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Theory of Thin Curved Shells not Subjected to Bending.

Einfithrung in die allgemeine Theorie der biegungsfreien Schalen.

Etude des voiles minces courbes ne subissant pas de
flexion.

Dr. és siences F. Aimond,

Ingénieur des Ponts et Chaussées détaché au Ministére de 1'Air, Paris.

1) Review of the general equations for statical equilibrium in rectilinear
coordinates.

Let z=1{ (x,y) be the equation for the surface in rectilinear coordinates
not necessarily rectangular. The conditions of stresses at a point m of the
surface are determined by knowledge of the stresses n,, — n,, — © acting on
the elements mm, and mm, respectively, parallel to planes zox and zoy. The
stress n, acts on mm, parallel to plane zox, and n, stresses mm, parallel to
plane zoy and © acts at the same time on mm, parallel to zox and on mm,
parallel to zoy (fig. 1). Let a,, o, y; and o, B,, v, be the coefficients governing
the directions of the tangents to elements mm; and mm,, in other words, the
projections of the unit vector upon ox, oy, oz, for each of the tangents.

Let us assume that the surface is loaded in some way, and that Xdxdy, Ydxdy
and Zdxdy are the components parallel to ox, oy, oz of this load for the
element mm; m'm,, defined by parallels mm; and m’m, to plane zox and by
parallels mm, and m;m’ to plane zoy. The investigation of the conditions of
equilibrium of these elements leads to the following equations:
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2) Geometrical interpretation of the quanlities contained in the general equations
for equilibrium.

The term T contained on the right side of equation (3) is nothing more than
the projection of vector (X, Y, Z) on oz, this vector being projected parallel
to the tangential plane of the surface. In order to interpret the quantities
v; — v, and ©, which are the unknown quantities of the equations of equi-
librium, we must give a general definition of what we shall call “reduced stress”.
By definition, the reduced stress acting on an element of the surface is the
projection on the xy plane of the elastic force which acts on this element,
divided by the length of the projection of this element.

It can easily be realized that the distribution of reduced stresses around a given
point follows the same laws as the real stresses and in particular the theory
of Mohr can be applied. The quantities v,, v,, © are, in fact, the reduced
stresses In relation to elements which are projected along parallels to axis
of x and y. It will be noticed that the shear stresses © are maintained in pro-
jection, whereas this is not the case for the other stresses n,, n,.

3) Geometrical interpretation of the general equations for equilibrium.

Equations (1) and (2) evidently express the conditions of equilibrium, in
projection on the tangential plane. Equation (3), on the contrary, expresses the
equilibrium of forces normally applied on the surface. For a geometrical
translation, let us take the origin O of the trihedron oxyz on the surface itself
and direct ox and oy along the directions of two optional elements. We are then
able to complete the definition of trihedron oxyz by taking arbitrarily the
direction oz. Equation (3) determines a linear relation between the stresses
acting on the optional elements ox and oy and the projection T on oz, parallel
to the tangential plane, of the density of the stress applied. If we change the
direction oz without any modification to ox and oy, each term of the preceding
linear relation is only multiplied by the same coefficient.

We can take advantage of the indetermination of the direction of elements ox
and oy to simplify the equation (3). If these elements in particular are directed
according to two conjugated directions of the surface, that is, according to two
directions conjugated in relation to the indicator, the coefficient of ® becomes
null and equation (3) is reduced to a linear relation between the longitudinal
stresses v, and v,. We can wonder whether it is not possible to direct the
elements ox and oy in such a manner that they are eliminated from equation (3),
leaving only one stress. We can at once realize that this is not possible if the
surface is convex, that is, if the principal radii of curvature are in the same
direction, and that on the contrary it is possible if the surface is not convex.

Let us consider the latter hypothesis and discriminate between two cases,
according to whether the stress which remains in the equation (3) is an axial
stress or is the shearing stress ©. The first case is not possible unless the sur-
face is developable, i. e. if we can consider it as being the envelope of a family
of tangential planes relating to a parameter. If we consider the element ox with
respect to the direction of the linear generatrix which passes through 0, the
equation (3) is reduced to:

rv, = G | (4)
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The second case applies to surfaces of opposite curvatures. If we consider ox
and oy with respect to the asymptotical directions, the equation (3) is reduced to:

250 = ¢ ()

Equations (4) and (5) can be immediately interpreted. Let us first examine
the equation (4). It is obvious that the only stresses acting on an infinitely small
element of the surface and admitting a component which is not located in the
tangential plane to the surface, are the stresses projected along v, and equation
(4) simply expresses the identity between the projections of the stresses n; on
oz parallelly to the tangential plane and the projection of the applied load, in
the same conditions.

Let us now examine equation (5): it suffices here to consider an elementary
quadrangle, two consecutive sides of which are formed by asymptotical arcs
transecting at 0. The longitudinal stresses n; and n, applied to this quadrangle
admit a resultant in the tangential plane owing to the fact that this resultant is
the geometrical summation of the resultant of the stresses n, and of the resul-
tant of the stresses n, and that each of these two latter resultants is necessarily
in the osculatory plane of an asymptotical arc, such osculatory plane concurring
with the tangential plane, being given the very definition of asymptotical lines.
Therefore, component T of the stresses applied to the surface, outside the
tangential plane, depends only on shear ®, to which it is, in fact, proportional.
The coefficient of proportion, the value of which is 2s, admits a very simple
geometrical significance: it is the quotient of twice the distance from the vertex
opposed to 0, in the quadrangle, to the tangential plane at O, this distance being
evaluated parallelly to the direction oz, by the product of the lengths of the
asymptotical arcs which form the sides of the quadrangle.

4) Classification of thin shells with respect to their mechanical properties.

The above considerations lead to a classification of the thin shells into three
groups. The first group covers developable surfaces, such as cylinders, cones;
the second group comprises the convex surfaces, such as spheres, elliptical
paraboloid, ellipsoids, polar-symmetrical hyperboloids and, generally speaking,
all surfaces of double curvature, which are generated by a curve the concavity
of which 1s directed downwards and which rest on a curved directrix, the con-
cavity of which is also directed downwards. In the third group, we find the
surfaces characterized by opposed curvatures, such as hyperbolical paraboloid,
hyperboloids, conoids, all undevelopable ruled surfaces and, generally speaking,
all surfaces which can be generated from a curve, the concavity of which is
directed upwards and which rests on a directrix whose concavity is directed
downwards.

This classification has been suggested to us by the geometrical interpretation
of equation (3). Shells of the first group are those for which equation (3) can
take the form (4); shells of the second group are those for which equation (3)
can take the form:

rvy + tV2 = g (6)
r and t being preceded by the same sign; shells of the third group are those
for which equation (3) can take the form (5).
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It should be noted that for shells of the third group, the equation (3) can also
take the form (6), but r and t are then of opposite signs. It should also be
noted that for shells of the second group, equation (3) can also take the form
(5), where © represents the shear on the asymptotical lines but equation (5) is
then no longer an equation with real terms, as s and t are purely imaginary
expressions.

Shells of the first group are characterized by the fact that the normal com-
ponent of the stress on the rectilineal generatrices is, at each point, proportional
to the normal component of the density of the applied load. Shells of the second
group are characterized by the fact that the purely imaginary shear stress acting
on the imaginary elements of asymptotical lines is, at each point, proportional
to the normal component of the density of the applied load. Shells of the third
group are characterized by the fact that the shear stress acting on the elements
of asymptotical lines is, at each point, proportional to the normal component of
the density of the applied load.

The following difference should also be noted between shells of the second
and of the third group. If we consider at a given point, the longitudinal stresses
acting on two conjugated elements, then the normal component of the applied
load, which can itself be considered as the bulging produced by these longitudinal
siresses, is a linear form of these stresses. The related coefficients are of the
same sign for surfaces of the second group, and of opposite signs for shells -of
the third group. It therefore follows that the carrying capacity of a shell of the
seoond group can be considered as a result of the action of longitudinal stresses
of same direction, acting on two conjugated elements, and that the carrying
capacity of a shell of the third group can, in a similar way, be considered as
produced by longitudinal stresses of opposite senses, acting on two conjugated
elements.

As regards shells of the second group, the conjugated elements can always be
chosen so that the coefficients of the corresponding stresses are equal, in the
linear form which represents the normal component of the density of the applied
load. Such elements will be called canonical. It can then be said that in shells
of the second group, the normal component of the density of the applied load
is proportional to the summation of the longitudinal stresses acting according
to the directions of canonical elements.

These differences in properties just mentioned above and which distinguishing
the three groups of shell from one another, are of the utmost importance as
regards the kinds of supports which can be considered for the periphery of such
shells, in order to achieve their equilibrium, and as regards the actual method
of calculation for the stresses in the shells as functions of the conditions on the
periphery.

5) Shells of the first group.

The study of shells of the first group is a generalization of the study of
cylinders. Equation (4) gives, for each point of the shell, the normal component
relating to the rectilinear generatrix passing through this point, of the stress
acting on an element of this generatrix. Consequently, if we draw on the surface
a family of geodesic lines intersecting the rectilinear generatrices at a constant
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angle, we shall know the value of the longitudinal stress which acts parallelly to
these geodesic lines on the elements of the rectilinear generatrices. Equation (2)
gives then, by immediate integration, the value of shear on the generatrices and
geodesic lines and a second integration from formula (1) gives the longitudinal
stresses acting on the elements of the geodesic lines parallelly to the generatrices.

Such a determination of the stresses is not complete unless we assume to be
given, on a given curve intersecting only once each generatrix, the values of the
stresses acting on the elements of the said curve. In the same way, we can also
assume to be given, on two curves, each of them intersecting each generatrix only
once a relation between the components of the stress acting on any element of
the two curves.

6) Shells of the second group.

Let us consider a thin shell of the second group. We have seen that the
normal component of the density of the applied load is, at each point,
proportional to the summation of the longitudinal stresses acting on canonical
elements. We shall now suppose that these longitudinal stresses are equal.
Their value is therefore clearly determined, at each point, by the value of
the normal component of the density of the load. Thus equation (3) is
fulfilled. Equations (1) and (2), which express equilibrium in the tangential
plane, are then fulfilled only if the tangential component of the density of the
load has a determined value, which can be obtained precisely by writing the
conditions of equilibrium parallelly to the tangential plane. We shall call
“fundamental system of loads” every system of loads corresponding to the
preceding conditions, that is, such that the longitudinal stresses acting on two
oonjugated elements, symmetrical to the principal directions, be equal. It then
becomes obvious that any system of loads can be considered as the summation
of a fundamental system and of a system which would be exclusively composed
of tangential loads, which we shall call “complementary system” to the fun-
damental system of loads.

We are thus induced to study the complementary systems, i. e. the systems
in which the applied load is tangential to the surface. In such systems, the
longitudinal stresses on canonical elements are equal and therefore the stress on
any element now depends only on two parameters, for instance the components of
the stress which acts on one of the two preceding canonical elements. It is obvious
that these two parameters can be arbitrarily chosen. It will be easily understood
that we can determine two conjugated imaginary functions ¢ and ¥ in such a
manner that, when choosing as parameters two quantities which we shall call S,
and S, the elastic forces acting on any element of the surface consist of linear
forms from the differential expressions S, d and S,, dp. The equations for equi-
librium in the tangential plane then show that the partial derivative of S; with
respect to ¢ and the partial derivative of S, with respect to ¥ are linear func-
tions of S, and S,. By elimination of one of the two parameters, S, for
example, between these two' relations, we get an equation to linear partial
derivatives of the second order, with imaginary characteristics, which the retained
parameter S, must fulfil.

In order to arrive at a solution for such an equation, we can assume a given
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the value of S, and of one of its derivatives on an optional curve of the surface.
provided however that, the equation having imaginary characteristics, certain
conditions of analycity be fulfilled. If we observe that S, of the curve and one
of its derivatives may be assumed, the values S, and S, of this curve can be
obtained and in consequence there of the stresses acting on any element of the
curve. After making certain reservations for analycity, we now see that the
stresses 1n the shell can be determined, provided that the stresses acting on the
elements of a curve be known.

The foregoing reserves for analycity are not merely formal reserves. They
correspond to a physical reality which is the following. We know that in all
problems where a function used to verify an equation with imaginary charac-
teristics is determined by means of the values it assumed — the same applies lo
one of its derivatives —, on a given curve, the solution is not a continuous func-
tion of the given values; in other words, by slightly varying the given values,
results of any desired difference can be obtained from this function, on points
arbitrarily chosen. It follows that the states of equilibrium of a convex shell.
corresponding to given values of the stresses acting on a curve, are not
stable with respect to the values of the stresses on this curve.

In order to arrive at stable solutions, it is necessary to consider, for the
limits, conditions which are different from those we have taken. Instead of
assuming the values of the stresses on a curve to be given, we shall assume on
a closed curve, a given relation between the components of the stresses acting
on the elements of the curve. The problem then becomes clearly determined
and its solution will be a continuous function of the given values. The corre-
sponding equilibrium will be stable. Let us suppose, for example, that we
wish the normal component of the stress along the given curve to be null. The
relative indetermination of the parameters S, and Sv allows us to determine
thern in such a manner that Sq, represents, along the given curve, the value
of the normal component of the stress acting on the elements of this curve.
The theory of integral equations then allows us to determine the function S, by
a method similar to that used by Fredholm and his successors in solving
problems of the same type, relating to equations with imaginary characteristics.

7) Shells of the third order.

Let us consider a thin shell of the third order. The value of the normal
component of the density of the load determines first of all at each point of the
shell the shear stresses on the asymptotical elements. Let us assume that the
stresses 1n the shell are reduced to these shearing stresses. For this purpose it
is necessary and sufficient, for the tangential component of the load which is
applied to an elementary quadrangle of asymptotical arcs to balance the pro-
jection of the resultant of the tangential stresses applied to the elements of the
quadrangle on the tangential plane. We shall call “fundamental system of loads”,
any system of loads corresponding to the preceding conditions, 1. e. such that the
stresses acting on the elements of asymptotics are reduced to shear stresses. It
is quite obvious that any system of loads can be considered as a superposition
of a fundamental system of loads and of a system which we shall again call
“complementary system”, exclusively composed of tangential loads.
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We thus return to the study of the action of complementary systems. For this
purpose, we again observe that the elastic force acting on an element of shell
can be translated into a linear form of differential expressions such as S(pd\b
and S, d¢, ¢ and ¥ now being two real functions and S, and S, two real
parameters. The equations. for equilibrium according to the tangential plane allow
then of expressing the partial derivatives of S, with relation to ¢ and of S,, with
relation to ¥, in linear functions of S, and S,. The elimination of S,, between
these equations leads to an equation in S, linear to the partial derivatives of
the second order, with real characteristics. The characteristics of such an equation
to the partial derivatives are precisely the asymptotical lines.

in order to obtain a solution from the preceding equation which would be
valid in an area D limited by a contour C, we shall divide this contour into to
two series of arcs I' and I"” in such a way that from any point of D two asymp-
totical lines are drawn intersecting I' only once: we shall then divide I' into to
two series of arcs I'; and I'y in such a manner that any broken line of asymp-
totical arcs joining any point from I'; to a point on I” has its intermediate
vertices on I'y or on I” and that there is no broken line of asymptotical arcs
having its ends on I'; and its intermediate vertices on I',, We shall obtain a
single solution, valid in D, when assaming a given the value on I'; of the stress
acting on the elements of I'; and on I'y, a relation between the components of
the stress acting on the elements of I';. The value of this solution will be given
by the Riemann formula, successively applied to different fractional zones of
zone D. N, condition of analycity is here necessary and the solution arrived at
is always a continuous function of the data. On the other hand, there is generally
no corresponding solution to a relation between the components of the stresses
acting on the different elements of the closed curve C.

When the thin shell taken into consideration is a straight-line surface, the
equation to the partial derivatives of the second order can be reduced to a linear
equation with partial derivatives of the first order containing only one derivative,
the integration of which is immediate, as it can be considered as a linear dif-
ferential equation. In the case when the thin shell consists of a straight-line
surface of the second order, the determination of parameters S, and Sy is reduced
to the solving of two quadratic equations.

[}

8) Choice of supports for thin shells of the three groups.

The choice of the system of supports for a thin shell depends essentially on
the group to which the surface belongs. We shall distinguish between two classes
of supports: single supports with which the reactions depend on one para-
meter, and double supports, with which the reactions depend on two parameters.
The components of the stresses transmitted by the shell to a simple support
therefore fulfil a relation which is known a priori, whereas the components of
the stresses transmitted by the shell to a double support can assume independent
values. However, certain parts of the shell, on the marginal zones, shall be left
without support; in such a case the contour is said to be free.

We propose to find out how the free edges, single supports and double supports
must be distributed on the contour of a thin shell, so that the latter is subjected
to definite and stable equilibrium conditions.
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Let us consider at first the case of a thin shell of the first group. We can
assume the presence of a free edge on every part of the contour which comprises
no rectilinear generatrix, intersected once at the most by any generatrix. If the
free edge meets all the generatrices, the distribution of stresses in the shell is
determined and therefore the other edges must be equipped with double supports.
The resulting system of equilibrium is stable. If, on the contrary, we consider
twn edges, each of them only once intersected by all the generatrices and provided
with double supports, we shall again obtain a state of stable equilibrium, on
condition that the rest of the contour exclusively composed of generatrices, be
arranged as double supports.
~ Should we now consider a shell of the second group, such a shell cannot
admit of free edges, as the resulting equilibrium is not stable. The whole of the
periphery can, however, be arranged for single supports and the resulting
equilibrium is well defined and stable.

Let us finally consider a shell of the third group and divide its contour into
three series of arcs I'; I'y I, defined as indicated in 7. We can assume a free
edge according to I'y, single supports according to I', and double supports accor-
ding to I". The resulting state of equilibrium is well defined and it is a stable.

9) Geometrical properties of the shells of the third group and their geometrical
calculation.

Shells of the third group show remarkable geometrical properties which allow
for an accurate graphic calculation.

Let us first interpret geometrically the parameters S, and S,, and the functions
¢ and ¥ introduced at 7. S, and S, are the longitudinal stresses acting on the
asymptotical lines for a complementary system of loads. ¢ and ¢ are the
curvilinear coordinates of the surface for which the lines of coordinates are the
asymptotical lines.

Let us replace these thin shells by a skew reticular system, the meshes of
which consist of rectilinear skew quadrangles formed by chords of asymptotical
lines. The system thus obtained works as does the given surface and the
assimilation of the two systems to one another is legitimate if the meshes are
sufficiently small. The loads applied to the reticular system must be applied to
the vertices of this system according to the tangential plane to the surface.

If we apply a single force F to any vertex of the reticular system, such a
force can be decomposed between two of the bars passing at this point and
corresponding to two different asymptotical lines. Force F is thus transferred
to two other knots of the surface, where we operate in the same manner, and
so on. If we suppose that the contour of the surface is divided into three series
of arcs I'; Ty I” according to the foregoing conditions and if we conveniently
choose the two initial members in accordance with which the given force F has
been devided, the fransfer of force F can be made as indicated without ever
encountering a free edge. If we meet with a free edge on I'y supposed to be
arranged for single support, we can still make the division between the second
member ending on the vertex considered on I', and the direction of the reaction
of the single support. The operation thas carried out is called a reflection on the
single support. ~
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By continuing in the same manner, we finally transmit the force F to a whole
zone of double supports. We thus obtain for the system a state of equilibrium
which is consistent with the reactions at the supports, and the equilibrium will
be stable. Operating in the same manner for each loaded knot of the reticular
system, we determine the state of equilibrium for the complementary system
of loads only by dividing forces according to the parallelogram of forces. The
corresponding diagram can be easily drawn by projecting on an arbitrary plane.

The geometrical determination of the stresses mentioned above allows of con-
sidering the equilibrium of a shell of the third group as resulting from a pro-
pagation of stresses according to the asymptotical arcs and starting from the
free edges so as to arrive at the double supports by reflection on the simple
edges. Such behaviour is similar to the propagation by means of waves of the
phenomena following the rule of linear equations to the partial derivates of the
second order with real characteristics, and is also essentially due to the real
naturec of the characteristics of the equations governing the equilibrium of
stresses in the shell under consideration.

Fig. 1.

'm' lz

10) Elementary examples of shells of the third group.

The most simple example of a shell of the third group is the hyperbolic
paraboloid. This shell is characterized by its property that shear along to the
rectilinear generatrices, within a certain coefficient constant for the whole sur-
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Mode of propagation of tangential stresses, Mode of propagation of tangential stresses
in a ruled quadric surface. in any other surface of the third group.
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face, is equal to the component along the axis of the paraboloid of the applied
load, brought back to the unit of surface projected on an arbitrary plane not
parallel to the axis. On the other hand, the stresses due to the complementary
system of loads propagate each generatrix without any interference between the
generatrices, so that a tengential stress applied to a small element of the sheil
acts only on the bands produced by the generatrices encountered. The simplest
form of shell of the third group after the hyperbolie paraboloid is the
hyperboloid. Just like the paraboloid, this shell has the property that stresses
due to the complementary system propagate each generatrix without any inter-
ference with other generatrices. It only differs from the hyperbolic paraboloid
i1 a more infricate expression of the coefficient of proportionality between shear
and density of the applied load.

Then follow the undevelopable straight-line surfaces, and first of all the
conoids. For these surfaces, the coefficient of proportionality between shear
on the asymptotical lines and density of the applied load is expressed in a much
more complicated form than for the preceding surfaces, but the most distin-
guishing character of such surfaces is that the stresses due to the complementary
system propagate by opening on the surface; the unrectilinear asymptotical lines
abutting on the rectilinear generatrices of the surface, so that a tangential effort
applied 1o a small element affects a whole zone distributed over the surface,
just as for the most general surfaces of the third group.

Figures (2) and (3) show the difference between straight-line quadric sur-
faces and other surfaces of the third group as regards the views expressed
above.

11) Conclusions.

With the exception of the developables straight-line surfaces, such as cylinders
and cones which form a very particular class of shells, all the shells with double
curvature can be divided into two important classes, according to the sign of
the total curvature. In these two classes, the asymptotical lines play the essential
part in the transmission of tangential stresses and therefore in the determination
of the nature of the reactions of supports corresponding to well defined and
stable conditions of equilibrium. When the asymptotical lines are imaginary, the
shell cannot admit of free edges, but can be limited by edges all arranged as
simple supports. A common example of such supports is given by a tympan or
flat slab of great stiffness in its own plane and without any appreciable stiffness
perpendicularly to this plane. When the asymptotical lines are real, the edges of
the shell are to be divided into free edges, edges with simple supports and edges
with double supports, according to the well determined principles we have
mentioned.

As double supports might involve difficulties as regards design, it is beneficial
to reduce their importance as far as possible, and this can be done in different
ways when conveniently choosing the outline of the surface.

If we strictly consider the facilities of calculation, the views expressed above
show that, among the shells with double curvature, straight-line quadric surfaces
are those which lead to the most elementary calculation.
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Summary.

The problems offered by the design of thin curved shells of reinforced
concrete consist, in the first place, of purely statical problems, independent
from the theory of elasticity. We shall deal later on with these probkms, as
a whole, excluding such other questions as concerning the application in practise
of shells under consideration of existing deformations and particularly the
problem of comptability of deformations due to stresses calculated by means
of ordinary statics.

We shall apply the hypothesis, generally accepted, of a uniform distribution
of slresses on any transverse section in such a manner that the shell can be
considered as being replaced by mid-surface of the shell.

44*
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Shell Construction in Reinforced Concrete.

Die Flichentragwerke des Eisenbetonbaues.

Les surfaces portantes dans la construction en béton armé.

Dr. Ing. Fr. Dischinger,

Professor an der Technischen Hochschule Berlin.

Twelve years have passed since the introduction — by Messrs. Dyckerhoff &
Widmann AG., in conjunction with Messrs. Zeiss, Jena — of the shell method
of reinforced concrete construction, in which the distribution of loading is
“effected solely by elongation forces. During these twelve years this type of con-
struction has advanced by leaps and bounds; its development was only possible
after the theoretical side of these tri-dimensional structures had been greatly
elaborated through extensive experiments and in a surprisingly short space of
time. The result was that this theory has opened up new fields of work in mono-
[ithic reinforced concrete construction as applied to wide-spanned hall-possi-
bilities which by far exceed those offered by the theory of crosswise reinforced
and mushroom slabs. By employing shells and saw-type-roof shell structures
span widths can be obtained that were formerly regarded as impossible in
massive constructions. It must, however, be remembered that little more than a
decade has gone by since shell construction was discovered. In this short period
hundreds of thousands of square metres of large halls with spans up to 100 me-
tres wide have been erected.

The present paper may be divided into two sections, the first of which gives
a review of the development of the theory since the last Congress and the con-
structional progress made as demonstrated by some practical examples. The
second section deals with the problem of continuous cylindrical shells or pipes.

1. Development of the Theory of Shell Construction since the Congress in 1932,

As regards the various forms of shells mentioned in this paper, we would
refer to W. Petry’s work for the Paris Congress of 1932 (Theme II,4). Vol. I
of the ‘Publications’, which appeared in the same year, contains an article by
U. Finsterwalder on the problem offered by the Zeiss-Dywidag system of cyl-
indrical barrel shell, a combination of cylindrical shell and frame supporting
its edges on either side. This forms a uniform system in space which can be
described as a T-beam in space in which the shell represents the flange of the
beam. In contrast to the commonly known T-beam systems — in which, when
the webs are widely spaced, the flange only takes up a limited amount of the
compressive forces — in the case of these T-beams in space the whole shell acts
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as compression flange. This results from the fact that in ordinary T-beams as
shown in Fig. 1a), the parlicipation of the flange for the transmission of
compressive forces N, forcibly must be established by shear stresses Ny, acting
between the beam and the flange. The active width is therefore a function of the
length of beam. However, the compressive stresses are not cvenly distributed
over the whole width of the flange, since the strips of slab situated farther away
from the beams fail to co-operate on account of deformations due to shear.

The action of the T-beams in space, as shown in Fig. 1b), is essentially
different; for, as is clear from Eq. 2 (Scction II), compressive forces Ny
arise in the shells — even when no account is taken of the compressive forces
N\, acting between shell and lateral beam — which are governed by the dead
weight of the shell and consequently the whole width of the shell is operative
in taking up the compressive forces. This occurs to a greater extent the higher
the cross-sectional curve of the shell is raised above the funicular polygon. For
this reason shell structures whose cross-sectional curve follows the form of flat
elliptical segments possess an essentially better girder action from cross-panel to
cross-panel than circular cylindrical shells. Furthermore, the bending moments

Fig. 1 a. Fig. 1b.

which arise in these steeply arched systems are much smaller because the com-
pressive forces N,, necessary here for the transference of "the external bending
moments, are for by far the greater part produced by the dead weight of the
shell itself and not by shear forces N, The magnitude of the bending mo-
ments which occur in the direction of arch are dependent upon that portion of
the compressive forces Ny which must of necessity be produced under strain by
the shear forces Ny, For these reasons it becomes apparent at once that essen-
tially smaller bending moments are caused in shell systems of steeply arched
cross-sectional curve, than in circular cylindrical shells. I shall refer to this
point again at a later stage.

Between shell and lateral frame there are four statically indeterminate forces
acting, namely: — 1) the arch action N, the transverse force Q,, the bending
moment M, and the shear force Ny,. Thus for both edges together we have
eight statically indeterminate quantities, and consequently the basis of the shell
problem must be a differential equation of the eighth order or a system of
three differential equations corresponding thereto, for in accordance with the
eight statically indeterminate quantities we need eight constants for the closing
of the two joints between shell and lateral frame. In arriving at his solution
U. Finsterwalder started with the assumption that when the cross panels are



Shell Construction in Reinforced Concrete 695

located at relatively large intervals, the bending moments My prevent the shell
from transmitting loads on to the cross panels; he therefore assurned the moment
M, and the pertaining transverse force Q. together with the (twist moment) M,
as being zero. In consequence of this approximation it was possible to work out
the problem in the form of a differential cquation of the eighth order, intro-
ducing a stress function in which the internal forces of the shell could be
represented in the same manner as for Airy's stress function for panels. as
derivatives of this stress function.

When the cross panels are situated at relatively small intervals in comparison
with the radius of curvature of the circular cylindrical shell. U. Finsterwalder’s
assumption My = Qg = My, = 0 are no longer permissible. It is for this reason
that the author has been endeavouring to find a strictly accurate solution for
circular cylindrical shells in these cases, which are of importance in the con-
struction of halls with wide arch spans. As the shells of these wide-spanned
arches must be strengthened with ribs to ensure safety against buckling, I have
also extended my investigations to cover anisotropic shells.2 Here three lincar
simultaneous differential equations with constant coefficients are obtained.
Part-solutions of these differential equations can be arrived at by following
Il. Reissner3 and representing the dead weight by circular functions in the
form of double trigonometric series. The investigations now show that there
are threc possibilities for transferring loads in a closed pipe: — 1) transference
of loads to the gross panels system by means of clongation forces (membrane
theory): 2) transference of loads to the cross panel systems by means of
bending moments M, in the shell (slab action): and 3) equalization of the loads
of the higher harmonics by means of bending moments in the direction of the
curve. This equalization in the direction of curve is only possible because there
is no real vertical load resultant to correspond to the higher harmonics in
relation to the whole cross section of the shell. The actual loading is transferred
to the cross panel systems by actions 1) and 2). In order to fulfil the support
conditions required for the two lateral beams in the case of the Zeiss-Dywidag
barrelsystem, the above-mentioned part-solution must be supplemented by a
solution of the homogeneous svstem of differential equations. The latter syvstem
is fulfilled in the same manner, introducing the exponential term e™?cos\x, as
for the problem solved by K. Miesel® in 1930, which we shall discuss below.
Thus the three differential equations resolve into three ordinary homogeneous
equations leading to one equation of the eigth order, from whose solution we
obtain the wave length and attenuation of the double oscillations issuing from the
two edges of the shell. This equation of the eight order has been solved for about
one hundred different cases. The values for wave length and attenuation of the
oscillations obtained from it were worked up into diagrams from which the
values can be read without any calculation whatever. With the assistance of the
above-mentioned basic term not only the eight support conditions along the
lateral edges, but also the support conditions for the cross panel systems can
be satisfied.

As has already been mentioned, the problem offered by the support conditions
of closed circular cylindrical pipes at the cross panels was solved as early as
1930 by K. Miesel for any desired variation of the support conditions. Here
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Miesel also took the elasticity of the stiffening panels into account — a problem
which plays an important part in submarine construction. Finsterwalder, too,
investigated this problem in his work cited under 1) and found an approximative
solution for it, again in the form of a stress function. Here, however, in con-
trast to the corresponding solution for Zeiss-Dywidag shells, not the quantities
My, Qx, Myx but the values M, Q,, My, have been neglected. With much less
calculation work and for reasonably small values of the harmonics, this approxi--
mative solution coincides very well indeed with Miesel’s strict solution. And in
our practical constructional problems there are no very high values of the
harmonics involved.

The more rigid the shell is constructed as regards bending in the direction of
arch, the nearer does the law of stress distribution of the N, forces approach
Navier’s straight line law in the case of Zeiss-Dywidag barrels, because then the
work of deformation of the bending moments in the direction of arch are
insignificant compared with those of the elongation forces. The thinner the
shell is, however, the greater is its tendency to reduce the bending moments for
correspondingly unfavourable distribution of the elongation forces. If, never-
theless, a more favourable distribution of the N forces is to be attained, these:
“thin shells must be combined with correspondingly high lateral beams.

At the commencement of my expositions I pointed out that in greatly raised
cross-sectional curves, as for example in flat elliptical segments, smaller bending
moments are produced and a more favourable girder action obtained. The larger
the cylindrical shells are made, the more necessary does it become to replace
them by shells of steep curvature. Thus, for the huge halls constructed for the
German Air Ministry, practically only shells with elliptical cross-sectional curves
were employed, calculated according to a suggestion made by U. Finsterwalder.
on the theory of circular cylindrical shells, in such a manner that the elliptical
segment was approximated by a three-centre arch. This naturally involves very
intricate calculation, as there are now four edges to cope with and the oscil-
lations starting from these have a mutual influence on one another. It is there-
fore urgently necessary for these cross-seclional curves to be resolved in a
strictly accurate manner. One of my assistants has succeeded in doing this, and
the solution will shortly be published in the form of a dissertation.

Shell systems are frequently constructed as continuous systems over several
spans. As these shell systems are extremely high in relation to their span, the
moments at the support are in parts substantially influenced by deformations
due to shear. This fact has already been pointed out by W. Fliigge. As is also
well known, the influences of these shear deformations are deliberately neglected
as being insignificant in the case of slender beams. For shell systems, however,
this omission is not always permissible. In Section II of this paper I have given
detailed proof of the influence of these shear deformations on the support
moments, and with the assistance of Fliigge’s three-moment equations developed
a process by which the support moments for isotropic and anisotropic shell
systems can be obtained for any desired span and loads, both in the direction of
arch and also lengthwise.

As the width of spans in shell systems increases, so does the problem of
buckling grow in importance. In this connection distinction must be made
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between two cases, namely: — a) Buckling of the shell in direction of arch, and
b) buckling in the direction of the generatrices. The first problem was treated as
early as 1914 by R.von Mises® and the second even earlier by Lorenz® and
Timoshenko?. For shell systems of large arch and beam spans, however, both
these problems appear in combination, so that too favourable results would be
obtained if the two cases of buckling were calculated separately. This combined
case of buckling, so important in the construction of cylindrical shells, was
solved by W. Fliigge8 in 1932 and worked out in a very detailed manner and
in a very practicable form. Here the influence of the combined buckling becomes
apparent in an unfavourable manner. Fliigge’s investigations also extend to the
case of the anisotropic circular cylindrical shell, which is bound to be involved
when it is a question of large spans. By means of a transition process W. Fliigge
shows that his equations can also be applied to the special case of buckling in
slabs.

As it is assumed when deducing buckling conditions that the deformations
of the shell are small in proportion to the thickness of the latter, but that, on
the other hand, it is extremely difficult to adhere to this condition in practical
constructional work, since very considerable deformations are set up with large
span widths, it becomes necessary to reckon with very much higher factors of
safety against buckling in shells than in simple arches. These safety factors can
easily be attained by reinforcing the shell with ribs. These have further the
advantage of being able to reduce the deformations considerably and of simulta-
ncously taking up the bending moments of the shell as well.

During the last few years cylindrical shells have been coming steadily to the
fore in practically every country. Such shells have been constructed with girder
spans of up up to 60 m and arch spans of 45 m, i. e. with ground plan areas
of as many as 2700 square metres. For the reasons mentioned above, elliptical
cross-sectional curves have been employed for shells of large arch spans and
large shell spans. On the other hand, a number of halls have been constructed
with arch spans up to 100 m wide and relatively small intervals between the
cross panels. Fig. 2 shows an Airplane Hangar of this type seen from the
outside, with a very large arch span; Fig. 3 is an interior view of an Aircraft
Hangar of large arch and girder span, for the reproduction of which I am
indebted to the courtesy of the German Air Ministry. Figs. 4 and 5 illustrate
the use of shells in industrial structures, Fig. 4 being an interior view of Bam-
berg Postal Car Hall and Fig. 5 depicting ‘the application of cylindrical shells
in the form of shed-type roofs for a plate mill in Buenos Aires.

2) Shed-Type Roofs.

In shed-type roofs the bent cross-sectional curve of the shells is replaced by
a polygon and the shell thus replaced by a system of planes. The problem is
naturally quite the same as for the cylindrical shells. Instead of differential
equations we have equations of difference of the same order. Now in addition
to the bending moments emanating from the shell action appear others from
the slab action, since the individual slabs must first transfer their loads by
bending moments to the edges of the shed-roof system, the loads being then
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transferred by the action of the shell, i. e. of the shed-roof, from here to the
stiffening panels by means of elongation forces. The bending moments emanating
. from the shell action were first considered in this problem by E. Gruber? and
G. Griining 9. Both authors thereby neglected the influence of the rigidity
against lorsion of the lateral beams. In this respect the abovementioned
works were complemented by R. Ohlig't, who also took the rigidity against
torsion of the lateral trusses into account in the same manner as has always
been customary for shell systems. Plane systems are less economical than

Fig. 3.
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Fig. 4.

Postal motor coach garage, Bamberg

shells in consequence of their greater bending moments, so that as yet no very
large structures of this type have been carried out. Of course the reason for
this is also to be sought in the fact that the patents for shells and shed-roof
types are the property of the one concern — Messers. Dyckerhoff & Wid-
mann AG.
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3) Polygon Domes composed of Cylindrical Shells.

It will be remembered that it was on this system that the monolithic domes
of the great Market Hall in Leipzig, at present the largest in the world with a
span of 76 m, and the dome of the Market Hall at Basle, 60 m span, were con-
structed. Their vaulting is of the so-called monastery type. Although the theory
of monastery vaulting was established and published a considerable time ago,12
the same cannot be said for the theory of cross vaulting. Architecturally beautiful
domes, perfect from an acoustical point of view, can be constructed with cross
vaulting. Fig. 6 shows a hectagonal dome of this type. Apart from their good
acoustical qualities, these domes can be provided with beautiful and effective
lighting systems by means of large windows let into the calottes through which
the light is reflected right into the middle of the room from the cylindrical
shells. I elaborated the theory of these domes in 1930 in a paper written for
the competition organized by the Academy of Architecture. In this paper I
showed that it is possible to keep the stiffening ridges free from bending
moments. As the space allowed me in the present article is not sufficient for
the purpose, this theory will shortly be published in a technical periodical.

Fig. 6.

4) Shells with Double Curvature.

The membrane and the bending theory of rotary shells continuously sup-
ported on their springing has long ago been established. The following types
are important forms which have since developed: — a) Rotary shells supported
at a few points only, their girder action being superimposed on the dome action
so that the shell can transmit its loads to pillars situated a considerable distance
away. b) Rotary and translation shells with rectangular or polygon-shaped
horizontal projections. c) Apse domes.

The theory of these various forms of shells with double curvature was ela-
borated by the author in 1930 for the competition already mentioned. The
Academy had intended to issue these works in book form, but was obliged to
withhold publication owing to lack of funds. I therefore abbreviated the works
for publication in the ‘Bauingenieur’!3. As regards rotary shells on single
columns it should be mentioned that their girder action produces the asto-
nishing result, coinciding with the well-known slab action, that the height of
girder and with it the lever arms of the internal forces are proportional to the
distances between the girders in transmitting loads to the pillars. The stresses
arising from the girder action are therefore independent of the girder spans.
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From this it follows that with these shells, just as with polygon-shaped domes,
very large girder spans can be attained. Here, however, the shells do not remain
free from bending. A work by A. Havers!*, who employs a spheric’ function
to treat and solve the problem of the disturbance of support conditions on a lat-
itude circle of a spherical shell for an arbitrarily selected harmonic, has made it
possible also to calculate bending moments arising in shells, knowledge which is
absolutely indispensable when carrying out large constructions. It would be
extremely useful to carry through the complete calculation of an example, for
although this naturally takes a great deal of trouble, it would definitely show
what spans can be attained with these shells and whether they posses economic
advantages over the shells classified under b), in which the load is transmitted
almost entirely by means of elongation forces and shell-thickness therefore
depends solely on the safety against buckling. This because the permissible
stresses cannot be fully utilised in these forms of shell, even when the spans
are maximum. The calculation of the rotary shells with rectangular or polygon-
shaped horizontal projection can be effected in a very simple manner by means
of the procedure, already quoted, of the differential equations of the mem-
branal condition of stress.

Fig. 7 shows a very flat shell of this type with a rectangular plan; it was
carried out for one of the buildings of the Danzig Institute of Technology.
The shell has a span of 12 m, but only a rise of 0.77 m. The ratio | f
between rise and span amounts to 15.6, being therefore smaller than for that
of the flattest bridge. This illustration shows quite clearly that a shell system of
this type is nothing else but a T-beam in space, but one distinguished from the
ordinary T-beam in that the whole shell acts as a compressive slab. Fig. 8
depicts the employment of these shells with double curvature and rectangular
plan for a clinker factory in Beocin, and also the application of the apse
domes mentioned under c). As I elucidated in my article published in the ‘Bau-
ingenieur’13 there is a state of membranal stress in these semi-spherical domes
if the shell is stiffened by rings at the springing. As this type of dome can be
constructed as an independent structural member and, in combination with cylin-
drical shells, can be used for structures which are more or less oval in plan,
they prove to be a very important new structural element in the construction of
large halls or airplane hangars. In the latter form of structure they are there-
fore frequently employed as terminal features, with spans up to 40 m. The
hangar illustrated in Fig. 3, which is constructed of one longitudinal shell, is
terminated at both ends by apse domes. Lastly, Fig. 9 shows another semi-apse
dome of this type constructed for the Music Pavilion at Schwalbach Spa.

9) The principle of calculating the statical balancing of masses, applied to
affined shells.

The types of shell discussed in the previous section of this paper can be cal-
culated with the assistance of the differential equations of the state of mem-
branal stress because the spherical shell in itself is easy to estimate mathe-
matically. The principle of the statical balancing of masses now enables us to
calculate in an extremely simple manner the forms of shell affined to them as
well. I elaborated this principle in 1928 and elucidated it in the ‘Handbuch fiir
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Eisenbetonbau™® for specific cases. Then, in 1930, I emploved the differential
equations for shells of any form to give a general outline of the problem: this
work was written for the competition already mentioned and was subsequently
published in the ‘Bauingenieur’.' On this basis a shell with elliptical plan, for
instance, can be calculated on the basis system of a rotary shell. The numerous
other problems that can be solved in this manner are set forth in the above-
mentioned article. It may, however, be briefly stated that affined shells can also be
estimated in a simple manner.

Music pavillon Spa Schwalbach

i) Shells of any curvature.

No solutions can be obtained by means of the differential equations of the
membranal state of stress for shells with double curvature shaped to any tvpe of
surface. because the three partial differential equations thereby evolved cannot
be integrated. We are obliged to find another means of approach and solve these
equations by difference calculation.

An extremely clear and easily applied method for the solution of problems of
this type was elucidated by Pucherl® in 1931, This simple solution is rendered
possible by showing that the three differential equations can be combined to
formi a single one: this is done by introducing a stress function which com-
pletely describes the stress conditions. The internal forces of the membranal
state of stress can hereby be deduced in a similar manner as from Airy's stress
function. As the only assumption that can be made as regards the form of
surface is that of continuity. all the forms of shells used in practical construction
can be calculated if the circumferential conditions are known and are com-
patible with the conditions of membranal stress. The method of differences
should always be applied if, as mentioned above. a solution is possible with the
differential equations. More recent French works follow in principle the line
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developed by Pucher. 1t is on this theory that the increasing emplovment of
shell construction in France, in the form of non-developable straight-line sur-
faces, is based. The specific case of translation surfaces has been solved by
Fliigge in the same manner by means of equations of difference. )

In conclusion I should like to mention an interesting construction illustrated
in Fig. 10. It is the dome in the ‘Haus des Deutschen Sports’, which was built
for the Olympic Games. The Project was prepared by Mr. Marchi, architect, and
designed by Mr. U. Finsterwalder. The skylight is eccentrically placed to afford
good ligthting for the platform. The dome in itself, however, exerts no dome
action. because the separate shell sectors, which are stiffened by sturdy ribs,
project beyond the springing without mutual support.

e
Fig. 10.

,Haus des deutschen Sports«. (House of German Sport) Berlin-Reichssportfeld.
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Summary.

The theory of slender continuous beams purposely neglects the influences
of deformation due to shear, since they arc very small. These influences, however,
cannot be neglected in the case of continuous stiffened tubes or cylindrical Zeiss-
Dywidag shells. In the treatise following, a general procedure for determining
these influences is given and the influences themselves are shown by examples.
It is also shown that continuity conditions entirely disappear for boundary cases
of small spans in relation to the tube diameter.
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Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Massive Kuppeln, zylindrische Behalter
und ihnliche Konstruktionen.

Coupoles massives, réservoirs cylindriques
et constructions semblables.

Dr. techn. H. Granholm,
Dozent an der Koniglichen Technischen Hochschule Stockholm.

The precise calculation of the bending stresses in a massive dome 1s a very
difficult matter. These difficulties are brought out in a thesis! presented to the
Royal Technical College Stockholm, and it may well be asked whether the prac-
tising engineer ever has the time and opportunity of working out the dimensions
of a dome in terms of exact theories. Even to draw up the fundamental equations
1s a fairly complicated business, and their exact integration leads to series which
are often difficult to handle, and which slowly converge. Even though their con-
vergence 1s satisfactory for many wall-thicknesses (gauges), any alteration in gauge
may result in this good convergence being lost. Even where the engineer has the
mathetical equipment necessary for dealing with the problem, the amount of
work necessary for working out a definite case of loading is much too great;
and it may not be possible at all to arrive at practical methods in the way
indicated by Meissner, Bolle, Dubois, Honegger, Ekstrom and others. In the
case of spherical domes, for instance, integration, even in the simplest cases.
gives hypergeometric series which do not constitute the proper equipment of the
engineer owing to their slow convergence.

In view of these facts, it is particularly necessary that the further development
of the dome theory should be based upon solutions that fully meet practical
requirements, even though this involves introducing certain approximations. As
Geckeler 2 has shown, it is possible, even with comparatively simple mathematical
expedients, to arrive at a solution which differs only inappreciably from the true
one, and which can be easily and conveniently employed, in cases where the
wall-thickness and radius are constant. The good agreement between Geckeler’s
theory and the exact theory may justify our discussing the former in greater
detail, provided we are clear as to what approximations are introduced. A still
further step in the direction of the true result is achieved by using Blumenthal’s
and Steuermann’s method of asymptotic integration, which is applicable to

! John Erik Ekstrom: Studien iiber diinne Schalen von rotationssymetrischer Form und Belastung
mit konstanter und verinderlicher Wandstirke. Stockholm 1932.
2 See, inter alia, Handbuch fiir Eisenbetonbau, Vol, 6, Berlin. 1928.
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variable wall thicknesses as well. We actually get farther with this method than we
do with the methods that are based on solutions in the form of infinite series,
in which connection the wall thickness was always assumed to vary in terms
of a definite function if the solution had to be worked oat.

Closer examination of Geckeler’s final equations reveals that these are of the
same type as the equations for an elastically supported beam. Nor is it difficult
to appreciate the physical analogy. The meridian of the dome may be regarded
as a girder supported by the parallel circles or rings. As these may be compressed
or expanded, they correspond, statically, to elastic supports.

When the dome is regarded in this way, its statics may be elucidated with
sufficient accuracy. It is not then necessary to revert to Meissner’s differential
equations for drawing up the equations of equilibrium, but all the necessary
equations may be set out directly, simply with the aid of the theory of the
elastically supported beam. For the practising engincer, this means that he need
not attempt to understand the fairly complicated classic theory of the dome,
but can work out the necessary equations for himself.

Geckeler’s published works show that he himself has not fully appreciated
the high importance of the approximations he suggested; that is, he has not
understood that the dome, considered broadly, acts like a steady series of girders
on elastic supports. The method of treatment which I suggest can of course
be extended by regarding the meridian, not as a girder, but as an arch supported
elastically by the ring elements of the dome.

By considering the dome in this way, it is possible to get a more accurate
idea of the statics of the structure, and the equations obtained as the result of
doing so are the same as Meissner’s.

It is obviously necessary to introduce this latter method of conception espe-
cially in the case of very flat domes; that is to say, where the arch effect is
very manifest in the elements of the meridian, if the desired accuracy is to be
achieved. The more inclined the tangent of the dome at its support, the more
accurate will be the method where the meridian is regarded as a girder on an
elastic support; and in the special case where the tangent of the cupola is every-
where vertical, 1. e., when the dome merges into a cylinder, this particular method
of considering the dome is perfectly exact.

In order to show more closely how simply the dome problem can be dealt
with in this way, I have worked out a few problems and compared the results
with those obtained in accordance with the strict theory. The agreement is ex-
tremely satisfactory throughout.

As our first example, we shall select a spherical concrete dome of uniform
thickness, wall-thickness ® = 16 c¢m, radius r = 1000 cm, angle of opening 40°9.
We shall suppose the dome to be loaded with a constant fluid pressure of
p = 1.0 kg/cm2, and to be firmly restrained around the edge (see Fig. 1).

If the stresses in this dome be calculated in accordance with the membrane
theory, we get a compressive stress at the meridian of T, —ET and an annular

2
pr . .
2 =g These meridian and ring stresses are constant
throughout the dome, and the solution in terms of the membrane theory is thus
45*

compressive stress of
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very simple. Due to these compressive stresses T, and T,, the dome is com-

T 2
pressed, so that its radius is reduced by s i.e., by IQ-E— This reduction in

radius is not very great, amounting to only 0.15 cm under the assumptions
given, and for E = 210.000 kg /cm2. As the dome is secured about its edge, it
is not capable of freely altering its shape; the parts nearest to the edge will

2500

1500 —

-
I
S
53
|

Moment M,

500—

30° 25° 20° 15° 10° 5° 0°
1 1

Exact
50—

Fig. 1.
Comparison between the values of the Meridian-moments, (1) calculated according to equation
and (2) according to the exact method by means of hypergeometrical series.

The deviations are of no practical avail.

retain their original radius; but the farther we get from the edge, the more
freely will the structure be able to move, and the more freely deformation can
take place. Although the compression of the radius is fairly small in this case.
certain disturbances are set up near the edges which may lead to bending
moments of such magnitude that they cannot be ignored.

We shall now investigate how large moments are set up in an elastically
pr?
2E

supported girder assuming that it is deflected in accordance with the values -~
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calculated above. The moment and the deflection are connected by the formula
d*y
dx?

and the effect of the elastic supporting of the ring elements is expressed by
th2 cquation:

EJ-S3=_M, . (1)

d*M, Eb
T ==Y (2)
Eliminating M, from these two equations, we get:
d? d? Eb \
e [EJ dny +—-y=o0 (Ba)
Em* 3°
or, assuming the bending rigidity EI to be constant and equal to 1 190"
have :
d4
o takty=o
[} 2 __ . (3 b)
where k* = 3 (m 3 D .,1 5
m r* d°
The general integral of equation (3b) can be written in the following form:
y = e~ (A cos kx + B sin kx) 4 e =%~ (C cos kx + D sin kx) (4a)

which means that the deflection may be regarded as the sum of two sine vi-
brations, one having a damped and the other an increasing amplitude. Generally
speaking, the coefficients G and D may be taken as = 0, provided the girder is
not too short and that the origin is located at the point from which the di-
sturbance proceeds. For closed domes, therefore, the integral can be written
with sufficient accuracy in the following form:

y = e~¥* (A cos kx + B sin kx) (4b)

Here x is the arc length of the meridian measured from the edge of the dome.
In this case the arbitrary constants A and B can easily be determined from the

boundary condition, so that -
2

_ __ P ,
y=— 2Eband\ =0 for x =0.

re

This gives A =B = — .53—6’ and the deflection at the meridian is therefore

pI‘2 -kx 1
Y=—155s ¢ (cos kx + sin kx).

By inserting in equation (1) we get the following expression for the meridian
moment: B

M, = D) pr?)e—l*x (— cos kx + sin kx) (5)

In this expression, the effect of the transverse compression of the material is
ignored, 1. e., Poisson’s factor m is taken as equal to infinity.
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Table L

Values of functions e—kxcos kx, e—kxXsin kx, e—kx (coskx — sinkx) and e—kX (cos kx + sinkx.

711

kx e—kx cos kx e—kx sin kx e—kx (cos kx — sin kx) | e—kx{(cos kx + sin kx)
!
0 1.0000 0.0000 1.0000 ! 1,0000
% 0.6239 0.2584 0.3655 0.8823
% 0.3225 0.3225 0.0U00 0.6450
‘%" 0.1179 0.2845 —0.1665 0.4024
—2"— 0.0000 0.2079 —0.2079 0.2079
§8—" — 0.0636 0.1297 —0.1833 0.0761
19’4—" —0.0671 0.0671 —0.1342 0.0000
381 —0.0592 0.0245 — 0.0837 — 0.0347

x —0.0482 0.0000 — 0.0432 — 0.0432
385 — 0.0269 00112 —0.0157 — 0.0381
%ﬁ —0.0139 —0.0139 0.0000 — 0.0279
11 n. . -

5 —0.0051 —0.0128 0.0072 — 00174
io’gl 0.0000 — 0.0090 0.0090 — 0.0090
13 = _ - .

5 0.0023 — 0.0056 0.0079 —0.0033
77" 0.0029 —0.0029 0.0058 0.0000
158" 0.0026 — 0.0011 0.0037 0.0015
2 0.0019 0.0000 0.0019 0.0019

%1 0.0011 0.0005 0.0006 0.0016
% 0.0006 0.0006 0.0000 0.0012
%’ x 0.0002 0.0005 — 0.0003 0.0007
% x 0.0000 0.0004 — 0.0004 0.0004
?8—1 — 0.0001 0.0003 — 0.6004 0.0002
%1 x — 0.0001 0.0001 —0.0002 0.0000
23

3T — 0.0001 0.0001 — 0.0002 0.0000
3x — 0.0001 0.0000 — 0.0001 — 0.0001
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From the values of the functions e~**cos kx and e **sin kx given in Table 1,
it is an easy matter to plot equation (5) graphically. Fig. 1 shows how the
meridian moment M, varies with the distance from the edge of the dome. The
exact values obtained by Bolle’s method with hypergeometrical series are given
by way of comparison3. It will be seen that the agreement between the exact
results and the approximate values is surprisingly good, so that there is no
occasion to make the dome problem a complicated mathematical business. For
domes with a bigger angle of opening than 400, the agreement between the
exact and the approximate values is better still. Only in the case of domes
whose angle of inclination to the supports is very small does the effect of the
approximations achieve practical significance. Incidentally, such domes are
1mpractlcable due to the serious dlsturbances at the edges set up when the dome
is connected to its supports.

For the calculation of the stresses in the dome, we have to consider not only
the meridian moment M; but also the ring moments M, and the additions to
the meridian compressive stress and ring compressive stress set up through
the boundary conditions not corresponding to the assumptions of the membrane
theory. These quantities, My, AT; and AT, can be calculated directly from the
equations below. The agreement between the figures obtained by this approxi-
mation method and the exact values is also very satisfactory, as may be seen
from the comparative figures given in Table 2.

It is simplest to derive the mathematical expressions for the additional stresses
AT, and AT, by assuming that the meridian is a girder with an elastic support.
The increase in the compressive stress at the meridian, AT, may thus be regarded
as the shearing stress in the girder multiplied by cot o, where o is the angle of
inclination of the meridian to the horizontal plane. We therefore get:

3
AT, =cota-EJ. ‘3{, (6)

The increase in the ring compressive stress AT, is a measure of the elastically
supporting effect of the base, and, hence, AT, is directly proportional to the
deflection y of the meridian, so that

Ed
AT2:T°)’ (7)

The ring moment is most simply obtained by determining the alteration in
the curvature of the rings4, and, neglecting the effect of the transverse com-
pression, we get:

EJ dy
—cota-
M, =cota ix (8)

I‘

Inserting the equation for the deflection of the meridian, viz.,

9
pI“' —kx 3
fo—— —— ¢ cos kx 4 sin kx
3 See Ekstrom, loc. cit., p. 124.
4 See, inter alia, Foppl: Drang und Zwang, Vol. 2. Berlin 1928.
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in equations (6), (7) and (8), we obtain the following expressions for AT, AT,
and M,:

242
AT, = — cota EGE k3 e—kx cos kx (6a)
AT, = — %" e~k (cos kx + sin kx) (Ta)
2
M, = cot - PEO k o-kx sin ky (8a)

12

Table 2 contains the values of the meridian and ring stresses and ring moments
worked out in this way, in comparison with the exact figures.

Table 2.
Comparison between the Proximate and Exact Values of the Meridian and Ring Stresses
and Ring moments.

l:cliig::Zti(;fn T+ AT, T+ AT, T, +AT, | T+ AT, M, M,
of the Proxiniale Exakt Proximate Exakt Proximate Exakt
Meridian kg/cm kg/cm kg cm/cm
! I

40° 443 439 0 0 0o | 0

35° 474 481 215 193 99 o113

30° | 503 504 437 4217 62 3

25" 506 508 517 520 12 17

20° 503 504 518 523 —8 —10

15° 501 501 511 510 -9 —14

10° 499 499 501 501 —5 — 9

50 499 498 499 498 0 — 3

The problem worked out above relates to the simplest conceivable edge cen-
ditions. In order to show the applicability of the method for complicated edge
conditions as well, I have worked out a dome connected to a circular cylinder
all round, as Fig. 2. To simplify the problem to a certain extent, the water
pressure on the dome was assumed to be constant. This problem has been dealt
with by Ekstrom under the same assumptions. The calculated values for the
meridian moment M, and the ring stress T, are given in Table 3, with the exact
values for comparison.

The index 1 will subsequently be used for all constants of the dome, and the
index 2 for all constants of the cylinder.

This design of dome is worked out as follows. When the inner dome and the
cylinder are freed from each other and can deform unhindered under the effect
of the load, the membrane theory shows a decrease in the radius of the dome of

pl‘,z _P '1104
2F>, ~ E

- 3,12 cm

and an increase in the radius of the cylinder of

pr.’  p-10*

- 1,72 em.
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The wall of the cylinder thereby forms a small angle to the perpendicular
10

=% 1.72 (see Fig. 2).

% g

8o =24cm

Fig. 2.

As this state of deformation is incompatible with the actual conditions of
support, certain additional forces and additional moments must be introduced to
satisfy the conditions of steadiness. These conditions of steadiness are as follows:

The cylinder and the dome should have the same outward deflection and
alteration of angle at the point of junction, and the point of junction shouald
also be in equilibrium as regards the moments and applied forces. This involves
four edge conditions, which may be expressed by means of four equations,
from which all unknown deformations, moments, etc. may be determined.

To facilitate drawing up the equations, we now give the general expressions
for the deflection and their derivation. We have:

y = e~kx [A cos kx 4 B sin kx]
y' =ke**[(B—A)cos kx -— (A + B) sin kx| ©)
y'* = 2k* e~¥* [— B cos kx 4 A sin kx|
vy = 2k?® e~¥x[(A 4 B) cos kx 4 (B — A) sin kx]
The first condition, viz., that the’ deflections of the cylinder and the domec
must be the same at the edge, may be expressed by the following equation:

p- 10

— A, sin40°+ A, = P o (3,12 5in 40° 4+ 1,72).
So that the angular modifications may be the same in extent, we must get
10

ki (B, —A) =k, By — Ay) — 5 - 1,72
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and for the equilibrium of moment we get
k,!EJ, B, =k,2EJ, B,.

The remaining condition should express the fact that the horizontal reaction
due to the loading of the inner dome should be taken up by the shearing stress
in the cylinder and by the shearing stress and the meridian stress in the
dome; i e.,

—2k,*EJ, (A, +B,)- sTrTlLW — 2k EJ, (A, + B,) = p - 500 - cos 40°.

By elimination from these four conditional equations, we get, for p =1 kg/cm?
the following values of the constants:

. 104 104
A1:—-15,3D‘T 81:—7,16—E‘
., 10 _ 104

A_)-‘:—"— 0,13'T Bg— 2,05‘T.

This completely solves the problem. The moments, etc. can now beé worked
out without difficulty for any point of the cylinder and the dome. Table 3
contains a comparison of the calculated and true values for meridian moment
and ring stress in the dome. The agreement is satisfactory at all points.

Table 3.
Meridian Moments and Ring Stresses of the Dome as Fig. 2.
Angle of ; , .
Inclination Prol):/i[rlnate : Eziikt PT:O_.tir?x;I;z Tiﬁial.?th
of ‘lh_e kgem/cm | kgem/cm kg/cm kg/cm
Meridian
40° — 5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
25° 597 764 618 639
20° — 6 9 YDA H93
15° — 99 — 141 520 526
10° — b — 80 498 498
5o — 8 — 15 495 493

These two examples indicate that the method explained here for dealing with
the problem gives results which are practically applicable and easy to find.

As already mentioned, the proximate solution comes closer to the true
values, the steeper the dome and the thinner the shell. This latter factor in
particular is of great importance, as Steuermann® and others have pointed
out. Unlike Equation (3b), the exact equation for the outward deflection of
the meridian contains not only expressions of the fourth and zero order, but
also expressions with derivitives of the first, second and third degree, which,

5 E. Steuermann: Some Considerations on the Calculation of Elastic Shells. International Con-
ference for Technical Mechanics, Stockholm, 1930.



716 A. Granholm

however, are all multiplied by polynomes of cot a. The significance of these
expressions decreases with increasing values of a, and for a = 909, i e., for
the cylinder, they drop out altogether, which means that equation (3 b) applies
exactly. A reduction in the wall thickness of the dome has' a similar effect
on the complete differential equation. It is easy to see why this should be the
case; it i1s simply due to the fact that, for small wall thickness, the compression
at the meridian and the influence of the change in curvature are less pronounced
in their effect. Put differently, this means that the work of the normal stresses
due to compression of the meridian, together with the work of the meridian
moment and the ring stresses may be ignored in thin-walled domes.

In the problems dealt with previously, the wall thickness was assumed to
be constant throughout. Where the wall thickness ® is variable, we cannot
start from equation (3b), must apply equation (3a). As the simple theory of
the elastically supported girder gave sufficiently accurate results in the above
casses, 1. e., for constant wall thickness, there was reason for assuming that
this would also be the case for variable wall thicknesses.

The theory of the elastically supported girder with variable moment of inertia
and variable support has previously been studied by various researchers,$
mainly with the aid of series. Unfortunately the results obtained are more or
less useless for practical purposes. Due to the close affinity of equations (3a)
and (3 b), however, it is only natural that the solutions of both equations
should have substantially the same mathematical basis. It may therefore be
supposed that the solution of equation (3a), for instance, may be written in
the following form:

y = uet? (A cos z + B sin z) (12)

where u and z are certain functions of x. By adopting Blumenthal’s “asymptotic
process of integration”, the functions of u and z can be ascertained, so that
equation (12) represents an integral of equation (3 a) with very good
approximation.

) E 33
By introducing, as above, the bending rigidity of the girder E J = T;— , We
get the following expressions for the functions of u and z:
n— L (13)
yo?
— rd
and i=13 | = (14)

Vo
This result is obtained in the following way. Carring out the derivation of
equation (3 a), and simplifying, we obtain the equation:

YV 4Py +py TPy tpy=o (15)
where pr =6 %

8 See, for instance, Hayashi: Theorie des Trigers auf elastischer Unterlage, Berlin, 1921.
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o oofied

o Lo}
ps =0
12
Py = ot
Multiplying the equations
v =1(z)
vi =1z

vl! :fl zu_}_fu o2
vut____ftzu4+3fl [] “+f“ 3
VIV = £ 2tV (42 2" 4322 6 £ 2 gt - IV 24

df d
where ' is equivalent to P and z’ to —d—z in turn by the factors Q,, Q;, Q,, Q

<1

and 1, and adding them, then, when the member on the left is written as equal
to zero, we obtain (1) equation:

VIV v Q +v' Qe+ Vv Qs +vQ =0 (16)

and (2), when each of the factors f’, {” and {” are made zero:

V42" Q,+2"Qy+2 Q=0
(4z’ 2 4+32)4+322"-Q,4+2%Q,=o0 (17)
#2425 Q, =0

Q,. Q, and Qg  can be solved from these equations, whereas the function f (z)
is determined by the remaining condition

V44 Q, f=o (18)

If the factor Q, is taken as being equal to 4 2’4, equation (18) is then trans-

formed into
d~l
—+4f=o0

that is f (z) = e** (A cos z+ B sin z) (19)
z being determined by the condition

f—
d_ )%
dx ' 4
Inserting y = uv in equation (15) and dividing by u, we get:

-

(20)

VIV v (4um + Pl) + v (6 = 3 u + P2)

4 4" _5 " ¢
+v (llll + - P1+_P2+P.,)+VP4—0 (21)
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The unknown functions Qg and u can be determined by equalising the
coefficients for v and v in equations (16) and (21). This gives us Q, = p,
and, consequently, as equation (20):

z:ff/%dx

.

Vro
= Q, and adopting the last of the equa-

or, with Py = }

l"“—62§ (14)

From the condition

tions (17), we get:
4u' 3 ,
L) (log py)
or  u= L (13)
/o’
Summarising the result of the above calculations, the solution of equation (3 a)
can be written in the following form by neglecting the expressions containing
the factor e+z:

y = —l-e-z (A cos z 4 B sin z) (12a)

in which z is determined by the condition z = 1/_

Vrb

At first glance, equation (12a) may perhaps appear involved and not very
suitable for practical purposes, due to the complicated structure of the function z

and of the additional factor i/ L . The case becomes simpler in actual practice,
63
however. The function z need never be indicated other than numerically, so that
it can easily be calculated from equation (14), say, by the trapeze rule. In
calculating the derivatives of equation (12 a), fairly complex expressions are
obtained where no approximations are introduced. But when it is remembered
that the derivations z”, z”, u” and u” are small for the dimensions involved
in actual practice, and can therefore be neglected, the derivations of y are
obtained in the following form:

y = ue~?(A cosz-+ Bsinz)
y' =uz'e?2[(B— uA) cosz— (A+ uB) sin z]
y* =2uz?e?[— (uB++yA)cosz+ (uA — yB) sin z]

y“=2uz®*e*[(A+u, B) cos z+ (B—p, A) sin z] (9a)
where v = —u-—,
uz
g =1—v
g, =1—3w

In cases where the wall thickness is constant, v =0 and p = p; = 1, the
above equations becoming exactly the same as the equations (9).
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The equations (9 a) are therefore built up in the same way as the derivations
for a girder of constant bending rigidity given in the equations (9). A dome
of variable wall thickness can consequently be worked out in the same way
and with very little more trouble than one of constant wall thickness. The
examples given above (see Figs. 1 and 2) are thus typical of the case where
o is variable, and the equilibrium equations should be drawn up in the same
way, but with the modifications necessitated by the difference between equations
(9) and (9 a).

We have not yet considered the dome problem in cases where the girders
at the meridian taper upwards and theic width 1s nil at the apex of the dome,
but have rather assumed them to be of constant width. This is only true
when the dome is cylindrical; but for domes in general a certain process of
approximation is inherent in this assumption. When allowing for the taper,
we can, for spherical domes, express the moment of inertia of the meridian
girder at a definite angular distance « from the apex by the following equation:

5% sin a
12 Sin Qo

J= (21)

With this expression for the moment of inertia, we obtain, for functions u
and z:

1 1

Vo Vsina
/Sln o
and = f]/rf) sina dx.

The above derivations, which apply mainly to the dome problem, may of
course also be applied to cylindrical tanks and similar structures, which should
be regarded as special cases of the dome. The usual methods? for calculating
such containers, based on the developments of mathematical series, may
advantageously be replaced by the method given above. A special and interesting
case of this particular problem is met with in the calculation of solid arched
dams. The usual method of dealing with these problems was to start from
equation (3b) and introduce a mean value for the wall thickness®.

In dealing with equation (3a) by the above method, it is possible, without
difficulty, to allow for the anisotropy of the structure which occurs in various
directions and at different points. The anisotropy may be purely a phenomenon
of the material, or a purely constructive anisotropy. When different quantities
of reinforcing steel are inserted in different directions, for example, the
apparent modulus of elasticity of the material will vary in different directions,
and this we may term anisotropy of the material; while a certain constructional
or design anisotropy may be introduced into a cylindrical tank or a dome
by fitting reinforcing girders in the direction of the generatrix or the meridian

u =

? See, Lorenz: Technische Elastizititslehre, Berlin 1913. H. Reifiner: Beton und Eisen 7, 150,
1908. T. Psschl and K. Terzaghi: Berechnung von Behiltern, Berlin 1913.

8 N. Royen: Tvirodammen vid Norrfors kraftverk (Der Damm von Tviré am Kraftweak Norr-
fors), Zeitschr. Betong, vol. 2, 1926,
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(ribbed domes). In such circumstances, equation (3 a) cannot be written in the
form in which it is contained in equation (15), but the coefficients p, to p,
assume the following aspect:

__2(EJ)
pl—--*E*1
=(E—1 ‘"
PR (22)
Ps =0
— E2
= E,

and the functions z and u accordingly appear in the following form:

Z_waJ @Q

and u= VEXJ-E;’E)"

Since no mathematical expression is necessary either for u or z, the intro-
duction of equations (22) and (23) does not make the calculations more difficult.

Summary.

By dividing the shell into two systems of intersecting beams and by applying
the well-known theories of the elastically supported beam, we get a clear idea
of the statical behaviour of the construction and obtain results that are sufficiently
correct. As the exact theories lead to solutions in form of infinite series, which
under certain conditions converge only slowly, this way of dealing with the
problem offers great simplification.
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Shell Structures with or without Stiffeners.

Versteifte oder unversteifte Flichentragwerke.

Ouvrages a parois minces reforcées ou non par
des raidisseurs.

R. Vallette,

Ingénieur au Chemin de fer de I'Etat, Paris.

The question of thin shell-structures having been discussed at the Paris
Congress, we only intend to study the tendencies which arose since this Congress.
We can distinguish between two types of thin shell-structures: first, structures
in which the stiffness of the shell has been taken into account for the strength of
the system as a whole; second, structures in which this stiffness has been
completely neglected, the shell itself being then considered able to withstand
only stresses acting tangentially to the surface, thus the shell behaving as a
simple membrane.
Accordingly we have to consider:
1. — the stiff, thin walls and shells,
2. — the membranes.
We intend to examine in the present report the structures consisting of stiff,
thin walls and shells, the structures consisting of membranes being the subject
of a report by Mr. Aimond.

. I. — Shell-Structures.
A. — Design.

Generalities.

From the beginning of reinforced concrete, the thin shells of the slab type
have been taken into account for the general strength of structures. The mono-
lithic nature of construction is, in fact, one of the important characteristics of
reinforced concrete. However, a more complete use of the strength of shells
has been considered later on, and these shells became the principal element of
strength for structures such a load-carrying walls of reservoirs, silos, vaults
and arches, etc.

Constructional applications.
1. — Reservoirs.

In the design of reservoirs, the load-carrying wall has been entirely employed
for bottoms, cantilevers, covers, but the stiffness of such walls has been taken
into account only occasionally.

46 E
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2. — Silos.

For silos, the use of carrying walls, originally only partial, became exclusive
after certain methods were known which were reported to the Paris Congress
by Mr. Freyssinet. We have nothing to add on this subject, no further aspect
having evolved since. :

3. — Vaulted structures.

a) Normal vaults.

So far as normal vaults are concerned, Mr. Freyssinet had already shown
~the tendency of like development at the Paris Congress, when he stated
that if he had to design now the Orly sheds, he would adopt a ribbed
design, with spans of 25 m between the supporting ribs. Such a statement
is all the more noteworthy as the Orly sheds?! in their existing form (erec-
ted 1922) can be considered as the most remarkable and precursory
example of self-supporting systems with numerous short spans, such
as were subsequently frequently used in Central Europe.

In fact, we find sheds with bays 7,50 m wide, spanning 90 m. The
resistance of the shells being hereby entirely absorbed by the general
bending conditions of the whole structure (Freyssinet-Limousin, Con-
tractors).

Since the Paris Congress, this tendency has remained and it has been

S ®

b/
0_.'._

40

(_,‘4
772m

= Fig. 1.

Schnitt durch Axe
Coupe dans I'axe
Cross section throCentre line

Barrel arch of
51,50 m span.

actually possible to design a reversed cradle vault of 51,50 X 51,50 m
supported only at the four corners, the vault being entirely self-supporting
and containing only small stiffening ribs of a purely secondary character,
without any end beams contribution to the strength of the structure
(Fig. 1) (Boussiron's scheme). We can consider this type of construc-
tion as the outcome of the type of roof design used in France since
1910. by several designers, using a portion of the vault itself as sup-
porting beam (end beam), between more or less widely spaced columns. Ori-
ginally, the heigth of the acting portion of the vault OA taken into
account was small (Fig. 2) and a beam ON was necessary to establish

1 Génie Civil, Sept. 22 to Oci. 6, 1923.
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- the required strength of the structure. Gradually, the heigth OA was
increased, while the supporting action of the beam decreased. The span
between columns was notably increased as well and at present, the
whole of the shell is utilized for any span and without the use of supporting
end beams.

b) Other types of vaults.

1. An alternative to the Orly sheds has been adopted for the construction
of a twin-shed for airplanes at Cherbourg. The vault consists exclusively
of thin shells (Fig.3) which, as at Orly, are alone responsible for the
strength of the structure: the shells became self-supporting, between
widely spaced columns (Société Rabut-Subileau).
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2. The conoidal shaped shells (Freyssinet-Limousin) were applied for a
great number of structures (Works at Montrouge, Caen, Fontenay,
etc.); This type of shells has been studied by Mr. Fauconnier in a
report published in the second volume of the “Publications” of our
Association, which leaves us only to say that these shells are self-
supporting, even if resting on columns far apart.

4. — Other types of structures.

Other types of roof shells, such as for domes with square plan, cross vaults,
cloister vaults, etc., have been considered by different designers in connection
with competitions for aerodrome schemes, for airplane hangars; however,
with competitions for aerodrome schemes, for airplane hangars; however, such
types are not sufficiently developed as yet to allow for definite conclusions.

A very remarkable construction, of quite a different nature has been erected
near Paris for the testing of airplanes; it is the Aerodynamic Tunnel of Chalais-
Meudon2. This tunnel consists of a certain number of thin walled, self-support-
ing elements, among which an elliptical diffuser tube of imposing dimensions
(Fig. 4), which has its supports in two places only. These supports are 34 m
apart whilst the self-supporting structure has walls only 7 cm thick, stiffened
by ribs, 3,60 m apart (Limousin).

5. — Conclusions.

Concluding, we can distinguish in France between two tendencies in the de-

velopment of shell construction. On the one hand, exists an undefined tendency

2 Génie Civil, Nov. 3, 1934.
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to search for new types of roof shells, without the definite trend to find a parti-
cular type. On the other hand, with such types as are now definite, a marked
tendency exists for taking full advantage of the load-carrying properties of the
walls. This tendency is going as far as using the whole of the section of a
structure (great vaults, tunnel at Chalais-Meudon), if the span allows of it.
At the same time the character of shell constructions should be maintained
without the necessity of requiring end- and other beams as supporting members.
This can be regarded as one of the characteristics of French constructional
tendencies.
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B. — Calculation.

1. — Flat shells.

As regards the calculation of flat load-carrying shells, we refer to the method
suggested by Mr. L'Hermite (Génie Civil, April 29, 1933).

2. — Self-supporting shells of different types.

The use of the shells of a vault to act as end beams in particular, for trans-
mitting to the supports the loads of the structure, was a feature introduced
in concrete shell constructions right from the introduction of such structures.?
These beams, making only use of a small portion of the shell, were calculated
by the designers as ordinary independent straight beams leading this way to
unnecessarily heavy structural members. For short spans between supports,
such excess of material does not render it advisable to apply advanced methods
of calculation.

For the case, otherwise rare, where the purpose of the structure demanded
long spans between columns, the height of vault to be taken into account caused
profiles of pronounced curvature, calling for special methods of calculations.
We know that some designers (particularly Mr. Boussiron) succeeded in evolving
special solutions for such problems, though they did not publish their in-
vestigations. We have ourself indicated, later on, a method4 concerning the
calculation of such a beam and which applies at the same time for calculating
shells of the cradle type of any shape, supported only at the extreme ends.

This method allows to extend the theory of bending to thin shells of curved
sections and permits investigations into the consequences of secondary stresses.
With this method the means are given to study specially the transverse bending
stresses introduced in a sectional element of the shell by tangential forces acting
along the directrices of the shell. This particular mode of calculation applied
for large spans was found complete and reliable. The results obtained with this

3 Génie Civil, January 27, 1934.
4 Génie Civil, January 27, 1934.
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method are in accordance with observations made on models, of experimental
shells, as well as on actual structures.

3. — Other structures.

The same method of calculation can be applied to structures forming complete
tubes and we have shown this method which was used also for the calculation
of the diffuser tunnel of Chalais-Meudon (described above) in the reports
concerning this structure.®

With regard to domes, the normal type of which requiring but a simple
method of calculation, the stiffness of the shell has to be taken into account
only for concentrated loads acting in a confined zone. In most cases, the problem
leads to the class of membranes on account of such systems being composed
of meridians and parallel circles.

With regard to other types of stiff surfaces for roofing purposes, there can
be found, in French technical literature, no statement of any method of calcu-
lation; these types are still imperfectly studied and remain a field of exploitation
to the designer.

4. — Conclusions.

Methods for the calculation of thin walled and stiff structures have retained
in France the character of simplicity which has so far been the rule for the
design of reinforced concrete structures. In fact, we are dealing with materials
and systems of complex and varying nature and it would be vain to search
for laws and rules expressing all phenomena possible which take place in a
structure under the influence of loading. It suffices to retain the principal
facts which can be considered as characteristics and expressed by means of
simple laws (Hooke’s law, Navier’s law, etc.), such laws being imperfect,
but safe.

The aim is not to obtain a purely mathematical solution of a problem; it 1is
only a question of calculating sufficiently well all important influences which
appear in a given system, in order to prevént useless surplus material or
noticeable underestimation. The endeavour to find such a practical solution,
on the simple basis indicated, should however be guided by making use of
all the possible resources of the art of calculation, with the aim to arrive at
a definite solution, safe and easily applicable. It is worth pointing out that
in the history of reinforced concrete structures, definitive and clarified methods
of calculation have only been established after the actual execution of structures
carried out by our big contractors.

Imagination, technical sense and a true conception of the internal working
of a structure are inseperable foundations for the creation of new types of
structures, and are sufficient to the designer for the calculation and design
of any new type. It is in fact always possible to value an acting force if
its action is fully perceived. It is this point which calls for the most careful
investigations into the nature of the numerous parts which form a reinforced
concrete structure. The solution of these problems demands that practical
technical sense which makes the prerogative of a good designer.

5 Génie Civil, November 3, 1934.
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The calculation of thin and stiff shells hds followed this development and
has retained the definite tendency to keep on the lines of simplicity and
clearness, required for the investigation into the problems with which the
analysis of such types of structures is concerned.

Summary.

A study of shell constructions under consideration of the actual stiffness.

After summarising the development of shell construction, the author shows
that in France nowadays only self-supporting shells are used without the aid
of any border beams, even if it is a question of systems composed of small
multiple shells (Halls at Orly) or single shell constructions of wide spans, or
closed shells composed of rings (wind channel at Meudon).

The author points out that shell constructions are calculated in France with
the same clarity as is usual for other reinforced concrete constructions. This
permits the designer to employ and develop this new type of construction in an
unrestricted manner under proper consideration of all the forces.
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