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V 10
Girders with Rhombic Arrangement of Members.

Genaue Berechnung des Rautentragers.

Calcul exact de la poutre en treillis rhomboidal.

Dr. Ing. Fr. Krabbe,

Reichsbahnoberrat, Reichsbahnzentralamt Minchen.

1. Special properties of the Rhombic Lattice Girder.

In former decades the rhombic lattice girder, probably on account of its
pleasing appearance, was used quite a good deal; one of the largest structures
built with it is the Weichsel Bridge near Dirschau. Calculation was based mainly
on the method of Prof. Mehrtens, Dresden, which divides this system of girders
into two partial systems representing simple strut frames. Subsequent exact in-
vestigations — and particularly those carried out by Muller-Breslau, by the
kinematic method — showed, however, that the rhombic lattice girder, considered
as a lattice system with frictionless hinges at the panel points, reveals influence
lines of very different formation from those given by Mehrtens’ system of
calculation, mentioned above. This is especially so with regard to the diagonals.
The influence lines are zig-zag in form, alternating between positive and negative
from panel point to panel point. Fig. 1a depicts the form of one of these
influence lines as determined by the Mehrtens method, Fig. 1b the form accor-
ding to the kinematic method. The latter form is undoubtedly the correct one,
assuming frictionless hinges in the panel points on the usual theory of lattice
girders. A zig-zag formation exists also for the deflection curves of the girder,
as found by means of the kinematic method for a single load (Fig. 2a). These
forms of influence and deflection lines, which are doubtlessly unfavourable,
were the reason why, as time went on, the rhombic lattice system was used less
and less in main bridge girders.

However, the influence line shown in Fig. 1b gives rise to serious objections
on closer examination, 1. e. when it is remembered that influence lines are
deflection lines — the deflection lines of the loaded boom, obtained by leng-
thening the bar in question by “one”. It is obvious that when such deformations
occur in a continuous through boom considerable transverse forces are hound
to appear, and these may exert a great influence on the form of the deflection
line. However, they are not considered in the calculation. It was on these con-
siderations that, when the superstructure of the railway bridge over the Rhine
near Wesell was to be renewed in 1926/27, the objections raised to rhombic

1 Die Bautechnik 1927, H. 46/47.
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lattice girders were discounted and the system was chosen for the main girder,
and the rhombic lattice girder, shunned for so long a time, again came into its
own. On completion of the structure the calculated deflection line shown in
Fig. 2a was checked in practice by stressing the girder with a concentrated load
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of 80 tons; accurate measurements yielded the real bending line, shown in
Fig. 2b. This led to the obvious conclusion that also the deflection line of the
loaded boom as obtained by lengthening a strut is in reality of quite a different
form from that shown in Fig. 1b. This was subsequently confirmed by meticulous
calculations carried out by Dr. Christiani to obtain the influence lines of a small
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rhombic lattice girder (Fig. 3) which in this case was treated as a 72-times
statically indeterminate system, the stiffness of the booms and web members
being taken into consideration2. Pursuing his investigations, Christiani further
ascertained that the influence of the stiffness of booms and web members is
so great in the case of rhombic lattice girders that the so-called stability bar
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theoretically necessary to stabilise a lattice system hinged at the panel points,
is in general not essential for the stability of the system in reality, and further,
that this stability bar i1s only able to exert any influence at all on the fields in
its immediate proximity3.

2 Christiani: Strenge Untersuchung an Rhomben-Fachwerken (Strict investigation on rhombic
lattice girders). Berlin 1929, Jul. Springer.

3 Christiani: Cber die angebliche Labilitit von Fachwerken (The alleged Lability of lattice
systems). ,,Der Stahlbau® 1931, H. 2.
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The considerations, measurements and exact statical investigations here cited
plainly indicate that the rhombic lattice girder is not really a lattice system in
the ordinary sense of the word, but that, in fact, it must be eliminated from
the ranks of lattice systems proper owing to the peculiarities of its influence and
deflection lines as calculated according to the theory of lattice systems; that it
is a system which can only be calculated with any approach to reality if rigidity
at the panel points is taken into consideration. This circumstance also prompted
the necessity of working out exact calculations for the Rhine bridge near Wesel,
although the structure had meanwhile been completed. However, this was only
possible if a more simple method was found than that employed by Christiani,
for the system of the Rhine bridge at Wesel is 208-times statically indeter-
minate if the rigidity of all the web members and rigid joints is taken into
consideration, and even if the stiffness of the struts and their joints is neglected,
it 1s H7-times statically indeterminate. It is obvious without further comment
that the calculation of systems with such high degrees of statical indetermination
is practically impossible with the method usually employed.

I11. Striking Influence of Rigidity of Boom in Rhombic Lattice Girders.

In my article “Das Wesen des Rautentrigers und seine einfache richtige Be-
rechnung” (The nature of the rhombic lattice girder and a simple, correct
method of calculating it)4, I confined my considerations to the influence of the
boom rigidity of the rhombic lattice system, assuming the struts to be hinged
to the continuous through booms and neglecting the influence of rigid riveting
of the struts at their points of intersection.

In this paper I shall confine myself to summarising the results of these in-
vestigations. In order to be able to make comparisons, I also submitted the
rhombic lattice girder treated by Christiani as a 72-times statically indeterminate
system to my investigations, based on the slope deflection method. The main
system was formed by the insertion in each rhomboid of a rigid, vertical bar,
hinged at the panel points (Fig. 4a). On the basis of simple kinematic con-
siderations its lines of influence gave the forms shown in Fig. 4b—e. Then each
of these rigid bars was lengthened successively by one to give the conditions
Tm == 1, in consequence of which definite bar stresses O, U and D are set up in
the two adjacent fields (Fig. 5), besides which all the rigid bars are stressed
with forces Z. On nullifying the individual stressing of these rigid supplemen-
tary bars, but for loading of the system as in Fig. 6a, we receive the defor-
mations of the girder (for this loading and after removal of the rigid members,
1. e. the lengthening of these members Z,) which determine the zero state of
loading of the individual supplementary members.

Complete calculation of a number of examples showed that in all cases
occurring in practice a loading of the girder as in Fig. 6a at the points m, and
m, only produces a nominal displacement towards each other of the points
m, and m, themselves and of their respective adjacent points m -+ 1, and
m + 1,, and m — 1, and m — 1,, so that all values of T, with the exception
of Ci_ ;. Tm and CUn 4, differ only imperceptibly from zero. This created the

4  Der Stahlbau' 1931, H. 15.
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extremely important possibility of determining all deformations caused by
loading of the kind shown in Fig. 6d by means of equational systems containing
only three unknown quantities. The deformation of the loaded boom — in this
case the lower boom — under loading as in Fig. 6a, is naturally the influence
line for the displacement T, which affects only the range from T, _, to Cn »
(Fig. 6b). Now as each T, produces definite forces in the members in the two
adjacent fields, the additional influence lines for these members can be deter-
mined quite simply by superposing the influence lines of the individual values
of T, these lines being then added to those obtained for the main system. The
latter now become the ultimate lines of influence and assume the forms shown
i Fig. 7a—d.

It should be noted that the influence lines which I obtained in this manner
coincide with astonishing accuracy with those found by Christiani. (Cf. Fig. 16
of the treatise referred to under 4).

From this — though at first only for the girder examined — we ascertain
the following facts: —

1) The girder (Fig. 3) is stable even without stability bar; definite and ab-
solutely normal influence lines are obtained for all its web members.

2) The effect of a vertical stability bar inserted in one of the rhomboids,
only extends as far as the adjacent field on each side of the bar.

3) The influence lines of the bars, particularly those of the struts, do not
alternate with abrupt breaks between positive and negative values from
field to field, but run quite normally.

4) The form of the influence lines deviate to a great extent from that ob-
tained when assuming frictionless hinges, while the lines obtained by di-
viding the system into partial lattice systems are approximately correct
(Fig. 7e—h).

5) The influence of the rigidity of the web members and their rigid joints
is insignificant. (Good coincidence of the influence lines).

6) The bending stresses is the chord members computed for train load N
attain their maximum value of 420 kg/cm2.

Now, however, it may justifiably be objected that the girder here
examined, with its very high chords (60 cm with a span of 28 m) is not
a girder of the usual type. I have therefore investigated the same girder
calculating with the normal boom height of 30 cm. As regards the influence
lines pertaining to the bar forces there was no very great difference,
whereas the bending stresses in the booms revealed values decreased by
about 300p. From this the following conclusion may be drawn, very
important for the designing and detailing of the rhombic lattice girder.

7) The rigidity of the booms, also usual in other lattice girders, is sufficient
for stability even without a stability bar. More rigid booms are a disad-
vantage, since they involve higher bending stresses in the chords.

On the basis of these results I have had an exact calculation of the main girder
system of the Rhine bridge at Wesel worked out on the method here described>.

5 Krabbe: ,Einflu3 der Gurtsleifigkeit in ebenen Tragwerken™ (Influence of boom rigidity
in plane girder sysiems). Leipzig 1933, Pub. Robert Nosky, pp. 12—17.
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The systems in question are two parallel girders, each with a span of 104 m
and one central support, and constructed without hinges in the 90 cm boom
height quite normal and usual for lattice girders®. Regarding the details of cal-
culation I would refer to the treatise mentioned under 5) and may therefore
be allowed to confine myself here to the main results yielded by this calculation.
In Fig. 8 will be found the influence line for one upper and for one lower chord
member, and for one tension and one compression bar. In Fig. 2 is shown the
influence line for the moment pertaining to the lower chord member, calculated
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at a panel point. The influence line in Fig. 1a, calculated with the kinematic
method, and the influence line in Fig. 1b, obtained by dividing the system into
partial lattice systems, should be compared with the influence line of the
strut D,_vy. There can be no doubt whatever that the influence line in Fig. 1b
is a much closer approximation to reality than the line in Fig. 1a. My con-
clusion therefrom is that the kinematic method with assumed hinges at the panel
points is not practicable for rhombic lattice girders, but that good approximative
values can be obtained by dividing the system into two partial lattice girder

6 Die Bautechnik 1927, H. 45/46.
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systems, though exact calculation is necessary whereby allowance is made for
the rigidity of the booms.

The influence line for the bending moment in the lower chord member gives
bending stresses of about 260 kg/cm? for the most unfavourable loading arrange-
ment with a load train N. On superimposing the influence lines and bar stresses,
however, additional stresses of only about 10 kg/cm? were obtained, in practice
these may be regarded as quite insignificant.

Finally, I calculated the deflection line — in Fig. 2a obtained by the kinematic
method and in Fig. 2b by measurement — under a single load and taking boom
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rigidity into consideration. The result will be seen in Fig. 2e. The coincidence
~with the bending line measured under single load, and especially as regards the
kinks produced, may be regarded as surprisingly good.
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I11. Further Influence of Rigidity of Struts and of their Rigid Connections
al the Panel Points.

1. General.

Even though the method as it has been developed up to the present evidently
yields results offering quite a fair approximation to reality, and though it is
simple in application, yet it will become clear when a rhombic lattice girder
system — as for instance that of the Rhine bridge at Wesel — is examined,
that such systems, whose struts are generally connected by thick gussets at the
points of intersection, are in their action more nearly a system of rigidly fixed
method to include the rigidity of the struts as well, and in addition take unequal
cross sections and moments of inertia of the booms into consideration. This will
enable us, too, to deduce with accuracy the bending stresses occurring in the
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struts. The application of the method to the rhombic lattice girder is depicted
in Fig. 10 a. It is fundamentally of no importance for the functioning of the
method whether the verticals shown in dotted lines are present in one or more
of the bays. Nor does it matter in the treatment of the case whether the girder
is terminated at either end by an entire rhomboid (Fig. 10b) or with a semi-
rhomboid (Fig. 10a). As a matter of fact, the latter form of termination is
statically much more preferable, as the calculation of the Rhine bridge at Wesel
after construction proved. As main system we shall take the girder in Fig. 11a,
which has a rigid vertical post in each rhomboid bay, rigidly connected with the
boom members and struts.

First of all it is necessary to lay down some basic conceptions essential for
the ensuing treatment of the case. The girder here examined possesses, as does
every lattice girder, a moment of inertia J;, which alters from bay to bay and
1s composed of:

1) The moment of inertia J; of the lattice system as such, the members
being considered as having no mass,

2) A portion due to the moments of inertia of the boom members, J, and J..

3) A portion due to the moments of inertia of the lattice bars J,.

1) If upper and lower booms are of the same cross section, the lower bcomn
member will be lengthened, under purely bending stress, to the same extent
as the upper boom member is shortened (Fig. 12). The length of the struts,
considered as massless, does not alter; they remain free from stress and do
not contribute to the moment of inertia J;. The gravity axis lies in the centre
and 1t 1s a simple matter of

h?
4

If, however, upper and lower boom members are of unequal cross section,
the sum of the longitudinal deformations of the two boom members will not
be zero; this causes longitudinal deformations and forces in the struts. Thus
the latter also contribute to the moment of inertia J;. According to Fig. 13

Jf: (F0+Fu)~ (1>

. 1 .
an elongation of both struts by  cosa corresponds to each elongation of

a boom member by the unit One, thus giving in each strut a force

_ ! EFq cos?
= Z a’
whose horizontal lateral forces are
1 EF4
D'=-— ——cos’a
2 a

As regards their contribution to the moment of inertia J; we can therefore
imagine the two struts, as in Fig. 14, replaced by a horizontal bar passing
through the point of intersection of the struts and with a cross section of

Fy=2F4cos® a. (2)

The position of the horizontal gravity axis is then given, using the notations

employed in Fig. 14, by
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h _i 2FU+F‘d
0—2 F0+Fu+F’d
L b 2F +Fy

2 Fo+Fo+Fy
and the distance of the centre of gravity from the centre is

h h Fo.—F,

ho_?:? F0+F11+Fld;

from which we obtain the moment of inertia

4 FoFo + F'§ ]
Fo +Fq+Fq

1 ; 3

for F, = F. Eq. 3 becomes Eq. 1.

Je=— [F'd-l-

2) Independently of the position of the gravity axis the boom members
contribute an additional moment of inertia J, + J..

3) For a distortion as in Fig. 15 with a distortion angle of ¢, the point of
intersection of the struts can, for kinematic reasons, only lie is at the point
of intersection F which is found by erecting a perpendicular through the
points X of A’CY and B’D’. Then
MTEE grRG=a

so that the triangle EFG ~ CAB;
EG _h AA'4CC

EG =

hence

EF~ d~  2EF
EF  AA'+ CC
or d~  2h
from which it follows that < g,:g.

The end tangents of the struts must therefore lie in the straight lines G’ F
and D'F.

Deformation of the struts thus occurs in the manner shown by boldly drawn

lines with an angle of distorsion of % = . The struts act in this deformation

on the structure at the points A’B’C’D’ with transverse forces Q and moments
M, the total moment exerted by deformed struts on the girder being:

M=—2Q—g—+2§m

Q= d? 2’ d 2
_SEJd _SEJd cos o

a ¢ a

_46Blg g 22Ek g

M=
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The total contribution of the struts to the stiffness against bending, i.e. to
the moment of inertia of the structure, is therefore:

J'a =8Jacos a=1J,. . (4)

This is four times the resistance that two intersecting struts, not connected
in the middle, would offer.

The total moment of inertia of the system is therefore:
Jo=J1+Jo+ Ju+8J4 cos a, (5)
whereby J: can be determined by Eq. 1 or 3.

We can lay down similar conceptions as regards transverse force. The
displacement of the two rigid posts by the unit One (Fig. 16) is resisted by
the whole system, the actual resistance offered being K,. Now the lengthening
of the two struts is

A=-+1-sina;
EF4 sin a cos a

so that the force in the struts D =+1

The vertical lateral force of both struts together is thus

2 sin? o cos a EF4
a

Ki=1

(6)

in other words, the transverse resistance of the lattice structure, whose web
members are imagined as being without mass; the boom members remain
without stress.

In consequence of the bending of both boom members we receive further:
12J,+Ju) E

KO + Kll = 1 as (7)
The bending of the two struts, the ends of which have turned by l_c((i;s—
-cos
towards the axis of the member, set up a transverse stiffness
24 EJ4 cos®
Ka=1=00—= ®

Thus the total resistance of the system is

Jo+Ju+2J4qcos® a

a!

Kt=Kf+K0—|—Ku+Kd=1%[Fdsinzacosa-}-ﬁ ] (9)
In this connection it should be remarked that in normal constructions, as for
instance the Rhine bridge at Wesel, the transverse stiffness of the bridge
increases by about 13 0o owing to the stiffness to bending offered by the
boom members and struts. It is .therefore hardly advisable to neglect the
rigidity of the web members at this juncture. The increase in the moment of
inertia of the whole structure by the stiffness of the members is, however,
very slight and does not exceed 1 0).

65 E
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2) The influence lines for the main system?.
a) The influence lines of the forces in the boom members.

The influence line of the upper boom member is defined by the bending
line of the loaded boom (lower boom), which line is given by the elongation
of the upper boom member by the unit One. We lengthen the upper boom
member by One (Fig. 17) by cutting it through the middle and applying a force X
to form a gap at that place whose width is One. Then, if we first neglect the
resistance to bending of the members, the forces in the members are set up
as shown in Fig.17. Under the action of the force X, which shortens upper

_X
siha

+ Xsina

Fig. 17—22.

-7,

Fig22
Mo Miru

My Mo

and lower boom member to the same extent provided they have the same cross

1 .
section, the two posts turn towards each other by the angle — W In this way
the influence line for 0 would be defined for the lattice system proper.

7 Compare with the manner of illustrating influence lines generally used in this paper the
author’s article in ,Der Stahlbau‘ 1933, H. 2.
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As, however, the deformed boom members and struts exert a counter-action,
. ) 1 1 . .
the angle of torsion is smaller than TSy | M From this we obtain by

direct reference to Eq. 1, 3 and 5:

J

pzj%_ (10)
The influence line for the upper boom member O is therefore distinguished
by the angle of torsionl p and is of the form shown in Fig. 11 b. The influence
line for the lower boom member U is obtained in a corresponding manner
(Fig. 11 ¢).

If the upper and lower boom members have the same cross section, the
angle of torsion will no longer be indepernident of X, since upper and lower
booms, although the same forces X are present in their members, for this
very reason undergo different deformations.

Since the external force X forces the two parts of the cut upper boom
apart to the distance One, we have according to the Clapeyron Theorem

X*a X2 a
EF, +EI‘ 2 cos* o’

As the value X = 0, which would satisfy the equation is of no importance,
we get

1-X=

T
( °+Fu+ F4 cos® a)
Thus the total elongation of the upper boom member is
Xa
Bo=1—pp;
and the elongation of the lower boom member
Xa
Ay = — ﬁ),
so that the angle of torsion
) FO - FU
R e [ |- (10)
u [¢]
N Fqcos®a
Putting the bracket term = v,, we can write
8‘0 = '_l‘ Yo. (1 1)

h

For the lower boom member a corresponding deduction gives the coefficient

F,+ F,
Vu:] +f7 O+2FuF (12)
Fll + F + F COSS

65*
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&u :_*_%Vu- (13)

The two influence lines are shown in Fig. 11 d—e, the stronger boom naturally
receiving the greater member force.

b) The influence lines of the struts.

The influence line of the strut C B (Fig. 18) is obtained as the deflection
line of the lower boom, due to the elongation of the strut by the unit One.
Assuming the members to be massless, a force X thrusting the ends of the
. severed strut apart a distance of One produced the member forces shown
in Fig. 18. Apart from this elongation of One, the two struts shorten to the

. . ; 1 s .
same extent, causing a vertical displacement S em a of the rigid posts in the

direction of each other. This produces the deflection line of the lower boom
as illustrated in Fig. 11 f, and with it the influence line for the strut. In conse-
quence of the rigidity of the boom members and struts, however, the vertical

displacement of the posts towards one another is reduced; let it be 5 silnE M.
Then we have
u= % (Equations 6—9). (14)
t

from which we get the influence line in Fig. 11f.

Now if the upper and lower boom members have not the same cross section,
their different elongation for the same force -+ X cos o also produces a dis-
tortion of the rigid posts in the direction of each other to the extent of the
angle ¥, which in this case, using Eq. 10, gives:

i Fu—Fo
P[Pt ot et

Fqcos®a
From this is obtained the influence line in Fig. 11 g.

$=—

(15)

]COSG.

c) The influence lines for moments at the corners of members.

The influence line for the moment at the right-hand end of the upper boom
member (Fig. 19) is obtained as the deflection line of the loaded boom, produced
by buckling of the member at its right-hand end by the angle One. Buckling
causes 1n the member a transverse force

6EJ0

a'l

Q=+

b

and produces a displacement of the rigid posts vertically in the direction of each
other to the extent of

Oor =1 KQ—, (K; see Eq. 9)
t

32 Kt
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Furthermore, in the vertical section immediately to the right of D acts an anti-
clockwise moment

and in the section immediately to the left of O the reverse moment

EJ,
a

M=+

2

causing in the girder a positive angle of torsion of the two rigid posts to each
other

g —Ma
or — EJt
Jo
or Yor =+ . (17)
J:

The influence line caused by the displacement d and the torsion ¥ is illustrated
for M,, in Fig. 11%,

The influence line for the moment at the upper end of the strut rising to
the right Mi., is obtained as the deflection line of the loaded boom due to
a crack of the angle one at the upper end of this bar (Fig. 20).

In consequence of this, however, the cross at 0 is now stressed with, a moment

4EJqcosa ) . .
z—% and turns under the influence of this moment stress in an

anti-clockwise direction by the angle é, whereby the struts denoted by dotted

- lines undergo additional bending. Then there is no longer a moment acting at
EJ .
the point O, for each of the 4 deformed half-struts stresses it with + —iz(ig
When this deformation takes place the transverse forces illustrated in Fig. 20
are produced in the sections both to the left and to the right of 0 — ie. in the
whole bay-whereby
24 EJq4 cos? a

Q= a2
the force to the right being Q—2%——2—Q=%I_GEJd cos® o
Q Q_«Q [ &
he lef S . .
and that to the left 24 28 4

This produces a displacement of the rigid posts towards each other to the
extent of

6 EJ4 cos?a
6(1 ro — + TK:—- (]8)
Furthermore, an anti-clockwise moment of
M:_4EJd cos a +2EJd CoSs o :_QEJd cos a’

a a a
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acts at 0 in the vertical section immediately to the right of 0, and a moment of

EJg cosa

M=+42

acts in the vertical section immediately to the left of 0.

This moment must be counteracted by a contrary moment produced by bending
of the whole system, and this necessitates an angle of torsion of the girder
amounting to
Ma_ = 2Jacosa
EJ, Ji
The influence lines for Ma,, due to the displacement d and the distortion & are
illustrated in Fig. 111

The influence line for the moment at the corner of the same strut directly to
the right of O is obtained as the deflection line of the loaded boom, produced by
cracking this member at K by the angle One (Fig.21). In the same manner as
before the stressing at the cross at O,

Paro =

(19)

8 E J,4 Ccos o
a

determines the additional distorsion of the cross (shown in dotted lines) with an

. 1 . .
angle of torsion of T whereby the cross at 0 is again free from moments. As
before, too, we now get:

Q=0
from which also follows that
Fa = 0. (20)
To the immediate right and left of O the respective moments
M=+ 4—EJdaCOS a

now begin to act. This moment must be counteracted by another produced by the

bending of the whole girder, and for this the following angle of torsion of the

girder is necessary:

4EJgcosa
Jy )

It is extremely interesting to note here that the angle of torsion ¥ producing
the line of influence My is, according to Eq. 21 twice as great as the angle of
torsion producing the line of influence for Mi.. as given by Eq. 19, and is
preceded by a contrary sign. For this corresponds exactly to the bending de-
formation of the struts as calculated on distortion proper, i.e. on the actual
moment stressing as given by Fig. 15. Further, it can clearly be seen from Fig. 16
that the moment Mg does not appear when a purely parallel displacement of
the rigid posts occurs. Vice versa, therefore, cracking of the strut immediately
to the right of O cannot, according to Fig. 21, produce any transverse force to
displace the posts in a parallel direction (Maxwell's Theorem); this is confirmed
by Eq. 20.

&dk = -|- (21)
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It is not necessary separately to determine the influence lines for the re-
maining termini of the members, for the sign preceding the values of ® and &
in the individual cases can be obtained with the denominations given in Fig. 22
form Fig. 15 (moment stressing) and Fig. 16 (transverse force stressing). The
respective signs are as follows:

for | or | ol | ur ! wl | dro | dio | dra | di | de
. |
\ T
s |+ - . T e
e |+ + 0+ 1 +l -1 =] =-l=1+

Thus all the lines of influence for the girder chosen as main system (Fig. 11a)
with in the panel points rigidly connected posts are determined.

For these fundamental influence lines various types of upper and lower boom
structure have been considered with respect to their cross section and moments
of inertia. However, we shall not make allowance for these when correcting
these influence lines as we shall now proceed to do. In order to keep the pro-
cedure from becoming to circumstantial, we shall assume symmetry to the hori-
zontal axis of the girder. (For definite reasons we shall take the boom remote
from the bridge decking as the basis of our measurements for both chords). At
the end we shall mention a simple possibility, in the form of an approximation
process, for subsequently carrying out the corrections necessitated by un-
symmetry.

3. The resolution of the rigid joints of the supplementary posts into hinged joints.

If the supplementary posts let into the structure (Fig. 11a) are not rigidly
connected but hinged at the panel points, the points will turn by certain angles
of torsion towards the axes of the rigid posts each time the girder is sub-
jected to bending (influence lines). These torsions will all take place in the
same relative direction, namely antisymmetrically to the horizontal axis of the
girder. Independently hereof, however, it may also happen that the panel points
of the upper and lower booms turn reversely, i. e. symmetrically to the axis of
the girder.

a) Antisymmeltrical distortion of the upper and lower boom panel points.

If we turn the points om and um in the same relative direction towards the
axis of the supplementary post m by an angle of torsion of ¢ (Fig. 23), the
deformation shown in Fig. 23a ensues on our first regarding the points as per-
pendicularly non-displaceable, i. e. restraining the central crosses of the points
0.. and O, ., of intersection of the struts. In consequence, however, this cross is

2EJq

now loaded with a moment of left-hand rotary direction, namely — 2 - ¢

2

This moment is nullified by turning the cross left an angle of i ¢. The crosses

therefore turn by 4£cp and thus the deformation shown in Fig. 23b occurs.
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If we now compare this illustration with Figs. 19—20, we shall see that double
the aggregate deformation shown in Figs. 19—20 has occurred in both panels —
in a contrary sense in field m 4 1. From this it can at once be seen that, in
respect to equations 16 to 19, the following additional deformations are necessary
for the equalisations of the moments and transverse forces caused by deformation:

a® Kym a? Kum ?
6EJ,+J.+2Jac08® a)y
° tm

Jo+Ju+2J4q cos a)m
S’m=+< + _*?]tmd a) P

Panel m: bm=+1[

Panel m 4-1:

1 6EJo+Ju+2Jacos® a1
a?Ki(m 1) i
(Jo+Ju+2Ja cos a)m 41
Ji@m+1) ¢

6m-{-1 =

&m—i-l z;

This deformation of the girder is shown in Fig. 25c. Of ocourse, to the left of
m — 1 and right of m 4 1 the other panels normally link up with the posts and
the points of support A and B are transferred to A’ and B’. When the conditions .
necessary for support have been restored by the straight line connecting A’ and
B’, we obtain the amount of bending to which the lower boom has been sub-
jected by the angle of torsion ¢, =1, i. e. by the condition '¢,, = 1’.

In this condition the crosses formed by om and um, o (m — 1) and u (m — 1),
o(m + 1) and u(m + 1) are loaded by moments, and since we assume symmetry,
the moments are the same in the upper and lower crosses.

For each of the crosses om and um we find the loading to be:

From Fig. 23a:
M’ _ 4EJomtdom+1) 4EJam+Jim4n 6EJS
mm — .

a a h
From Fig. 23b:
MY . (Jdm'l'Jd (m:|—1)) COS o

mm —
: a

From Fig. 23¢: (Cf. Fig. 15—16)

E
MYym = a [Jom ¥+ Jo (m+1)Pm41) — 4 Jam cOs o

b

2 .

6m+1
a

o Om
—4Jam+1ncosa m2+1 +6Jom—a-+6Jo(m+1)

+ 6 Jam -baﬂ cos® +6J0(m+1) 61’“:10053 a].

We find the loading of each of the crosses o (m — 1) and u (m — 1) to be:
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From Fig. 23a:

Mp_—1y.m=— 2—%12.
From Fig. 23b:
M 1ym = + EJdmacos a
From Fig. 23c: :
E bn

N
M“‘(m—l)m . + ;[— Jom 3m+4Jdm COSa?m+6Jom a
+ 6 Jam —6-{3;"'#00s3 a].

Finally, for each of the crosses o(m + 1) and u(m + 1) we find the load
From Fig. 23a:
2EJom+

M‘(m-l—l)m: — a

From Fig. 23b:

M“(m +1)m — +
From Fig. 23c:

EJd(m+1) Cos o
a

» E Om
M1y m=— [— Jom+1) ¥m+1+4Jam+1)cos —2ir—1~
) )
8 Jotmtn 5+ 6Ja g 2 cost )
The total loading of the upper and lower crosses is thus:
Mmm =2 (Nllmm + M“mm + Mmmm) (23)
Mm—1ym =2 Mm@ -no+M@m-nm+M“@m_1m) (24)
Mo+ no =2Ma@m+ym+M@+nm+M@mtnm) (25)

If we now consider the deformations, in Figs. 17—18, causing the influence
lines of the main system in their quality as deflection lines of the loaded boom,
we shall find that for these deformations there exists a basic loading of the panel
points of the deformed panel; this we shall call Mo,. It is the same for upper
and lower boom panel points; for both together we find in Fig. 17 (influence
line for the upper boom member):

Mom -1 = %% [Jo+Ju+2Jacosa] (wobei J, =1Jy) (26)
Mo = — Mo — 1) : (27)

For the deformation according to I'ig. 18 (influence line for the strut) we
obtain:

EJo+Ju) -
6E o+ Ju) .1 12 BJa cos® a —1—- (28)
a 2sin o a 2 sin q
— 38k uJo+Ju+2Jacos*a) (wobei wieder J, = Jy).

T asinq

Mo (m—1) = Mom =
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Now as moments cannot occur at these points when hinges are substituted for
the rigid connections of the posts, the following equation holds good in every
case for each pair of points:

Mm=O:Mom+Mm(m—1)(Pm—1+MmmCPm+Mm(m+l)(9m+1 (29)

There can be no other elements. Thus for n panel-points we always have a
system of equations with n unknown angles of torsion ¢, of the Clapeyron
form, as for instance for the influence line of the strut D in the girder 1la:

P1 P2 P3 P4 Po Pe P

Mﬂ | M12

My, | My, | My
| Mgy | Mg | My, " Mgy (293)

| M, My, M, My
Myg | Mg | My
Mg; | Mg | Mg,
‘ | Mz | My

(S| OV = | O] e

But each of these angles of torsion ¢, corresponds to a definite deflection
line of the loaded boom (Cf. Fig. 23e), 1. e. the deflection line for the condition
¢m = 1 multiplied by ¢... These seven bending lines are therefore to be added
to the bending lines given in Fig. 18 for the loaded boom, whereupon we have
the influence line for the girder with hinge-jointed supplementary posts.

To obtain the influence line for the boom member O (Figs. 17—11b) we use
the same equational system, introducing as independent elements in Columns 3
and 4 the values M,y and M,, on the basis of Eq. 26—27.

b) Symmetrical distortion of the upper and lower boom panel points.

If, however, it is a question of correcting the lines of influence produced by
the deformations shown in Figs. 19, 20 and 21, we notice that there the upper
and lower boom. panel points are loaded with unequal moments.

For these deformations we find in all three cases, besides the equal loading
of upper and lower boom panel points m — 1 and m, which loading we write
Mo (m—q) and My, and additional loading of the upper points, namely

in Fig. 19: Mm_1=-—2}2’l°;
M. 4EL (30)
2
in Fig. 20: My =—— SE‘LI%S“ (31)
in Fig. 21: M, = 2EJacosa (32)

a
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Dividing this loading into anti-symmetrical and symmetrical moments of the
upper and lower boom panel points, we can write, say, for

for — 212‘]0" in Fig. 19

1. top: _ £ ; bottom: — % (Anti-symmetrical portion of loading
Jo EJ, : . :

2. top: — ; bottom: + - (symmetrical portion of loading

2EJ,

Together top: — ; bottom: 0.

The deformations produced by the anti-symmetrical portions of the loading
can be obtained by using the method given under a). Summating top and bottom
panel points, however, we have to consider that symmetrical distortion corresponds
also to symmetrical distortions of the upper and lower panel points (Fig. 24).
Let us call this angle of distortion . In contrast to Fig. 23a, Fig. 24 shows
that the central crosses O, _,; and O, dre unloaded, i. e. are not subjected to
distortion, and further, that transverse forces and moments in the two panels
cease, no that no further displacements occur either.

In this case let us write distortions and moment-loadings as positive, when they
turn or load the upper boom cross positively. At once we obtain the fallowing:

8E EJ
Mam = —~—[Jon+Jow+1+2 Jam+Jamsn) cos ] —2 5= (33)
4EJ
M(m —1)m — — —ag (34)
I\/I(m +1)m — — éﬂ(:m;_{—i)- (35)

The deformation caused by the symmetrical loading of the top and bottom
boom panel points 1s therefore given by an equational system of the Clapevron
type corresponding to Eq. 29. For the deformation in Fig. 19, for instance:

by vy | g D4 Yy b V7

1 1\/111 ' Mi? |
2 | My ! My | My ’

Elo
: (36)

2EJ,

3 l My, | Mgy | My, 1 -

4 My | My | Mg

5 My, | Mg

00
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whereby the dependent coefficients have to be determined by Eq. 33—35 and the
independent elements by Eq. 30.

In this case we therefore get 7 symmetncal angles of torsion ¥, but they
differ greatly from the angles of torsion ¢ in that they do not cause displace-
ment of the panel points of the loaded boom. Thus they do not alter the lines
of influence — at least if we assume loading only at the panel points.

However, we shall need the results deduced for the next Section. We now have
the exact influence lines for the system with rigid posts hinged at their joints.

4) Removal of the rigid supplementary posts.
If we lengthen one of the rigid posts m by the amount n, in other words

upwards and downwards respectively by g at first retaining its rigid connection

on both booms, the deformation shown in Fig. 25 will occur. As there is tension
in both struts, compression is set up in all the boom members, which contract
accordingly by the amounts y and y’. Naturally the deflection of the struts
has no influence worth mentioning either on the longitudinal stresses set up in
struts and boom members, or on the displacements vy and y’.

The value y has already been obtained in the treatise mentioned under 4),
in equation 7. Accordingly

sin o cos® o Fam

Y = 3cos® @ Fam + Fom) (87)
Its derivation should be noticed, according to which
Y = sin o cos® a Fam 1) (87a)

2 (cos® a Fam + 1)+ Fom+1)

Fig. 25 now gives us the displacement of the points of intersection of the
struts:

_ vy b
o= 2+4a

(2 Fam cos® a + Fom) tg a
4 (Fom + Fam cos® a)

together with identical ® for corresponding cross sections of the members
in panel m + 1.

From the above we now obtain the displacement of the end tangent crosses
vertically to the axes of the members: For the inner halves of the struts in
panel m

or: 5= (38)

O sina -|— N cosa
and in panel m + 1

o sma+—cos a;
for the outer halves of the struts:

(d — v) sina and
(3" — ¥’') sina respectively.



Girders with Rhombic Arrangement of Members 1037

From this we obtain the bending moments set up at the ends of the members
by deformation (Fig. 25). These moments are: in the left hand panel

6 EJom EJ
Mor=— 5 = = —8 3"
EJ,
I\[ol — + 3 azm n
EJim
Myr = +3 2
EJ
My = — 3L
2 39
For [ Myp — — 2 EJ";’; cos’a (b sin & + 4 cos a) (39)
denom-
inations < Mdkl - Md ro
see Mara = — Maro
Fig. 22
8 Mdk4 =+ Mdro
EJam cos? .
Maio = Mgy, = + 24 da” 0% a (®d—1vy)sina
EJ 2 .
)Idlu — I\Id kg — — 24 d:; cos a (b —_— ‘Y) S1n o

The moments at the end of the bars in the right-hand panel are identical with
the values of the moments of inertia in panel m 4 1; thus we now obtain the
following in the form of symmetrical moment loading of the pairs of crosses m,
m--1 and m + 1 for the condition n =1, whereby n =1 has also to be
introduced into equations 39:

M, = 211—1;: [3 Jom+1) — Jom) + 24 Jd‘(m+1) cos® q (b’_'sin a4+ —;— cos a)

(40)
— 24 Jgm costa (b sin o +% cos a)]
2E . .
Mm_lz——a;[.?) Jom + 24 Jam cos? a (5 — ) sin a] (41)
2E 9 ] [] 4
Mp 4= - [3 Jom+1+ 24Ja@m+1) cos® a (5’ — v') sin a]. (42)

If we now apply these moment values as independent elements (Eq. 40—42),
in other words as loading elements, in Equation 36, they will give us the
torsion angles ¥ ..., of the panel points for the condition obtained after
the supplementary posts have been replaced by hinges.

To make a distinction between it and the condition n, =1, (Fig. 25), we
shall call this deformation “Condition 7, =1" (Fig. 26).

In order to create the condition , = 1 we should therefore have to introduce
the values M, M; and My (Equations 40—42) into the horizontal rows 4, 3 and
5 of Eq.36 in the form of independent elements. These conditions are now
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identical with the deformation called *Condition G, = 1” in Fig. 4 of the treatise

mentioned under 4). The forces R, loading the now hinged supplementary posts,
can now be deducted as follows:

First of all, if we assume for the sake of simplicity that m = 4, we obtain
from Fig. 25, in the form of loading of the posts 3, 4 and 5:

Post 4: Ry, = — (D,+D;)sina — 6 E(J042-|— Jos) 1
0 a 2a
48EJ 3 .
~_8%§(64sma+%cosa)
__48EJ cos*a

a

) (65 sin o + % cos a)

The values D, and Dj have already been given in the treatise under 4), Eq. 10,
p. 15. Thus, for instance

1 . sin o cos® a Fq,
— sin g —

¢ 3
D4:+2 z(c;)s a Fay +F

01) EJq,cos a

6Eo, 1
a? 2a
48 EJ, cos® a

a2

Post 3: Ry, =—D,sina+
0

+

(0, — y4)sin @

. 6EJ 1
Post 5: %54:—_[)5 Sma‘l‘—?ﬂos 5

48 EJ; cosd a
a2

a

+ (d5 — v3) sin a.

If there is an elastic post present at point 4, the value of R, will be increased

F, . .
by the tension of this post — 1 - E}T Now, however,still further loadings are

produced for the posts by reason of the angle of torsion ¥, but here it is suf-
ficient in any circumstances to take into acocount the loading of the members
m — 1, m and m + 1, in our case R;, R, and R;.

The following now becomes generally valid:

6E
Plm :?[Jo(m—{—]) (Kbm“‘l!)m—{-]) _Jom (q)m—l'i'lbm)

+4Jam+1)— Jam) cos® a lbm]

(43)

in other words
6 E

l}u =2 :Joa (s 4 D5) + Jou (05 4+ by) +4 (Jas — Jau) cos’® a ‘1’4]
E -

I:‘:u = 6a, : _Jo4 (bs + 1) +Jos (bs + by) + 4 Jay — Jay) cos® a ‘P3]
E _

554 — 63—2 : _Joe (5 + Pg) + Jos (g + W5) + 4 (Jag — Jas) cos® o ‘4’5]-
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Now Ry, l(}“_i_?“ After eliminating very small loading values we
Rg, = Ry, + R, U receive only R values whose indices do not
0 4 differ by more than one.
Rm — 1}54 <+ I}54

If we load the system at the points m, and m, with the load couple One
(Fig. 26), which we of course must add to the zero loading Ron, the deformations
T produced by this loading couple One are given by the equation:

Rm=0=Rm(m—l) Cm—-l—}‘Rmm Km+Rm(m+l) lm 41 (44)

Courbe D du systeme symetrigue
D-line for symmelrical system

(]
|
OX RO - q.
fo '\ VT IO\ [£92
7 ! P
“ 4 { —t 2’ 7]
M A 1%
D
Fig.26.
) 7
1 2 J 7 5
\
- /\’ - _,-—\\ Y’
hg.27 TN "
%7 Qo N =
D-Line des symmelschen Systems | § _ 7 " F D-Lime des Hauptsystems
I Courbe D du systemeprincips!

b-tine for principal system
Berichtigte endgiltige D-Linie

Courbe D) définitive corrigee

Corrected, final D =line

Fig. 23—27.

In our case, for loading situated at the points 4, and 4., we receive the com-
plete table



1040 Fr. Krabbe

1 Ce 4 Ts Co Ce Gy
1 Ry Rys l
2 Ry Raq Ry
3 Ry, | Ry | Ry (442)
4 R | Ry | Ry 1
5 Res | Ry | Ry
6 | Be | Ry | Ry
7 Ry | Ry

Equational system 44 is again a system of the Clapeyron type. If we write
the independent value - 1 successively in the horizontal rows from 1 to 7, it
gives us the T values created by loading the pairs of points with pairs of
loads of the unit One.

The seven deflection lines of the loaded (bottom) boom now obtained are
the influence lines for the seven values C.... %, But as each of these values
of T corresponds (Fig. 26) to very definite values of force magnitude for the
axial stresses of the members and of the end moments of the members in the
adjoining panels (here we can confine ourselves to the two panels lying left and
right of the. respective T), we obtain for all force quantities in a panel m
additonal influence lines whose ordinates n are given by the equation:

nm:Hm—IZm—l‘i‘PmZm- (45)

These additional influence lines have to be added to the influence lines found
with Fig. 11 and already corrected with the deflection lines from Fig. 23 e:
we then receive the final influence lines for all force quantities.

There only remains to add a comment on the influence lines found on the
basis of the deformations in Figs. 19—21. As we noticed, besides the anti-
symmetrical loading of the upper and lower boom panel points, there was also
a symmetrical loading which did not cause displacement of the loaded points
at first, i. e. as long as the hinged supplementary posts were present. However,
the angles of torsion ¥ produced by this symmetrical loading (Eq. 36) transmit
loadings to these hinged supplementary posts (Eq. 43) which, introduced into
Equational System 44 in the form of independent elements, give values for
Cy....C;. The deflection lines of the loaded boom as determined hereby has
still to be added to the relative influence lines. On the other hand, an anti-
symmetrical moment loading which produces the angle of torsion ¢, causes
bending of the whole girder as shown in Fig. 25 e but not loading of the posts,
1. e. not a force tending to thrust them apart.

5) Subsequent correction of the influence lines for unsymmetrical girders.

We have established the influence lines for the main system under con-
sideration of the various cross sections or moments of inertia of the upper and
lower booms. In the further development of these influence lines, however, we
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did not take account of unsymmetry, taking in each case the chord lying remote
from the decking as our basis and on this assumption obtaining the deflection
line of the decking boom as the influence line.

Now if the dash line in Fig. 27 be the influence line of the main system,
obtained correctly under consideration of unsymmetry, and the dotted line be the
final influence line obtained without considering unsymmetry, then we can ascer-
tain the difference between the moments of inertia J, of the real girder, and those
(J) of the girder assumed to be symmetrical. It can now be conceived that the
girder with the moment of inertia J;— J, which has the tendency to follow the
deformation line of the main system can be forcibly brought into the position
of the dotted line. It will then have the tendency to bend the deformation line
of the boom back to the original position of the deflection line of the main
system.

If the indices of the influence line of the main system are n,, those of the
symmetrical system n, and those of the final system n, the correct indices will
be approximated by

Js
n="no+ (s — o) 3- (46)

As the difference between J, and J. will never be anything but small, it follows
that inaccuracy caused by assuming symmetry will always be slight, so that
its correction by means of the approximating process given here is quite
permissible.

6) Concise summary of the method.

1) Determination of the influence lines of the main system for the forces
shown in Fig. 11 by applying the deformation “One” corresponding
to the respective force.

2) Determination of the moment loading caused by this deformation at
the panel points; grouping of these loadings into anti-symmetrical and
symmetrical moment loading of the top and bottom boom panel points
(Eq. 26 and 30—32).

3) Exposition of the individual conditions (7 of each): pn=1 b =1
(Figs. 23—24).

4) Evaluation of the ooefficients M,, from this individual conditions
(Eq. 23—25 and 33—35).

d) Arrangement of the Clapeyron equational systems 29 a and 36 from the
independent loading elements obtained in 2) and from the coefficients
of the dependent elements obtained in 4).

6) Solution of these equational systems, from which the angles of distortion
¢m and ¥, of the panel points are obtained. Thus, too, are found
(Fig. 23 ¢) the deformation lines of the loaded boom pertaining to each
of the known angles ¢.; these lines are added to the influence lines
obtained in Fig. 11, while the symmetrical torsion angles ¥, do not
cause displacement of the panel points of the loaded boom.

7) Exposition of the individual conditions “n, = 1" (Fig. 25); determination
of the moment loadings thereby produced in the panel points — in this
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case they are only symmetrical; application of these moment loadings,
in the form of independent elements; solutions of these equations, giving
all the panel point angles of torsions ¥, for each condition n, == 1
and thus the conditions T, = 1.

8) Determination of the loadings set up at the supplementary posts for the
individual conditions ¢, = 1.

9) Application of pairs of point loads at the individual panel points m in
the form of basic loadings of the system.

10) Arrangement of Equational System 44 for the individual pairs of point
loads, employing the independent elements and the coefficients of
dependent elements as given in 8) and 9).
individual pairs of point loads, after removal of the supplementary
posts, and with them the influence lines for Z,.... C,.

11) The solution of the 7 Eq. 44 gives the deformations pertaining to the

12) All the values of forces acting in each separate panel are represented
as linear functions of the two values of T pertaining to that particular
panel, and their additional influence lines are developed accordingly
from the influence lines of these two T values.

13) For the influence lines of the end moments of the members, whose
deformations also reveal symmetrical loadings at the panel points, Eq. 44
is employed to calculate the respective values of T, and the portions ¢
pertaining to the bending of the loaded boom are added to the influence
lines already found.

14) Correction of the influence lines found as in Eq. 46 (Fig. 27) for un-
symmetrical girders.

Thus we have solved the difficult problem of treating the rhombic lattice
girder composed of rigidly connected members, applying only three simple
equational systems of the Clapeyron form; it should be noted that in every
case only the independent elements and never the coefficients of the dependent
elements alter.

Summary.

The calculation of lattice girders with rhombic arrangement of web members
under the assumption of frictionless panel points leads to influence lines for
the members and deflection lines which have a very marked zig-zag appearance.
On taking the stiffness of chords into account, this zig-zag appearance vanishes
and the influence lines and deflection lines show a more steady flow; they are
very much different from those worked out under the assumption of frictionsless
hinges.

The report shows further in what way it is possible to consider the stiffness
of struts and their connections, without having to solve difficult equations with
many unknowns.
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In the first instance the influence lines of the main system are determined
by means of the deformation method. The main system is formed by introducing
a rigid post for each rhombic bay, in rigid connection with chords and struts,
and assumed to be stiff against bending.

The solving of the problem is further carried out by using three equation
systems in the form of Clapeyron formulae, giving as many unknowns as there
are auxiliary posts introduced into the girder system.

From the first equation system are received the part-deformation angles ¢
for the panel points of the upper and lower boom; these are in anti-symmetrical
position to the horizontal girder axis, hereby assuming the stiff connections
of the auxiliary posts to be replaced by hinges.

The second equation system supplies the part-deformation angles ¥, all sym-
metrical to the horizontal girder axis, for panel points of the upper and lower
boom. The angles ¢ and ¥ together supply with the aid of the load-re-arranging
method, the real deformation angles of the panel points for hinged connections
of the rigid auxiliary posts.

The third equation system gives the vertical displacements & of the panel
points of the upper and lower chord, which develop after removal of the rigid,
auxiliary posts.

By means of the values ¢, b and T received from the three systems of
equations the influence lines of the actual girder system are developed by using
as basis the influence lines of the fundamental main system.

66*
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