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VI 5

L’arc de barrage élastiquement encastré.

Elastisch eingespanntes Talsperrengewolbe.

Elastically Built-in Arch Dams.

Dr. sc. techn. K. Hofacker,
Zirich.

by

Par arc de barrage nous désignons un arc i axe circulaire et i épaisseur
constante, qui peut étre trés grande par rapport a la portée. Au contraire de ce
que l'on a pour l'arc de pont qui, comme systéme de barres, peut étre calculé
avec: une exactitude suffisante sur la base de la théorie de la flexion de Navier,
il est nécessaire d'étudier l'arc de barrage d’aprés la théorie mathématique de
I'élasticité lorsque l'on doit connaitre l'allure exacte du' systéme effectif des
contraintes.

Si, suivant la méthode connue, on répartit sur deux systémes compénétrants
d’arcs horizontaux et de consoles verticales la pression de I'eau agissant sur un
barrage arqué, on obtient pour les différents éléments des diagrammes de charge
tout-a-fait arbitraires. Le calcul des contraintes dans les éléments verticaux en
forme de disques, d’aprés la théorie du systéme plan de contrainte et de défor-
mation, est connu depuis trés longtemps déja. On a déja exécuté des études
expérimentales sur ce point. Le calcul des contraintes dans les éléments d’arc
horizontaux n’a été exécuté jusqu'a ce jour que pour le cas spécial d'un arc
complétement encastré. Nous ne connaissons aucune mesure exacte des tensions
et des déformations effectuée en laboratoire sur des modéles d’arcs de barrage.
Il était par conséquent du plus haut intérét d’étudier théoriquement et expéri-
mentalement la question de I'arc élastiquement encastré soumis & une pression
d’eau quelconque.1

Nous soumettons un disque en anneau circulaire & un systéme de contraintes
plan (fig. 1).

Un diagramme de charge donné peut étre représenté mathématiquement grace
a une série de Fourier:

Sr==A+ S A'n-cosncp—I—f‘. B’y -sinng . (1)

n=1 n=1

- Nous considérons a la fig. 2 les contraintes qui agissent au point 0 sur un
élément dF et nous posons les conditions d'équilibre. En tenant compte des

1 K. Hofacker: Das Talsperrengewélbe, 1936. Edition: Leemann, Fréres & Co., Zurich.
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relations entre les contraintes et les allongements, c’est-a-dire les différences des
déplacements u et v en direction radiale et tangentielle, on obtient les équations
différentielles:

1 9%u 2m (a‘ 1 au u)
r”acp”+ — 1 \gr? tTTar
1 a%v 1 av 2m (1 v 1 BV) 0

(2)

rar-ag Ir*ge m—1

mrar-ae TrlaQ

1 av 2m 1 9%v
ar2+T;——+ 1o (3),
+ 9*u .-1_m+1+_lf.l.3ﬂTi____o

or-99 rm—1 g r* m—1

Les solutions générales pour u et v sont:
déplacement radial:
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déplacement tangentiel:
E.yv— m—l— 1 G
m

+4Cor (P+(
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m—1
9m

+ (m_f_l

a1+2[31)(p-c0scp

cl+2bl)cp-sinq>

2m
m—1 1 5 1
+[—(al+———-[31)lgr 2—;1 1+—mi‘b
oty et
[(CIJ,E_—-_I ) +m_+1 ¢, ?Lﬂm+_1 d, r?
“m
L [m+1 . m—l—l )
+£ni1_.n.an.r—n~1-|—(nm;1—4)-[3n-r—“+1Jsinn(p
[0 ]
+Z I:_nil,n_cn,rn—-l ( w+4) . ot
n=32 m
m-+1 e m+1 r—n+
—T‘H'Ynfr 1—(n—— ) on 1]cosncp

A partir des déplacements on peut calculer les contraintes:

contraintes radiales:

or=%+2bo+co(2lgr+l)+( ‘+B‘+2b —-2—}) cos @

+3
n=2

—n(n+1)-ap-r ™ 2—(n
[M(1—mn)cch- 24+ (n—n*+2)-d,r®

_n(n_l_l).Yn.

+ 3
n—=2

contraintes tangentielles:

Ot — —

[0 ¢}
+ 2
n==2:2

+(Cl+bl+2d —2—rY—>Slncp

[n(1—n)-a,- ™24 (n —n’+ 2)b,r° (6)

2] cosng

24+n—2)Bu-1

r—n -2 __
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+ (6 dlr—l—gr\;—l—{-%) sin ¢
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contraintes de cisaillement:

r=%+(2blr -I—%—)sin(p

20,1
r3

2 o
_<2dlr———rz—l+71) Ccos ¢
+§ [n(n-—1)-ap-r*~24+n(n+41) by ro (8)

—n@m+1)-ap-r *"2—n(n—1)-By-r~"]sinng

—oﬁ‘, M(n—1)-cy-r"24+n(m+1)dy- 1"

n=2

—nm+1)-yp-r""2—n(mn—1)-d,-rJcosng

Quand les lois générales des contraintes et des déplacements sont connues, il
s'agit de déterminer les constantes & I'aide des conditions aux appuis, en égalant
entre elles, pour les bords du cercle, les valeurs correspondantes de o., éq. (6), et
o'y, éq. (1), c’est-a-dire en identifiant les coefficients des termes trigonométriques
correspondants.

Pour les extrémités radiales on ne peut formuler une condition que pour les
déplacements des points extrémes. Pour I'encastrement total de I'arc, la condition
est que les extrémités ne subissent aucun déplacement. Lorsque 1'encastrement est
élastique, les déplacements des extrémités de I'arc doivent prendre les mémes
valeurs que les déplacements des points correspondants de la culée qui est sol-
licitée a des contraintes normales et a4 des contraintes de cisaillement dans la
section d’encastrement de l'arc. Cette question est traitée dans la publication
citée ci-dessus.

Afin de simplifier la méthode de calcul nous avons reporté a la fig. 3, pour
les points A et B de I'arc, les déplacements radiaux et tangentiels ainsi que les
allongements h, de la corde intérieure de l'arc et les rotations & de la section
a la naissance.

hy —=uy-sinag+vy-cosa
ky=vs-sing —uy-cosa

VB — Vi

b—a

$—

Fig. 3.

Les études théoriques furent controlées par des mesures sur modéles en
celluloide.
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La fig. 4 représente le modéle d'un arc de barrage élastiquement encastré,
chargé sur la face extérieure par des pressions radiales.

Fig. 4.

A la fig. 5 nous avons représenté les déplacements des extrémités, mesurés
a l'aide du microscope. Nous avons reporté les valeurs obtenues pour les

0 00 200 300 400
N Lot | | | |

Fig. 5.

déplacements des deux sections ¢ = 360 et ¢ = 270, Si I'on calcule le fléchis-
sement de la clé de I'intrados, en considérant par exemple les déplacements des
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points extrémes de la section ¢ = 270 comme déplacements des culées de I'arc
élastiquement encastré en cette section, on constate que la valeur mesurée n’est

Fig. 6
M% 27/5
2,527
100% 2454

2403

-1000

» Fig. 7.

que de 1/;0o plus grande que la valeur calculée. Cette concordance suffit
a justifier les bases théoriques du probléme.

44
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Si I'on calcule le fléchissement a la clé de l'intrados, en tenant compte des
déplacements mesurés des points extrémes de la section d’encastrement, le résultat
g'écarte d'env. 40/ de la valeur d’essai. La fig. 7 montre le modéle de I'arc
rigidement encastré. Si, dans ce cas, on admet que la loi des contraintes et des
déformations est valable jusqu'au point d’encastrement, le calcul donne un flé-
chissement a la clé d’env. 1504 plus petit que le fléchissement mesuré. Les
grandes déformations qui se produisent en réalité aux environs de I'encastrement
résultent de la concentration de contraintes vers l'intrados. Les investigations?
effectuées dans ce sens jusqu'a ce jour admettent un encastrement rigide.

Par un exemple d’arc de barrage soumis a la pression de l'eau, nous avons
comparé les diagrammes des contraintes, donnés par la théorie exacte, avec les
résultats de la solution approximative de Navier, qui seule jusqu'a présent servait
au calcul des arcs élastiquement encastrés. La fig. 7 fait en méme temps res-
sortir l'influence sur les contraintes du nombre de Poisson m. La solution
approximative donne, en admettant un nombre de Poisson m = 5 pour le béton,
des contraintes de traction d’environ 280/ trop faibles a la clé.

2 M. Caquot: Annales des Ponts et Chaussées, 1926, IV, juillet-aott, p. 21; R. Chambaud:
Génie Civil 1926 (vol. 99 et 100).
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