfaßt und andererseits auch die

Lösung für das vollständige Tonnengewölbe von beliebiger Form gibt, das nur
an den Ecken gestützt ist.

Diese Methode führt für die gekrümmten Querschnitte der Flächentragwerke
die Biegungstheorie ein und sucht hinsichtlich der eingeführten Nebenspannungen

die entsprechenden Folgerungen; sie bestimmt vor allem die
Querbiegung, die in einem Gewölbering unter dem Einfluß der in Richtung der
Leitlinien des Tonnengewölbes wirkenden Tangentialkräfte entstehen. Bei der

Anwendung dieser Methode auf große Spannweiten hat sie sich als vollständig
und sehr sicher erwiesen und ergab Resultate, die mit den an Modellen, an
einem Versuchsgewölbe und an ausgeführten Bauten gemachten Beobachtungen
übereinstimmten.

2 S. ,,Genie Civil" vom 27. Jan. 1934.
3 S. „Genie Civil" vom 27. Jan. 1934.
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3. Andere Bauformen. Dieselbe Berechnungsart kann auch auf geschlossene
Rohre angewendet werden, und sie bildet auch die Grundlage für die Berechnung

des im vorstehenden schon beschriebenen großen Windkanals in Chalais-
Meudon, wie sie in dem Bericht über diese Arbeiten enthalten ist.3

Bei den Kuppeln genügt im allgemeinen eine ganz einfache Rechnung, da die
Steifigkeit der Schale nur bei Einzellasten von Wichtigkeit ist. Ihr Einfluß ist
jedoch sehr begrenzt und da man in jedem Punkt auf Meridian- und Parallelkreise

stößt, wird man meistens wieder auf den Membranspannungszustand
zurückgeführt.

Für die anderen Bauformen mit biegungssteifer Schale sind in Frankreich
keine besonderen Berechnungsmethoden in der technischen Literatur zu finden;
sie sind noch nicht genügend erforscht und bleiben einstweilen noch das persönliche

Arbeitsfeld einzelner Konstrukteure.
4. Schlußfolgerungen. In Frankreich haben die Berechnungsmethoden für

biegungssteife Flächentragwerke jenes Prinzip der Einfachheit bewahrt, das die
Regel für alle Fragen im Eisenbetonbau war. Hat man es doch in der Tat mit
einem Material und mit Bauformen zu tun, die zusammengesetzt und veränderlich

sind, so daß man umsonst nach Gesetzen suchen würde, die unter diesen

Arbeitsbedingungen alle Erscheinungen bei der Belastung klären würden. Man
hat allen Grund, sich nur an die Grundtatsachen zu halten, welche sich aus
einfachen Gesetzen ableiten (Hook'sches Gesetz, A^awer'sches Gesetz) und sich
in einfachen Gesetzen annäherungsweise, aber doch sicher ausdrücken lassen.

Das Ziel liegt übrigens nicht darin, eine rein mathematische Lösung zu
erhalten. Es handelt sich nur darum, die in einem bestimmten System auftretenden

Beanspruchungen festzustellen, damit sowohl ein übermäßiger Materialaufwand,

wie auch eine nennenswerte Unterbemessung vermieden wird. Die
Ableitung solcher praktischen Lösungen muß also von den angeführten einfachen

Grundlagen ausgehen und alle Rechenmöglichkeiten ausnützen, um zu sicheren

partikulären Lösungen zu kommen, die einfach anzuwenden sind. Es dürfte
nützlich sein, hier darauf hinzuweisen, daß in der Geschichte des Eisenbetonbaues
die endgültigen Berechnungsmethoden erst dann aufgestellt wurden, als durch
unsere großen Konstrukteure schon solche Bauten ausgeführt waren.

Die Phantasie, das technische Gefühl, das Verständnis für das Kräftespiel
sind von den Schöpfungen der Baukunst nicht zu trennen und hatten dem
Konstrukteur genügt, um den neu geschaffenen Typ zu verstehen, festzulegen und
zu berechnen. In der Tat kann eine Kraft zahlenmäßig nur annähernd festgelegt
sein, wenn sie nur qualitativ richtig ist. Bei den vielen Einzelheiten, die bei
der Ausführung eines Eisenbetonbaues zu bestimmen sind, ist hauptsächlich
diesem letzteren Punkte die größte Aufmerksamkeit zuzuwenden und hier
erfordert die Lösung jenes Maß an technischem Gefühl, das eben den guten
Konstrukteur ausmacht.

Die Berechnung der biegungssteifen Flächentragwerke hat diese Entwicklung
genommen, bewahrt diese Richtung auch und wird bei der Bestimmung des

wesentlichen Kräftespieles dieser Konstruktionsart auch nie von der Einfachheit

und Klarheit lassen.

47*



740 R. \allette

Zusammenfassung.

Betrachtung der Schalenkonstruktionen unter Berücksichtigung der wirklichen
Steifigkeit.

Nach einer kurzen geschichtlichen Einleitung wird angegeben, daß in Frankreich

im gegenwärtigen Stadium die Schalen einzig und allein als Tragelemente
verwendet werden ohne Zuhilfenahme irgend eines Randbalkens, ob es sich um
Systeme mit mehrfachen kleinen Gewölben (Typus der Halle von Orly), um ein
einziges großes Gewölbe oder um ein Gewölbe aus Ringen bestehend (Windkanal

von Mendon) handle.
Es wird ferner bemierkt, daß die Berechnung der Tragwerke mit der im

Eisenbetonbau in Frankreich üblichen Klarheit durchgeführt wird. Dies erlaubt dem
Konstrukteur bei einer einwandfreien Berücksichtigung der Kräfte die
neugeschaffenen Tragwerkstypen in freier Weise anzuwenden und zu entwickeln.
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