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V3
Bending, Torsion and Buckling of Bars Composed of Thin Walls.

Biegung, Drillung und Knickung von Stiben
aus diinnen Wanden.

Flexion, torsion et flambage des barres composées
de parois minces.

Dr. Ing. F. Bleich und Dr. Ing. H. Bleich, Wien.

1) Introduction.

The fact that the distribution of longitudinal stresses in the cross-section of
certain shapes of girders does not correspond with the distribution as determined
by the theory of bending laid down by Navier, was noted for the first time by
Bach! on basis of experiments. At about the same time R. Sonniag?, indepen-
dently of Bach, drew attention to the phenomena of torque — when bending
bars of |_, " and™|_-cross section — and he computed the actual stresses set up.
The differential equation of the problem of torque for a symmetrical I-girder
was derived by Timoshenko3. Weber* generalized this investigation to any two-
flanged beams, that is, for E, “_ and __|-cross sections. The tilting problem of
the I-beam was treated by Timoshenko3. Ostenfeld® investigated the stability
of |, T, ] and [[-shaped cross-sections while Eggenschwylert discussed the
problem of torque of bars of rectangular box-shaped cross-section.

The classical theory of bending and torsion of straight prismatical bars is
based on the assumption that the longitudinal bending stresses are distributed
over the cross-section of the bar according to a linear law and that in the case
of torsion only, no longitudinal stresses occur, provided that the small quantities
of second order are disregarded. This assumption, however, does not hold in
the case of bars made up of thin sheets, and the investigations referred to above

1 C. Bach: Versuche iiber die tatsichliche Widerstandsfihigkeit von Balken mit [_ -formigem
Querschnitt (Experiments to ascerlain the actual strength of girders of [ -shaped cross-section).
Zeitschrift des Vereins deutscher Ingenieure 1909, p. 1790 and 1910, p. 382.

2 R. Sonnlag: Biegung, Schub und Scherung (Bending, torsion and shear), Berlin 1909.

8 S. Timoshenko: Einige Stabilititsprobleme der Elastizititstheorie (On some problems of
stability in the theory of elasticity), Zeitschrift fir Math. und Phys. 1910, p. 361.

¢ (C. Weber: Ubertragung der Drehmomente in Balken mit doppelflanschigem Querschnitt
(Transmission of torque in girders of double-flanged cross-section), Zeitschrift fir angew.
Math. und Mech. 1926, p. 85.

8 4. Ostenfeld: Mitt. Nr. 5 und 6 des Lab. fiir Baustatik der Techn. Hochschule in Kopen-
hagen 1931 und 1932.

6 A. Eggenschwyler: Uber die Verdrehungsbeanspruchung rechteckiger Kastenquerschnitte
(On the torsional loading of rectangular box-shaped cross-sections), Eisenbau 1918, p. 45.
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are a proof for this statement. As it is a general practice in structural steel
engineering to use girders built up of single plates put together it appears
necessary that the actual behaviour of such girders should be studied without
restricting such investigations to particular sectional shapes.

The following abstracted representation is the first attempt made to deal with
this problem of bending and torsion of thin-walled bars in as general a manner
as possible. This investigation enables to elucidate the underlying connections
and to furnish fundamental formulae of general validity suitable for the study
of the special problems in question i. e. the problems of stable and unstable
equilibrium.

. The object of the investigation consequently are prismatical bars consisting
of several lengthy rectangular discs with cross-sections similar to those shown
m Fig. 1. Fig. 1a is an example of an open or singly-connected section. Fig. 1b

Fig. 1.

a) 6)

shows a closed or multiply-connected section. The thickness of the individual
disc may vary within it; however, it is always assumed that the thickness is
small as compared to the height of the disc.

We adopt from the Navier’s bending theory the assumption that the geometri-
cal shape of the section will be maintained after deformation due to loading.
We shall refer later on again to this fundamental view-point. The requirement
that planes originally plane remain so, is not retained. All we do is to assume
that the base of Navier’s theory of bending holds for each single disc. This
assumption, however, cannot be exactly fulfilled at points where two or more
discs join, owing to the thickness of the discs being different from zero, yet
this thickness shall be assumed as being so small that these deviations cau be
left out of consideration. We consider only the flexures of the disc in its own
plane, whereas flexure which is perpendicular to the plane of the discs will be
disregarded on account of the very low resistance to bending in this direction.
From the shearing stresses only that part is taken into consideration which is
induced by torsion, while bending-shearing stresses are nqglected because of the
very slight influence they exert on the change in the shape of the bar, if the
latter is long compared with the dimensions of its cross-section. The results
therefore do not hold for short bars.

To obtain the differential equation of the problem in its most general shape we
shall take a principle of variation, well known in mechanics, as our starting
point. In this way we secure the advantage to apply the general result also to
formulate approximate solutions according to the method by Ritz, in cases where
an exact solution of the differential equations obtained by variation offers dif-
ficulties. |
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Le A, be the work done by external forces and A; that of the internal forces
(energy of deformation), then the equation, expressing the extreme-requirement
reads as follows:

5 (Ai—\A,)=0 (1)

in which X\ is a multiplicator depending on the special conditions of the problem.
In the cases, which we consider here, A can be established a priori.

In the case of deformation of first order in a problem involving flexure or
twisting of the straight bar. A; and A, are homogeneous functions of the second,
respectively first degree of the quantities of deformation?. Due to this fact it
follows that the multiplicator has the value 2, as is well known.

When dealing with a problem of unstable equilibrium (buckling problem)
in which only deformations of first order occur in the equations for equilibrium.
then: A\ = 1.

The equation (1) therefore reads as follows:
In the case of stable equilibrium o (Ai—2A,)=0 (2)
In the case of unstable equilibrium & (A; — A.) =0 (3)

The main part of the following investigation consist in formulating the ex-
pression for the energy of deformation A; and the energy of deformation of the
external forces A.. When determining A; a distinction must be made between bars
of singly-connected section and those of multiply-connected section.

2) Energy of Deformation A;.

Bars of singly-connected section.

If one single disc of a bar is considered, this bar as a whole deforms and the
central line will show a flexure K; in the plane of the disc and an extension &;.
At the same time the whole disc rotates a certain amount denoted by the angle ¢.
Let J; bc the moment of inertia of the cross-section of the disc the height
being h; and the thickness d;, the latter varying as a rule according to the heigth
— with regard to the centre of gravity — axis, the latter being perpendicular to
the plane of the disc, F; the cross-sectional area, Jy; the torsional resistance of
the disc, then the formula for the total energy of deformation A; for the bar
of the length 1, consisting of n discs reads as follows:

i=1

1
Ai == %f[ % (EJl Kiz -|— EFI Eiz + GJdi (p'z) dz, (4)

in which d, denotes the distance between two cross-sections of the bars infinitely
close to each other.

The quantities K; and &, however, are not independent one from the other,
but are linked up by certain conditions of transition. The longitudinal stresses
and with them the longitudinal strains of the two discs must coincide at edges

7 This holds true under the limitation, that in the equations for equilibrium the magnitude
of the deformations is neglected as compared to the dimensions of the girder.
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TR

where they join. If “a” is the distance between the centre of gravity-axis of the
disc with respect to the edge, then for each edge of the bar, see Fig. 2, we have:

g+ aiKi=g41—a1Kip, (=12 ...n—1) (5)

Given n plates, n such equations can be formulated. Furthermore, if S is the
longitudinal force acting in the bar, then the average strain &, will be

S == ESF’ where F— ?Fi.
There exists furthermore the requirement of equilibrium
EXFi5==S =EFe, (6)
With € = e, + &, the equ;tions (5) and (6) assume the following relations:
g+aKi=e41—aip1Kips (5)
Ei:s;F; =0 (6"

Fig. 2.

If, on the other hand, & = €, + g; is inserted into equation (4), we obtain
by taking into consideration the connection (6’) and if we further write

Jd = ZJd;I,

1
Ai=%ﬂZ(EJiKiz+EFia2)+EFsm2+GJd(pw]dz (7)

The n equations (5’) and (6’) enable us to express the n quantities €; by the
n quantities K;, with the result that &; appears to be a linear function of K.

Before further proceeding it is necessary to establish a relationship between
the flexures K; of the various discs and the deformation of the whole bar. We
select for our further considerations a left-handed system of coordinates with
its z-axis coinciding with the centre of gravity-axis of the bar, and with 1ts x-
and y-axes lying in the cross-section considered in such a way that they coincide
with its principal axes of inertia. During deformation due to loading the centre
of gravity S of the cross-section considered is displaced and comes to the
position at S’ see Fig. 3. Let x and y be the components of this displacement.
In addition, the cross-section twists, the angle of twisting being denoted here
by ¢. The angle ¢ is taken as positive in the direction of the positive x-axis
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towards the positive y-axis. As we have assumed that the geometrical shape of
the cross-section remains unaltered, the three dimensions x, y, ¢ suffice in order
to determine the position of any point of the cross-section. Fig. 3 shows the
disc “1”" with its centre of gravity S;, before and after displacement and twisting.
When applying an optional load, the axis of the bar previously straight will
become a spatial curve. If the deformations are taken as small, the projections

. ) d?x
of the curve in the x- or y-planes have the following curvatures: x” — e and
d2y ' ... N
"= a;; . Now, however, the curvature K; of the disc i is merely the projection

of the curvature of the axis of the bar on the distorted plane of the disc. Conse-
quently, in considering also Fig. 3, it follows that:

Ki = x"sin (i + ¢) — y" cos (bi +- ¢) — pi 9" (8)

This equation offers the possibility of simplification in such cases where ¢ as

compared ta ¥ can be neglected. This is true for the majority of the problems

concerning stable equilibrium. Equation (8) can then be written in the simplified
form:

K; = x" sin {; — y*‘ cos ;s — p; 9"’ (8

Inserting the relation (8') into equation (7) we obtain the following formula

for A;:
1

E p. " " a° 4 ¢
A= _2—f[“’<x X2+ ayy Y2 4 axy XY+ 02 X 9 + ayo ¥ 97

(o)

., G ‘
+ o @2+ Fen® + T Ja (p'z] dz 9)

It can now be proved in a general way that:
axx:Jy’ a_vy:JXs axy:ny =0,

where J, and J; represent the moments of inertia of the cross-section of the bar
with respect to the principal axes x, y. J,, is the centrifugal moment. Moreover,
in cross-sections which show symmetry with regard to the x- or the y-axis
respectively, a,, = 0 or a,, = 08 respectively.

Thus, for problems concerning stable equilibrium, the equation for the internal
worl: done will read as follows, provided we introduce the final notations:

axe = Bx, ayo =By and aq, =B,
y (10)
E 2 “w ‘ ‘“ 9 G Y
Ai:?f[J”"""ﬂLny“ngBxx ¢"+Byy'e +B¢¢"2+F€m'+EJd‘P"JdZ
Y.

Returning to the more precise equation (8) which is to be used in cases of
stability problems we may write in this equation, owing to the quantity ¢ being
small as supposed:

sin (P; + @) = sin ¥; + @ cos W;
cos (i + @) = cos P; — ¢ sin P;

8 Space does not permit to prove this statement here. The proof will be published clsewhere.
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Thus we obtain for “K;” the expression:

Ki=(x"" + y" @) sin s + (x" ¢ — y*') cos b — pi ¢ (11)
The insertion of relation (11) into equation (7) yields a formula for A;, which
is similarly constructed as equation (10) with the exception that x” and y” are

replaced by x” -~ v ¢ and x” ¢ — y” respectively. In cases of stability problems
the equatzon for the internal work done therefore reads as follows:

E “" i " 1\ ¢ ‘" ‘i “ a“ T "
=§f[J.v(x Y 0) + I (o —y") + B (x" +y" 9) 0" + By (x" 9 —y") @

+ B, 0?4+ Fep® +—% Jq (p‘z] dz (12)

Bars with multiply-connected cross-section.

In the case of a closed cross-section, the shear-stresses set up due to the
twisting of the bar — produce bending of the various discs, while with bars of
an open cross-section, the bending is related only with the longitudinal stresses.
In the case of the open cross-section, the torsional-shearing stresses of the cross-
section of the disc flow in opposite directions along the longitudinal edges,
whereas in the case of the closed cross-section they flow in the same dlrectlon
In the latter case they have the samie direction as the bendmg-sheanng stresses.
Thus, in the cases here considered, the flexure of a disc in its own plane is made
up therefore of two parts, namely, of the curvatures resulting from the longi-

tudinal stresses K; and the curvatures resultmg from the torsional- shearing

stresses K;. The shearing force per unit length of the cross-section of the disc,
induced by twisting, shall be denoted by T;, Fig. 4.

The expression for the energy of deformation A; can now be formulated as
follows:

- _f[z(m K+ ERisf) + Feu? + 22019, (13)

In this equation the torsional-resistance of the various discs is neglected due to
the fact that it is small as compared to the torsional-resistance of the closed
cross-section of the bar, which is represented by the last term in equation (13).

For the purpose of transforming equation (13) further we use once more the
transitional relations eq. (5’) and the equations (6’) expressing the equilibrium
requirements, which we write once more, this time in the form:

ei+ a4 Ki = g 41— ai 11 Kips (14)
ZEjFi—:O (14‘)
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If a cross-section of the bar, consisting of n parts, is connected r-fold (in a
simple ring r = 2), then there exist n -+ r — 2 equations (14) and one equa-
tion (14’), i. e. altogether n 4 r — 1 relations, with n unknown quantities e.
The number of equations is (r — 1) times greater than the number of unknown
quantities. If, however, the formulas (14), refering to the corners of a closed
sequence of disc are added, the quantities € will be reduced and we obtain in
the casc of a r-fold multiply-connected section r — 1 relations of the type:

2'hK =0, (15)
i

in which h; i1s the height of the disc and in which the dash of the plus-sign
shall indicate that the sum is to be taken only with respect to the parts of
a closed sequence of discs. These equations are free from the “¢;” and represent
r — 1 linear relations of the “K;". The equations (14) are thus seen to he not
independent of each other. After elimination of equations (15), which contain no
unknown quantities “‘¢;”’ there are remaining altogether n equations, which have
a solution only in the case that the requirements expressed by equations (15) are
complied with. Therefore, if we are successful to comply with the conditions (15),
on which the “K;” depend -— and it will finally be shown that this is the case
actually — then the equations (14) and (14’) represent a linear system of equa-
tions as regards the unknown quantity e;, that is free from contradiction. When
computing &, one of the equations can be suppressed in each group of equa-
tions (14) belonging to a closed discring.

The formula for A; furthermore contains the n quantities Ti. In order to
establish the missing relations for the “Ti”". we will consider a single annular
sequence of discs. Assuming this sequence to be interrupted by a cut along an
edge in such a way that we now have a bar with singly-connected cross-section,
then due to loading of this cut bar, the two edges of the cut will be displaced
against one another in the direction of z. However, in the closed sequence of
discs the two edges have to fit each other. If the displacement of a point of the
disc in the longitudinal direction of the bar (direction of the z-axis) is denoted
by &, then the passage through the multiply-connected cross-section must be

represented by the equation:
‘ol
> ds —
J 5 s 0 (16)
L

This equations holds for every annular sequences of discs, so that we have at our
disposal r — 1 conditions (16).

We then write: € =&’ — E”, where &’ expresses the displacement resulting from
the bending-stresses ¢ and 7” the displacement resulting from the shearing-
stresses T;/d;. For each disc we may write:

7

ol

- —:JQIC dz and ot” Ty

0s o Gd: Pre
o
whereby p; denottes the distance of the disc from the centre of gravity-axis of

the bar. The insertion into equation (16) yields in the first place:
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fdst dz—{—j—ids fpi(p‘ds_—_o.

If in the first term the sequence of integration is interchanged and the integra-
tion of the line-integrals is carried out for the discs one after the other, we
obtain:

- s Tihy s,
L TREC T

The sums in each case refer to an annular sequence of discs. Since in conse-
quence of equation (15) the first term is zero, the following (r — 1) relations
remain

ETTN o =0 (am

To the shearing forces T;, are co-ordinated shearing forces of the same
magnitude, acting in the direction of z. Thus for each edge, in which two or
more discs join, the equations, representing the equilibrium requirement, read as
follows:

2"Ti=0, (18)

In these equations the sum refers only to the shearing forces of the adjacent
discs, joining at the edge. We shall have a total of n — r - 1 equations (18), so
that the total number of equations (17) and (18) just amounts to n. As they
are linear, their solution yields the unknown quantities T; in the simple form

Ti=piGo’ (19)

The coefficients 3; depend only on the shape of the section.
The actual existence of the formula (15) has still to be proved. For this
purpose we determine the curvatures K; as set up by the shearing forces, namely

Ty . . . oT;
== Gs in which Ty = YS
The total curvature is: K; = K; -- K;, consequently: K; = K; — K. For K; app-
lies equation (8) and consequently:

=

_ . ) . T
Ki=x"sin (b1 + ¢) —y" cos (b + ¢) — p1¢" + - (20)
Relation (20) inserted into formula (15) yields:
oo ' Ti'h
x'* 2 by sin (i + @) =y 2 hicos (i + @) — ¢ X prhi D) o
The first two sums are the length of the projection of a closed line on to the
x- or y-axis and consequently are zero. The remainder is obtained on basis of

equation (17) by differentiation with respect to z. Thus it appears conclusively
proved, that equation (15) is identically satisfied.

=0.
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Inserting finally equation (19) into equation (20), we obtain
K = x"sin (i ¢) — ¥ cos (i + @)+ (B — g 0 (20)

i. e. a formula for closed cross-sections, which corresponds to formula (8).
If ¢ is suppressed as regards ¥, equation (20) assumes a simpler form, and
then reads as follows:

Ki = x** sin i — y* cos i + (% — pi) 9" (20")

On basis of equations (14) and (14’), the “&;” can now be determined as

a function of the “K;”. In this way and on the basis of formula (13), taking
furthermore into consideration formula (19) and (20”), the following equation
for the internal work (stable equilibrium) is obtained:

(21)

1
Ai — gf[J) xuz + Jx yu2 _+_ Bxxu (Pu + By yu (Pu + Bq} (P“2 + F8m2 + % Jd (Pl2:| dZ
o
2h.
in which Jq = 2 B},.E (21°)

Formula (21) has a structure that is similar to formula (10), with the excep-
tion that Jq has a different meaning from that in equation (10). Likewise
formula (12), which has to be considered in stability problems, has also to be
taken into account in the cases of closed bars, provided J, is defined by formula
(21).

If within a disc d; is variable, d; must be replaced in all the formulae of the
preceding investigation on bars of closed cross-section by the average d;, = e
A more exact consideration of the variableness of d; presents no difficulties of
fundamental nature, but a more precise computation would lead to cumbersome

formulae.

3. Determination of the cross-sectional functions B,, By and B,.

The calculation of the cross-sectional functions B,, B, and B, is given by
way of example in connection with a symmetrical [T -cross-section. The x-axis
is selected as the axis of symmetry. The three plates of this cross-section are
denoted by 1, 2, 3, see Fig. 5. We will assume that the discs 2 and 3 are of
variable thickness. In accordance with this the distance “a” is: a + h/2.

Starting with equations (5’) and (6’), we shall find that in the case under
consideration, beginning with disc 2 and proceeding in the positive counting-
direction from x —y, these equations will read as follows:

€y -+ aKy, = ¢, — bK; l
e, + bK; = &5 — akK; ] (a)
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b

—— T

.

X

If ¢, and €; are expressed by e,, the following relations are obtained:
gs —=¢, — bK, —aK,, e =g, +DbK, +akK, (b)
Inserting this into the third equation of (a) we obtain with F = F, + T, - F;

Fya
e =128 (K, — K,) ©
Due to this, the “e,” and “e;” are also determined as functions of the “K;”.

Now we proceed in computing the sum T F;¢e2 of equation (7):- 1| . m

3 oo .
3 Fue = o [Fya (Ky — K+ Fy [2bK,2 4 2abK, (Ky+Ky) 2 (K, +K,7)] (@)
1 S

The curvatures K; have to be determined on basis of equation (8'), whereby

the following numerical values are to be introduced for the-éngle lbf.--

o] 3n

ll)lzj'[, 11)2:5, 11)32?,
With these ;-values we obtain with due consideration of Fig. 5:
K1 — yn . e(Pr/ K2 — x" btp - K3 _ —-X'; _ bq)".

In this manner the sum:
3 .
ZJi Ki2 — Jl (yu . Qeyu ‘“ + e (P‘ 2) _7_ 2J (xu2 b2 CP“2) (e)
1

and by using the formula (d) derived above, the sum:

3 .

ZFiglzz_%F22a2 uo+F [2b2() 2 _ 26yucpu+e2(pu2> 4ab2()u 0" ecpu‘z)

1

+a%(2x"* +2b% ¢"?)]. (f)
1s obtained.

If the coefficients of the products x” ¢” and y”¢” respectively, which were
expressed above by B. and B,, are extracted from the sums (e) and (),
we find:

B. =0 | g
B, — —2J,0 — 4F,b? (a--e) — —2¢ (Jo+ Fb?) [ (22)

J. and J; denote the principal moments of inertia of the [T]-cross-section
with respect to the x-and y-axis respectively.
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If all coefficients of "2 are collectively considered, we obtain in a similar
manner':

B,=J,e2+2J;b2+2b2F,(a+e)>=J,e>+J;b>+ 3Fb2e2 (23)

Below are placed together the cross-sectional functions B,, B, and B, for
a few additional cross-sectional shapes with one axis of symmetry, frequently
encountered in steel structures, which have been determined as outlined above.

Symmetrical cross-section (Fig. 6).

Bx=0

By=2{—Je+2J,(h —e)—2F,b*(a+te)
—2F, (b o)[c(h—e)+b(h+e)]) 24

B, —J,e? +2J,b? 427, (h — e)* + 2b?F, (a - e)?
+2F,[c(h—e)+b(h+e)]

Ji, Jy and J; are the moments of inertia of the discs 1, 2, and 4, with
respect to the centre of gravity-axis, the latter being at right angle to their
plane — and F,. F,, F, are the cross-sectional areas of the discs under
consideration!.

Unsymmetrical I-cross-section (Fig. 7).

1
ﬁ_._-—’- 3 Ti\»‘s-(_“h_.z *y ;ITE
i ——- Fig. 6. -
Lo | 527 2 ® g <
< i 4
| 5 |
"(.T ' dg. . -72;
x X
B, =0

J, and J, are the moments of inertia of the flanges 1 and 2 respéctively
with respect to the x-axis.

T-cross-section (Fig. 8).

B, = 0
B, = —2Je (26)
B, = Je

J, is the moment of inertia of disc 1, with respect to the x-axis.

9 If the centre of gravity of the Iwo lower flanges is outside of the webs, then ¢ must
be introduced with the negative sign.

56 E
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Isosceles angle (Fig. 9).

B;=0

B, =2V 2el; @
B =2e2(J —Fbg)

i x 16

In this case J. is the moment of inertia with respect to the x-axis: F is the
cross-sectional area of the angle.

The general developments, on the basis of which the above computations were
based, were deduced on the strict assumption of the plate-thickness being

v/
7uh¢
L=y
? Fig. 8.

L]
X

variable. The equations (24) to (27) given above are therefore also applicable
to riveted girder cross-sections of the usual type, in which the various walls
are reinforced in places by addition of corner-irons or other iron straps.
~ Consequently, the distances from the centre of gravity a;, the moments of
inertia J; and the surface F; must be calculated on basis of the reinforced
cross-sections of the discs. The distances a, b, c etc. always refer to the central
plane of the discs. The principal moments of inertia J, and J, must be deter-
mined in the usual manner.

Multiply-connected cross-section according to Fig. 10.

In this figure, the projecting parts must be considered as separate discs,
because, from the view-point of taking up shearing stresses, they behave dif-

rz—c.“-—zlb—-*ﬁﬂ
. [}

FsJs,

24 ! !
I-ﬁlq Y b
X

ferently from the four walls of a box-shaped cross-section of a closed sequence
of discs. In the further developments we assume symmetry with respect to
the x-axis.

In order to ascertain “Jy” in the expression for the work A; of equation (21),
the shearing forces J; must be determined first. These shearing forces act only
within the closed rectangular sequence of discs, made up of the four
walls 1, 2, 3, 4. In order to maintain equilibrium with regard to the longi-
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tudinal shearing — forces along the four edges of the ring, the shearing forces
in the four discs have to be equivalent within themselves. Thus only one
unknown quantity has to be determined, which is given — on the basis of
equation (17) — as a function of the angle of twist ¢. Hence:
T 2h
— 2hbo'=
o ta s~ 2o =0
whence
: hb
T=3Gy' with ‘3:4—b 2b oh (28)
5, 5, b
According to formula (21) we thus obtain:
h2 b2 10
= b—4'b _2h (29)
575, %,

The computation of the values B, B, and B, is carried out in a similar
manner as in the case of the open cross-sections. As the expression for the

curvature K; also contains the shearing-forces T; as a result of bending, terms
relating to the shearing-forces T are found in the cross-sectional functions B.

With the notations of Fig. 10, the following expressions are obtained:
B,=0
F
BY:Q[—<J1+2J4>e+<J +235) (h— ¢) + -2 b* (h — 20)

___(b+c)2e+ > (b+d)* (h'—e)] (30)

3 B3 b)?
B, = (J, +2J) e + (J, +2J,) (h — &)* + 27, (63_ 5)

+_8§b2(h—2e)2+§4(b+c)2e2+—éé(b+d)2(h — ¢

Attention is due to the fact, that F,, J, and F,, J, are the surfaces and mo-

ments of inertia of the discs 1 and 2 respectlvely, haung the height 2b; F,, J,

and F;, J; are the surfaces and moments of inertia of the projecting discs 4

and 5 respectively which latter have a height of 2¢ and 2d respectively. In the

case of riveted girders the variability of the cross-section within the different

discs must be taken into account in such a manner that an average value of
F' . . Ceg I o .

Oim = h—l 1s inserted for “d;" in the expressions for 3,, Ju and B,. Furthermore,

i
all that has been said above about bars with open cross-sections with regard
to the values F;, J; and a; also holds here.

10 Formula (28) agrees with the know formula of the theory of elasticity for the rectangular
ring. Sce A. und L. Féppl: Drang und Zwang, Vol. 1I, ond Edition, Munich and Berlin. 1925.

56*
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4) Differential equations for bending and torsion.

Let p. and p, be the continuous or discontinuous external loading in the
direction of the principal axes x and y respectively and My the torque moment
of the outer forces whereby px, p, and My shall be considered as functions of
the coordinate z, then the expression for the outer work A, reads as follows:

1
A= j [Pxx + pyy — Ma ¢'] dz (31)

A, is a linear function of the displacements x, y, .

The equation representing the equilibrium requirement: d (A; — 2A) eq. (3),
reads as follows, if we introduce A; from eq. (10):
1

* G .
bj[?( Iyt Bax 9" + Byy ¢ + By ¢") + - Ja o7

(32)
—pxx—pyy—{—Md (p’] dz,

o
whereby we assume that the longitudinal force S = 0, and in consequence €, = 0.
The execution of the variation results in the following three simultaneous dif-
ferential equations

d'x  EB, dig |

EJY:]Z_“_{_ 2 dzt —pPx=0 .

.. d*y EB, d*

EJ, d—z — d_ff’ —py=0 (33)
EB, d*x  EB, d'y d*(p d*¢ dMg

2 dzt + 2 dzt +EBy g dz* GJdEﬁ*‘“ dz =0

The eq. (33) can be considerably simplified by a transformation of the co-
ordinates. If the transformation: _
—x— ox Y
X X 9 Jy P Y=Y 2 JX @

is carried out, that is, if the z-axis is removed parallel to the centre of gravity-
axis by the amounts:
By B

7 YT Tan (384)

Sx:

and if the torsional moment of the outer forces with respect to the new axis
is denoted by M, then the equations (33) will read as follows:

d*x
EJ)'a—-F—px'—_—_O
dty
B,? Bz]d‘* 2o dMa
E[B‘P_u 13 @ — G d2_ & 0
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The two first equations are independent of ¢ and in a formal way they are
identical with the differential equations of Navier’s theory. The third equation
is independent of x and y. The principal axis-transformation as has been carried
out thus offers in all cases the possibility of separate treatment of bending and
twisting and it makes possible to obtain a clear conception of how deformation
proceeds and of the distribution of stress.

From the last of the equations (35) it becomes obvious that the twist ¢ be-

comes zero for My = 0. If on the other hand p, = p, = 0, then X and ¥
disappear, the axis of the bar remains straight, the whole bar will twist itself
round the angle ¢. Hereby is, according to formula (34), the axis with the
displacement coordinates e, and e, just the axis of twist of the bar. We shall
call it the axis of torque. Its point of intersection with the cross-section is
called shearing-centre or lateral force-centre. It was determined for the first
time for the [C-iron. Its fundamental significance for the determination of the
shapes of bars under consideration, however, did not become obvious, until the
transformation described above was effected.

The equations (35) enable us to perceive the following general behaviour of
slender bars made of thin sheets: If the outside forces pass through the axis
of torque which, as a rule, does not coincide with the centre of gravity-axis,
bending stress alone, and no torsional stress will be obtained. The determination
of the deformations and stresses is effected on the basis of the two first
equations (35), that is in such a manner, as is done according to Navier’s
theory for loads, which pass through the centre of gravity-axis. In all other
cases of loading, both kind of stresses — bending and torsional — are set up,
even in cases where p. and p, disappear. If the cross-section has an axis of
symmetry, then the shearing-centre will be located on this axis. With two
symmetrical axes, the axis of torque coincides with the centre of gravity-axis.

The equations (34) and (35) apply both to bars with open and closed cross-
section. Only when determining the cross-sectional functions Js, B, B,, B,
attention must be paid to whether the section is singly- or multiply-connected.

For ordinary applications the equations (35) can be converted by integration to

dx .
EJ.\’F_’_I\IY:O
d?y
B,? B2]d3(p de =
E[B‘P*Zﬂ_ﬁ G — Glagg, —Ma=0

M. and M, are the moments of the outer forces in the planes zy and zx
respectively.
Hence, ¢ is defined by the differential equation of third order:

d"(p ,do Mg

dz* - dz vy =0 | 87
) ) GJ B,? B2~ g
in which o= Td and y=E IB 4.] 4—3; (87 )
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The solution of the equation for torsion (37), which is dependent oun the
state of loading and on the conditions of the supports, depends only on the
shape of the bar through the intermediary of the parameters o« and (, which
enter into the solution as fixed quantities. The solutions of equation (37) can
thus be established independently of the shape of the bar, just as is the case
for the solutions of the Navier bending formulas. Formula (37) represents a
generalisation of the differential equation of torque of symmetrical I-girders as
derived by Timoshenko.

In connection with the above general discussions, a few remarks may be
added regarding the essential assumption made in the early part of this paper
concerning the unalterableness of the shape of the cross-section. If three discs
are joined to form one bar, it is obvious that each of these discs may be sub-
jected to slight deformations in its plane, without destroying the sequence bet-
ween the discs and without changing the angles formed each time by two
consecutive discs. In the case of more than three, or generally spoken n-discs,
n-3 angles change, provided that to the various discs deformations in their
own plane are prescribed. On basis of this consideration it follows that in the
case of 1, L, [, and "L shaped bars, the condition of conservation of the
cross-sectional shape is automatically complied with, as the deformations to
which the individual discs are forced due to loading, do not show any cons-
traint, which would result in a change of the shape of the cross-section. However,
in the case of bars made up of four or more discs — regardless whether the
section is singly-or multiply-connected — care must be taken to ensure by
favourable means that the shape of the section remains unchanged. As a rule
this can be attained by inserting transverse straps at fairly large intervals.
Judged from a practical view-point they are evidently necessary only at those
places where the loading, accompanied by considerable twisting-effects, induces
very marked changes of the angle of twist between the different discs.

If two walls of a bar with open cross-section are connected together by means
of a strut, as shown by way of example in Fig. 11, such a bar can be considered

3) 4)

S - . g 11,

Versfrebung
Conlre - fiche
Latticing

as a closed bar. When determining the B-terms according to the equation (30),
the values J, = 0, Fy; = O must be inserted for a lattice-girder disc such as
shown in Fig. 11a. In the case Fig. 11b, the substitute moment of inertia of
the lattice girder disc, situated between the two webs, must be introduced
for J,, while for F, the area of the strip-plates, which are located between
the two webs has to be inserted. In computing the shearing-force T on basis
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of formula (28) and J4 on basis of formula (29) 5, must be taken equal to the
ideal plate thickness, which is obtained by dividing the cross-sectional area f of
the strut (Fig. 11b) by the whole height 2b of the disc.

5) Stress-determination in the case of bending and twisting.

The edge-stresses o set up by the moments M. and M, are computed in the
usual manner as though the loads were passing through the centre of gravity-
axis of the bar. If M, differs from zero, which is the case, when the loads do
not pass through the axis of torque, then the third of the eq. (35) or eq. (37).
respectively must be integradet after insertion of My as a function of z, taking
into consideration the edge-conditions of the problem. If ¢ is known as a
function of z, then the additional edge-stresses and shearing-loads induced by
twist can be calculated. For this purpose the curvature of the various discs of
the bar has to be computed on basis of formula (8) or (20”) respectively,
x and y being the displacements to which the centre of gravity-axis is subjected
when the bar is twisted round the axis of torsion by the angle ¢. Thus the
displacements x = S, ¢ and y = s, must be inserted into the formula (8)
or (20") respectively with the result that we obtain equation:

Ki= [sy sin P; + sy cos P; - (lg:- — pi)] 0" (38)

of general validity. For bars with an open cross-section f3; = 0.
The edge-stresses o; in the disc i- are determined by the relations:

oi =E (e +uK) (39)

in which n denotes the distance of the edge-points from the centre of gravity
of the disc. Hereby n is taken as positive in the positive counting-direction
from x —=+y.

If the lengths e, s, b etc. are numerically inserted into formula (38), expres-
sions of the form K; = p;@” will be obtained for the “K;”. This serves for the
calculation of the g;-values on the basis of eq. (5”) which also appear in the form

Fig. 12.

& = vi¢”. Consequently, all the numerical values are then known, so that on
basis of eq. (39) the longitudinal stresses o; can be computed for the edge-points
under consideration. In this connection it should be noted that while all the
dimensions used so far for the calculations, such as the quantities a, b, e, s, etc.
refer to the central planes of the discs, the “n” refer to the end or outer surfaces
of the discs. For a corner, such as shown for example in Fig. 12, the deter-
mination of the stress has to be effected by considering the distances n or v/,
according to whether the stress in the corner point A is computed as belonging
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to the vertical or to the horizontal disc respectively. The two stresses determined
in this way, naturally enough, do not coincide entirely, as the above solution of
the problem before us was obtained on basis of the assumption of infinitely thin
discs. The computation would result in a complete coincidation only for the
point of intersection A’.

The longitudinal stresses ¢ due to twisting are finally to be superimposed upon
the stresses o set up by the moments M. and M,, which are to be determined in
the usual manner.

The torsional shearing-stresses in bars of open-cross-section have to be com-
puted for each disc on basis of the formula:

i = G ¢’ max d; (40)

in which max 9; is the largest thickness of the disc considered. For bars of
closed cross- section the decisive shearing-stresses resulting from T; are obtained
on basis of the formula:

In this case min d; is the smallest thickness of the disc considered.

In order to prove the correctness of the theory as developed above, the stress
determinations which Bach has carried out with a [ NP 30, were compared with
the stresses as obtained on basis of the equations, derived in this paper. The
girder tested had a span of 3 m and was vertically loaded with 1,500 kg at

Randspannungen in 1, 2,3, 4
Tensions dans la Fibre exliréme en 1,2, 3, 4
Extreme fibre stresses m 1 2,3, 4.

Fig. 13.

Calculées d'spres Blech

{ Nach Bleich berechnet
Calculated acc. to Blerch

Mesurees par Bach

{Von Bach gemessen
Measured by Bach

Calculees daprés Navier

{/Yach Navier berechnet
Calculated acc. to Navier

three equidistant points as shown by the transverse-section Fig. 13. The magni-
tude and the distribution of the longitudinal stresses of the upper and lower
flange of the [-steel are shown in the same figure. The agreement between
the measured and the computed stresses is satisfactory. For the purpose of com-
parison the uniform beniding stress of 271 kg/cm2, calculated in the usual
manner, is also shown in the stress-diagram. Attention is drawn to the fact that
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points 1 and 4, in which measurements were made, had a distance of 5 mm
from the outer surfaces of the two flanges. In determining the stresses, this
position of the points was considered!!.

6. The differential equations for the buckling-problem.

Let the straight bar be loaded with a longitudinal force S acting along the
centre of gravity-axis. Taking into consideration, that due to “S” the bar is first
compressed to the extent of “en” and that it then, after reaching the limit of
stability, starts to buckle, the formula for the external work A, assumes the

following familiar expression:
1
Ac= [[Lse +iS(x'2+y'2)] dz
8 2 =9

In the cases of certain simple buckling problems, which we will consider here
i this part of the paper, it will suffice, to refer to eq. (10) for the expression
of the internal work, in which the small quantities of deformation of higher
order are suppressed.

. S 1 .
If due consideration is given to the fact that the term 9 Sen In A, can be

replaced by 5 Fen? on account of S = EI ¢, the variation-requirement (3) reads

as follows:
1

E G
bf [5 (Jrx"® +Jxy"® + Bex@" + Byy" ¢ + Bog"* + 1 Jag”)

— 5 S+ ¥ de = 0.

The carrying out of the variation yields the following three differential
equations:

*x  EB; d* dx

2 dz(p +5 dz* =0,
EJx‘éi +Elj ‘g‘f+sd2 =0, (42)
L B 0 0,0
which, after a double integration, assume the form:
EJy%z—’;Jrrf ‘ilf?+sx-—0
Ech(lTi Eg ‘3;‘?+s =0, (43)

11 Bach’s experiment has already been verified by C. Weber on basis of the formulae which
he derived for two-flanged girders.
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Having these three simultaneous differential equations on hand, the buckling
problem of thin-walled bars can be considered as solved in a general way.
The eq. (43) enable us to perceive the following facts: In the cases where the
cross-section of the bar has no axes of symmetry, i.e. in the case both B,
and B, being different from zero, the bar will be subjected to twist, because
¢ does not disappear. If the cross-section has one axis of symmetry, then
the bar — according to the conditions of stiffness-will buckle either in the
direction of the axis of symmetry or vertically to it. It is in the latter case
that the bar also twists. :

In order to obtain further information regarding the behaviour of such
bars, we will examine a bar having the length 1, whose cross-section shows
symmetry with respect to the x-axis, and which is so fastened at the ends
by pins that buckling will take place in the direction of the y-axis and which
is furthermore so consolidated also at the ends that there no twisting round
the z-axis can take place.

With the trial-solution:

y = Cysin 215, ¢="Cysin"1=  (m=1,23..)

we obtain, by way of insertion into the second and third eq. (43), the require-
ment for buckling:

n®x? n’n® EB
e |

n2n? EB n?x® =
i (2 BB, + GJa)

After computation of the determinant and insertion of the abbreviation
n2x2 EJy

Sg = - the following formula is obtained for the buckling load Si:
Sk =3Se(1 B,* (44)
k=20 (l—
JXGJd)
43 (By + =N
. . w2 EJx
The smallest value is obtained by taking n = 1, corresponding to Sg = —E

The actual carrying capacity as regards buckling at right angle to the axis
of symmetry is therefore less than the carrying capacity value as computed
on basis of the Euler formula. In determining the magnitude of the second
term within the parentheses it will be observed that for certain cross-sectional
shapes, such as T-and unsymmetrical X-sections, considerable diminutions of
the carrying capacity — as compared with the values determined in the usual
manner exist12,

In the following table Sy as computed according to formula (44) is given
for several shapes. The figures were calculated on the assumption that the

12 This diminution of carrying capacity has already been observed by Ostenfeld. See refer-
ence H) for title of paper, p. 17).
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buckling-stress oy, determined on basis of the Euler formula just amounty
to 2000 kg/cm2. With increasing slenderness of the bar the “S,” approaches
Euler’s carrying capacity value. The influence of torsional resistance of the
cross-section of the bar is very considerable. As this increases, so the carrying
capacity Sy increases. Its influence increases with the increase of the degree
of slenderness. In the case of closed cross-sections the difference between S
and Sy is insignificant, owing to the great torsional resistance.

Shape of cross- Ratio of carrying capacity Sy in the case buckling in
section direction y to Euler’s carrying capacity value Sg
e oM — 10 ’ 20 30
g |
300-10 S
K
= 0.699 0.930 0.974
v SE
X
Joo
—
—r—=14 b= 10 20 30
B2 y
500 10 |
150 10 Sk l
- = 0.691 0.724 0.883
' Sg
X
500 | l
‘ =4 o= 10 20 40
3 LA | ‘
+— Joo 14 \
o Sk !
200 o = i |
: S, = 0.534 } 0.703 | 0.942
X !

If the load is drawn off the centre of gravity of the bar and displaced
towards the centre of the shearing-stress, which for instance in the case of
a T-section is situated at the point of intersection of the two discs, then S,
increases steadily — as we shall prove in the next paragraph — and it finally
reaches the maximum value Sg, whereby the load just acts in the axis of
torque. As regards lateral buckling, the centre of gravity-axis and the axis
of torque have interchanged their parts, at least as far as the here considered
shapes of bars are concerned. According to these considerations, tall-webhed
A -steels, joined on one side to a flange, therefore probably will possess
a greater carrying capacity as computed on the basis of the usual theory
for the case of excentric point of load application.

It shall be emphasised, that the preceding considerations and conclusions apply
only to elastic buckling.

7) Differential equations for the Tilting problem.

In the case of tipping or tilting we conceive of the beginning of a stale
of unstable equilibrium of a bar subjected to bending, which is characterised
by the fact that, when this unstable equilibrium becomes apparent, the bar
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not only yields laterally, i. e. perpendicular to the plane of flexure, but at the
same time also twists. In order to simplify somewhat our presentation we will
consider only bars of simple symmetrical section which are loaded in the
xz-plane. The bar will yield in the direction of the y-axis in the case that the
magnitude of J, is substantally less than J,, as, is the case, for instance, when
an I-girder is loaded in the plane of its web.

Let p. be the load acting in the x z-plane, M, the bending moment induced
by this load, S an external longitudinal force acting along the axis of the bar,
a the height of the point of application of the load p above the cross-sectional
centre of gravity, see Fig. 14, whereby “a” also may be negative. The total work
done by the external forces, i.e. the work done in both cases of stable and
unstable state of equilibrium, is expressed by the following equation:

1 (1M ,
Aa‘:"zj [EJ;T Sem + Sy + an<P2] dz

With regard to the internal work A; it is necessary to go farther back to the
formula (12), as the influence of the deformation-terms of higher order can

no longer be neglected. In accordance herewith and if due attention is given
to the fact that on account of the assumed symmetry B, = 0, the expression
for the variation-requirement (3) then reads as follows:

1
1 : .
° ’2"f [E (Jy (X" +y" @) +Ix ("o —y")* + By (x" ¢ — y*) 9"+ Bo¢'** + Fen®

o

G M,? A .- )
+de<P‘2)—(E§y+Se“‘+syﬂ+ap"‘"')] dz (45)

When tilting takes place, the changes in the quantities x and e, are small
as compared with the displacements y and ¢ which are induced only when
tilting starts. For this reason we further consider the quantities x and e, as

M

being invariable for the variation; they retain their values of x” = — E_JY—
S . . . y

and g, = EF which they had attained just shortly before the unstable
state was reached — while the tilting state lasts. If these values for x and &n
are inserted into formula (44), the following conditional equation will be
obtained, in which, however, all terms — small of a higher order than the

second — were suppressed:
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1
1 \ ) T,
° E»fj [EJey — EByy”o" + EBog + Glag — 2 (1= F)yyg

— apo®— Sy”’] dz.

If the variation with respect to y and ¢ is carried out the two following
simultaneous differential equations will be obtained:

d‘y EBy d‘og ( Je\ d* d*y
Elx v — 5 ¢ — l_j;)d_zz(My(P)‘*‘Sﬁz_z_O’ l

. (46)
EB; d*y dto Jx\ + dPY d? (

?__ —
dz? apx¢ =0,

on basis of which the general tilting problem for bars having at least one axis
of symmetry may be considered as solved!3 in principle.

When dealing with the simplest special case, 1. e. with S and M, constant,
p« = 0, it will be found that for a bar of the length 1, which is rigidly fixed at
the ends in such a manner as to prevent twisting round the z-axis but which can
turn freely round the x-axis, one obtains with the trial-solution:

z nz

y = G, sin ﬁT, ¢ == Gy sin i

an equation representing the requirement for stability:

n? EB,; =*

=9 (7 03[ (- wf =0 @

On basis of this formula, S or M, can be determined. Considering the case in
which the moments M, are set up due to the force S acting not in the centre of

M

gravity but at a distance ¢ = —S—y from it, then we have before us the case of

: . . . 7*EJy Iy
buckling due to excentric compression. With Sg = R and |1 —3)~ 1

y

the formula (46) reads somewhat simpler as follows:
T° B 3
(e — ) (EB, T + GJa) — (5 Se — Se) =0 (48)
Now ;} — S, is the distance of the lateral force-centre from the centre of
X

gravity. Considering the case e = s,, which corresponds to the longitudinal
force S acting at the lateral force-centre, then it follows that S = Sg becomes

a maximum and equal to Euler’s buckling-value, wherewith the statement made
in the preceding paragraph is proved.

13 If By is made equal to zero, i.e. if it be assumed that the crossection possesses two
axes of symmetry, the functiony can be eliminated in the special case S = o, and the differ-
ential equation of the third order derived by Timoshenko for the tieting problem of I-girders
will result.
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Summary.

The standard theory of bending and torsion of straight bars is based on two
assumptions: 1. The longitudinal stresses, induced by bending, are linear functions
of the cross-sectional coordinates x and y; 2. In the case of twisting alone,
the longitudinal stresses will be zero, if small quantities of the second order are
left neglected. These assumptions are not always realised in the case of bars
made up of thin sheets. Proceeding from the assumption, that in each of the
sheets of which the bar is composed, the basic principles of the Navier’s bending
theory apply the differential equations for bending and torsion of prismatical
bars are derived on the basis of a principle of variation. The equations apply
generally, for bars with open, as well as closed cross-sections, singly and
multiply-connected. By means of an appropriate transformation of coordinates it
becomes possible, to separate the treatment of bending and torsion. This trans-
formation also points out the significance of the lateral force-centre.

After the general representation of the stress-determination for bending and
torsion, the differential equations of the buckling problem are derived in
a general manner for the shapes of bars in question and the simple case of
buckling of a bar having a simple symmetrical cross-section is discussed. It is
pointed out that under certain conditions a centrically loaded bar possesses a load
carrying capacity as regards buckling, which is often considerably below the
Euler load. Finally the differential equations are derived for tilting of bars with
cross-sections of at least one axis of symmetry. In this connection it is shown’
that in the case of the bar being loaded by a longitudinal compressive force S
acting along the axis of symmetry, the critical load Sy reaches a maximum value,
if S passes through the lateral-force centre.
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