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Test Results, their Interpretation and Application.

Versuche, Ausdeutung und Anwendung
der Ergebnisse.

Essais; signification et application des résultats.

Dr. Ing. H. Maier-Leibnitz,

Professor an der Technischen Hochschule Stuttgart.

A. Simply supported full-web beams (plated beams).

In order to be able to interpret the test results of continuous beams, the
behaviour of a simply supported beam of span 1, carrying a point load P in
mid-span shall be explained first. (Fig. 1, see [1].)! For this purpose an
I-beam 14 cm - 14 cm was used and the following properties were found by
measuring the actual cross section: Sectional area: F = 43.2 cm2; moment of
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inertia J = 1525 cm%; modulus of section W = 214 cm3. Four test pieces
cut from the flanges of this joist gave an average yield point stress of
o, = 2.437 t/ecm2. In Fig. 2 are shown the total and permanent deflec-
tions in mid-span and in Fig. 3 the average values of total and permanent
elongations and straining at the points a and ¢ of the bottom flange in mid-
span. During the execution of tests it was noticed that scaling occurred in mid-
span on the underside of the compression flange for a point load of P=12.8t
For a load P, = 17.15 t the beam buckled sideways, leading to complete failure.

The term carrying capacity of a beam can be interpreted variously.
Based on the assumption that a beam is of no further use if it begins to
" have permanent deformations, this carrying capacity [Pr] could be expressed

1 The numbers given in [ ]-brackets refer to publications listed at the end.
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as the value of P for which the extreme fibres at the point of max. bending
moment are stressed up to yield point. If the load P is only slightly increased,
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permanent deformations and deflections would occur. The corresponding ben-
ding moment is in this case of the following value:

M= W. g, =214 2.437 cmt,
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giving a carrying capacity of

. .0
[Pr] = 4—1‘1’ * = 13.04t.

From Fig. 3 it can be seen that permanent straining really starts with this load.

Attempts have often been made to arrive analytically at the value of M‘y, of
the carrying moment which ultimate value cannot be exceeded and which
corresponds to the internal moment of the stresses after yielding and for com-
plete plasticity of the whole cross section. (See, e.g. [2], [3], [4], [5], further
references to publications are given in [5] concerning the analytical method
of Prager and Kuntze). As shown in the report by Fritsche [5], numerical
conformity between experiment and calculation cannot be expected (the cross
sections do not remain even as plasticity increases; the values of yield stresses
vary for different points along the flange; hardening of the material due to
yield).

From Fig. 3 and also from Fig. 2 relating to the tests under consideration,
the value [P‘y] = 14,5 t, corresponding to M‘, can be measured distinctly,
after which permanent deformations and deflections develop at the bottom
flange at the point of attack of the load and increase almost unrestrictedly.
The corresponding carrying moment for this load has the value:

My = [—% = 580 cmt. (See also section Da)?

. [P'r] 14.5
Th t [P'x = —— = 1.
e ratio [Pr] 13.04 1.10
applies for the present case.
The tests published in [1] for loading according to Fig. 1 give ratios as
under:
152 [P'] 14.7

I-beam Burbach 127 : [Pr] = 1966 — 1.16,
. (P __ 83 __
I-beam 16: (Px] = 76 = 1.09

In any case, as already shown by Griining in [2] it does not appear justifiable
to consider the quantities P, and P, (in the treatise of Stiissi-Kollbrunner [6])
as being decisive for the carrying capacity, or even to regard these values as
the carrying capacity of beams.

For a clear conception (qualitative interpretation), concerning the tests des-
cribed in sections B to E for continuous and fixed beams, and for the purpose
of establishing a simple mode of calculation for such beams, it appears impor-
tant to understand fully that the relation between the permanent deflection
f of a beam AB (and similarly the residual angle ¢ of the deflection curve)
and the load P or the bending moment % (see Fig. 4a) can be expressed by
the curve OCDE in Fig. 4b (identical with Fig. 5 in [1]). To render the above

2 If a curve were to replace the straight lines in Fig. 2 and 3 the value of [P’T] would be
read as 15t in which case M’y — 600 cmt.

7'
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still easier to understand, the curve CDE can be replaced by a horizontal line
FG and the permanently bent beam can be considered to have a sharp kink at
the middle of the span (Fig. 4a). In this case we get

_2f ¢ - 1

Q = ] OI‘f__—_-—4—

2

The simplified conception of the problem leads to the assumption that the

beam would not be capable of withstanding a higher moment than M‘s = L Zl——l

(in this in particular case M’, = 580 cmt) and that under this moment the
beam is bent with a sharp kink at the load point. This is equivalent to the
conception of a beam loaded with [P‘r] being hinged at the point of attack
of the load, the hinge being equipped with an internal moment maintaining
equilibrium with the bending moment M.

Further tests with simply supported beams can be found in [7], [8], [9],
[10], [15].
B. Continuous beams of two spans and equal loading for both spans.

Fig. 5 shows the results of tests carried out by the Author with two compound
I-beams with a depth of 16 cm, described in [11]. Four different cases were
studied and the values P,; of the permissible loads are given, for which
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according to the usual theory of elasticity the permissible stress oc,;=
1.2 t/cm? is attained.

Case I is that of a simply supported beam over one span, Case II a con-
tinuous beam over two spans with bearings all at the same level. Case III
treats a continuous beam over two spans with the intermediate support lowered
in such a way as to produce a bending moment over the central support equal
in value to the maximum moment in the span, but being equal to the permissible
bending moment: W . g,. Case IV has the following characteristics: con-
tinuous beam over two spans, but with the end supports at a lower level than
for the intermediate support, in such a way as to establish a moment over the
middle support equal to the permissible moment W . g,y.

Failure of all beams occurred for the loads P, after the production of
unreasonably high deformations, by lateral buckling in the vicinity of the outer
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forces. The deflections registered for the middle of the spans are given in
Fig. 6.

In case I the first traces of yielding were observed at the tension flange
under the point of attack of the load for [P'v] = 7.5t, giving a stress of
2.70 t/cm2, which is less than the average yield point stress of 2.94 t/cm?2
as determined by tensile tests. Based on observations made with these tests,
it can be assumed that [P’r] = 8.5 3 giving a corresponding carrying mo-
ment of M, =85 -.80= 680 cmt. The modulus of section for the two
compound I-beams is W = 222 cm3. With this value and for o, = 2.70 t/cm?2
we receive a moment of My = W . o, = 222 . 2,70 = 600 cmt  or corres-
pondingly for o, = 2.94 t/cm? a moment of M, = 222 . 2.94 = 665 cmt.

(Pr]

For o] = 1.14 the following ratios are received:
s P
bay =~ pay
& P -30t

: 032
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137 wci- __ (137mm Fig. 7.
N
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6 La remise en charge pour %’,- 10,0} donne principal test II.
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[ 1

I
707 778 mm

Bel B = 111} sind bei allen Einzeltragern an den
dusseren lasfangri/fspunkfan Fliessfiguren sichlbar
(an einer Stelle zuerst bei 10F). ,
Pour B =111} on peul observer des Iraces d'écoule
ment sur chaque poutre aux points extrémes

f) d'spplication des forces
(& une place d’abord pour 10}) .
For R =11,1F Fraces of yielding can be obser -
ved on all beams al the extreme points of
aftack of load
(in one place even for 10)

Bei R, =13,1} seilliches Ausweichen des Tragers
bei einem der dusseren Lastangriffspunktle .
y Pour B =13, 1} déformation }ransversale de la
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for one extreme point of alfack of load

3 The values for carrying capacity of simply supported beams are marked thus: [ ]; [Py}
and [P’} refer throughout to the simply supported single span reference beam.
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MW:_—_%: 1.14 in one case and %g: 1.02 in the other case. These
results show that it is impossible to deduce the bending moment M‘y from
the yield stress received by tensile tests.
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The most important readings taken from this experiment are shown in Fig. 7.
The mean deflection values are plotted on Fig. 8, while Fig. 9 shows the elonga-
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tions of a measured stretch of 100 mm on the upper flange over the central
support. The properties of the compound beams based on actual measurements
are: Sectional area F = 43 cm2; Moment of inertia J = 1727 cm4; Modulus of
section W = 211 cm3 and an average yield stress of 2.51 t/cm? was found by
tensile tests. If this latter value could be employed for calculating M’ using the
same notations as in section A, this bending moment would be M, = 211 - 2,51
= ~ 530 cmt. According to M. Griining [2], M’ would be 232 - 2.51 = 585 cmt

8
8) PsR elastisch,(elastique, elastic,) [Zu] R=825¢C
P-8,25¢ P=825t 69) P=8,25t P-825¢

, 8¢cm , 80em , 80cm _,  80cm _, 80cm 80cm |
- v 2 l [] K !
=55t 1=240cm AQ-22t  1-240cm 2855t
I | Sfur

p0¢/+i’=8.25t.

Jor § py= &= 660 cmt

Ms= 3= 660cmt

Me= My~ = 440cmt
A =2p+%k=22¢
8=p-Y=55¢

S p— 1’;

D

b) P>R<R s o pex p 0t
p-y 0t 8] | P-iot {Pioe | Pt

0,46‘2:0;

ﬁ-zzsc $a-255¢ ?E-zzst

fir
poury P =10¢
Jor YMy= & =800 cmt
Msp=M$=660 cmt
M, =My~ =580cm ¢
-2p+19’L-25 5¢
B =p-H-725¢

c) PRIt
)w-nt Pt yPue Pt
ﬁ-a,zsc ?n-zzsc $§=a.25c
Y %Zr} B'=11t
Sor | py-5-880cmt

Mgp=Ms =660 cmi

M =My~ =660cmt
A =2+ =275t

8 =P -4 -8,25¢

T =0,00486
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and according to Fritsche [3] p. 854, it would be 1.16 - 530 = 620 cmt. During
the execution of the test the first traces of yielding were observed at the junction
from web to the upper flange over the central support, for one joist under a
load of P = 8.25t (and for the other under a load of P = 8.50 t). The corres-

Pl
ponding moment for this condition is M’ = 5 = 8.25 - 80 = 660 cmt and

8.50 - 80 = 680 cmt respectively. It can be seen clearly from Fig. 8 that from
P’ = ~ 8.25 t onwards the deflections start to increase more.

To interpret this experiment by the simplified hypothesis given at the end
of section A, th evalue M, = 660 cmt i1s used, and the results are shown on
Fig. 10. '

gThe quantity P’ represents the value of P — assuming fully elastic condi-
tions — for which the moment M; over the support is equal to M’, (Fig. 10a).
This relation yields

P — Ms-3__660-3

T 1 T 240

the moments over the support will not increase above the value of M/,
(Fig. 10b). The carrying capacity is reached if a load P‘r produces under the
Pr-1 M
3 3

=11t. From Fig. 8 can be seen,

== 8.25t. If P should assume higher values than P’

point of attack of the outer load a moment My =

4M5-3  4-660

3-1 240
that indeed the deflections grow more rapidly with increasing loads above
P =11,25t, thus rendering the beam useless for practical purposes. (If, as
previously mentioned, the calculation had been based on M‘; = 680 cmt, we
should have received P, — 8.5t and Pt = 11.66t, which values correspond
still better with the actual conditions).

equal to M,

(Fig. 10c). Hence Py =
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The values given in connection with Fig. 10 are plotted in Fig. 11.
In Fig. 10 and 12 are shown diagrammatically the deformations based on
the simplified interpreting hypothesis with J = 1727 cm¢, E = 2100 t/cm?
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but without considering the influence of shear. The deflections for the middle
of the span 4.62 mm, 6.98 mm and 8.34 mm calculated with P = 8.25t,
P=10t and P = 11 t are shown in Fig. 8. To the basis of calculation corres-
ponds the line OCDE of the deflections and further, that the deflections grow
unrestrictedly when the value P’y is reached.

Fig. 12.

The simplified hypothesis makes it quite clear how in the range P >P‘; <P’y
the equalization between the bending moment My over the middle support
and the moment My in span takes place. The deflection line of the beam
BAB (Fig. 10b) shows that at the point A which might be considered as a
hinge, there is an abrupt change of direction of ¢ = 2 - 0.00309. If the
beam B A B is released from its load, it will assume the shape indicated by
Fig. 12¢ with a camber i = 0.00309 .- 240 = 0.741 cm. On reloading the

48EJ i

beam the camber & must first disappear by a load x = — = 1.167 t
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(Fig. 12e). This load corresponds to a positive bending moment at the support

of My = 1—'@4—.4—80 = 140 cmt. When the beam now is loaded again with
10  there is a total bending moment at the support of Mg . — Mx:E '3240

— 140 = 660 cmt (Fig. 12b). Since it is assumed that up to this bending
moment of 660 cmt the strains are elastic, reloading with loads up to 10 t takes
place within the elastic range. Finally the hatched area of the bending moment
diagram given in Fig. 12b again appears. The whole procedure can also be
diagram given in Fig. 12b again appears. The whole procedure can also be
expressed in the following manner: If the beam is restrained from lifting from
the support, firstly a restraining force X is acting and the corresponding mo-
ment M, = 140 cmt. Due to the loads of 10t the bending moment over

the support now continues to increase quite elastically up to the value
Pl

Myt — My = il 140 = 10 - 80 — 140 = 660 cmt.
The deflections n of the reloaded beam B A B with the initial camber ii are
received in the form of ordinates of a bending moment diagram for a beam BB,

loaded by El j— times the values of the hatched moment area given in Fig. 12b.

(Mohr’s method applied to cambered beam.) The deflection line, computed this
way, i1s shown in Fig. 12f. The deflection a point A must check with camber i.
If the ordinates of the deflection curve n are plotted from the axis line of the
cambered beam as a base (ordinates y) the shape of the axis of the reloaded
beam is obtained. (Ordinates n — y.) This shape (Fig. 12g) is identical with
the sape of the axis after the first loading with 10t (Fig. 10b).

Comparing the preceding qualitative interpretation of the loading, unloading
and reloading due to loads P = 10t with the results received by experiments
(Fig. 7) we find general agreement in two points. Firstly, after loading and
reloading with 10 t a camber i appears over the middle support and secondly,
the reloading is perfectly elastic. Full numerical agreement cannot be expected
for the following reasons:

a) the simplifying assumptions of the interpreting hypothesis,
b) differences in the geometrical properties of the beams,
c) differences in the behaviour of the beams under load (influence of shear on

the strain, variations in modulus E and yield point stress o),

d) the practical impossibility of keeping the supports exactly at the same level.

The experiments, however, show clearly that the moment over the support
does not increase above the value of M‘; for loads above the value P‘g, although
an increasc of moments in the span takes place. The reason for this is that
the beam automatically undergoes a deformation producing a camber i as if
established by cold bending in a machine. This phenomenon of producing a
camber i, reduces the bending moment over the middle support in exactly the
same way as if the middle support were lowered artificially by the same amount.
According to calculation we receive for P=10t and P =11t the values
i = 7.41 mm and 11.65 mm respectively. They are quite small for a beam
of 480 cm in length. The values obtained by experiment are smaller.



108 H. Maier-Leibnitz

The summary of this would be:

1) The interpretation and their simplified assumptions give a sufficiently
accurate basis to judge the carrying capacity of the continuous beam under
consideration. It is quite safe to introduce for a simply supported beam the
carrying moment Mg = W . ¢; and to calculate with this moment according to
Fig. 11 the values of P, and Pr for the continuous beam under consideration.

2) The following definitions correspond to the simplified hypothesis of inter-
pretation:

a) P’  represents an ultimate load for which loading, unloading and reloading
of the beam still produce only fully elastic deformations.

b) It is essential for P > P’y but less in value than the maximum load Py
that only limited and practically harmless deformations similar to cold bending
of the beam are produced near the cross section where, according to the theory
of elasticity, the maximum bending moment occurs. The unloading and re-
charging of the beam creates fully elastic deformations only.

c) P‘r represents an ultimate load for which, if exceeded, the beam enters
into a condition of instability. (See Fig. 10d.)

3) The actual behaviour of the continuous beam is as follows:

a) Py creates the first permanent although small deformations.

b) The deformations increase considerably with P > P‘;, though without
impairing the practical usefulness of the beam.

c¢) For P > P, < P’y unloading and recharging of the beam takes place
under fully elastic conditions.

d) With P > P’y the deformations grow to such an extent as to render the
beam useless for practical purposes.

e) At P, the beam fails completely.

The interpretation of the test results of cases III and IV need not be gone
into here. In comparison with case II, the load P’s entered later into account
for case III, and earlier for case IV, but Pt was found to have almost the
same value in all three cases.

An article published in [12] describes tests proposed by J. H. Schaim, with
simply supported single span and continuous double span beams, spanning 4 m,
and loaded with four equal point loads in each span. (See Fig. 13 and also [13].)

It can be assumed that M, = ~ 614 cmt (= ~ 234 - o, = 234 . 2.62)
as for test 1 for a simply supported beam loaded with four equal point loads P,

with oy = 2.645 t/cm?, the beam failed at Pv:%t corresponding to a

bending moment of 240 - 14(? = 600 cmt. For test 4 with g, = 2.895 t/cm?
the deformations grow rapidly for a load of P = %) t. The load Py of this
simply supported beam was found to be 12f3 =301t

For the above mentioned value M’; = 614 cmt the load P’, assumes the value
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, _ 614
Y=o
in span and over support) that permanent deformations developed already at

= 2 t. The probable explanation for this is that as stated [12], p. 14 ‘a re-
lative lifting-off of the middle support has taken place, thus causing increased
stressing over the intermediate support’. Therefore M, become equal to M’

= 2.56 t. It can be seen from Fig. 13¢ (total and elastic elongations
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even at P < P’.. The load P’r is reached since for the cross section 2 the

moment My = Mgy — g - Mg =M/, 1. e. 240 P’y — g M's = M/, hence P'r =

3.585t. The beam fails at Py :129 =4.75 t.

The foregoing and the following remarks are concerned with loads increasing
from o to P’r (to Pv) whilst the tests of O. Graf, published in [14], deal with
the investigation of the fatigue strength of simply supported single span and
continuous double span beams of steel St. 37.
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C. Continuous I-beams over two spans, with only one span loaded.

If a continuous beam (Fig. 14) having two equal spans AB and BC is loaded
with a point load P at the distance a from the left outer bearing, all deforma-
tions remain fully elastic until P reaches the value P’y or in other words as
long as the moment My in the span remains smaller than M. The closing line

Fig. 14.

\Mstel_ty

b - - — g — g ———-

ol P

3
X/ $

Mr, Msy

of the bending moment diagram (Fig. 14b) is determined by M, .. For
loads P > P‘; the bending moment diagram corresponds to the Mg -diagram
and a closing line determined by the stipulation that the moment My in the
span shall not exceed M‘y. The ultimate value of the load P‘p is attained at
M., = M’ (Fig. 14d) according to the following condition:

l_—__. .a- P‘T —_ i

| P My = My

hence

M'S(l +%)1
T a(l—a)
The relations Mg (P) and M, (P) are shown in Fig. 14e.

P’y
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For P > P’; < P'r and for P = P’y (Fig. 14d) and in accordance with
the explanations given in section B, the moment Mg, over the central support
can be considered as composed of two parts: Mg.e1 and My = Mg — Mgt . a1
A visible lift away from the support (cold bending at the attack of the load)
(Fig. 14¢) corresponds to the bending moment M in such a way that on reload-

ing with the force X = —* the end of the beam can be brought back again

1
to the support. Afterwards, for loads increasing from o to P all deformations
are again fully elastic, and the elastic bending moment M .. produced by
P has to be added to the moment My due to X. The shape of the bent beam
(Fig. 14¢) could also be derived from the deflection line of the span AB,
similarly as shown in section B the test carried out by F. Hartmann and
described in [4] is based on a beam charged with two point loads in the left
span. The beam used was an I-beam with a depth of 12 cm with the following
properties: J = 328 cm%; W = 54.7 cm3; o, = 2.51 t/cm2; M, = 54.7 - 2.51
= 1375 cmt. If we choose M’; = 160.9 cmt (=~ 1.16 - M), according to data
given in [4] p.79, we receive following the simplified hypothesis of interpretation
the conditions shown in Fig. 15 and 16. As long as P < P’,; the distribution of

. 8lem P 75em P is4om

| ‘F Y
B8 / 2 I2A [4
3) © s~ - I=300 cm — T 1300cm
Py=1804 ¢ 1 :‘g{ ‘% )
P~ Iy
T 5

Fig. 15.
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moments is established by the M, — diagram and the closing line, fixed by
the moment M, . The moment in the cross section 2 of the beam (Fig. 15a)
attains M’; for a load P’; = 1.804 t. For the loads P = P’,; and subsequent
unloading the beam undergoes permanent bending in point 2 (cold bending).
The same values M’, are obtained for the bending moments in point 1 and 2
if P="P,, =198t (Fig. 15b); but for P > P’,, the bending moment under
point 2 is less than M’,. If the beam is released of its loads we observe a
further bending-up of the beam at point 1. The moment at point 1 and the
moment over the support become equal to M’ for an ultimate load P'r = 2.085 t
(Fig. 15¢). The moment over the support e. g. of Fig. 15¢ can again be consi-
dered as consisting of two parts: My, and Mg.q, as previously explained.
To the part-moment My, belongs a force X, which for recharging of the beam
causes the previous permanent deformation to disappear at the support A,
allowing in consequence the beam to undergo fully elastic deformations again.
The relations between M;, My, M, and P are shown diagrammatically in Fig. 16;
in addition to this are shown the strain values g,, g, and g, received by experi-
ment from various stages of loading taken from [4] (Fig. 13). It can be seen
that the elongations g, are greater than g, provided the bending moment at
point 1 has not reached the value M’s. For P = 1.94t, a value close to P’
= 1.98t, the two lines cross each other, i.e. for P > 1.94t the elongations
‘g, are greater than the elongations &,. The test was stopped at P = 2.2 t.

< ¢
L1509 om ¢
/536 cmt -
232 omt - ‘I |
B2/ ¥ -
2387¢
4
&
N
£ ABC

M’l HSI .
Fig. 16.

D. I-beams fixed at both ends.

a) Tests carried out in such a manner, that the cross sections at the sup-
ports remain vertical.
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From the tests carried out by the Author and publshed in [1] only the
tests for beam No. 11 shall receive consideration in the following.

Trager, Poutre,Beam 11

_ { -
[ Tl
| |
l@/ i *P P 'R
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Trager, Poutre ,Beam 11a
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.17,

Prur= 642t ;[R]=145F; B=1215F;
adm. perm.

/
[—-P’] = 2,26F; % . 2,67t
Byl Prul
adm. perm. adm. perm.

In Fig. 17 are shown side by side as previously in Fig. 5 of section B the
values of P,u, P'r and Py for a fixed beam (beam 11) and a simply supported
beam (beam 11a); the behaviour of this simply supported beam has already
been explained in section A. Both beams No. 11 and 1la were cut from the
same I-beam 40 cm - 40 cm. The forces P. shown in Fig. 17 were determined
during the test and act in such a way as to keep, for all ranges of loading
the cross sections of the beam at L and R perfectly and permanently vertical,
with the purpose of establishing as nearly as possible the proper conditions
required for the calculation of beams with fixed ends.
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In accordance with the explanations given in the sections B and C and with
the simplified hypothesis of interpretation the following various stages of load-
ing of a beam with fixed ends are shown in Fig. 18:

a) For a load P < P’, (Fig. 18a) all deformations are of an elastic nature.

Accordingly we receive:
Pl 2Pl1 Pl

M():?, I“Ez 9 s I\’IF‘ZMO_ME:*Q—-
Y- M,y

21
value of the carrying moment M‘'s. For P > P‘; the moments Mg cannot go
much beyond the value of M’; (Fig. 18b). The following relations apply:

ME = M's; MF - MO o Mls.

At this stage a change of the angle between the tangent of the deflection curve
and the previously horizontal axis of the beam takes place. For elastic deforma-
tions only this tangent is horizontal. After the beam is released from its loads,
a permanent deformation (cold bending) is observed in such a way that the
ends of the beam at the left of L and at the right of R point downwards.
To fulfil the assumptions on which the calculations of the beam with fixed
ends arc based it is necessary, before recharging of the beam takes place,
"to apply forces P, and P.. (each equal to X, Fig.20b), acting upwards,
bringing the cross section of the beam at L. and R into vertical position again.

The moments M, produced by this action, can be found in a similar way as
explained under B and C:

b) Due to a load P's =

the moment over the support reaches the

My =Mg.a — M.

c) Due to P'y the moment at the place of attack becomes — Mg, i.e. it is
expressed by the following term:
Pp -1 6 M’

T
Should the loads still increase, above the value of P‘y, then the beam enters into
a state of instability. ‘

The relations Mg (P), Mg (P) are plotted in Fig. 19, from which diagram
the values for P’ and P’r for a given value of M’, can readily be taken.

The simply supported reference beam 1la of Fig. 17 treated in section A
furnishes the following relation:

[Pa] -l 14.5-160
4 o 4
Accordingly we receive from the formula given above under b):

. 9.5_82
T 2,240
and from the formula laid down under c):

, __6-580
Plp= 2 =14501.

I\IF =

— M. =M'; hence P'r=

M, = = H80 cmt.

=10.87t,
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Under observance of the simplified mode of calculation of the sections A
and B and with J = 1525 cm2, E = 2100 t/cm2, the deformations due to the
ultimate loads P/, = 10.87 t and P’r = 14.5 t respectively, are shown in Fig. 20,
in combination with the relations f(P) and t (P).
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As mentioned, during the execution of the tests the auxiliary forces P and
P., were measured and in consequence also the restrained moments Mg ||
80 - P, together with the moments My = Mo — Mg. These values, in analogy
to Fig. 19, were entered in Fig. 21. This Fig. shows also the lines OQRS and
OTUYV for Mg and My, according to the values of P; and Prp, calculated by
means of the relation M, = W os. This procedure may be recommended if
it is desired to be on the safe side when preparing the analytical calculation for
the actual carrying capacity of a beam. For the purpose of comparison the
values f of deflections measured in mid-span are shown in Fig. 22, while
Fig. 20 illustrates the corresponding calculated quantities. The measured values

8'
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become higher for P << P, compared with the calculated deflections. The
reason for this may be, as shown in Fig. 21, that the actual bending moments
in the span produced by the test are higher than the calculated values.
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Of particular interest are the permanent deflections of the beam ends shown
in Fig. 23. The deflections are proportional to the angles t (Fig.20) if the
assumptions made for calculation are observed. Fig. 24 gives the measured
unit tensile elongations at the supports and in mid-span.
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d) Test with I-beams, ends fixed in masonry.
G. v. Kazinczy published in [15] tests which he carried out with I-beams
with a depth of 160 mm, having clear spans of 5.60 and 6.00 m4. The size

¢ The Author heard of the first mentioned tests at the end of 1928 and of the second tests
only in 1930.
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of the beams was based on a bending moment of M =

117

pl*

o1 " The deficient

carrying capacity at the supports was supplied by providing top reinforcement
of round bars and a concrete slab acting as compression flange. Based on
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these tests, G.v. Kazinczy proposed that a beam with fixed ends not encased

2
in concrete should be designed for a moment of %, irrespective whether the
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beam be fully or only partially fixed. He also points out that such cross sec-
tions having reached the yield point stresses may be regarded as acting like
a hinge, equipped with a permanent bending moment.

F.v. Emperger reports in [16] on experiments carried out with one simply
supported beam and six beams with ends fixed in different kinds of masonry.
The beams used were I-beams No. 15 with a clear span of 4 m%. In his report
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F.v. Emperger says ‘that provided certain conditions for fixing in masonry
are observed, the carrying capacity of steel beams can be expected to be such

: : . Pl,
as almosl to reach the attainable maximum bending moment of 16

E. Continuous I-beams over three spans, with loaded central span.

Such beams were studied and tested by F. Stiissi and C. F. Kollbrunner as
published in [6] (especially tests 532/6 and 534/8). The behaviour of a
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beam corresponding to these tests for loads ranging from o to P’r under ocon-
sideration of the simplified hypothesis of interpretation, is shown in Fig. 25

and 26. For the beam I % 1s J =16.73 cm* and W = 7.28 cm3. Specimens

cut from the flanges gave an average yield point stress of o, = 3.36 t/cm?
with margins of - 100o. The results of the tests 532/6 and 534/8 (see
Fig. 14 and 15 [6] which are identical to Fig. 27 of this report) allow to
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deduce that only incidentally M’, = 7.28 . 3.36 = 24.46 cmt.> This, since
for the range of elastic deformations, under the sole consideration of defibr-
mations due to bending moments only, is

M= 3.214 P and My = (15—3.214) P = 11.786 P, hence we receive

s :1214—’;1866= 2.075 t. According to Fig. 26a and for P > P’y the bending
moment over the support is equal to Mo — My = 15 P — M’,; therefore
with 15 P'r — M‘; = M‘; we receive Py —= —2?# — 3.26 t. In agreement
with the procedure adopted under A), B) and C), Fig. 25b shows the deflec-
tion curve for the ultimate load P’ = 2.075t under consideration of E =

2100 t/cm? and deformations due to bending moments only. In the bending
moment diagram of Fig. 25e produced by the ultimate load P'r = 3.26 t is
Mo = 15 P = 48.92 cmt, and M, = 48.92 — 24.46 — 24.46 cmt. For the
conditions of Fig. 2be the deflection lines (shape of beam axis) passing from

A to B and A to B are designed in Fig. 25f. At the centre of 1, an angle
of ¢ =21t =2.0.0278 can be observed. After release the beam assumes

the shape shown in Fig. 25 g, with lifting up at' A and A to the extent of
i = 0.0278 - 120 = 3.335 cm. Whilst reloading the elevation i@ has first
to be brought back again by introducing the forces X = 0.1165 t, to which
corresponds the bending moment diagram of Fig. 251 and the deflection curve

of Fig. 25k showing deflections at A and A identical with i = 3.335 cm.
The reloading of the beam with Pt = 3.26 t causes elastic deformations only.
The same bending moment diagram as given by Fig. 25 e is reprodaced through
the combination of M, = 0.1165 - 120 = 13.98 cmt and the moment over
the support M. = 3.214 . 3.26 = 10.48 cmt. The reaction at A is composed
of two parts: the force X and the force due to merely elastic action of the
~ beam: %2 - 3.26 = 0.0873 t, both together = 0.204 t. The deflection line |
(Fig. 251 ordinates n) of the beam deformed as in Fig. 25 g was calculated,
starting with the supports BB, according to the bending moment diagram given
by Fig. 25 e. The shape of the axis of the beam after reloading with P'r =
3.26 t (Fig. 25 n) is found by forming algebraically the quantities n -+ y, giving
for instance in mid-span of the central bay a deflection f, = 0.105 + 0.834
= 0.939 cm and in mid-span of the end spans a deflection f; = 1.041 — 1.668
= — 0.627 cm. '

In the same way as in the sections B) and C) and according to Fig. 25 ¢
. and f the relations between P and 1) the deflection f, in the intermediate span,
2) the deflection f; in the outer span, 3) the reaction A, 4) the reaction B are
shown in Fig. 26b to 26 d.

For the purpose of comparison are given in 27 a and b the measured de-

5 According to a letter received from Mr. F. Stiissi, the curve of deflections for a simply
supported reference beam of 1 — 60 cm loaded in mid-span gives us: [P’p] == 1.71 t corre-
sponding to [Pr] = 1.63 t. In place of M’; = 24.46 cmt the value M’g —=1.71 - 15 = 25.65 cmt
had possibly been introduced for the interpretation of the test. But with M’y = 24.46 cmt one
is safo in calculating the value P’r.
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flections; the values for P’, and P’r are also entered in the same figures.
It can be seen quite clearly that the quantity P’r actually defines the actual
carrying capacity.

It is not advisable to call the test result P, = 3.902 t the carrying capacity,
this has been explained already in the sections A) and B). For P > P’r the
deflections increase much quicker than for P < P’r. The measure results of
the deflections agree well enough with the results received by the calculation
based on the simplified hypothesis of interpretation.

To study the flow of moments due to P > P’, < P’y more closely, the
Author carried out in May—June 1936, two tests (see [17]) with loading
as in Fig. 25 using an I-beam 10 - 10 cm with spans of 1; = 2.40 m and
l, = 1.20 m.

From a comparison test carried out with a simply supported single span
beam loaded in mid-span was found M’, = 262 cmt. Under elimination of
the dead weight and the deformation due to shear we get: P’; = 11.12 t and
Pp = 1747 t.
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In Fig. 28a are plotted the average values (received by test) for the reactions
at A and A, in Fig. 28b the bending moments My and M., calculated with
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the help of the measured values A and A under consideration of the dead weight.
The influence of dead weight has also been considered in connection with P’,
= 1115t and P'r = 17.45 t. The measured deflections in the centre of the
intermediate span are given in Fig. 28 c.

The details of Fig. 28b show that the actual moments My and M,, deviate
quite considerably from the values (shown in dash-dotted line) worked out
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according to the simplified hypothesis of interpretation. It is obvious that the
quantities P’ and P’ are characteristic for the actual behaviour of the beam.
(See also Fig. 28¢, from which it will be noticed that the deflections f, in-
crease only very considerably for:values greater than P’r.) The bending mo-
ments My exceed the value of M’, if P > P’,. The practical limit for the
carrying capacity of the beam is only attained if permanent deformations de-
velop also over the supports, or differently expressed, if M, reaches the
value of M.

In any case, from the fact that both moments My and M, are not equal
for P’y, it cannot be deduced that the practical limit of the carrying capacity



Test Results, their Interpretation and Application 123

of a continuous girder will be less than for P’r. The deviations in the actual
values of Mg and My can be explained by the choice of a straight horizontal
line F G in Fig. 4 to replace the curve CDE, in accordance with the simplified
hypothesis of interpretation. Based on the line CDE established by test results
and under elimination of the influences of dead weight and deformation due
to shear we find the bending moment My and M, as shown dotted in Fig. 28b
in conformity with what we said in [17].
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F. Continuous latticed girders with parallel chords, over three spans.

The tests started by M. Griining and completed by G. Griining and E. Kohl
were based on the type of girder shown in Fig. 29a (see [18]). The bars
above the intermediate supports BB in the top chord and the three bars in
the centre of the lower chord are removable I-bars. The panel point No. 17
was subsequently fitted with a truss-pin. The quantities of the reactions at A
and A were determined by tests.
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In one of the first experiments the members O,, U;; and O, were
all of the same section, namely 2.88 cm2. The yield point stress for these
bars was o, = 2.68 t/cm? and the carring moment M,= 2.88 - 50 - 2.68
= 386 cmt. Making mo allowance for the dead weigth of the structure

for 4 equal concentrated loads acting in point 14, 16, 16, 14 respectively
the purely elastic reactions at the outer supports are equal to 0.418 P
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and hence those at the intermediate supports equal to 2.418 P, Accordingly.
the moments at those supports are My = 0.418 - 500 P = 209 P and
the maximum moment in the central span Mr = (500 — 209) P = 291 P.
The loads P; causing the member U,; to begin to yield, are deduced from
291 P, = M, = 386 cmt to P, = 1.33 t, see Fig.29c. The loads Py for
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which the members O,, and O,, begin also to yield are found to be Py
= 1.544 t based (Fig. 29d) on My = Mo — M, = M, i e. 500 - Py
— 2.386 cmt. The relations between My, Mr, P, and Pr are given in Fig. 30a.
If the girder is released of its loads Py we find permanent deformations in

a) I Vad b )l’ AP
Ms=386Fcm
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Fig. 30.
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the lower chord as given in Fig. 29e. The deflection line shows an angle ¢
under point 17, causing an elevation ii. Before actual reloading takes place,
the ends of the girder have to be brought back first on to the bearings through
the introduction of the forces X (Fig. 29f). These forces create bending mo-
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ments over the supports of My = X . l;, to which have to be added the mo-
ments M. = 209 Pr = 323 cmt produced by loading of the girder with
the forces Pr. From M, + My.a = M, follows that (Fig. 29d) M. =
63 cmt and X = 0.126 t. The deflection f at the girder end due to X must
be equal to ii; with this condition we receive ¢ and the permanent deformation
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A's of the bar Uy, due to the loads Pr [As could alternatively be obtained
from the deformations of the line A, B, 16, 17, 16, B, K] A reloading of the
girder produces the conditions laid down in Fig. 30b. The test results given
in Fig. 7 of [18] are produced in Fig. 31. These values show good agreement
with the values deduced from the interpretation of the tests (29 and 30),
making no allowance, however, for the dead weight of the girder and assuming
a frictionsless hinge in point 17.

Further tests described in [18] were for cases with I-bars having reduced
cross sections for certain portions of these bars and for cases charged with
heavier external loads than P;. Further, the influence of subsidence of the
supports on the carrying capacity was studied. A single lifting of the outer

Fig. 32.

bearings did not impair the carrying capacity; but repeated lowering and lift-
ing of the supports of the girder loaded with Py will naturally be detrimental.
As regards the conclusions to be drawn from the experiments which still
require to be continued, a reference is made to [18] p. 72.
It would be of particular interest to obtain some knowledge about the actual
carrying capacity of continuous latticed girders whose critical members are
weakened, e. g. in consequence of rivet holes.

G. Rectangular portal frame.

K. Girkmann reported in [19] on a test which he carried out and to which
refers Fig. 32.
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The frame structure AB with corners purposely overdimensioned received
an increasing load P in mid-span of the brace D D. First a pressure line AEB
is established by the load P, giving a stress distribution in cross sections G
and D as shown in Fig. 32. The maximum stress takes place in the upper
extreme fibres of the cross section G (compression).

This stress reaches the yield point stress for a load P;. For increasing loads,
P > P,, the elements of the brace near C will be deformed in such a way
that on replacing one of the fixed bearings of the frame by a movable bearing
a displacement of A1l will take place. This means that for loads P > Pj
a greater horizontal thrust will be established than expected according to the usual
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theory. The pressure line will be less steep. The frame starts to fail definitely
if yield point stresses are obtained at the bottom of the cross section D. The
carrying capacity can be calculated, with sufficient accuracy for practical pur-
poses, by assuming that the pressure line passes in the centre between C and D;
or more exactly between the core-points which are decisive for o, in C and
ouw in D. Introducing the respective cross sections into the calculation without
making deductions for rivet holes we receive:

Pym = 288 t for o,u = 1.2 t/cm?2; P, = 6.28 t with stressing at one
place only of o, = 2.62 t/cm2 (on top of cross section C); Pr = 9.00 t
the practical carrying capacity. The assumption is hereby made that cross
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section acts as a hinge immediately after attaining the yield stress at -the
topmost fibres.

The customary theory of elasticity allows for the frame under consideration
a carrying capacity of 6.28 t only. The test has proved (see Fig. 33) that
only from a load of P = 11.25 t upwards do the deformations in mid-span

of the brace DD grow rapidly; therefore P’r = 11.25 t and accordingly

Py =~ P! o~ 11.25 - % = 7.9 t. Fracture occured, starting from

s —
TPy — “Y9.00
a rivet hole in mid-span, at P, = 13.17t. For other observations made
attention is drawn to details given in [19].
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Summary.

The paper gives a summary of loading tests carried out with different types
of structural elements. With some cof these tests the yield limit is exceeded.
It can be demonstrated in every case that the load P, is not decisive for the
carrying capacity, simply because on application of the theory of elasticity,
the yield limit is reached somewhere in the structure. In fact a higher value

P 1s reached for

the carrying capacity. To determine the actual carrying

capacily, a procedure is given (simplified hypothesis of interpretation), which
supplies sufficiently accurate values for practical purposes. The procedure
also serves to interpret the results of the tests. If necessary, the interpretation
of these results and the mode of calculation for the determination of Py can

still be refined.
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