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IVa3

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Massive Kuppeln, zylindrische Behalter
und ihnliche Konstruktionen.

Coupoles massives, réservoirs cylindriques
et constructions semblables.

Dr. techn. H. Granholm,
Dozent an der Koniglichen Technischen Hochschule Stockholm.

The precise calculation of the bending stresses in a massive dome 1s a very
difficult matter. These difficulties are brought out in a thesis! presented to the
Royal Technical College Stockholm, and it may well be asked whether the prac-
tising engineer ever has the time and opportunity of working out the dimensions
of a dome in terms of exact theories. Even to draw up the fundamental equations
1s a fairly complicated business, and their exact integration leads to series which
are often difficult to handle, and which slowly converge. Even though their con-
vergence 1s satisfactory for many wall-thicknesses (gauges), any alteration in gauge
may result in this good convergence being lost. Even where the engineer has the
mathetical equipment necessary for dealing with the problem, the amount of
work necessary for working out a definite case of loading is much too great;
and it may not be possible at all to arrive at practical methods in the way
indicated by Meissner, Bolle, Dubois, Honegger, Ekstrom and others. In the
case of spherical domes, for instance, integration, even in the simplest cases.
gives hypergeometric series which do not constitute the proper equipment of the
engineer owing to their slow convergence.

In view of these facts, it is particularly necessary that the further development
of the dome theory should be based upon solutions that fully meet practical
requirements, even though this involves introducing certain approximations. As
Geckeler 2 has shown, it is possible, even with comparatively simple mathematical
expedients, to arrive at a solution which differs only inappreciably from the true
one, and which can be easily and conveniently employed, in cases where the
wall-thickness and radius are constant. The good agreement between Geckeler’s
theory and the exact theory may justify our discussing the former in greater
detail, provided we are clear as to what approximations are introduced. A still
further step in the direction of the true result is achieved by using Blumenthal’s
and Steuermann’s method of asymptotic integration, which is applicable to

! John Erik Ekstrom: Studien iiber diinne Schalen von rotationssymetrischer Form und Belastung
mit konstanter und verinderlicher Wandstirke. Stockholm 1932.
2 See, inter alia, Handbuch fiir Eisenbetonbau, Vol, 6, Berlin. 1928.
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708 A. Granholm

variable wall thicknesses as well. We actually get farther with this method than we
do with the methods that are based on solutions in the form of infinite series,
in which connection the wall thickness was always assumed to vary in terms
of a definite function if the solution had to be worked oat.

Closer examination of Geckeler’s final equations reveals that these are of the
same type as the equations for an elastically supported beam. Nor is it difficult
to appreciate the physical analogy. The meridian of the dome may be regarded
as a girder supported by the parallel circles or rings. As these may be compressed
or expanded, they correspond, statically, to elastic supports.

When the dome is regarded in this way, its statics may be elucidated with
sufficient accuracy. It is not then necessary to revert to Meissner’s differential
equations for drawing up the equations of equilibrium, but all the necessary
equations may be set out directly, simply with the aid of the theory of the
elastically supported beam. For the practising engincer, this means that he need
not attempt to understand the fairly complicated classic theory of the dome,
but can work out the necessary equations for himself.

Geckeler’s published works show that he himself has not fully appreciated
the high importance of the approximations he suggested; that is, he has not
understood that the dome, considered broadly, acts like a steady series of girders
on elastic supports. The method of treatment which I suggest can of course
be extended by regarding the meridian, not as a girder, but as an arch supported
elastically by the ring elements of the dome.

By considering the dome in this way, it is possible to get a more accurate
idea of the statics of the structure, and the equations obtained as the result of
doing so are the same as Meissner’s.

It is obviously necessary to introduce this latter method of conception espe-
cially in the case of very flat domes; that is to say, where the arch effect is
very manifest in the elements of the meridian, if the desired accuracy is to be
achieved. The more inclined the tangent of the dome at its support, the more
accurate will be the method where the meridian is regarded as a girder on an
elastic support; and in the special case where the tangent of the cupola is every-
where vertical, 1. e., when the dome merges into a cylinder, this particular method
of considering the dome is perfectly exact.

In order to show more closely how simply the dome problem can be dealt
with in this way, I have worked out a few problems and compared the results
with those obtained in accordance with the strict theory. The agreement is ex-
tremely satisfactory throughout.

As our first example, we shall select a spherical concrete dome of uniform
thickness, wall-thickness ® = 16 c¢m, radius r = 1000 cm, angle of opening 40°9.
We shall suppose the dome to be loaded with a constant fluid pressure of
p = 1.0 kg/cm2, and to be firmly restrained around the edge (see Fig. 1).

If the stresses in this dome be calculated in accordance with the membrane
theory, we get a compressive stress at the meridian of T, —ET and an annular

2
pr . .
2 =g These meridian and ring stresses are constant
throughout the dome, and the solution in terms of the membrane theory is thus
45*

compressive stress of
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very simple. Due to these compressive stresses T, and T,, the dome is com-

T 2
pressed, so that its radius is reduced by s i.e., by IQ-E— This reduction in

radius is not very great, amounting to only 0.15 cm under the assumptions
given, and for E = 210.000 kg /cm2. As the dome is secured about its edge, it
is not capable of freely altering its shape; the parts nearest to the edge will

2500

1500 —

-
I
S
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|

Moment M,

500—

30° 25° 20° 15° 10° 5° 0°
1 1

Exact
50—

Fig. 1.
Comparison between the values of the Meridian-moments, (1) calculated according to equation
and (2) according to the exact method by means of hypergeometrical series.

The deviations are of no practical avail.

retain their original radius; but the farther we get from the edge, the more
freely will the structure be able to move, and the more freely deformation can
take place. Although the compression of the radius is fairly small in this case.
certain disturbances are set up near the edges which may lead to bending
moments of such magnitude that they cannot be ignored.

We shall now investigate how large moments are set up in an elastically
pr?
2E

supported girder assuming that it is deflected in accordance with the values -~
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calculated above. The moment and the deflection are connected by the formula
d*y
dx?

and the effect of the elastic supporting of the ring elements is expressed by
th2 cquation:

EJ-S3=_M, . (1)

d*M, Eb
T ==Y (2)
Eliminating M, from these two equations, we get:
d? d? Eb \
e [EJ dny +—-y=o0 (Ba)
Em* 3°
or, assuming the bending rigidity EI to be constant and equal to 1 190"
have :
d4
o takty=o
[} 2 __ . (3 b)
where k* = 3 (m 3 D .,1 5
m r* d°
The general integral of equation (3b) can be written in the following form:
y = e~ (A cos kx + B sin kx) 4 e =%~ (C cos kx + D sin kx) (4a)

which means that the deflection may be regarded as the sum of two sine vi-
brations, one having a damped and the other an increasing amplitude. Generally
speaking, the coefficients G and D may be taken as = 0, provided the girder is
not too short and that the origin is located at the point from which the di-
sturbance proceeds. For closed domes, therefore, the integral can be written
with sufficient accuracy in the following form:

y = e~¥* (A cos kx + B sin kx) (4b)

Here x is the arc length of the meridian measured from the edge of the dome.
In this case the arbitrary constants A and B can easily be determined from the

boundary condition, so that -
2

_ __ P ,
y=— 2Eband\ =0 for x =0.

re

This gives A =B = — .53—6’ and the deflection at the meridian is therefore

pI‘2 -kx 1
Y=—155s ¢ (cos kx + sin kx).

By inserting in equation (1) we get the following expression for the meridian
moment: B

M, = D) pr?)e—l*x (— cos kx + sin kx) (5)

In this expression, the effect of the transverse compression of the material is
ignored, 1. e., Poisson’s factor m is taken as equal to infinity.
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Table L

Values of functions e—kxcos kx, e—kxXsin kx, e—kx (coskx — sinkx) and e—kX (cos kx + sinkx.

711

kx e—kx cos kx e—kx sin kx e—kx (cos kx — sin kx) | e—kx{(cos kx + sin kx)
!
0 1.0000 0.0000 1.0000 ! 1,0000
% 0.6239 0.2584 0.3655 0.8823
% 0.3225 0.3225 0.0U00 0.6450
‘%" 0.1179 0.2845 —0.1665 0.4024
—2"— 0.0000 0.2079 —0.2079 0.2079
§8—" — 0.0636 0.1297 —0.1833 0.0761
19’4—" —0.0671 0.0671 —0.1342 0.0000
381 —0.0592 0.0245 — 0.0837 — 0.0347

x —0.0482 0.0000 — 0.0432 — 0.0432
385 — 0.0269 00112 —0.0157 — 0.0381
%ﬁ —0.0139 —0.0139 0.0000 — 0.0279
11 n. . -

5 —0.0051 —0.0128 0.0072 — 00174
io’gl 0.0000 — 0.0090 0.0090 — 0.0090
13 = _ - .

5 0.0023 — 0.0056 0.0079 —0.0033
77" 0.0029 —0.0029 0.0058 0.0000
158" 0.0026 — 0.0011 0.0037 0.0015
2 0.0019 0.0000 0.0019 0.0019

%1 0.0011 0.0005 0.0006 0.0016
% 0.0006 0.0006 0.0000 0.0012
%’ x 0.0002 0.0005 — 0.0003 0.0007
% x 0.0000 0.0004 — 0.0004 0.0004
?8—1 — 0.0001 0.0003 — 0.6004 0.0002
%1 x — 0.0001 0.0001 —0.0002 0.0000
23

3T — 0.0001 0.0001 — 0.0002 0.0000
3x — 0.0001 0.0000 — 0.0001 — 0.0001
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From the values of the functions e~**cos kx and e **sin kx given in Table 1,
it is an easy matter to plot equation (5) graphically. Fig. 1 shows how the
meridian moment M, varies with the distance from the edge of the dome. The
exact values obtained by Bolle’s method with hypergeometrical series are given
by way of comparison3. It will be seen that the agreement between the exact
results and the approximate values is surprisingly good, so that there is no
occasion to make the dome problem a complicated mathematical business. For
domes with a bigger angle of opening than 400, the agreement between the
exact and the approximate values is better still. Only in the case of domes
whose angle of inclination to the supports is very small does the effect of the
approximations achieve practical significance. Incidentally, such domes are
1mpractlcable due to the serious dlsturbances at the edges set up when the dome
is connected to its supports.

For the calculation of the stresses in the dome, we have to consider not only
the meridian moment M; but also the ring moments M, and the additions to
the meridian compressive stress and ring compressive stress set up through
the boundary conditions not corresponding to the assumptions of the membrane
theory. These quantities, My, AT; and AT, can be calculated directly from the
equations below. The agreement between the figures obtained by this approxi-
mation method and the exact values is also very satisfactory, as may be seen
from the comparative figures given in Table 2.

It is simplest to derive the mathematical expressions for the additional stresses
AT, and AT, by assuming that the meridian is a girder with an elastic support.
The increase in the compressive stress at the meridian, AT, may thus be regarded
as the shearing stress in the girder multiplied by cot o, where o is the angle of
inclination of the meridian to the horizontal plane. We therefore get:

3
AT, =cota-EJ. ‘3{, (6)

The increase in the ring compressive stress AT, is a measure of the elastically
supporting effect of the base, and, hence, AT, is directly proportional to the
deflection y of the meridian, so that

Ed
AT2:T°)’ (7)

The ring moment is most simply obtained by determining the alteration in
the curvature of the rings4, and, neglecting the effect of the transverse com-
pression, we get:

EJ dy
—cota-
M, =cota ix (8)

I‘

Inserting the equation for the deflection of the meridian, viz.,

9
pI“' —kx 3
fo—— —— ¢ cos kx 4 sin kx
3 See Ekstrom, loc. cit., p. 124.
4 See, inter alia, Foppl: Drang und Zwang, Vol. 2. Berlin 1928.
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in equations (6), (7) and (8), we obtain the following expressions for AT, AT,
and M,:

242
AT, = — cota EGE k3 e—kx cos kx (6a)
AT, = — %" e~k (cos kx + sin kx) (Ta)
2
M, = cot - PEO k o-kx sin ky (8a)

12

Table 2 contains the values of the meridian and ring stresses and ring moments
worked out in this way, in comparison with the exact figures.

Table 2.
Comparison between the Proximate and Exact Values of the Meridian and Ring Stresses
and Ring moments.

l:cliig::Zti(;fn T+ AT, T+ AT, T, +AT, | T+ AT, M, M,
of the Proxiniale Exakt Proximate Exakt Proximate Exakt
Meridian kg/cm kg/cm kg cm/cm
! I

40° 443 439 0 0 0o | 0

35° 474 481 215 193 99 o113

30° | 503 504 437 4217 62 3

25" 506 508 517 520 12 17

20° 503 504 518 523 —8 —10

15° 501 501 511 510 -9 —14

10° 499 499 501 501 —5 — 9

50 499 498 499 498 0 — 3

The problem worked out above relates to the simplest conceivable edge cen-
ditions. In order to show the applicability of the method for complicated edge
conditions as well, I have worked out a dome connected to a circular cylinder
all round, as Fig. 2. To simplify the problem to a certain extent, the water
pressure on the dome was assumed to be constant. This problem has been dealt
with by Ekstrom under the same assumptions. The calculated values for the
meridian moment M, and the ring stress T, are given in Table 3, with the exact
values for comparison.

The index 1 will subsequently be used for all constants of the dome, and the
index 2 for all constants of the cylinder.

This design of dome is worked out as follows. When the inner dome and the
cylinder are freed from each other and can deform unhindered under the effect
of the load, the membrane theory shows a decrease in the radius of the dome of

pl‘,z _P '1104
2F>, ~ E

- 3,12 cm

and an increase in the radius of the cylinder of

pr.’  p-10*

- 1,72 em.
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The wall of the cylinder thereby forms a small angle to the perpendicular
10

=% 1.72 (see Fig. 2).

% g

8o =24cm

Fig. 2.

As this state of deformation is incompatible with the actual conditions of
support, certain additional forces and additional moments must be introduced to
satisfy the conditions of steadiness. These conditions of steadiness are as follows:

The cylinder and the dome should have the same outward deflection and
alteration of angle at the point of junction, and the point of junction shouald
also be in equilibrium as regards the moments and applied forces. This involves
four edge conditions, which may be expressed by means of four equations,
from which all unknown deformations, moments, etc. may be determined.

To facilitate drawing up the equations, we now give the general expressions
for the deflection and their derivation. We have:

y = e~kx [A cos kx 4 B sin kx]
y' =ke**[(B—A)cos kx -— (A + B) sin kx| ©)
y'* = 2k* e~¥* [— B cos kx 4 A sin kx|
vy = 2k?® e~¥x[(A 4 B) cos kx 4 (B — A) sin kx]
The first condition, viz., that the’ deflections of the cylinder and the domec
must be the same at the edge, may be expressed by the following equation:

p- 10

— A, sin40°+ A, = P o (3,12 5in 40° 4+ 1,72).
So that the angular modifications may be the same in extent, we must get
10

ki (B, —A) =k, By — Ay) — 5 - 1,72
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and for the equilibrium of moment we get
k,!EJ, B, =k,2EJ, B,.

The remaining condition should express the fact that the horizontal reaction
due to the loading of the inner dome should be taken up by the shearing stress
in the cylinder and by the shearing stress and the meridian stress in the
dome; i e.,

—2k,*EJ, (A, +B,)- sTrTlLW — 2k EJ, (A, + B,) = p - 500 - cos 40°.

By elimination from these four conditional equations, we get, for p =1 kg/cm?
the following values of the constants:

. 104 104
A1:—-15,3D‘T 81:—7,16—E‘
., 10 _ 104

A_)-‘:—"— 0,13'T Bg— 2,05‘T.

This completely solves the problem. The moments, etc. can now beé worked
out without difficulty for any point of the cylinder and the dome. Table 3
contains a comparison of the calculated and true values for meridian moment
and ring stress in the dome. The agreement is satisfactory at all points.

Table 3.
Meridian Moments and Ring Stresses of the Dome as Fig. 2.
Angle of ; , .
Inclination Prol):/i[rlnate : Eziikt PT:O_.tir?x;I;z Tiﬁial.?th
of ‘lh_e kgem/cm | kgem/cm kg/cm kg/cm
Meridian
40° — 5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
25° 597 764 618 639
20° — 6 9 YDA H93
15° — 99 — 141 520 526
10° — b — 80 498 498
5o — 8 — 15 495 493

These two examples indicate that the method explained here for dealing with
the problem gives results which are practically applicable and easy to find.

As already mentioned, the proximate solution comes closer to the true
values, the steeper the dome and the thinner the shell. This latter factor in
particular is of great importance, as Steuermann® and others have pointed
out. Unlike Equation (3b), the exact equation for the outward deflection of
the meridian contains not only expressions of the fourth and zero order, but
also expressions with derivitives of the first, second and third degree, which,

5 E. Steuermann: Some Considerations on the Calculation of Elastic Shells. International Con-
ference for Technical Mechanics, Stockholm, 1930.
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however, are all multiplied by polynomes of cot a. The significance of these
expressions decreases with increasing values of a, and for a = 909, i e., for
the cylinder, they drop out altogether, which means that equation (3 b) applies
exactly. A reduction in the wall thickness of the dome has' a similar effect
on the complete differential equation. It is easy to see why this should be the
case; it i1s simply due to the fact that, for small wall thickness, the compression
at the meridian and the influence of the change in curvature are less pronounced
in their effect. Put differently, this means that the work of the normal stresses
due to compression of the meridian, together with the work of the meridian
moment and the ring stresses may be ignored in thin-walled domes.

In the problems dealt with previously, the wall thickness was assumed to
be constant throughout. Where the wall thickness ® is variable, we cannot
start from equation (3b), must apply equation (3a). As the simple theory of
the elastically supported girder gave sufficiently accurate results in the above
casses, 1. e., for constant wall thickness, there was reason for assuming that
this would also be the case for variable wall thicknesses.

The theory of the elastically supported girder with variable moment of inertia
and variable support has previously been studied by various researchers,$
mainly with the aid of series. Unfortunately the results obtained are more or
less useless for practical purposes. Due to the close affinity of equations (3a)
and (3 b), however, it is only natural that the solutions of both equations
should have substantially the same mathematical basis. It may therefore be
supposed that the solution of equation (3a), for instance, may be written in
the following form:

y = uet? (A cos z + B sin z) (12)

where u and z are certain functions of x. By adopting Blumenthal’s “asymptotic
process of integration”, the functions of u and z can be ascertained, so that
equation (12) represents an integral of equation (3 a) with very good
approximation.

) E 33
By introducing, as above, the bending rigidity of the girder E J = T;— , We
get the following expressions for the functions of u and z:
n— L (13)
yo?
— rd
and i=13 | = (14)

Vo
This result is obtained in the following way. Carring out the derivation of
equation (3 a), and simplifying, we obtain the equation:

YV 4Py +py TPy tpy=o (15)
where pr =6 %

8 See, for instance, Hayashi: Theorie des Trigers auf elastischer Unterlage, Berlin, 1921.
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o oofied

o Lo}
ps =0
12
Py = ot
Multiplying the equations
v =1(z)
vi =1z

vl! :fl zu_}_fu o2
vut____ftzu4+3fl [] “+f“ 3
VIV = £ 2tV (42 2" 4322 6 £ 2 gt - IV 24

df d
where ' is equivalent to P and z’ to —d—z in turn by the factors Q,, Q;, Q,, Q

<1

and 1, and adding them, then, when the member on the left is written as equal
to zero, we obtain (1) equation:

VIV v Q +v' Qe+ Vv Qs +vQ =0 (16)

and (2), when each of the factors f’, {” and {” are made zero:

V42" Q,+2"Qy+2 Q=0
(4z’ 2 4+32)4+322"-Q,4+2%Q,=o0 (17)
#2425 Q, =0

Q,. Q, and Qg  can be solved from these equations, whereas the function f (z)
is determined by the remaining condition

V44 Q, f=o (18)

If the factor Q, is taken as being equal to 4 2’4, equation (18) is then trans-

formed into
d~l
—+4f=o0

that is f (z) = e** (A cos z+ B sin z) (19)
z being determined by the condition

f—
d_ )%
dx ' 4
Inserting y = uv in equation (15) and dividing by u, we get:

-

(20)

VIV v (4um + Pl) + v (6 = 3 u + P2)

4 4" _5 " ¢
+v (llll + - P1+_P2+P.,)+VP4—0 (21)
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The unknown functions Qg and u can be determined by equalising the
coefficients for v and v in equations (16) and (21). This gives us Q, = p,
and, consequently, as equation (20):

z:ff/%dx

.

Vro
= Q, and adopting the last of the equa-

or, with Py = }

l"“—62§ (14)

From the condition

tions (17), we get:
4u' 3 ,
L) (log py)
or  u= L (13)
/o’
Summarising the result of the above calculations, the solution of equation (3 a)
can be written in the following form by neglecting the expressions containing
the factor e+z:

y = —l-e-z (A cos z 4 B sin z) (12a)

in which z is determined by the condition z = 1/_

Vrb

At first glance, equation (12a) may perhaps appear involved and not very
suitable for practical purposes, due to the complicated structure of the function z

and of the additional factor i/ L . The case becomes simpler in actual practice,
63
however. The function z need never be indicated other than numerically, so that
it can easily be calculated from equation (14), say, by the trapeze rule. In
calculating the derivatives of equation (12 a), fairly complex expressions are
obtained where no approximations are introduced. But when it is remembered
that the derivations z”, z”, u” and u” are small for the dimensions involved
in actual practice, and can therefore be neglected, the derivations of y are
obtained in the following form:

y = ue~?(A cosz-+ Bsinz)
y' =uz'e?2[(B— uA) cosz— (A+ uB) sin z]
y* =2uz?e?[— (uB++yA)cosz+ (uA — yB) sin z]

y“=2uz®*e*[(A+u, B) cos z+ (B—p, A) sin z] (9a)
where v = —u-—,
uz
g =1—v
g, =1—3w

In cases where the wall thickness is constant, v =0 and p = p; = 1, the
above equations becoming exactly the same as the equations (9).
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The equations (9 a) are therefore built up in the same way as the derivations
for a girder of constant bending rigidity given in the equations (9). A dome
of variable wall thickness can consequently be worked out in the same way
and with very little more trouble than one of constant wall thickness. The
examples given above (see Figs. 1 and 2) are thus typical of the case where
o is variable, and the equilibrium equations should be drawn up in the same
way, but with the modifications necessitated by the difference between equations
(9) and (9 a).

We have not yet considered the dome problem in cases where the girders
at the meridian taper upwards and theic width 1s nil at the apex of the dome,
but have rather assumed them to be of constant width. This is only true
when the dome is cylindrical; but for domes in general a certain process of
approximation is inherent in this assumption. When allowing for the taper,
we can, for spherical domes, express the moment of inertia of the meridian
girder at a definite angular distance « from the apex by the following equation:

5% sin a
12 Sin Qo

J= (21)

With this expression for the moment of inertia, we obtain, for functions u
and z:

1 1

Vo Vsina
/Sln o
and = f]/rf) sina dx.

The above derivations, which apply mainly to the dome problem, may of
course also be applied to cylindrical tanks and similar structures, which should
be regarded as special cases of the dome. The usual methods? for calculating
such containers, based on the developments of mathematical series, may
advantageously be replaced by the method given above. A special and interesting
case of this particular problem is met with in the calculation of solid arched
dams. The usual method of dealing with these problems was to start from
equation (3b) and introduce a mean value for the wall thickness®.

In dealing with equation (3a) by the above method, it is possible, without
difficulty, to allow for the anisotropy of the structure which occurs in various
directions and at different points. The anisotropy may be purely a phenomenon
of the material, or a purely constructive anisotropy. When different quantities
of reinforcing steel are inserted in different directions, for example, the
apparent modulus of elasticity of the material will vary in different directions,
and this we may term anisotropy of the material; while a certain constructional
or design anisotropy may be introduced into a cylindrical tank or a dome
by fitting reinforcing girders in the direction of the generatrix or the meridian

u =

? See, Lorenz: Technische Elastizititslehre, Berlin 1913. H. Reifiner: Beton und Eisen 7, 150,
1908. T. Psschl and K. Terzaghi: Berechnung von Behiltern, Berlin 1913.

8 N. Royen: Tvirodammen vid Norrfors kraftverk (Der Damm von Tviré am Kraftweak Norr-
fors), Zeitschr. Betong, vol. 2, 1926,
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(ribbed domes). In such circumstances, equation (3 a) cannot be written in the
form in which it is contained in equation (15), but the coefficients p, to p,
assume the following aspect:

__2(EJ)
pl—--*E*1
=(E—1 ‘"
PR (22)
Ps =0
— E2
= E,

and the functions z and u accordingly appear in the following form:

Z_waJ @Q

and u= VEXJ-E;’E)"

Since no mathematical expression is necessary either for u or z, the intro-
duction of equations (22) and (23) does not make the calculations more difficult.

Summary.

By dividing the shell into two systems of intersecting beams and by applying
the well-known theories of the elastically supported beam, we get a clear idea
of the statical behaviour of the construction and obtain results that are sufficiently
correct. As the exact theories lead to solutions in form of infinite series, which
under certain conditions converge only slowly, this way of dealing with the
problem offers great simplification.
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