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VIII 4

Limits of Equilibrium of Earths and Loose Materials.

Grenzzustinde des Gleichgewichtes in Erd-
und Schiittmassen.

Etats limites de 'équilibre dans les masses de terre et de dépot.

Dr. M. Ritter,

Professor an der Eidg. Technischen Hochschule, Ziirich.

In the following report we shall establish the conditions which must be ful-
filled by the internal stresses of a noncohesive mass of earth or other loose
material when the mass is at the so-called limit of equilibrium. We shall confine
our observations to two-dimensional states of stress, on the fundamental assump-
tion that the stresses constantly vary with the place under consideration. Applying
the classic law of friction, we find the limit of equilibrium at any point through
which a rupture surface passes, 1. e. a surface in which the resultant stress q
forms the frictional angle p with the surface normal.

As early as 1857 Rankine analysed the classic state of stressing, now called
after him, in the interior of a laterally unlimited mass of earth of even surface,
using the hypotheses mentioned. Winkler, Mohr, Weyrauch, Lévi and others
subsequently elaborated this theory. Boussinesq and Résal' extended Rankine’s
theory to other surface conditions and attempted to establish the state of stressing
behind a retaining wall when the direction of earth pressure deviates from that
demanded by Rankine’s theory. This problem, particularly in conjunction with
Coulomb’s theory of earth pressure, eventually led to numerous discussions in
technical publications. In 1893 F. Kdétler published the general differential
equation for the pressure in a curved rupture surface?. Although quite a number
of engineers subsequently treated earth pressure problems under the assumption
of curved friction surfaces, the relation has not, as far as we know, been practi-
cally applied. In 1924 H. Reissner3 expressed his views on the problem of earth
pressure in an extensive work and discussed the difficulties offered by the analysis
of the general limit condition under consideration of the dead weight of the mass
of earth. More recently A. Caquot* has worked out the theory as a whole and

1 J. Résal: Poussée des terres (Earth Pressure), Vol.'2, Paris 1903.

2 H. Miller-Breslau: Erddruck auf Stiitzmauern (Earth Pressure on Retaining Walls),
Stuttgart 1906.

3 H. Reissner: Zum Erddruckproblem (The Problem of Earth Pressure). Sitzungsberichte
der Berliner Mathematischen Gesellschaft, 1924.

¢ A. Caquot: Equilibre des massifs i frottement interne (Equilibrium of solid bodies with
internal friction), Paris 1934.
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applied it in solving a number of practical problems. Apart from its importance
in calculating retaining walls, its principal use lies in determining the carrying
capacity of foundation strips at the limit of equilibrium — a problem to which
Rankine had already tried to find a solution. Now that light has been thrown by
K. Terzaghi> on the principle of cohesion for masses of earth or loose material,
calculation can also be extended in certain cases to include cohesive soil as well.
Thus, Caquot elaborates the formula for the carrying capacity of a foundation
strip to cover soil with so-called apparent cohesion.

1. Principles.

On the assumption that the stresses in a mass of soil vary from point to point,
the angle p’, formed by the stress q' of any surface element forms with its
normal, is a continuous funiction of the angle ¢ of the surface element in
respect to a fixed direction. The angle p’ attains its highest value p in the
rupture surfaces; thus the latter are defined by the fundamental relation

=0. (1)

In conjunction with the conditions necessary for equilibrium, this relation
suffices to determine both the relative position of the rupture surfaces in respect
to the main stresses, and the main stress ratio that must be present in a limiting
state of equilibrium.

If o, and o, denote the main stresses, the conditions necessary for equilibrium
in an infinitely small prism of earth having a length = 1 (see Fig. 1), then

qsin p’ = (0, — ©y) sin @ cos @

q cos p' = o, cos® @ + osin® @,
hence :

Fig. 1. —e ]
G2058np

The maximum p’ = p is created in accordance with Eq. 1 for

dp'_dtgp'_ (61 —o5)(01—0st8’9) _ .
= = 5 2 =o0; (3)
do dige (01 + oz 18" @)
which first of all gives '
61 —— 62 tg2 (P (33)
and Eq. 2 yields for the rupture surfaces
tgp = — cotg 2¢.

5 K. Terzaghi: Erdbaumechanik (Soil Mechanics), Vienna 1925.
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Thus we have ¢ = 45° + g ; the rupture surfaces form with the surface on

2
which o, acts, the angles | (45° 4- g—), which means that they intersect below

the angle 90° — p.
The ratio (3a) is therefore transformed into

oy = o, tg* (450—' %), (4)
this relation between the two main tensions must be present at every point
belonging to a friction surface, i. e. to every point at the limit of equilibrium.
The pressure q at the friction surface can readily be expressed in terms of
6, or ©,, and amounts to

q=o,tg (45°—— %) (5)

The relations we have established may easily be extended to cohesive soil, on
the assumption that apparent cohesion, as so designated by Terzaghi, is present.
This is created by the pressure of capillary water, which compacts the material
and subjects it to a state of spatial stressing having the umiversal compressive
stresses px which exceed the other stresses. The angle of frniction p remains
as long as the state of stressing is oomsidered to include the ocompressive
stresses px. The law of friction now becomes

t=(c+p)tEp=rp:tgp +otgp. (6)
Even Coulomb had calculated in principle with this law, introducing a coefficient
of cohesion and writing the law of friction as T =c 4 o tgp.

As the compressive stresses pix are self-stresses and maintain equilibrium in
some part of the mass of soil, it is necessary, when the stresses o,, ¢, and q
are brought into relation with external forces, to exclude the stresses pi.. Eq. 4
therefore becomes the following for cohesive materials:

oy + px = (0y + px) t8° (450 B %)

hence
ol fwo-g} o

After deduction of the normal stressing px, the compression q at the rupture
surface becomes (Fig. 2)
sin p tg p
——, where tgp,————.
s1n P, & Py 1 — Pk (8)
q cos p

At the rupture surface there thus arises an apparent (greater) angle of friction

Jdo=—4q

. (o] i i .
Po, while the angle 45° - 3 between rupture surface and main stressing is

maintained.
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The easiest way of assessing the practically possible values of px is by con-
sidering the vertical walls of excavations, which, as is well known, often hold
without shoring to a oonsiderable height h. At the surface of such a wall
6; = Yh and 6, = 0, hence according to Eq. 7 the material must be subject
to a capillary compressive stress of .

1
tg® (45°+ g) —1

Compressive stresses px of from 0.3 to 0.5 kg/cm? are frequently to be
observed in gravel sand containing clay.

bx="h (9

2. Compressive stresses at the ruplure surface.

We shall now proceed to establish F. Kotter’s equation for compressive
stressing at a curved rupture surface in a particularly simple form especially
intended for engineers!. We shall consider an infinitely small prism of carth
lying at a curved rupture surface AC at a distance s from the surface C
(cf. Fig. 3). Let the prism have a length = 1 vertically to the plane of the
figure, and let the one surface 1 — 2 = ds - 1 lie in the rupture surface, the
other surface 2 — 3 being turned an angle of d¢. On the surface 1 — 2 acts
~ the compressive stress q ds at the angle of friction p, on surface 2 — 3 the
compressive stress ¢’ ds, also at the angle of friction p (cf. Eq. 1). The con-
dition necessary for equilibrium as regards turning around the axis o in the
surface 1 — 3 is

qds-%?cos(p—dcp)_—_q‘ds-gcos(p+dq>);

from which we get
P cos(p—dcp_)= cospcosd o +sinpsind ¢
1 qcos(p+dcp) qCOSpCOSd(p—SinpSind(p

or when cosdp = 1 and sin dp = do

¢ =q(l+2tgp-dg) (10)
The dead weight of the earth prism creates an infinitely small moment of
a higher order and therefore does not come under consideration. We now
add to the surface 1 — 3 the congruent prism 1 — 3 — 4 having its 1 — 4
surface in the rupture surface. Now the compressive stress (q + dq) ds acts
on the 1 — 4 surface at the angle of friction p, the compressive stress q”ds
on the surface 3 — 4 also — in accordance with Eq. 1 — at the angle of
friction p. The prism 1 — 2 — 3 — 4 has a dead weightof yds2de - 1, wherein y
denotes the specific weight of the earth. We can readily eliminate q” by intro-
ducing the condition necessary for maintaining equilibrium against displacement
in the direction of the axis a — a perpendicular to the stress ¢”’. This con-
dition is

(@q+dqdsde—q(l+2tgpdg)dsde=rysin(p—p)ds’de

6 M. Ritter: The theory of earth pressure on retaining walls. Schweizerische Bauzeitung
1910. These elucidations were confined to non-cohesive material.
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and yields F. Kétter's differential equation

d d .
a%—2qtgp-d—(§=‘fsm(cp—p)- (11)

Integration gives us

q:Yez‘?tg‘P J'e"'Q(PtgP Sin((P—'p)dS + qa
o

in which G denotes the compressive stress at the point C. If the rupture surface
is plane, d¢/ds disappears and we get

q=7yssin (¢ —p) + qa. (12
In the case of a cohesive material q, and p, can be calculated from q and p with
the aid of Eq. 8; here it should be noted that p, varies along the rupture

surface as the relation py/q changes. This fact makes the application of the
equation more difficult.

Fig. 3.

Fig. 4.

2. The principal stresses.

For the principal stressing o, or o, a relation can be established, in the
same manner as for the compressive stress q at the rupture surface, permitting
the ready calculation of o; and o, at any depth below the surface. A H in
Fig. 4 is a principal stress surface whose tangents may take the direction of
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the principal stress o,. Let us consider the infinitely small prism of earth
1 —2 — 3, having a length = 1 and one surface of which, 1 —2 =ds-1,
lies in the principal surface A H and forms the angle d¢ with the surface 2 — 3.
On the surface 1 — 2 acts the principal stress 6,, on the surface 2 — 3 the
stress p, which is only distinguished from o, by an infinitely small magnitude
-of the second order. The principal stresses, as is known, being maximum values,
-on the principal surface we have do/dp = 0. It should be noted that p does
not act normally to the surface 2 — 3, but at an angle dp’, which can easily,
be calculated. From Eq. 12, for a prism of earth with an angle ¢ of any
size, we get

dp’ — (61 — ) (06, — s 18° (Q

do (01 + 05 t8° @)* ’
by turning the surface ds. 1 in the principal plane, i. e. by making ¢ =0,
the following is obtained:

(E) SRpQ. A — (45°—£>, (13)
do/e=0 G 2

To the surface 1 — 3 we now add the congruent prism 1 — 3 — 4, whose
surface 1 — 4 lies in the principal surface A H and is subjected to the main
stressing o; + do,, while the compressive stress p’ds acts on the surface 3 — 4
at an angle of —dp” (it is easy to realise that d?p’/d¢? disappears when
¢ = 0). The dead weight of the prism 1 —2 — 3 — 4 is y ds?2de - 1. The
condition necessary to prevent displacement in the direction of the axis a — a,
inclined at an angle of ¢ — dp’ and perpendicular to p’, is expressed:

{0, Tdo;)ds(do—dp')—0c,dsdp'—c,ds(dp—2dp")=vyds*dgsin(p—dd;)

from which is obtained:

do, _ ysing o lio, o\
do

The integration, beginning from the surface, yields

8
o, — v tg* (45° +%) .fsincpds:ytg2 (450 +%)-y +Gayy ¢ (15)
o
in which o,; denotes the main stressing o, (caused by surcharge) at the surface.
Eq. 15 implies that the main stress o, set up at the depth y by the weight v,

corresponds to the compressive stress of a liquid of v tg? (4.')0 + %) specific

weight.

In corresponding manner it is possible to calculate the main stress o,. The
condition necessary for equilibrium in the infinitely small prism of earth is
in this case

d O Y sin ¢ .
ds dp’’
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in which we have to introduce

dp') 2( 0 p)
= t 45 T —1
(d(p @ = 90° g 2

By integration we obtain

Gy =Y tg2 (450— %) * Y + Oass ' (16)

O, representing the main stress o, at the surface.

For cohesive soil Eq. 15 is written

o, + px =y tg* (45° + g) -y + (Ga; + P)-

Eq. 15 and also Eq. 16 thus remain in the sense that the compressive stresses
px vanish. The influence of cohesion is expressed in the alteration of o,; in
accordance with Eq. 7.

4. Carrying capacity of the foundation strip.

The relations developed in Pars. 2 and 3 permit the calculation of the greatest
possible loading of a foundation strip, compatible with equilibrium. The loading
in this case is that which, when rupture surfaces form, causes the soil to be
laterally displaced and the foundation block to subside. Let us assume that
the foundation lies at a depth h below the surface, that its width is 2b and its
length such that the problem can be treated as a two-dimensional stress
problem. Fig. 5 shows roughly the approximate character of the state of

Fig. 5.

Gleitflsche
surface de glissement
ruplure surface

surface principale
Main surface

stressing at the limit of equilibrium. The specific compressive stress of the
foundation we shall designate with o, and we shall assume that outside the
foundation there also acts a surface stress p.

For reasons of symmetry the plane s — s is a principal surface in the sense
of Par. 3, so that in accordance with Eq. 16 the horizontal principal stress

~—

0y = vy tg* (450—%) -y +otg? (450—%). (17

N Q

acts at the depth y. The rupture surfaces must form the angle 45° —

with the principal surface s — s, and the angle 45° +% with foundation slab.

98 E
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Below the foundation, therefore, within the form CA(C’, there prevails the
classic Rankine state of stressing with plane rupture surfaces, and

z=htg (450 + ‘2’—) (18)

Outside the rupture surfaces AC and A C’ the system of stresses is more
complicated; as seen in Fig. 5, curved rupture surfaces are created, a group
of them cutting the free surface at an angle of 45° — g, since the surface on
which p acts represents a principal surface. The principal surface of the
stresses o;, which passes through A, cuts this group of rupture surfaces at
an angle of 45° —i—%, thus forming in section with the plane of the figure
the curve EAE’ which, for reasons of symmetry, possesses a horizontal tangent
at A and cuts the free surface vertically at E and E’.

Although the form of the principal surface E A E’ is not quite definite, it
is easy to calculate the principal stressing o, from Eq. 15, for o, does not
depend on the form of the surface, but soleley on the depth y. According to
Eq. 4, at the surface we get the relation

P = Cay tg2 (450— ’S‘) ’

from which it is necessary to withdraw o,, and introduce it into Eq. 15.

Accordingly, at the depth y |
o, = tg* (450 + %) -y + p tg? (4:‘.')0 + %) . (19)
We analyse the compressive stress o;ds-1 into its horizontal components
6,dssin ¢ = o; dy and its vertical components o, ds cos ¢. The condition for
equilibrium in the body of earth A BCD E necessary to prevent horizontal
displacement then yields the foundation pressure o at the limit of equilibrium.

This condition is
h4-z _
R+R = [gdy. ‘ (20)
o

The resultant R in the surface A B ensues from Eq. 17 by integration —

__1_ 242 o__ P} 2 o P
R_2yztg (45 9 - oztg 45—2.

To obtain the resultant R’, however, Eq. 18 has to be used, giving us

R‘:%Y h? tg? (450 + %) + p h tg? (450 + —8) .

2
The sum of the horizontal forces at the curved main surface AE is
h+z h+4-z h4-z
fcsldy—_— fytg2(45°+%)ydy+ fptg2(45°+%)dy
[4) 0o . [4]

=—é—y(h +z)2tg2(45°+%)+p(h + z) tg2<45°+%).
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If these expressions are introduced into Eq. 20 and z is expressed, in accordance
with Eq. 18, in terms of b, we obtain the foundation pressure o at the limit
of equilibrium, namely,

_ 1 5 0 _Q)_ 0 o4
G—2yb[tg (45 + 5 tg {45 +2 + (y h+p) tg*|45 2 . (21)

The first summation represents the carrying capacity when the foundation
i1s placed directly on a free surface. The second term, which expresses the
influence of the depth of the foundation when the surface is subjected to
loading, has already been deducted by Rankine himself and is to be found in
most manuals. For soil with cohesive properties 6’ + pi. must be inserted in
Eq. 21 instead of o, and p + px instead of p. This yields the increased foun-
dation pressure o’ at the limit of equilibrium

o' =06+ pk [tg“ (45" + %) — l] ' (22)

The emplovment of the principal surfaces in calculating the carrying capacity
o and o’ respectively offers the advantage that the form of fhe principal
surfaces outside the zone ACC’ need not be exactly known. Besides which
one can also try to use the rupture surface A F passing through A to determine
the stressing. A. Prandtl, H. Reissner and . Caquot (l. c) for h = 0 and
disregarding the weight y, deduced that

c=ptg* (450 + g) . eTtgp (23)

‘which for cohesive soil (by writing o’ -~ pi instead of o and p --- px instead
of p) becomes

c' =0 + pk ltg‘-’ (45" + g) ertEe — 1]. (24)

These relations were arrived at by taking as a basis the state of stressing
sketched in Fig. 6, for which the condition of a ocontinuous form of the
stresses is fulfilled. In the regions ACC’ and CF G Rankine's states of
stressing, with plane surfaces, are assumed, while in the zone A CF continuous
transition is obtained by using the Résal state of stressing, in which one set
of rupture lines is represented by a group of rays, and the other (which crosses
it at an angle of 90° — p), by logarithmic spirals. It is then easy to recognise
that the compressive stresses, at the rupture surface A G pass through the
point C, and that the angle A CG is a right angle. The moment equation for
the point C of the earth body ABCJ G then gives us directly the relations
23 and 24. However, the author finds this basis of calculation, which leads to
very much higher limit loads than Eq. 21, extremely unsure. For, firstly, it is
by no means proved that the state of stressing shown in Fig. 6 (in itself
possible and not contradictory) correspond to the minimum values of ¢ and o
respectively. Furthermore, it is not possible to extend the calculation in order
to take the dead weight y of the soil into account, since the equilibrium of
forces at the element CM N is upset if the compressive stresses at the surfaces
CM and CN are determined according to Eq. 12 and the dead weight is taken
into account in the calculation.

98*
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Fig. 6.

5. Earth pressure on relaining walls.

The general relations given in sections 2 and 3, permit the calculation of the
earth pressure E acting at any angle, i. e. at the angle of incidence p’ (p’ <p)
as given by Coulomb, on the face A B of a retaining wall (cf. Fig. 7). The

/
Gleitflichen Fig. 7.
20y,/ surfaces de glissemen?
/. rupture surfaces
& €2 'ds
> Hauptflsche
~~  surfaceprincipale
Main surface

hypothesis of plane rupture surfaces, for an arbitrary arrangement, of the
direction of E, leads of course to contradictions in the equilibrium of forces in
the slipping earth prism, for which reason H. Miiller-Breslau, H. Reissner
(I. c.) and others found it necessary to calculate with curved rupture surfaces.
The main problem — the ascertaining of the form of the rupture surfaces
requiring the greatest earth pressure E to ensure equilibrium — has not been
solved up to the present time.

In the following we shall confine our attention to horizontal ground and
vertical retaining wall. The rupture surfaces A C, A’ C’, of unknown shape, are

cut at an angle of (45° — !>) by the main surface A H, which 1s acted upon by
g y P y

the main stresses a,, calculable from Eq. 16. Thus at a depth of y we have

02 = Y tg2 (450’_—%) ¢ y + p tg2 (450_%) ’

in which p is an evenly distributed surcharge. We analyse o, ds into its horizontal
component o,dssing = o,dy and its vertical component o,dscosq. The
equilibrium of forces against displacement of the earth body ABH in a hori-
zontal direction gives us

H

h h
E cos p’ = fczdy:ﬂgz(%"—%)-fydy+ptg2(45"—%)-fdy,

A
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) tg(‘ﬁ’__;_gl) (25)

2
yh*+ph cos

2
With this formula, which is based on the curved form of rupture surfaces, we
can obtain perceptibly higher earth pressures than with Coulomb’s earth pressure
formula, which assumes plane rupture surfaces.
If the question is one of cohesive soil, p 4- px should be written in Eq. 25
instead of p, and px h introduced for E’ocos p’. From this is obtained

—to? ar0_ P
1—tg (45 2) (26)
cos p'

whence E— (l

E‘:E—'pkh

The relations 25 and 26 are based on the assumption that the limit of
equilibrium has been reached in all points of earth body A B C. Whether this
state creates the greatest earth pressure, or whether the case in which only
one rupture surface is formed is more unfavourable, canmot be determined by
the author.

Summary.

For the limit of equilibrium in which every point of the earth body belongs
to a (curved) rupture surface, the differential equations for compressive stress
at the rupture surface and at the main surface (main stresses) are deduced and
integrated. These equations, established for non-cohesive and cohesive soil, are
applied in the calculation of the carrying capacity of a strip of foundation,
and in the establishment of the earth pressure on a retaining wall, assuming
curved rupture surfaces.
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