Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 2 (1936)

Artikel: Utilisation des précontraintes dans les barrages

Autor: Coyne, M.

DOI: https://doi.org/10.5169/seals-3102

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VI 7

Utilisation des précontraintes dans les barrages.

Anwendung der Vorspannungen auf Staumauern.

The Application of Pre-Stressing in Dams.

M. Coyne,

Ingénieur en Chef des Ponts et Chaussées, Paris.

Nous avons signalé dans le 1^{er} volume de « Mémoires » de l'A.I.P.C. (1932) l'intérêt de certaines applications de la synthèse statique des constructions à la consolidation d'anciens barrages, et nous avons rendu compte des travaux projetés en Algérie, sur nos suggestions dans cet ordre d'idées (consolidation du barrage des Cheurfas). On en était encore à la période des essais préliminaires. Depuis lors, ces travaux ont abouti avec un plein succès et méritent d'être commentés devant le Congrès.

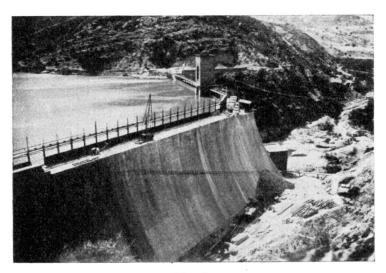
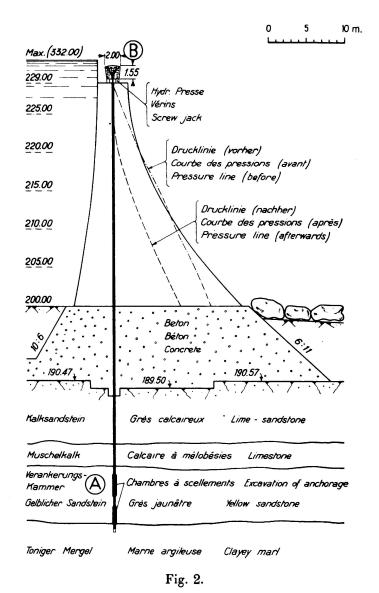
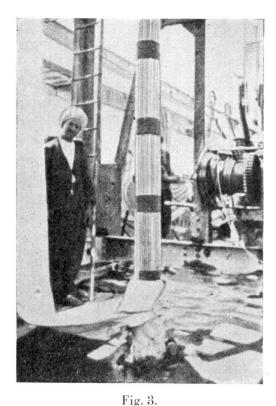



Fig. 1.
Barrage des Cheurfas.

Le barrage des Grands Cheurfas, situé sur l'Oued Mékerra à 20 kilomètres à l'amont de Saint-Denis-du Sig (Département d'Oran, Algérie), fut construit en 1880—1882 pour assurer les irrigations de la riche plaine du Sig (nom que prend la Mékerra dans la basse partie de son cours). C'est un barrage-poids en maçonnerie de moellons, de 30 mètres de hauteur au maximum (fig. 1).

Il est de la famille de ces barrages-poids français créés au cours du siècle dernier, et dont la marge de sécurité est parfois très faible. Plusieurs d'entre eux se sont rompus, Bouzey notamment, et aussi, plus près de nous, le barrage de l'Oued Fergouz ou de l'Habra. C'est même à la suite de ce dernier accident que le Gouvernement Général de l'Algérie prit le parti de renforcer le profil du barrage des Cheurfas.

Le procédé adopté à cet effet consiste à fixer l'ouvrage au sol au moyen de tirants tendus, jouant en quelque sorte le rôle de vis ou de tire-fonds de grandes



Effet des tirants tendus. Modification de la courbe des pressions.

dimensions. Si l'on imagine, en effet, un tel de ces tirants tendu entre le point A du sous-sol et le point B du couronnement du barrage, fig. 2, on peut, en faisant varier la force et le nombre des tirants, modifier à volonté la courbe des pressions, restituer à l'ouvrage le coefficient de sécurité convenable et, au besoin l'exhausser (l'exhaussement prévu aux Cheurfas est de 3 m). Il ne s'agit là, à première vue, que de la transposition d'une idée très simple, constamment appliquée dans la pratique courante. Mais la nouveauté réside dans l'échelle des

forces en jeu; chaque tirant, en effet, exerce sur le couronnement du barrage une force de 1000 tonnes, et comme il y en a 37 sur l'ouvrage, on arrive de la sorte à constituer un lest artificiel, équivalent, en gros, au tiers du poids naturel de la construction et à la moitié de la poussée de l'eau. On dispose ainsi, à gré, de la courbe des pressions à laquelle on impose une déviation énorme dans le sens de la sécurité.

Il va sans dire que le maniement de forces pareilles a exigé une longue et délicate mise au point, d'autant mieux que le sous-sol du barage est très médio-

Tirant de 1000 tonnes.

Mise en place dans le trou de scellement.

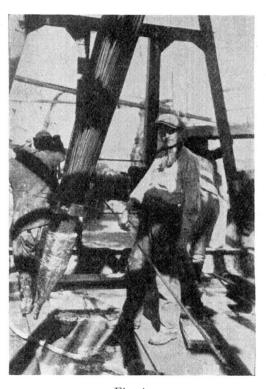


Fig. 4.

Tirant de 1000 tonnes.

Extrémité inférieure.

cre. Il est constitué par des grès tendres, dans lesquels sont noyés quelques lambeaux calcaires, des marnes et même du sable boulant.

Des trous verticaux, de 25 cm de diamètre et 50 m de profondeur, sont percés à travers le barrage jusqu'au sous-sol. A la partie inférieure, ils s'élargissent en deux chambres d'ancrage étagées, de 3 m de longueur chacune et de 38 cm de diamètre façonnées au moyen d'un outil élargisseur. Dans chaque trou est introduit un câble formé de 630 fils d'acier dur, de 5 mm de diamètre, parallèles (fig. 3). Ces fils sont ligaturés sur toute la longueur sauf sur les quelques mètres inférieurs (fig. 4). En arrivant dans les chambres d'ancrage, ils s'épanouissent sous l'effet du poids propre du câble. Une injection de ciment est alors pratiquée au fond du trou, au moyen d'un tube descendu en même temps que le tirant métallique. Pour éviter que le câble soit scellé sur toute sa longueur, il est revêtu, au-dessus des chambres d'ancrage, d'une gaine bitumeuse spéciale, introduite

entre deux enveloppes de toile (fig. 5). Il conserve donc, sauf à l'endroit du scellement, son indépendance complète vis-à-vis des maçonneries.

Sur le couronnement du barrage, les fils s'épanouissent dans une tête de tirant en béton armé sur laquelle des vérins, prenant appui sur le couronnement, exercent la force requise (fig. 6 et 7). La tension unitaire de l'acier est de l'ordre de 80 kg par mm² c'est-à-dire entre 6 et 7 fois la tension admise dans le béton armé.

Tous les ancrages pratiqués de cette façon ont réussi du premier coup, malgré la mauvaise qualité du terrain, et n'ont perdu avec le temps que quelques cen-

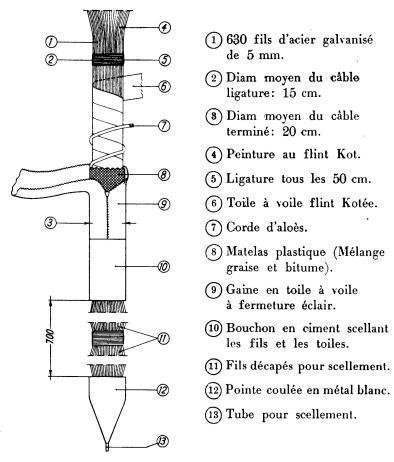


Fig. 5.
Schéma de construction d'un tirant.

tièmes au plus de leur tension initiale. La tension, facile à contrôler, peut d'ailleurs être reprise à tout moment en remettant le câble sur ses vérins.

L'adoption du système a permis de réaliser une économie de 10 millions de francs (fig. 8). M.M. Vergnieaud, Ingénieur en chef des Ponts et Chaussées, et Drouhin, Ingénieur des Ponts et Chaussées, avec le concours de l'Entreprise Rodio, ont eu le mérite de l'exécution.

Le procédé est susceptible de nombreuses applications. Déjà pour consolider le phare en mer de la Jument d'Ouessant (fig. 9) et le rendre invulnérable aux plus grosses mers qui sont d'une violence redoutable dans ces parages, on a entre-

pris de le fixer au sol au moyen d'une demi-douzaine de tirants de 1500 tonnes. Mais c'est surtout pour les ouvrages neufs que ce procédé se révèle efficace et économique.

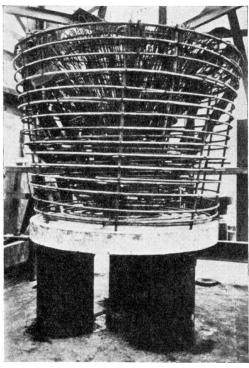


Fig. 6. Ferraillage d'une tête.

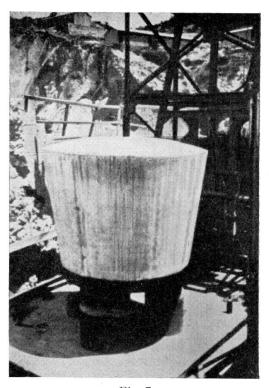


Fig. 7.
Une tête terminée posée sur les trois vérins de manoeuvre.

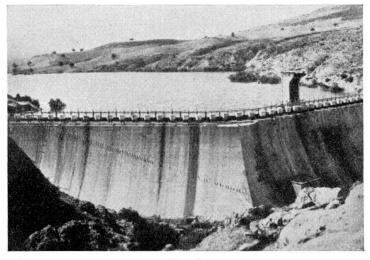


Fig. 8.

Vue générale du barrage des Cheurfas, après sa consolidation. On distingue, sur le couronnement, les têtes des 37 tirants de 1000 tonnes.

La poussée des ponts en arc ou la tension des câbles des ponts suspendus, peuvent être très élégamment neutralisés de cette façon sans immobiliser des masses énormes de maçonnerie, coûteuses et encombrantes.

C'est, en effet, souvent une question d'encombrement qui imposera l'emploi du procédé. Il en est ainsi pour certaines culées de barrages-voûtes, ou des guide-eaux appuyés sur un terrain exigü, et qu'il devient possible de fixer au sol d'une façon sûre. Le cas se présente pour l'extrémité rive droite de la culée-poids du barrage de Marèges, fondée sur une échine étroite de granit. La qualité du sol permettra, le plus souvent, de se dispenser des précautions dont il a fallu

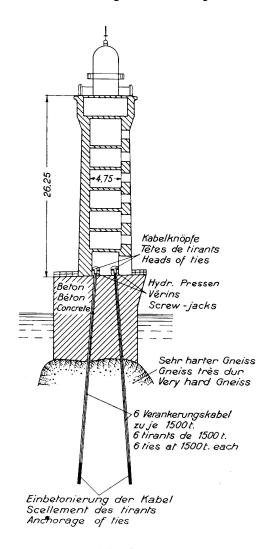


Fig. 9.

Coupe du phare de la Jument d'Ouessant, montrant ses tirants de consolidation.

s'entourer, aux Cheurfas, pour une première application en terrain difficile; il devient inutile d'élargir les trous au fond et de munir les tirants d'une gaine plastique. Le tirant est simplement introduit sans aucune préparation spéciale dans un trou non élargi, au fond duquel on envoie une dose exactement connue de laitance de ciment, comme pour un scellement ordinaire. Ensuite, une fois la tension acquise, on garnit le trou de ciment, de haut en bas. Enfin, l'emploi de torons, façonnés à l'avance en usine, simplifie grandement la manutention sur le chantier et procure de notables abaissements du prix de revient (fig. 10 à 15).



Fig. 10.

Barrage de Marèges. Fixation de la culée-poids. Détoronnage de l'extrémité inférieure du tirant.

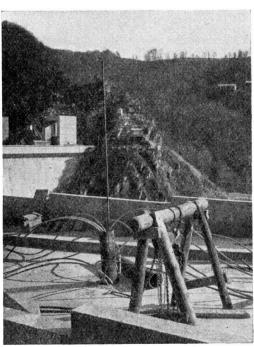


Fig. 12.

Barrage de Marèges. Fixation de la culéepoids. Façonnage du tirant sur le couronnement du barrage. On aperçoit le tube par lequel sera pratiquée l'injection de ciment pour scellement de l'extrémité inférieure du tirant.

Fig. 11.

Barrage de Marèges. Fixation de la culéepoids. L'extrémité inférieure du tirant est
ligaturée de manière à permettre son introduction dans le forage. La ligature inférieure sera seule conservée.

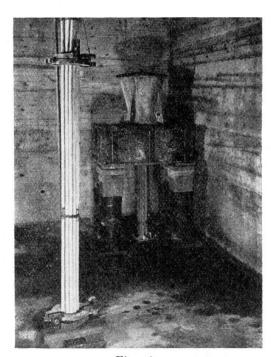


Fig. 13.

Barrage de Marèges. Fixation de la culéepoids. Au premier plan le corps d'un tirant formé de 15 torons. Dans le fond une tête de tirant après mise en tension; elle repose encore sur les 6 vérins de manoeuvre. On dispose ainsi d'un procédé précis, puissant et économique, pour créer dans les massifs certains états élastiques artificiels ou même modifier profondément leur équilibre statique. Il est dès lors permis d'envisager un bouleversement radical de la plupart des formes admises en construction pour résister à une poussée latérale.

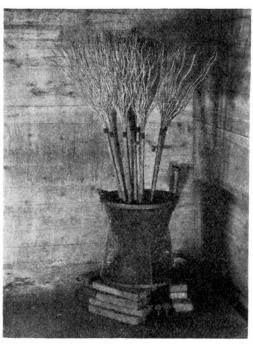


Fig. 14.

Barrage de Marèges. Fixation de la culée-poids. Tête du tirant prête à être culottée.

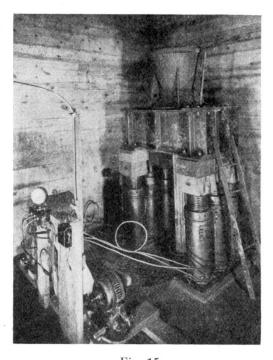


Fig. 15.

Barrage de Marèges. Fixation de la culéepoids. Mise en tension d'un tirant au
moyen de 6 vérins.