Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 2 (1936)

Rubrik: IVb. Ponts de grande portée

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ponts de grande portée.

Weitgespannte Brücken.

Wide-span bridges.

Leere Seite Blank page Page vide

L'échafaudage et le bétonnage des grands ponts en poutres de béton armé.

Rüstung und Betonierung bei weitgespannten Eisenbetonbalkenbrücken.

The Shuttering and Concreting of Long Span Reinforced Concrete Girder Bridges.

Dr. Ing. L. Pistor, o. Professor an der Techn. Hochschule München.

Les ponts en poutres de béton armé construits au cours de ces dernières années ont montré que, pour des portées de 35 à 60 m et des piles normales, ces ponts pouvaient concurrencer sans difficultés les ponts métalliques et ceci tant au point de vue constructif qu'au point de vue économique. L'adoption de mesures spéciales, dont il a été parlé dans la Publication Préliminaire, permettra d'augmenter encore ces portées. L'accroissement de la portée fut souvent considéré jusqu'à présent comme une fonction des seules contraintes admissibles. L'introduction des bétons et des aciers à haute résistance devait permettre d'atteindre sans difficultés une « portée limite » très élevée. Cependant, l'accroissement de la portée est principalement un problème d'élimination des fortes contraintes de traction par flexion, grâce à des mesures statiques spéciales, c'est-à-dire finalement un problème d'élimination des fissures et un problème constructif en général.

La question de l'échafaudage et du bétonnage a joué un très grand rôle dans les ouvrages de ce genre exécutés jusqu'à ce jour; l'importance de ce rôle augmentera dans une forte mesure pour les constructions de plus grandes dimensions dont la masse par rapport à l'unité de surface, la hauteur de la construction et les éléments de poutres sont plus grands. La grandeur de la masse par unité de surface varie actuellement entre 0,6 et 1,0 m³/m²; on bétonne en une seule fois des éléments statiquement et constructivement distincts de 400 à 900 m²; les plus grandes surfaces bétonnées en une seule fois pour des poutres continues se trouvent aux ponts pour autoroutes de Saubachtal et de Denkendorf ainsi qu'au pont d'Oppeln sur l'Oder.² Dans l'exécution de tels ouvrages, la vitesse de bétonnage est limitée pour des raisons d'ordre technique et économique: le manque

¹ Dischinger: «Compensation des efforts de traction engendrés par la flexion». Publication Préliminaire, p. 777 et ss.

² Pistor: "Die neuere Entwicklung des Baues weitgespannter Eisenbetonbalkenbrücken in Deutschland". Die Bautechnik 1936, fasc. 43, p. 630 et ss.

de place, la complexité des formes et l'importance des armatures sont des inconvénients sérieux. L'exécution de 15 m³ à l'heure devrait être considérée actuellement comme un maximum. Un bétonnage par tranches des éléments monolithiques n'est pas impossible, même dans les ponts en poutres, mais pratiquement assez compliqué lorsque l'armature, et principalement l'armature au cisaillement, est importante et lorsque la section de la poutre est étroite. D'autre part, cette méthode n'est pas recommandable, lorsqu'elle n'est pas à écarter, dans l'exécution des poutres principales soumises à la flexion et au cisaillement. Autant que possible il faut bétonner toute la section en même temps, y compris la dalle du tablier.

L'indéformabilité de l'échafaudage est une condition du bétonnage continu. Cette condition est pratiquement irréalisable; par suite de la variation de la surcharge le long de la poutre il se produit des déformations dont la grandeur n'est pas partout égale et varie avec le temps. Il faut encore ajouter à cela l'influence de la fondation, des assemblages de poutres, etc. La surcharge de l'échafaudage de la poutre est très grande; une ferme peut avoir à supporter 5 à 8 t/m dans un pont moderne avec petit nombre de grosses poutres-maîtresses. Les déformations engendrées par l'accroissement de la surcharge se font en même temps que la prise ou le durcissement du béton dans les grands ouvrages bétonnés de bas en haut et elles engendrent une répartition défavorable des contraintes ainsi que des fissures. On connaît depuis longtemps les mesures propres à éliminer les influences défavorables, ce sont:

- a) le bétonnage par tranches,
- b) l'emploi d'un échafaudage continu pour éliminer les irrégularités locales au droit des appuis,
- c) l'application d'une surcharge préalable à tout l'échafaudage pour que la déformation se fasse avant le bétonnage.

Toutes ces méthodes ont été appliquées. Lors du bétonnage par tranches on a procédé de la façon suivante: les parties situées au droit des appuis furent laissées ouvertes et on les ferma directement après le bétonnage de la poutre ou quelques jours après. Ce procédé fut employé dans la construction de quelques ponts tout récents tels que le pont d'autoroute de Denkendorf³ et le pont de Bernbourg sur la Saale.⁴ On procède de la même façon pour les appuis des travées indépendantes des ponts cantilever. La rigidité de l'appui est ainsi la même au-dessus des piles et en travée, mais cet avantage a été acquis aux dépens de l'homogénéite de la poutre, car on peut considérer a priori comme fissures les joints de bétonnage situés dans les zones soumises à la traction. En travée on peut compter sur des affaissements assez réguliers lorsque l'échafaudage est bien exécuté et lorsque la surcharge n'est pas trop grande, mais, malgré tout, des affaissements locaux sont toujours possibles.

Les mêmes objections peuvent se faire lorsque l'on emploie des échafaudages continus permettant d'éviter les joints de bétonnage; des affaissements locaux peuvent se produire comme auparavant, surtout par suite de la concentration des charges aux étais. Toute irrégularité de surcharge comme il s'en présente

³ Schaechterle: Beton und Eisen 1936, fasc. 1, p. 1.

⁴ Nakonz: Bautechnik 1936, fasc. 15, p. 216.

par exemple aux points situés à côté des ouvertures réservées à la navigation et autres points semblables, représente une source de danger. Cette méthode n'a été employée qu'une seule fois, au pont Sophie à Bamberg ⁵ (fig. 1).

La troisième méthode, application d'une surcharge l'échafaudage, préalable à permet de provoquer le tassement complet ou presque de l'échafaudage complet avant le commencement du bétonnage. Il n'est plus nécessaire, dans ce cas, d'avoir recours à un bétonnage continu pour obtenir un monolithe. Ce procédé permet de découvrir à temps les affais-

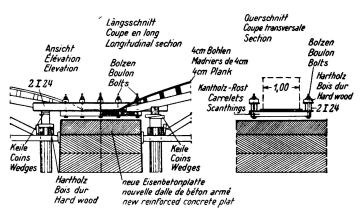


Fig. 1.

sements locaux et d'y remédier par des mesures appropriées; la position désirée du bord inférieur de la poutre peut être assurée avec une grande précision après l'application d'une surcharge préalable.

Une telle mise en charge préalable, mais la première de cette importance et d'exécution précise, fut réalisée lors de la construction du pont d'autoroute sur

l'Inn, bâti suivant mon projet; poutres de1000 mdefurent bétonnés d'après cette méthode (fig. 2). A l'intérieur des coffrages on a disposé des caisses contenant le sable de la surcharge. Le poids de cette surcharge se montait aux $\frac{2}{3}$ environ du poids du béton. Pour atteindre la charge complète il fallait ajouter 0,6 m³ de béton environ, ce qui pouvait très bien se faire à l'intérieur du temps de prise. On enleva ensuite le sable avec

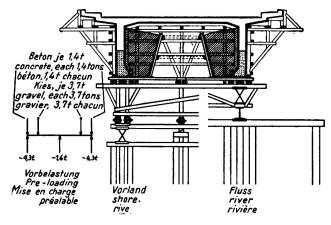


Fig. 2.

la progression du bétonnage. Pour plus de détails, nous renvoyons le lecteur à un article qui a paru ailleurs. 6

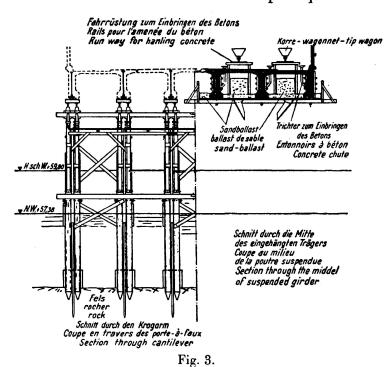
Une méthode très simple de mise en charge préalable fut employée au pont Sophie à Bamberg; ⁵ la charge était constituée par des rails. On a en outre employé le même procédé qu'au pont sur l'Inn lors de la construction du pont sur la Saale à Bernbourg; la mise en charge préalable était destinée ici à éliminer les influences du fléchissement de la poutre du type Melan, de 27,0 m de portée, formant travée indépendante de ce pont cantilever (fig. 3). La construction du pont sur l'Inn a montré que le coût de la mise en charge préalable est faible,

⁵ Berger: Bauingenieur 1932, fasc. 21/24, p. 305 et ss. — Berger: Rapport Final du 1^{er} Congrès de Paris 1932, p. 359.

⁶ Endrös: Beton und Eisen 1935, fasc. 3, p. 27 et ss.

surtout si l'on tient compte de l'augmentation de la sécurité. L'élimination de toute fissuration est à attribuer en grande partie à la suppression des déformations de l'échafaudage.

Des 13 ponts en poutres de béton armé à grande portée 2 construits depuis 1933, 2 ont été bétonnés d'une façon continue avec application d'une surcharge préalable, 4 avec interruption aux appuis et 7 sans aucune mesure spéciale. Nous devons ajouter que la dernière méthode permet aussi d'exécuter des poutres parfaites et sans fissures malgré les forts affaissements de l'échafaudage que l'on a pu observer. Ces affaissements semblent s'être produits assez tôt avant le durcissement du béton d'autant plus que même lors d'un bétonnage continu



il est possible d'adopter au début une sorte de division en tranches. Le succès d'une telle méthode n'est cependant pas toujours assuré.

Dans la construction des ouvrages beaucoup grands et tout spécialement des poutres continues, une subdivision est inévitable malgré les mesures dont nous venons de parler. Un accroissement important de la grandeur des ouvrages rendu possible. sera pour des raisons d'ordre technique et économique, que grâce à la mise en tension préalable des arma-

tures. Comme dans ce cas les contraintes de traction engendrées par la flexion sont totalement éliminées ou fortement réduites, aucune raison ne s'oppose plus à la disposition de joints de bétonnage. Les avantages de la mise en tension préalable s'étendent aussi à l'exécution des ouvrages.

Conclusions:

Lors de la construction de grandes poutres de béton armé, principalement sollicitées à la flexion, il faut bétonner de façon continue les éléments d'ouvrage formant un tout statique. Il faut éliminer les déformations inévitables et dangereuses de l'échafaudage (ou de l'armature rigide). On n'y arrive parfaitement qu'en appliquant à l'échafaudage une surcharge préalable comme on l'a fait au pont sur l'Inn et au pont sur la Saale à Bernbourg. Cette méthode est simple et n'entraîne que des dépenses relativement faibles. L'application intégrale de ce procédé serait un progrès dans l'élimination des influences incontrôlables qui se présentent sur le chantier et relèverait les chances de succès dans l'exécution des ouvrages.

Ponts de grande portée.

Weitgespannte massive Brücken.

Long Span Bridges.

Dr. Ing. K. Gaede,
Professor an der Technischen Hochschule Hannover.

Pour déterminer la portée que peuvent atteindre les ponts construits avec un matériau déterminé, il est de toute évidence que le moyen le plus exact est de construire effectivement le pont. Malheureusement ce procédé n'est pas facilement applicable. Une autre méthode serait d'établir un projet aussi complet que possible. Ces deux procédés présentent un inconvénient, ils ne sont valables que pour une contrainte admissible, une surcharge, un surbaissement, une portée, etc. parfaitement déterminés, ce qui ne permet pas de tirer sans autre des conclusions pour d'autres cas.

Il semble donc désirable d'établir des formules de portée générale.

I. -- Ponts en arc de béton armé.

J'ai tout d'abord établi de telles formules pour les *ponts en arc* de béton ou de béton armé. Il était évidemment nécessaire d'admettre certaines idéalisations facilitant le développement mathématique, mais il faut en tenir compte dans l'évaluation du degré d'exactitude des résultats obtenus.

Nous avons admis (la signification des lettres employées ressort de la fig 1):

- a) un arc dont l'axe suit la courbe des pressions pour le cas de charge normal: poids propre + moitié de la charge utile uniformément répartie sur toute la longueur du pont.
- b) une répartition de la charge totale q suivant la longueur du pont conforme à la relation:

$$q = q_s [1 + (m-1) y/f]$$
 (1)

$$m = \frac{q_K}{q_S} \tag{2}$$

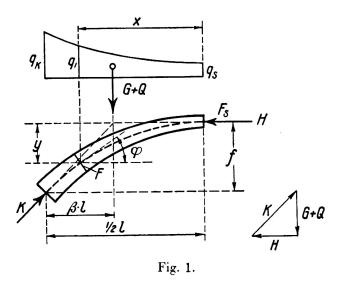
c) une variation de la section de l'axe suivant la formule:

$$F = \frac{F_s}{\cos \varphi} \tag{3}$$

d) une contrainte au centre de gravité dans le cas de charge normal a):

$$\sigma_{m} = \mu \sigma_{adm}
0 < \mu < 1$$
(4)

Le coefficient μ donne ici le degré d'utilisation de la contrainte admissible σ_{adm} pour le cas de charge considéré. Il faut par conséquent désigner μ par degré d'utilisation.



Il ressort de la fig. 1 que:

$$H = \frac{(Q + G) \cdot \beta l}{f} \qquad (5)$$

Par suite de l'équation (4)

$$H = \mu \cdot \sigma_{adm} \cdot F_{s} \qquad (6)$$

Il résulte de (1) pour la distance $\beta \cdot l$ de la charge G + Q (poids propre de l'arc G + poids de la superstructure, du tablier et de la moitié de la charge Q) à l'appui:

$$\beta = \frac{m-1}{2 c \sqrt{m^2-1}}, \text{ où}$$
 (7)

c = arc Ch m = arc Ch
$$\left(\frac{q_K}{q_S}\right)$$
 (8)

La section de l'arc et par le fait même le poids G du demi-arc peuvent être calculés à partir de (1) et (3).

$$G = \frac{1}{2} \gamma F_{S} \cdot l \left[1 + \alpha \left(f/l \right)^{2} \right]$$
 (9)

$$\alpha = \frac{c}{(m-1)^8} (Sh \ 2 c - 2 c)$$
 (10),

En combinant (5), (6) et (9) on trouve:

$$\begin{split} \varkappa &= \frac{G}{Q} = 1 : \left[\frac{2 \, \mu \sigma \cdot f / l}{\gamma \cdot l \cdot \beta \, \left[1 + \alpha \, (f / l)^2 \right]} - 1 \right] \\ \varkappa &= 1 : \left[\frac{\mu \sigma}{\gamma \cdot l} \cdot \frac{2 \, n}{\beta \, (1 + \alpha \, n^2)} - 1 \right] = 1 : \left[\frac{\mu \sigma}{\gamma \cdot l} \cdot \delta - 1 \right] \end{split} \tag{11}$$

où nous avons posé:

$$\sigma = \sigma_{adm}$$
, $n = f/l$, $\gamma = \gamma_B = poids$ spécifique de l'arc (12)

En tenant compte de (7) et (10) on obtient comme valeur auxiliaire:

$$\delta = \frac{2 \text{ n}}{\beta (1 + \alpha n^2)} = \frac{4 \text{ n c} \cdot \sqrt{m^2 - 1} \cdot (m - 1)}{(m - 1)^2 - \text{c n}^2 (\text{Sh } 2 \text{ c} - 2 \text{ c})}$$
(13)

Le nombre \varkappa déterminé par les équations (11) et (13) donne le rapport du poids propre de l'arc au poids de la superstructure, y compris le tablier et la moitié de la charge utile, c'est-à-dire l'utilisation relative de matériau pour la voûte. \varkappa est un moyen avantageux d'exprimer l'effet des différentes influences sur l'emploi de matériau et sur les portées possibles. En particulier la condition

$$2 \mu \sigma n = \beta \gamma l (1 + \alpha n^2)$$
 (14)

détermine le cas où $x=\infty$, c'est-à-dire la limite théorique d'exécution de l'arc. Ainsi qu'on le voit, ce sont les relations géométriques et les caractéristiques du matériau qui déterminent cette limite et non pas la grandeur de la surcharge.

Pour les ponts en arc avec «superstructure ajourée», c'est-à-dire avec tablier relié à l'arc par des suspentes, des parois transversales ou des colonnes, on peut admettre comme approximation que la surcharge de la voûte dans le cas de charge normal se répartit sur la longueur de l'arc de la même façon que le poids propre de la voûte:

$$m = \frac{q_K}{q_S} = \frac{g_K}{g_S} = \frac{1}{\cos^2 \phi_K} = 1 + \left(\frac{dy}{dx}\right)_K^2$$
 (15)

De cette manière m est déterminé en fonction du surbaissement n'=f/l par la formule:

$$\frac{1}{2c} \sqrt{\frac{(m-1)^3}{m^2-1}} = \frac{1}{2 \operatorname{arc} \operatorname{Ch} m} \sqrt{\frac{(m-1)^3}{m^2-1}} = n$$
 (16)

Les valeurs auxiliaires α et β représentées d'après (7) et (10) comme fonctions de m et finalement δ d'après (13) sont devenues des fonctions du seul surbaissement n. Dans le tableau suivant nous donnons les valeurs auxiliaires m, α , β , δ pour quelques surbaissements.

f/l = n	m	α	β	δ
1: ∞ = 0	1,00	5,33	0,25	0
1:10 = 0,1	1,18	5,47	0,242	0,784
1: 7 = 0.143	1,38	5,60	0,234	1,068
1: 5 = 0.200	1,83	5,70	0,223	1,460
1: 3.5 = 0.286	3,00	5,87	0,201	1,920
1: 2.5 = 0.400	7,50	6,86	0,165	2,310
1: 1.78 = 0.562	20,00	8,13	0,129	$2,\!450$
1: 1 = 1,000	100,00	10,67	0,095	1,805

Il ne manque maintenant, pour l'application de la relation (11), que la connaissance du degré d'utilisation μ (4). μ croît avec la prépondérance du poids propre et avec l'accroissement de la contrainte admissible, il est donc en général plus grand pour les ponts de grande portée que pour ceux de faible portée. Il peut être fortement influencé par la disposition du projet et le mode d'exécution. On peut affirmer que l'amélioration du degré d'utilisation est la tâche principale du constructeur d'un pont en arc à grande portée. La conséquence directe est que l'on ne peut fixer des données d'une validité générale sur la grandeur de μ . Le constructeur doit choisir ce nombre suivant le cas.

Pour des calculs approximatifs, j'ai adopté, sur la base de considérations que je n'exposerai pas par suite du manque de place, la relation suivante:

$$\mu = a \cdot \sqrt[4]{\sigma_{adm}} \qquad (\sigma_{adm} \text{ en } t/cm^2)$$
 (17)

Dans cette relation a varie entre 0,1 et 0,12 pour les surbaissements usuels dans la pratique. Les valeurs supérieures sont valables pour f/l = 1/5 à 1/4; a décroît pour des surbaissements plus grands et plus petits.

On a donc:

$$\varkappa = 1 : \left(\frac{\mathbf{a} \cdot \sigma^{5/4} \cdot \delta}{\gamma \cdot \mathbf{l}} - 1\right) \tag{18}$$

C'est à l'aide de cette équation que les chiffres et les courbes donnés dans la suite ont été calculés. Ils ne sont par conséquent valables qu'avec les hypothèses (15) et (17) tandis que l'équation (11) a une validité plus générale. Il faut ajouter cependant qu'en principe les courbes représentent réellement les rapports existants.

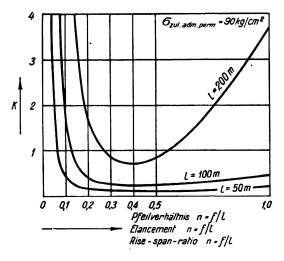
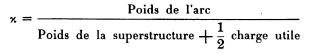
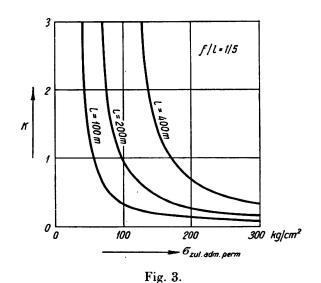


Fig. 2.

Emploi relatif de matériau en fonction du surbaissement.





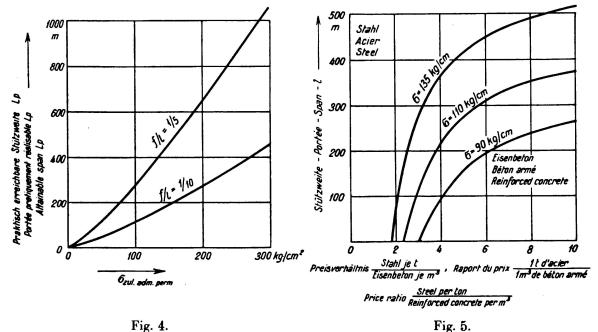
Emploi relatif de matériau en fonction de la contrainte admissible.

A la fig. 2 nous avons représenté l'emploi relatif de matériau \varkappa en fonction du surbaissement n. Les courbes ont toutes leur minimum pour un surbaissement d'environ $^1/_3$. Dans la direction des surbaissements plus faibles qui se présentent généralement dans la pratique, c'est-à-dire vers la gauche, les courbes croissent, cependant très lentement d'abord pour les faibles portées (50 m). L'augmentation est ici faible lorsque l'on choisit un arc fortement surbaissé. Par contre la courbe \varkappa/n croît rapidement pour les grandes portées. Celles-là ne peuvent être réalisées que lorsque le surbaissement se trouve aux environs du minimum des courbes représentées. En fait, la valeur la plus favorable ne se trouve pas exactement en ce point mais un peu plus à gauche, vers $^1/_4$ à $^1/_6$. Cela provient entre autre du fait que la superstructure des arcs fortement surbaissés est meilleur marché et plus légère et qu'une répartition irrégulière de la charge utile n'engendre que de plus faibles contraintes additionnelles.

La fig. 3 représente l'emploi relatif de matériau en fonction de la contrainte admissible. Les courbes montrent que l'emploi de matériau est beaucoup moins réduit pour les petites portées que pour les grandes par un relèvement de la contrainte admissible. (Par exemple pour un relèvement de 100 à 150 kg/cm², la réduction de x pour 100 m de portée est de 0,32 à 0,20, donc de 37 %, mais

pour 200 m de 0,93 à 0,43, c'est-à-dire de 54 %). On constate avant tout qu'il existe pour chaque portée une limite inférieure de la contrainte admissible endessous de laquelle l'exécution devient impossible.

On peut calculer pour chaque contrainte admissible les portées théoriques maxima en admettant un surbaissement déterminé. Ces portées ne seront pratiquement jamais atteintes. Combien reste-t-on en dessous du maximum théorique? cela n'est pas seulement un problème technique mais dépend aussi d'autres considérations, et tout spécialement de considérations économiques. On ne serait pas loin de la réalité en admettant que l'on peut atteindre pratiquement les $^2/_3$ de la portée maxima théorique. C'est d'après ce principe que nous avons calculé la fig. 4 qui indique pour les ponts en arc de béton armé les portées pratique-



Portées pratiquement réalisables avec les ponts en arc de béton armé.

Comparaison du coût des ponts en arc d'acier et de béton armé.

ment réalisables en fonction de la contrainte admissible σ ; nous avons reporté les courbes pour les deux surbaissements $^1/_{10}$ et $^1/_5$. On remarque qu'avec le dernier rapport il est possible de réaliser des portées deux fois plus grandes qu'avec le surbaissement $^1/_{10}$. A propos de la courbe de $^1/_5$ je dois faire remarquer quelques points importants: avec un béton possédant une contrainte admissible de 100 kg/cm^2 il est possible d'exécuter un arc d'environ 270 m de portée, avec 200 kg/cm^2 un arc de 600 m environ et avec 300 kg/cm^2 un arc de 1000 m environ.

Un dépassement des portées ainsi calculées est possible jusqu'à un certain point mais il ne sera réalisable qu'avec un fort accroissement de l'emploi de matériau pour l'arc; le béton ne sera plus capable de concurrencer l'acier. L'arc métallique est le concurrent le plus sérieux de la voûte de béton armé. Les relations que nous avons établies sont aussi applicables à l'arc métallique et permettent une comparaison de prix entre les deux types d'arcs. Le béton est en général plus économique pour les petites portées. Pour une certaine portée limite les prix sont les mêmes. A partir de là l'avantage revient à l'arc métallique.

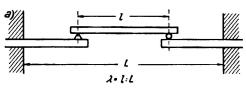
La position de cette portée limite dépend du rapport des prix des deux matériaux. A la fig. 5 nous avons dessiné les portées limites en fonction du rapport des prix de 1 t d'acier à 1 m³ de béton. Les contraintes admissibles sont pour l'acier de 2100 kg/cm² et pour le béton de 90, 110 et 135 kg/cm². A droite en bas, c'est le domaine de la prédominance économique du béton armé, à gauche en haut de l'acier.

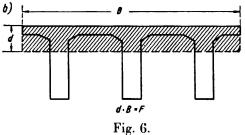
Dans cette représentation il est tout-à-fait intéressant d'observer l'extrême étendue du domaine du béton armé pour les contraintes admissibles pas trop élevées que nous avons considérées. Par exemple pour un rapport de prix égal à 4:1, la limite du béton armé est d'environ 100 m pour $\sigma_b = 90 \text{ kg/cm}^2$, elle s'élève à 220 m pour 110 kg/cm^2 et elle va même jusqu'à 360 m pour 135 kg/cm^2 .

Il est impossible de mieux montrer toute l'importance d'un relèvement de la qualité du béton, et par conséquent des contraintes admissibles, que par une telle représentation. Rappelons encore ici que toutes les mesures que l'on adopte pour la réduction des contraintes additionnelles résultant de la répartition irrégulière de la charge utile, des variations de température, du retrait, etc. ont le même effet qu'un relèvement des contraintes admissibles. Tous les efforts que nous avons faits sont par conséquent tout-à-fait justifiés.

II. — Ponts en poutres de béton armé.

A côté des ponts en arc qui seuls entrent en ligne de compte pour les grandes portées, les poutres de béton armé peuvent être largement utilisées pour les portées moyennes. Dans ces systèmes portants, la répartition des moments sur





appuis et en travées joue, pour l'emploi de matériau, le même rôle que le choix du surbaissement dans les ponts en arc. Les considérations qui vont suivre vous en montreront l'importance.

Une ouverture de portée L peut être franchie par un système composé d'une poutre simple de portée l et de deux porte-à-faux symétriques (fig. 6a). Désignons par λ le rapport des portées l/L. λ se trouve entre les limites 0 et 1. Lorsque $\lambda = 1$, on se trouve en présence du cas de la poutre simple sur deux appuis et lorsque $\lambda = 0$ on a deux

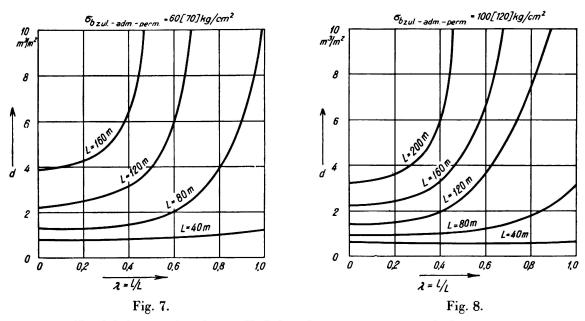
poutres en porte-à-faux de portée L/2. Entre ces deux limites, il existe toute une série de formes intermédiaires du type que nous avons esquissé.

L'établissement de formules générales comme pour les ponts en arc présente des difficultés. L'est pourquoi nous avons tout d'abord calculé, pour une série de portées et pour différents λ , la superstructure de ponts-routes et l'emploi nécessaire de matériau en tant qu'épaisseur « d » d'une plaque de même volume

¹ Cf. Gaede: Balkenträger von gleichem Widerstande gegen Biegung. Die Bautechnik 1937, fasc. 10, p. 120.

et de même surface que le pont (fig 6b). Les calculs furent exécutés pour des sollicitations de 60 (70) kg/cm² ainsi que l'indiquent les prescriptions allemandes. Le chiffre entre parenthèses indique la sollicitation admissible dans les zônes de moments négatifs.

A la fig. 7 nous avons reporté l'emploi moyen de matériau en m^3/m^2 en fonction du rapport λ et pour différentes portées totales L. L'emploi minimum de matériau est dans tous les cas pour $\lambda=0$, c'est-à-dire pour un système composé de deux porte-à-faux. L'emploi de matériau croît avec l'augmentation de la porté de la poutre médiane et atteint son maximum pour $\lambda=1$, c'est-à-dire pour la poutre simple sur deux appuis. Les courbes deviennent de plus en plus inclinées avec l'accroissement de la portée totale L et l'on voit que pour de très grandes ouvertures, la poutre simple et la poutre avec porte-à-faux de longueur



Emploi de matériau d en m³/m² dans les ponts en poutre de béton armé.

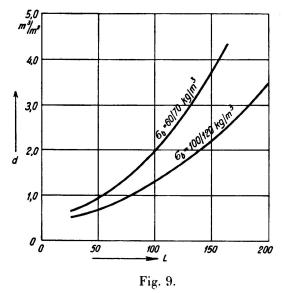
relativement faible sont très peu économiques pour ne pas dire irréalisables. De grandes portées ne peuvent être économiquement atteintes qu'au moyen de poutres avec encorbellements, encore faut-il que la poutre médiane ait une portée relativement faible. Il n'est pas absolument nécessaire de placer des articulations. Le même effet peut être obtenu dans les poutres continues sans articulation grâce à une répartition appropriée des moments d'inertie et grâce à une mise en tension préalable artificielle (abaissement ou relèvement des appuis). Lorsque l'on ne dispose pas d'ouvertures latérales pour supporter les moments d'encastrement, on peut très bien avoir recours à des contre-poids par exemple ou à d'autres dispositions de ce genre.

À la fig. 8 nous avons donné une représentation semblable à celle de la figure précédente mais pour la contrainte admissible de 100 (120) kg/cm² que l'on envisage actuellement.

Pour des raisons pratiques on ne réduit pas λ jusqu'à 0 mais on choisit pour la poutre médiane une portée telle que λ se trouve entre 0,2 et 0,4. Les valeurs des figures 7 et 8 valables dans ce cas sont reportées à la fig. 9. Cette figure

représente l'emploi de matériau pour des poutres avec porte-à-faux de dimensions adéquates et pour les deux degrés de contraintes admissibles dont nous avons parlé.

Ainsi qu'on l'a constaté pour les ponts en arc, il est possible de déterminer par la comparaison de l'emploi de matériau, les limites de la concurrence du béton armé avec les ponts métalliques à âme pleine. A la fig. 10 nous avons de nouveau porté ces courbes limites en fonction du rapport des prix de 1 t d'acier à 1 m³ de béton. On remarque ici aussi l'agrandissement du domaine où le béton est économique grâce à un relèvement des contraintes admissibles. Des mesures ayant pour but de réduire les contraintes dans la fibre extrême du béton, comme par exemple celles proposées par M. le professeur Dischinger, ont ici le même effet qu'un relèvement des contraintes admissibles. Elles sont en outre un moyen



Emploi de matériau d en m³/m² dans les ponts en poutre de béton armé.

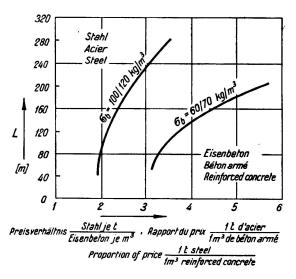


Fig. 10.

Comparaison du coût des ponts en poutres d'acier et de béton armé.

approprié de renforcer les chances du béton armé dans ce domaine d'application très important.

Pour terminer je voudrais encore faire remarquer que cette comparaison des prix ne doit être considérée que comme une approximation grossière car nous n'avons pas tenu compte de certaines circonstances secondaires importantes comme par exemple le surplus de matériau nécessaire pour les piles et les culées par suite du grand poids de la superstructure de béton armé. Cet emploi de matériau dépend si fortement des conditions locales que l'on ne peut pas en tenir compte dans une étude générale. Toutefois on ne devrait pas oublier que la comparaison est plus ou moins en défaveur du béton armé.

M. l'ingenieur Dr. Glaser a essayé de prendre en considération les culées des ponts en arc dans la comparaison du coût; cette étude, parue en rapport avec un de mes travaux (Bauingenieur, 1934, fasc. 13/14 et 17/18) se trouve dans la revue « Zeitschrift des Österreichischen Ingenieur- und Architektenvereines » 1934, fasc. 39/40, p. 230 et ss. On pourrait trouver des solutions semblables pour les ponts en poutres.

Le pont de Prato.

Die Brücke von Prato.

The Bridge at Prato.

G. Krall,

Professor der Universitäten Rom und Neapel, Rom.

Pour franchir de grandes ouvertures il n'est souvent pas indiqué de choisir l'arc qui pourtant, de tous les systèmes de construction, permet la meilleure utilisation du matériau. Lorsque la fondation ne peut pas supporter une poussée horizontale on a recours à des poutres ou à des portiques dès que, pour des raisons quelconques, l'arc avec tirant n'entre pas en ligne de compte. Comme exemple nous allons décrire ici la passerelle qui franchit le Bisencio près de Prato (Toscane). Ce pont (fig. 1), d'une portée de 60 m, a été construit pour le compte de la Ville de Prato par la S. A. Ferrobeton de Rome.

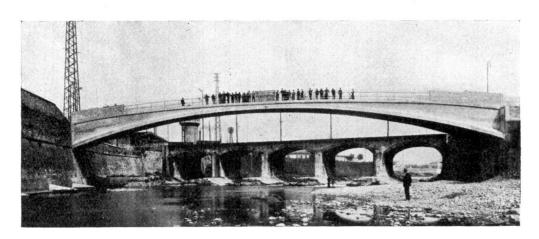


Fig. 1.

Pont sur le Bisenzio près de Prato (Vue de l'ouvrage après achèvement).

L'ouvrage représenté à la fig. 1 a les dimensions et les caractéristiques indiquées sur les fig. 2, 3 et 4. Le cahier des charges prévoyait les dispositions que voici: le fleuve devait être franchi par un ouvrage isostatique, d'une seule ouverture pour faciliter l'écoulement lors des fortes crues et à la clé l'intrados devait se trouver à la même hauteur que les rails du pont de chemin de fer situé un peu en amont.

Du fait que le terrain de fondation se trouve à plus de 10 m au-dessous des naissances de la voûte, un arc ne pouvait pas entrer en ligne de compte; il en

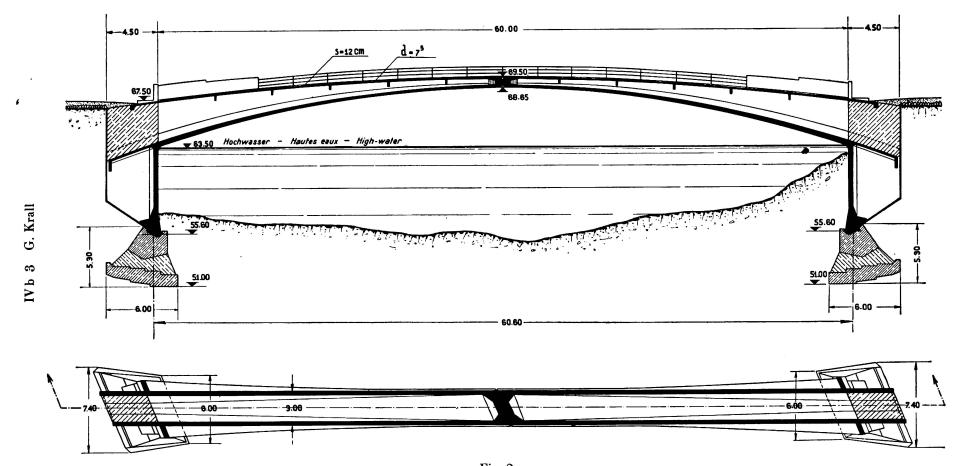


Fig. 2.
Plan et élévation.

est de même de la poutre encastrée puisque c'est un système hyperstatique. L'arc avec tirant a été éliminé a priori; il n'était d'ailleurs pas adapté à cette construction par suite de la faible largeur du pont et en outre pour des raisons d'ordre esthétique. Toutes ces considérations nous ont amené au choix d'un cadre à trois articulations et avec porte-à-faux. Ce système n'exigeait que de très petites fondations et la charge spécifique du sol ne dépassait pas 1,5 kg/cm².

Le tablier a une largeur utile de $2,50\,\mathrm{m}$ alors que la largeur totale est de $3,0\,\mathrm{m}$; la largeur du pont n'est donc que de $^{1}/_{20}$ de la portée. Pour différentes raisons et en particulier pour résister aux efforts latéraux (renversement), la membrure inférieure va en s'élargissant vers les naissances où elle atteint $5,50\,\mathrm{m}$. Cette disposition renforce les piliers, augmente la résistance transversale et donne à l'ouvrage un aspect très satisfaisant.

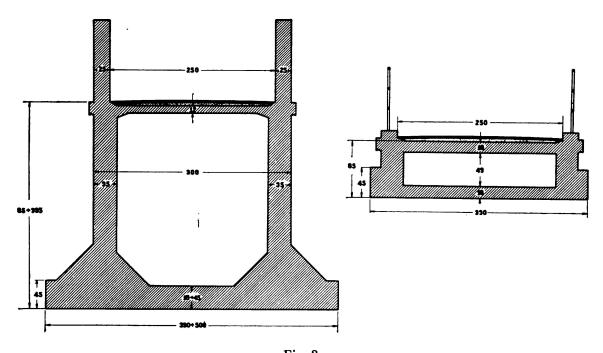


Fig. 3.
Coupe en travers.

L'obliquité du pont provoqua quelques difficultés; les articulations Considère, à fers plats, convenaient assez mal ici dans leur forme originale. C'est pourquoi on a eu recours à un type d'articulation qui, à part les rotations autour d'un axe perpendiculaire au plan des forces permet des glissements le long de cet axe (mobilité transversale). L'emploi de l'acier pour un tel système d'articulation à rouleaux aurait été trop coûteux et l'exécution d'une telle rotule en béton armé aurait été trop compliquée. On a donc renoncé à la construction d'une articulation à rouleaux; on a préféré effectuer le décoffrage à l'aide de vérins hydrauliques reposant sur des plaques bien graissées de façon à permettre, en partie au moins, un certain glissement. De cette manière, l'effet de la charge permanente et de la compressibilité des culées sur les mouvements réciproques des deux parties du pont, pouvait s'effectuer avant la construction des articulations.

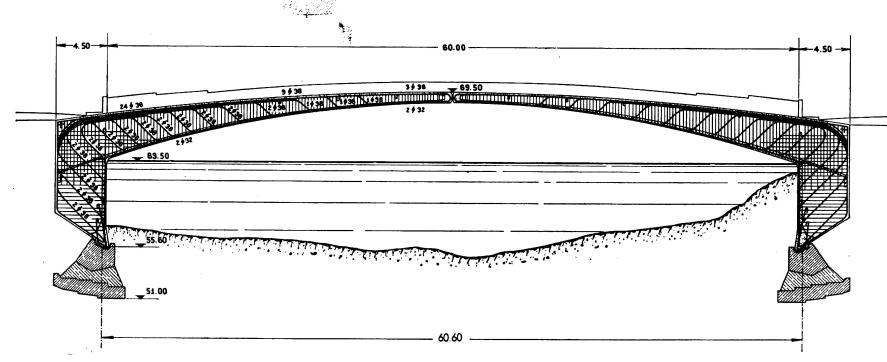


Fig. 4.
Détails de l'armature.

Les vérins utilisés (construits dans les ateliers de Monteverde de la S. A. Ferrobeton) ont l'avantage de pouvoir être bloqués dans toutes les positions par des vis de serrage; on évite ainsi le contrôle permanent des manomètres après le décoffrage. Il n'a pas été nécessaire de mesurer la pression latérale car il s'agit d'une construction à trois articulations et la poussée horizontale est indépendante du déplacement après que le pont est soulevé de son échafaudage (en théorie du moins lorsqu'il s'agit de petits déplacements, d'articulations idéales sur les culées et d'appuis sans encastrement).

Après le décoffrage il fallait procéder avec les plus grands soins au bétonnage des articulations car, contrairement à ce que l'on a pour les arcs encastrés, les articulations doivent conserver ici une mobilité suffisante. Il ressort de la fig. 5

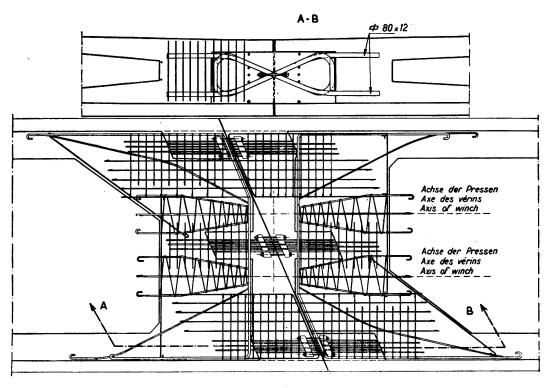


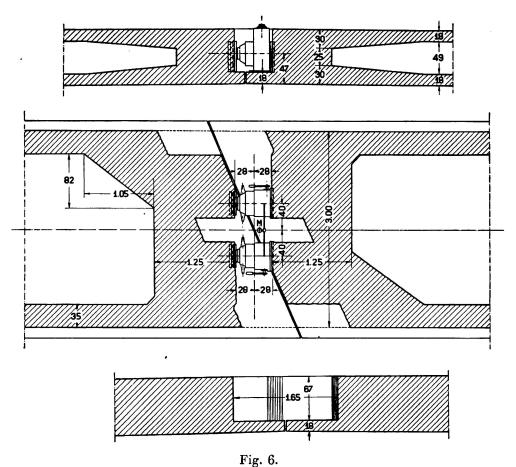
Fig. 5.
Articulations à la clé.

que les articulations sont constituées par des fers plats de 80×12 mm, répartis en 3 groupes de 6. Après le bétonnage, chaque fer est encastré des deux côtés. Finalement on a bétonné les espaces laissés vides près des vérins (voir fig. 5 et 6). Ou bien ces parties de la section peu sollicitées collaborent ou bien les articulations partiellement soumises à la compression supportent l'effort total.

Des calculs appropriés permettent toujours de déterminer la position des vérins de telle sorte qu'ils ne produisent aucun effet d'encastrement, c'est-à-dire de telle sorte qu'ils soient toujours centrés.

Pour l'essai de charge du pont on a adopté la disposition la plus défavorable de la charge utile de $650~{\rm kg/m^2}$ (ouverture presque entièrement chargée). La flèche élastique était de 6 mm à la clé.

Des mensurations dynamiques, trop approximatives pour être publiées ici, ont montré que le bétonnage des parties situées à côté des articulations à la clé donne une certaine rigidité à l'ouvrage.



Vérins agissant à la clé.

Il eut été indiqué de disposer les piliers dans des niches murées afin d'assurer aux piliers une bonne liberté de mouvements. Cette mesure était irréalisable par suite des grands frais qu'elle aurait entraînés. Le coût total de l'ouvrage s'est monté à 200 000 lires.

Les essais de charge de cet ouvrage permettent de conclure que le système choisi convient parfaitement au franchissement des grandes portées grâce à sa forme élégante, à ses fondations de faibles dimensions et à son coût très modique.

Les ponts dans la nouvelle gare maritime de Naples.

Brücken im neuen Hafenbahnhof in Neapel.

Bridges in the New Maritime Station at Naples.

G. Krall,

Professor der Universitäten Rom und Neapel, Rom.

Deux ponts, reliant les deux ailes du bâtiment, sont intéressants dans la nouvelle gare maritime de Naples (fig. 1 et 2) (construite par la Soc. An. It. Ferrobeton).

Il s'agit d'ouvrages à deux étages dont les éléments portants sont les deux parois longitudinales. Une de ces parois est un cadre fermé (fig. 3) dont les

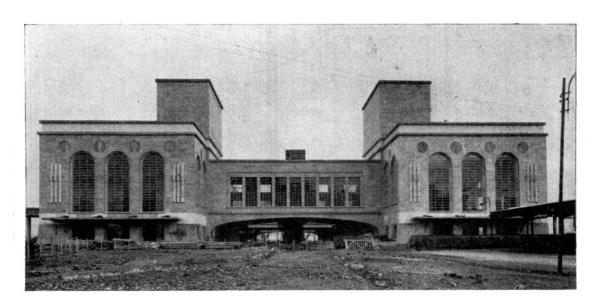


Fig. 1.

montants intérieurs sont suffisamment élancés pour que l'on puisse négliger leur résistance à la flexion tandis que l'autre (fig. 4) est une poutre Vierendeel double. Les deux étages sont respectivement à $10,15~\mathrm{m}$ et $19,10~\mathrm{m}$ au-dessus du niveau de la mer; ils franchissent, avec une portée de $35~\mathrm{m}$, les voies de chemin de fer placées à la cote $+~3~\mathrm{m}$.

Le plancher, situé à la cote 10,15, est une dalle nervurée à cassettes; les cassettes sont des rectangles de 3,80 sur 3,30 m.

Les nervures longitudinales sont encastrées dans les entretoises d'extrémité, elles-mêmes en profil à caisson, donc particulièrement résistantes à la torsion; ce profil se compose des deux nervures transversales extrêmes et des parties

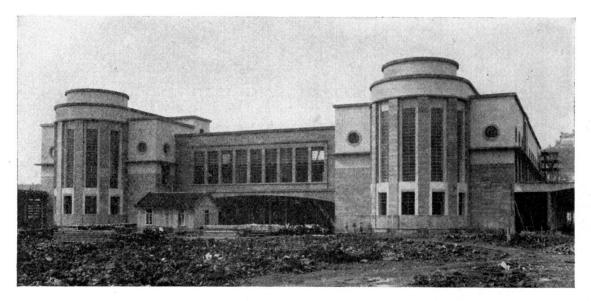


Fig. 2.

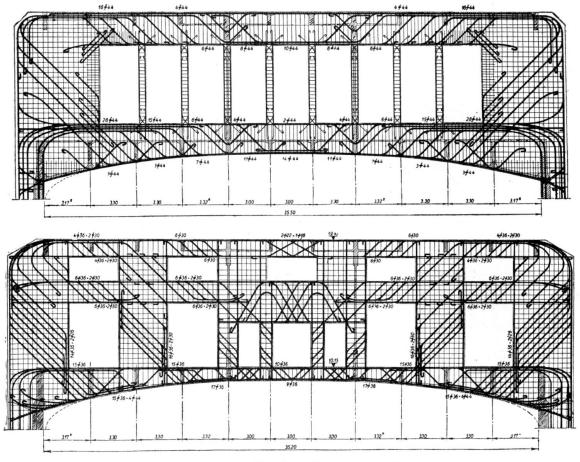


Fig. 3 und 4.

de plaque correspondantes. Les autres nervures transversales peuvent être considérées comme suspendues aux parois portantes principales.

Les nervures transversales qui coïncident avec des parois de la hauteur de l'étage, peuvent être considérées comme infiniment rigides par rapport aux autres.

Le pont de Saalach de la Route allemande des Alpes.

Die Saalachbrücke an der Deutschen Alpenstraße.

The Saalach Bridge on the German Alpine Road.

Dr. Ing. H. Olsen, München.

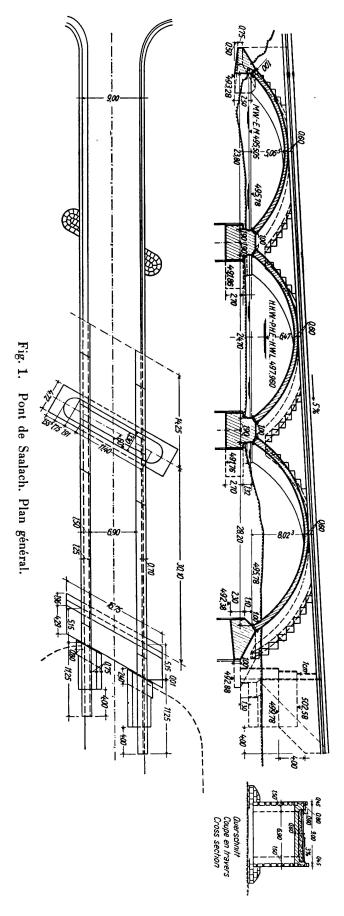
La discussion concernant les surfaces portantes de béton armé nous offre l'occasion de montrer, par l'exemple d'un ouvrage très intéressant de la Route allemande des Alpes, que l'on peut utiliser pratiquement ces connaissances pour les arcs biais à âme pleine.

La fig. 1 montre le plan général du pont, récemment terminé, de Saalach près de Bad Reichenhall. Ce pont se compose de trois arcs encastrés de béton armé. Les portées sont de 23,8; 24,7 et 28,2 m et l'épaisseur de la voûte est de 0,60 m à la clé et de 1,0 m aux naissances. Les deux piles intermédiaires ont une largeur de 3,5 m et reposent sur de solides fondations établies entre des palplanches métalliques.

Les trois arcs sont biais, les piles et les culées, parallèles au courant, font un angle de 60° avec l'axe de la route. Des murs terminent le tablier de 9,0 m de largeur; ce tablier a une pente de 5 % dans l'axe du pont. Comme le pont se trouve à la sortie d'une courbe, le tablier possède encore un dévers de 3 %. Le trottoir amont de 0,80 m de largeur et la bordure aval de 0,25 m sont bordés de granit. Les parapets ont une hauteur de 0,60 m et une largeur de 0,45 m, ils sont surmontés d'une dalle. Les surfaces extérieures de l'ouvrage ont un revêtement de pierres.

Données statiques. L'étude statique des arcs massifs biais se basait jusqu'à présent sur des principes fondamentalement divers. La méthode de calcul souvent adoptée et consistant à décomposer ces arcs en une série d'arcs minces, indépendants les uns des autres, tendus entre les culées parallèlement à la surface frontale, n'est pas satisfaisante car les charges sont transmises aux culées dans le sens de la portée oblique. La loi de Navier n'est valable que pour les sections normales à l'axe de gravité du système.

Pour l'ouvrage en question on a introduit dans le calcul statique les deux parois de 1,50 m de largeur sous forme de superstructure latérale de 1,0 m d'épaisseur (en négligeant le revêtement) et de 1,9 m de hauteur radiale (fig. 1). On a ainsi une section en forme de caisson avec transmission spatiale des forces; la voûte est un voile cylindrique circulaire tendu entre les deux disques frontaux. Les charges de la voûte sont en grande partie transmises dans les deux disques.



Cela résulte du fait que les éléments de poutre, résultant des coupes dans le sens des génératrices du voile, se calent mutuellement sous l'effet des surcharges; il en résulte un état de tension presque sans flexion dans ces éléments lorsque la courbure de la voûte est suffisante.¹

Le voile participe sur une certaine largeur aux déformations des disques. Cette largeur dépend entre autre du degré d'encastrement dans les disques, d'après Finsterwalder² et Craemer.¹ On l'a déterminée de 1,2 m à la clé et et de 1,8 m aux naissances, distance calculée à partir du bord intérieur du disque et perpendiculairement à ce dernier.

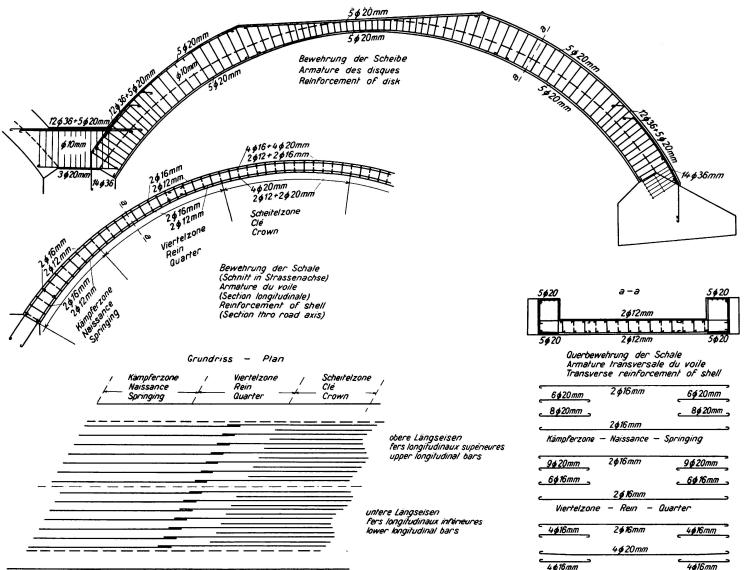
La charge qui revient à chaque disque comprend donc le poids propre et les charges provenant du voile. Après la détermination de ces charges et des surcharges suivant les prescriptions allemandes pour les ponts de Ie classe, il était sans autre possible de calculer les disques de la façon usuelle comme arcs encastrés en tenant compte de la température et du retrait, et de déterminer pour les différentes sections les efforts normaux et les moments. On pouvait calculer alors les trois grandeurs hyperstatiques à partir des déformations des disques, en introduisant directement dans le calcul les déplacements et les rotations produits par les grandeurs hyperstatiques, les charges et les variations de température.

¹ Craemer: Zusammenwirken von Scheibe und Schale bei Bogenscheibenbrücken. Der Bauingenieur 1936, p. 199.

² Finsterwalder: Die querversteiften, zylindrischen Schalengewölbe, Ing.-Archiv 1933, p. 43.

De pont et tout le pont sont chargés. partir la même des moments antipolaires façon 0a calculé l'influence Les sollicitations les plus défavorables, et pour des sections constituées des disques des surcharges lorsque la moitié calculées du et

Scheitelzone - Clé - Crown



 $8,1 \text{ kg/cm}^2$

et

aux

naissances

52,6

et

55,4

 kg/cm^2 .

clé

42,6

(compression)

partie

collaborante

du

voile, et –

sont

suivantes

pour

le p

plus

grand

arc:

16,4

 $\frac{\text{les surv}}{\text{kg/cm}^2}$

(traction),

reins

24

Ø,

et

Fig. 2. Armature de la voûte.

L'armature nécessaire est représentée à la fig. 2. Pour une contrainte admissible de 1200 kg/cm², elle se monte à 5 ronds de 20 mm à la clé et à 12 ronds de 36 mm + 5 ronds de 20 mm aux naissances. L'armature de la clé est double et se prolonge jusqu'aux naissances. La forte armature et les fortes sollicitations du béton pour la surcharge complète montrent que les disques jouent le rôle pincipal dans la transmission des forces. Le ferraillage complet des disques est visible à la fig. 3.

Le voile est par contre faiblement sollicité. Dans sa partie moyenne il doit supporter des efforts normaux jusqu'à ce que l'équilibre se soit établi entre les disques et le voile. La grandeur de ces forces dépend entre autre du poids de

Fig. 3.
Ferraillage du disque.

la voûte et varie d'une section à l'autre. Il en résulte des contraintes de cisaillement qui elles-mêmes engendrent des efforts normaux dans le sens de génératrices du voile. Les différences de tension dans la liaison du voile aux disques produisent des contraintes, c'est pourquoi il a été nécessaire de disposer une armature transversale à la clé, aux reins et aux naissances (fig. 2). Dans les parties moyennes de la voûte, non soumises à la flexion, la faible armature représentée à la fig. 2 suffisait. La fig. 4 montre le ferraillage terminé du voile.

La transmission du poids de la voûte aux culées et aux piles intermédiaires est en grande partie réalisée par les disques. De la sorte, l'obliquité de la voûte ne joue qu'un rôle secondaire au point de vue statique. Les plus fortes pressions du sol se montent à 4,9 kg/cm² pour la culée de droite et à 4,4 kg/cm² pour les piles. La culée de gauche, reposant sur le rocher, exerce une pression de 6,9 kg/cm².

Exécution. Les installations de fabrication du béton se trouvaient sur la rive droite. Le ciment employé est un portland au trass. Le béton des culées et des fondations des piles est à 250 kg et celui des arcs et des parois à 300 kg par m³.

Le battage des palplanches pour les piles et la culée de droite a débuté en octobre 1935. Immédiatement après excavation on a bétonné les fondations des piles et des culées.

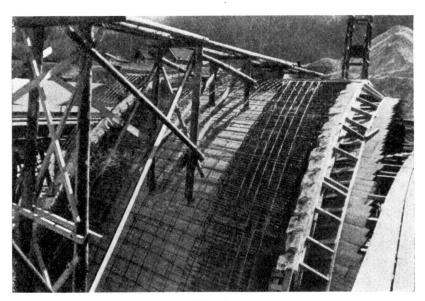


Fig. 4. Ferraillage du voile.

Après le battage des pilotis on a exécuté simultanément l'échafaudage de tous les arcs; cet échafaudage se compose de huit fermes. Afin d'obtenir un décoffrage progressif on a disposé des pas de vis. Pour permettre l'exécution du revêtement

Fig. 5. Vue générale du chantier.

on a construit des ponts de service à l'amont et à l'aval et l'on a disposé des rails pour grue roulante. La fig. 5 donne une vue du chantier.

Le bétonnage des voûtes s'est fait à partir d'un pont de service élevé, à l'aide

de tuyaux en entonnoir. On a bétonné par tranches de telle sorte que les éléments déjà durcis ne soient pas mis en tension par les mouvements de l'échafaudage. Des éprouvettes en forme de cubes ont donné après 28 jours des résistances à la compression de 250 kg/cm² environ. Après quatre à six semaines on a abaissé l'échafaudage des trois arcs. Les affaissements ont été mesurés et l'on a lobtenu des valeurs atteignant 1,4 mm.

Fig. 6. Vue du pont terminé.

Après le décoffrage des arcs on a exécuté le revêtement en même temps que le bétonnage des surfaces frontales. Il a été possible de renoncer à des joints de dilatation continus.

La fig. 6 montre le pont terminé. Cet ouvrage d'une longueur de 120 m est visible de loin et sa forme s'accorde très bien avec le paysage montagneux des environs.

Le projet de ce pont nous a été confié par le Département des Travaux publics de Bavière. Nous avons étudié toutes les questions statiques et constructives et nous avons surveillé la construction de ce pont. Les plans et les calculs statiques ont été contrôlés par le Dr. Ing. Craemer qui d'ailleurs a eu l'idée d'introduire les disques frontaux dans le système portant.

Note concernant le rapport Boussiron.¹

Bemerkung zum Referat Boussiron.¹

Note on the Paper by Boussiron.¹

H. Lossier, Ingénieur Conseil, Argenteuil.

Variation des moments d'inertie:

La méthode qui consiste à faire varier le moment d'inertie des divers éléments d'un ouvrage hyperstatique afin de satisfaire à certaines conditions techniques ou économiques présente d'incontestables avantages.

Elle conduit à plus de souplesse que l'emploi des articulations et, en général, à plus de simplicité que la mise en action d'efforts initiaux par des procédés artificiels.

Dans le cas général d'ouvrages à plusieurs travées dont tous les éléments sont solidaires, la répartition des efforts dépend à la fois des caractéristiques des arcs, des piles, des culées et du sol de fondation.

En faisant varier ces caractéristiques on peut, même en conservant la même répartition de travées, modifier le fonctionnement du système hyperstatique envisagé et réaliser de la sorte plusieurs solutions de résistance équivalente, mais différentes au point de vue de l'aspect, des déformations et du prix de revient.

Avec des piles relativement très rigides par exemple, on peut réduire au minimum la section des arcs qui tendent à fonctionner, à la limite, comme des éléments indépendants encastrés sur appuis fixes.

En augmentant par contre la raideur des arcs, on peut adopter des piles plus grêles. A la limite, la sollicitation de ces dernières tend à se rapprocher de celle des palées supportant une poutre à travées solidaires encastrée sur elles.

Dans deux cas d'ouvrages comportant des piles de grande hauteur, j'ai réalisé de la sorte des gains variant de 15 à 23 % par rapport à la méthode arbitraire qui consiste à calculer les piles comme devant résister aux différences de poussée des travées adjacentes, considérées elles-mêmes comme encastrées sur appuis indéformables.

Les calculs comparatifs des diverses sections peuvent être effectués très rapidement, notamment par les méthodes graphiques rigoureuses que j'ai publiées dans le Bulletin Technique de la Suisse Romande en 1903 (Théorie Générale de l'Arc élastique continu sur appuis rigides) et dans le Génie Civil en 1908 (Calcul des ponts en maçonnerie).

¹ Voir la Publication préliminaire du Congrès de Berlin 1936, p. 747.

Dans l'étude intitulée «Le réglage du fonctionnement des poutres continues» (Génie Civil 1935), j'ai appliqué des principes analogues.

L'étude de Monsieur Boussiron est limitée au cas particulier d'un arc simple reposant sur appuis supposés indéformables.

Elle est basée sur la réduction importante de certaines sections et diffère de la solution avec semi-articulations en béton fretté, envisagée dans le même but par Considère, par la suppression de toute solution brusque de continuité.

S'il n'est pas démontré que l'égalisation des moments fléchissants maxima aux naissances et aux reins constitue rigoureusement la condition optima au point de vue économique, il n'en est pas moins incontestable que la méthode de Monsieur Boussiron réalise une réduction appréciable du cube de béton armé par rapport aux procédés courants.

D'une manière générale et comme je l'avais exposé au Congrès de Liége, le fonctionnement d'un ouvrage en béton armé n'est pas invariable. Il se modifie avec le temps sous l'action de causes diverses et complexes, encore insuffisamment connues et qui intéressent en particulier les variations linéaires, l'élasticité et la plasticité du béton.

Dans le cas d'arcs encastrés du type ordinaire j'ai constaté que, sous le passage des mêmes surcharges, les contraintes aux naissances diminuaient tandis que celles à la clef et aux reins augmentaient avec le temps, les différences étant parfois de l'ordre de 20 % après une dizaine d'années.

Aussi les résultats des calculs des ouvrages hyperstatiques basés sur la seule considération des déformations élastiques n'ont-ils qu'une valeur relative, à tendance momentanée.

Leur degré d'incertitude doit donc logiquement conduire à l'adoption d'une marge de sécurité plus grande pour les types d'ouvrages hyperstatiques que pour ceux dont le fonctionnement est indépendant de leurs déformations.

Par ailleurs, les quelques essais sur modèles réduits auxquels j'ai procédé il y a plusieurs années ont fait apparaître que les arcs à semi-articulations présentent une marge d'endurance en général moins élevée, sous des sollicitations fréquemment répétées, que les éléments à section sensiblement constante.

A ce point de vue, il semble a priori que les arcs du type préconisé par Monsieur Boussiron doivent occuper une situation intermédiaire entre les arcs semi-articulés et les arcs encastrés du type ordinaire.

Cette question est du reste pratiquement d'ordre académique, l'endurance proprement dite n'intervenant guère dans les ponts de grande portée.

En ce qui concerne les ouvrages de dimensions exceptionnelles qu'il faut prévoir dans l'avenir, le réglage du fonctionnement des arcs semble devoir présenter a priori moins d'avantages que pour les ponts de plus faible portée, en raison de la réduction du rapport des surcharges à leur charge permanente.

Les suggestions de Monsieur Boussiron, d'une conception originale et remarquablement étudiées, n'en présentent pas moins à mes yeux un intérêt très réel qu'illustrent les remarquables applications qu'il en a réalisées.

Limite des portées des pont-routes:

Si l'on s'en tient aux limites imposées par la seule résistance mécanique de la matière, les bétons que l'on peut actuellement réaliser en utilisant les procédés de fabrication et de mise en oeuvre les plus perfectionnées permettraient d'atteindre des portées d'environ:

1400 mètres pour les ponts en arc, surbaissés au cinquième, 500 mètres pour les ponts en poutres à travées solidaires.

De mon étude sur «L'avenir du béton armé et du métal pour les ponts de très grande portée» présentée à la Société des Ingénieurs Civils de France et à Londres en 1934, semble résulter qu'au point de vue économique, le prix des ouvrages accuse une progression très rapide dès que la portée atteint le voisinage de:

400 mètres pour les arcs en béton faiblement armé, 800 mètres pour les arcs en béton fortement armé, 1000 mètres pour les arcs métalliques,

1500 mètres pour les ponts suspendus.

Au point de vue comparatif, l'avantage économique paraîtrait en faveur:

des arcs en béton faiblement armé jusqu'à 250 mètres de portée, des arcs en béton fortement armé jusqu'à 700 mètres, des ponts suspendus à partir de 700 mètres.

Il va sans dire que ces chiffres sont basés sur des hypothèses qui peuvent différer très notablement de la réalité dans chaque cas particulier et qu'ils n'ont, pour cette raison, qu'une valeur toute académique.

Le principal facteur qui met le béton armé en infériorité économique par rapport aux ponts suspendus à partir d'une certaine portée est son faible coefficient d'utilisation, si l'on désigne ainsi le rapport de sa résistance à sa densité.

Pour améliorer ce rapport il conviendrait soit d'augmenter la première, soit de réduire la seconde de ces caractéristiques.

Mes recherches en cours semblent démontrer que l'un des moyens de réaliser simultanément ces deux conditions consiste à utiliser des bétons à agrégats légers, mis en compression préalable dans le sens transversal à l'aide d'un frettage approprié.

Le gravier représente environ la moitié du poids d'un élément en béton armé. En employant des matériaux naturels ou artificiels légers, on peut donc réduire sensiblement la densité du béton. Toutefois, ces agrégats spéciaux présentent en général une résistance plus faible que les graviers courants. Aussi est-il indispensable de les utiliser dans des éléments comprimés en tous sens de manière à mettre en jeu les effets bien connus du frettage intégral de la matière.

Les éléments réalisés de la sorte subissent des déformations plus élevées que les éléments à agrégats ordinaires, mais ce fait ne présente pas d'inconvénient pour de très grands ouvrages dont la charge permanente constitue la principale sollicitation.

Je ferai connaître, dans une prochaine communication, les résultats des expériences françaises actuelles sur l'utilisation des ciments sans retrait ou à expansion, ces derniers étant susceptibles de réaliser automatiquement sur les chantiers, sans aucun dispositif spécial, la mise en traction initiale des armatures en tous sens et, en conséquence, la mise en compression ou frettage intégral du béton (voir mon article du 29 Février 1936 dans le Génie Civil).

Ponts en arc de béton armé à grande portée.

Weitgespannte Eisenbeton-Bogenbrücken.

Long Span Reinforced Concrete Arch Bridges.

Dr. Ing. A. Hawranek,

ord. Professor an der Deutschen Technischen Hochschule, Brünn.

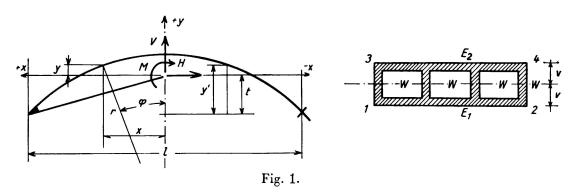
Dans mon rapport sur les arcs en béton armé de grande portée j'ai exposé: 1° une nouvelle méthode de calcul plus exacte pour différents modules d'élasticité dans les différents points de l'arc, 2° une théorie de la déformation pour E et J variables et 3° pour un arc donc l'axe coïncide avec le funiculaire des forces et j'en ai donné les résultats finaux. J'ai traité ensuite des questions de matériaux puis la construction des arcs de grande portée, leurs échafaudages et quelques détails constructifs, autant de points qui doivent faciliter le développement des ponts en arc de grande portée. Pour terminer, j'ai proposé une nouvelle méthode de construction de ces ponts. Ici je voudrais développer surtout le dernier point, montrer l'application des développements théoriques par quelques calculs numériques et corriger certaines fautes d'impression de la Publication Préliminaire.

- I. Etudes théoriques. Résultats numériques des théories exposées dans la Publication Préliminaire.
- 1° Différents modules d'élasticité dans une section creuse. Théorie de l'élasticité.

On peut traiter d'une façon plus générale que je ne l'ai fait dans la Publication Préliminaire (3°, p. 806) la question de différents modules d'élasticité dans une section creuse. Nous avions admis des modules d'élasticité différents E_1 et E_2 pour les plaques d'intrados et d'extrados de la section creuse mais ces modules étaient constants sur toute la longueur de l'arc. On peut aussi admettre ces E_1 et E_2 variables et différents dans les différentes sections, suivant la succession du bétonnage; ces modules d'élasticité auraient donc une valeur correspondant à l'âge du béton de chaque partie. L'étude plus exacte est rendue nécessaire par les moments plus élevés résultant du mode de décoffrage à l'aide de vérins hydrauliques (Dr. Hawranek, Schweizerische Bauzeitung 1937, vol. 110, p. 153).

En adoptant les désignations de la fig. 1 on a pour les moments, les efforts normaux et les efforts tranchants:

$$\begin{split} M_x &= \mathfrak{M}_x + M - Hy - Vx & \text{et} \\ N_x &= H\cos\phi + Q_x\sin\phi \\ Q_x &= V + \mathfrak{D}_x = V - \sum\limits_{x}^{1/2} G \end{split} \qquad \begin{aligned} k_1 &= \frac{E_1}{E_2} + 1 \\ k_2 &= \frac{E_1}{E_2} - 1 \end{aligned} \qquad k = \frac{k_2}{k_1} \end{split}$$



On peut tirer de là les trois grandeurs hyperstatiques H, V, M et la distance t du centre de gravité des poids élastiques:

$$\begin{split} H = & \frac{\int \frac{\mathfrak{M}_{x}yk_{1}\mathrm{d}s}{E_{1}J} - \int \frac{\mathfrak{M}_{x}k_{2}v\cdot\mathrm{d}s\cdot\cos\phi}{E_{1}J} + \int \frac{\mathfrak{D}_{x}yk_{2}\,\mathrm{d}s\sin\phi}{vE_{1}F} - \int \frac{\mathfrak{D}_{x}k_{1}\mathrm{d}s\sin\phi\cdot\cos\phi}{E_{1}F} + 2\epsilon tl}{\int \frac{y^{2}\,k_{1}\mathrm{d}s}{E_{1}J} - \int \frac{y\,k_{2}v\,\mathrm{d}s\cos\phi}{E_{1}J} - \int \frac{y\,k_{2}\,\mathrm{d}s\cos\phi}{vE_{1}F} + \int \frac{k_{1}\cos^{2}\phi\,\mathrm{d}s}{E_{1}F}}\\ V = & \frac{\int \frac{\mathfrak{M}_{x}\,xk_{1}\,\mathrm{d}s}{E_{1}J} - \int \frac{\mathfrak{M}_{x}\,k_{2}v\cdot\mathrm{d}s\cdot\sin\phi}{E_{1}J} + \int \frac{\mathfrak{D}_{x}\,xk_{2}\,\mathrm{d}s\cdot\sin\phi}{vE_{1}F} - \int \frac{\mathfrak{D}_{x}\,k_{1}\,\mathrm{d}s\cdot\sin^{2}\phi}{E_{1}F}}{\int \frac{x^{2}\,k_{1}\,\mathrm{d}s}{E_{1}J} + \int \frac{k_{1}\,\mathrm{d}s\cdot\sin^{2}\phi}{E_{1}F}}\\ M = & \frac{\int \frac{\mathfrak{M}_{x}\,k_{1}\,\mathrm{d}s}{E_{1}J} + \int \frac{\mathfrak{D}_{x}\,k_{2}\,\mathrm{d}s\sin\phi}{vE_{1}F} + H \int \frac{y\,k_{1}\,\mathrm{d}s}{E_{1}J} - \int \frac{k_{2}\,\mathrm{d}s\cos\phi}{vE_{1}J}}{\int \frac{k_{1}\,\mathrm{d}s}{E_{1}J}}\\ t = & \frac{\int \frac{y'\,k_{1}\,\mathrm{d}s}{E_{1}J} - \int \frac{k_{2}v\,\mathrm{d}s\cdot\cos\phi}{E_{1}J}}{\int \frac{k_{1}\,\mathrm{d}s}{E_{1}J}}. \end{split}$$

D'après cette théorie nous avons étudié un arc avec $l=400\,\mathrm{m}$ et $f=100\,\mathrm{m}$ (Publication Préliminaire, fig. 5, p. 818); les modules d'élasticité étaient: à l'intrados, $E_1=470\,000\,\mathrm{kg/cm^2}$ aux naissances et $350\,000\,\mathrm{kg/cm^2}$ à la clé; à l'extrados, $E_2=350\,000\,\mathrm{kg/cm^2}$ aux naissances et $230\,000\,\mathrm{kg/cm^2}$ à la clé, et entre deux nous avons introduit dans le calcul une décroissance linéaire (théorie de l'élasticité). Ces modules d'élasticité correspondraient au temps nécessaire à l'exécution d'un si grand arc. En admettant que l'arc n'est chargé

que sur sa seule moitié de droite (P = 1 t/m) on obtient pour les grandeurs hyperstatiques:

```
H = 102,111 t (contre 101,304 t pour E = const.) \Delta = +1,0 \% V = 35,544 t (contre 38,597 t pour E = const.) \Delta = -7,9 \% M = 3473,593 tm (contre 3707,348 tm pour E = const.) \Delta = -6,3 \%
```

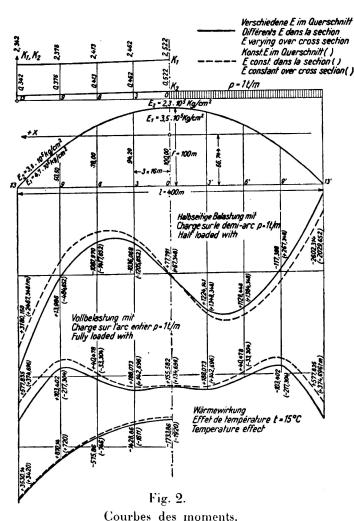
Les moments:

à la naissance de gauche:

+3180,150 tm (contre +2467,348 tm pour E = const.) $\Delta = +28,9 \%$, à la clé:

+ 77,791 tm (contre + 67,348 tm pour E = const.) Δ = + 15,3%, à la naissance de droite:

-2602,314 tm (contre -2092,652 tm pour E = const.) $\Delta = +24,4$ %.



Pour une charge de 1 t/m sur toute la longueur du pont le moment aux nais-+577.835 tm sances est (contre 374,696 tm pour E = const.) $\Delta = 54 \%$. Les courbes de moments sont reportées à la fig. 2, en traits pleins pour E variable et en traits discontinus pour E constant. Nous avons également dessiné les valeurs k₁ et k, et la courbe des moments pour une variation de température de $t = 15^{\circ}$ C. Dans ce dernier cas les écarts sont plus faibles.

On constate que la différence entre les moments à la clé et aux naissances est importante et toujours plus grande pour E variable que pour E constant. Pour l'effet de la température ce n'est qu'aux environs des naissances que cette différence devient plus grande.

2º — Théorie de la déformation de l'arc encastré dont l'axe coïncide avec le funiculaire des forces.

Nous avons aussi développé la théorie dans ce cas et nous avons déplacé l'origine 0 au milieu de la corde rejoignant les naissances (fig. 3). La courbe de charge g_x varie avec $Ch\alpha x$, comme le poids véritable d'un arc. Nous avons en

outre tenu compte de la variation de température et du retrait. Dans le développement théorique, la valeur d', correspondant aux efforts normaux, a été choisie plus exactement que dans la Publication Préliminaire.

Equation de l'axe:

$$y = f(1 + v) - f v Ch \alpha x$$

$$v = \frac{1}{m-1}; \quad m = \frac{g_k}{g} = \operatorname{Ch} k$$

$$k = \operatorname{arc} \operatorname{Ch} m; \ \alpha = \frac{k}{1}$$

Charge spécifique:

$$g_x = g \operatorname{Ch} \alpha x$$
; $g_1 = g_k - g$

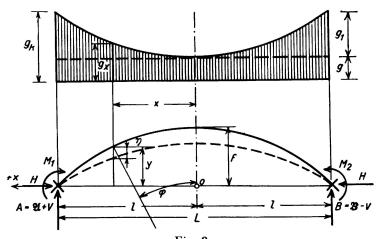


Fig. 3.

Equation différentielle de la ligne élastique:

$$\begin{split} \eta'' &= -\frac{M_x}{E\,J'\,\cos\phi} + \frac{N_x}{E\,F'} \cdot \frac{d^2y}{dx^2} \left(1 + \cos^2\phi\right) + \frac{1}{E\,F'} \cdot \frac{d\,N_x}{dx} \cdot \frac{dy}{dx} \mp \epsilon\,t \cdot \frac{d^2y}{dx^2} \\ \text{avec } c^2 &= \frac{H}{E\,J'\,\cos\phi} \\ \eta'' &= -\,c^2\left\{\frac{M_x}{H} - y\left(1 \mp \frac{\epsilon\,t\,\alpha^2}{c^2}\right) + \frac{V_1}{H}\left(l - x\right) + \frac{M_1}{H}\right\} - c^2\eta - c^2\left[\frac{d'\cdot J}{F} \mp \frac{\epsilon\,t\,f\,\alpha^2\left(1 + v\right)}{c^2}\right] \\ \text{où} \qquad d' &= fv\,\alpha^2\,Ch\,\alpha x \left[\left(1 + \cos^2\phi\right) + \left(1 - \frac{\dot{y}^2}{2} + \frac{3}{8}\,\dot{y}^4\right)f^2v^2\alpha^2\,Sh^2\,\alpha x\,\cos\phi\right] \\ \eta'' &+ c^2\eta + c^2\,F(x) = 0 \\ \mathfrak{M}_x &= \frac{g_1v}{\alpha^2}\left(Ch\,k - Ch\,\alpha x\right) \end{split}$$

Solution de l'équation différentielle:

$$\eta = A \sin c \, x + B \cos c \, x - \left\{ \frac{\mathfrak{M}_X}{H} - f \cdot w \left[1 - v \, \left(\operatorname{Ch} \, \alpha x - 1 \right) \right] + \frac{V_1}{H} (l - x) + \frac{M_1}{H} + \frac{d'J}{F} \right\}$$

$$\left. \mp \frac{\epsilon \, t \, f \alpha^{2} \, (1+v)}{c^{2}} \right\} + \left(-\frac{g_{1} \, v}{c^{2} H} + \frac{f \, v \, w \, \alpha^{2}}{c^{2}} - R \right) Ch \, \alpha x$$

οù

$$w=1\mp\frac{\epsilon\,t\,\alpha^2}{c^2},$$

$$R = -\frac{\alpha^3 v}{c^2 (\alpha^2 + c^2)} \left(\frac{g_1}{\alpha H} - f w \alpha \right)$$

Pour la charge g_x on a:

$$\begin{split} M_X &= H \left[\frac{z}{\alpha \, c} \, \frac{\operatorname{Sh} \, k}{\sin \, cl} \cos \, cx \, - \frac{d' \, J}{F} + \left(f \, v - \frac{g_1 \, v}{\alpha^{\, z} \, H} + \frac{z}{\alpha^{\, z}} \right) \operatorname{Ch} \alpha \, x \right] \\ M_1 &= H \left[\frac{z}{\alpha \, c} \, \operatorname{Sh} \, k \, \cot g \, cl \, - \frac{d' \, J}{F} - \frac{1}{\alpha} \left(\frac{g_1 \, v}{H} - z \right) \operatorname{Ch} \, k \, \right] \end{split}$$

La poussée horizontale H se calcule en posant égale à zéro la somme des compressions horizon tales des éléments d'arc, $\Delta l = 0$, on en tire l'équation:

$$\begin{split} 0 = & - \left(\frac{H}{E \, F' \cos \phi} \mp \epsilon t \right) l - \frac{f \, v}{2} \left[z + \left(\frac{H}{E \, F' \cos \phi} \mp \epsilon t \right) \cdot f \, v \, \alpha^2 \right] \cdot \left(-1 + \frac{1}{\alpha} \, \text{Sh k Ch k} \right) \\ & - \frac{f \, v \, \alpha \, c \, B}{c^2 + \alpha^2} (c \, \text{Sh k cos cl} \, - \alpha \, \text{Ch k \cdot sin cl}). \end{split}$$

Pour cet arc de 400 m de portée, nous avons calculé d'après cette théorie les moments et les fléchissements produits par le poids propre. La courbe de charge est donnée à la fig. 4. Elle se monte à 189,5 t/m aux naissances et 99,0 t/m à la clé.

Les moments atteignent:

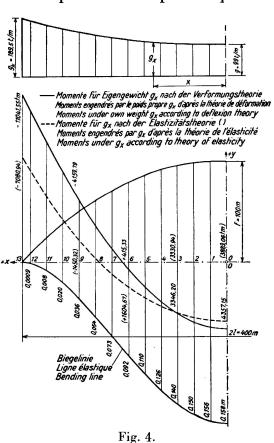
aux naissances: — 11 041,553 tm (contre — 7080,942 tm d'après la théorie de

l'élasticité) $\Delta = 56.0 \, \text{O}_0$.

à la clé: +4357,149 tm (contre +3889,062 tm d'après la théorie de

l'élasticité) $\Delta = 12,1 \%$.

Ici aussi on a, dans les moments, des écarts beaucoup plus grands que ceux que l'on obtient, par rapport à la théorie d'élasticité, d'après la théorie de déformation pour un axe parabolique et une charge continue. Ils sont plus grands



Moments et ligne élastique calculés d'après la théorie de déformation pour le poids propre.

tant aux naissances qu'à la clé et ne sont plus petits qu'aux 3 et 6 huitièmes de la portée.

La flèche fut également calculée pour le poids propre de l'arc, elle est à la clé de 158 mm, c'est-à-dire $^{1}/_{2350}$ l. La ligne élastique est dessinée à la fig. 4.

Tous ces faits parlent également en faveur de l'étude plus exacte de l'arc dont l'axe coïncide avec le funiculaire des poids, car un axe parabolique ne correspond pas à la réalité, spécialement dans les arcs peu surbaissés.

Les moments aux naissances des arcs encastrés sont toujours les plus grands et il est nécessaire de relever les contraintes admissibles pour les arcs de très grande portée si l'on veut que ces derniers soient encore économiques; il est donc nécessaire de calculer très exactement les moments si l'on ne veut pas avoir des excès de sollicitation dans le pont lui-même. La précision est également nécessaire pour les opérations de décoffrage au moyen de vérins hydrauliques.

Dans la Publication Préliminaire nous avons calculé les formules à l'aide de la constante $d=\frac{2J}{rF_m}$ mais on peut très bien tenir compte d'un d variable, ce que nous traiterons ailleurs. Le calcul numérique a montré que la valeur réelle est plus grande et que son influence sur les moments n'est pas petite (Dr. Hawranek, Der Bauingenieur 1937, p. 719).

Quant à la méthode plus exacte de calcul des ponts en arc, tant en acier qu'en béton armé, basée sur la théorie des déformations, on peut affirmer d'une façon toute générale qu'on ne peut déterminer l'influence des hypothèses faites et des différents facteurs qu'en calculant numériquement différents types d'arcs. C'est pourquoi nous jugeons utile et nécessaire d'effectuer de tels calculs et de comparer les résultats fournis par différentes méthodes. S'il existe des résultats de mensurations effectuées sur des ouvrages en service, il faut établir une comparaison avec la théorie; il est nécessaire de se servir de la théorie de déformation et non pas de la théorie de l'élasticité pour évaluer les résultats des mesures car, sans cela, on commet inévitablement des erreurs. Cela est tout spécialement valable pour les ponts en arc de béton armé.

Il ne faut pas sousestimer ces calculs précis et ne pas s'effrayer du travail, car la mise au point de ces relations est aussi utile pour la sécurité des constructions que pour l'économie des ouvrages. Lorsque tout sera mis au point, ce qui demande bien des études, alors seulement on pourra passer à un relèvement des contraintes admissibles. Il serait encore nécessaire d'étudier l'influence sur les moments de la déformation dans les arcs fortement surbaissés, et pour différents rapports de la charge utile au poids propre, ainsi que l'influence de différentes lois de variation du moment d'inertie.

Au nombre de toutes les questions connues qui doivent encore être étudiées par des essais, on peut ajouter celle de la transmission des forces du tablier à l'arc par des montants ou des suspentes, ainsi que les sollicitations en ces endroits lorsque les appuis sont relativement éloignés ou rapprochés les uns des autres. Ces recherches seraient tout spécialement utiles pour les arcs à section creuse.

Les points de vue, exposés ici et dans notre rapport, concernant la forme à donner aux arcs et le développement de la théorie des arcs, pour relever les contraintes admissibles du béton, concordent absolument avec ce qu'a dit Boussiron. Dans notre projet d'un pont de 400 m, le choix d'une section constante sur toute la longueur de l'arc est basé sur les mêmes considérations que celles qu'expose Boussiron dans son rapport.

II. Propriétés des matériaux.

La compression admissible de 150—200 kg/cm² que nous exigeons dans notre rapport pour les ponts de grande portée ne doit pas être trop difficile à atteindre lorsque la résistance à l'écrasement sur cube est en rapport. Les ingénieurs français et allemands sont du même avis.

Les Allemands trouvent qu'avec une résistance à la compression de 450 kg/cm² on peut atteindre une contrainte admissible de 150 kg/cm² pour une armature de 1 % et même de 240 kg/cm² pour un frettage de 3,6 %.

Quant à l'emploi du frettage il serait nécessaire d'effectuer des essais sur des éprouvettes à section rectangulaire plate, frettées par une série de spirales juxtaposées ainsi qu'on le fait dans les sections creuses.

Les avis sont très partagés sur l'effet de ces spirales par comparaison aux colonnes frettées, c'est pourquoi il faut être prudent dans la détermination de contraintes admissibles élevées pour ces sections creuses frettées, sans compter les difficultés de bétonnage qu'entraîne un tel type d'armature. Si l'on relève

jusqu'aux environs de 700 kg/cm² la résistance du béton à la compression, on pourrait s'en tirer sans frettage.

Quant aux propriétés physiques du béton, il est nécessaire d'étudier encore celles qui jouent un rôle dans les ponts de grande portée.

A ce point de vue, le coefficient de dilatation du béton est important. On admet généralement que les coefficients de dilatation du béton et du fer sont égaux. Ce coefficient est sensiblement plus élevé pour un bloc de ciment que pour les pierres et il n'est pas le même pour les différentes sortes de ciments; dans un béton il dépend donc certainement du mélange. Les essais de S. L. Meyer¹ sur des éprouvettes de ciment montrent que le coefficient de dilatation croît avec l'âge. Cet accroissement est important dans les ciments contenant beaucoup de silicate, alors qu'il est très faible, même après plusieurs mois, dans les ciments fortement calcaires. Ce coefficient double à peu près en 9 mois dans les premiers. Il faudrait savoir si ce phénomène est aussi valable pour les ciments européens. Il est évident qu'il sera beaucoup moins fort dans le béton, mais il existe cependant. Pour autant que je le sache, le coefficient de dilatation du béton est plus petit que celui du fer, il varie autour de 0,000009 pour 1° C tandis que celui du fer est de 0,00001234. Par suite de cet écart, des contraintes apparaissent dans les deux matériaux et par conséquent des moments dans l'arc.

Une autre question est celle de la chaleur de prise; elle atteint son maximum après 15 à 20 heures et entraîne un accroissement de chaleur de 40 à 60°. Si une éprouvette a repris la température de l'air ambiant après 2 jours environ, les mesures effectuées sur des ponts par C. R. Whythe² prouvent que cette chute de température n'est complète qu'après 12 à 20 jours, suivant la position du point considéré dans la section; pendant ce temps le béton est durci depuis longtemps déjà. Si les coefficients de dilatation du béton et du fer ne sont pas les mêmes il y a donc une transmission d'efforts entre les deux matériaux.

La différence des coefficients de dilatation et la chaleur de prise ne peuvent pas avoir une grosse influence dans les ponts en arc, ce sont cependant des phénomènes qui se manifestent.

Dans notre rapport nous nous sommes déjà largement étendus sur le retrait et la déformation lente. Le processus physique de la déformation lente est resté inexpliqué jusqu'à ce jour. Entre autres on ne sait pas si les deux phénomènes s'influencent mutuellement et si, à part les relations qui existent, la chaleur ne joue pas un rôle important. C'est là une grande lacune dans notre connaissance des propriétés du béton. J'ai publié un travail³ concernant l'influence de ces phénomènes sur les arcs de béton armé et j'ai donné une nouvelle méthode de calcul.

Il est important de tenir compte de la compression plastique des culées car elle s'effectue dans la direction des forces et parce qu'elle augmente la portée. Ce raccourcissement des culées ne sera appréciable que lorsque celles-ci ne se trouvent

¹ Eng. News-Rec. 1935/I, p. 424.

² Eng. News-Rec. 1936/I, p. 693.

³ Dr. Ing. A. Hawranek: "Zukunftsfragen des Baues weitgespannter Eisenbeton-Bogenbrücken mit besonderer Berücksichtigung der Plastizität des Betons". Beton und Eisen 1937, fasc. 2.

pas dans des eaux souterraines et qu'elles ont des dimensions importantes. Dans les arcs avec articulations éloignées des culées il faut tenir compte, dans la détermination du raccourcissement plastique, non seulement de la compression plastique de l'arc mais encore de celle de toute la partie comprise entre les articulations et le sol de fondation.

III. Précontrainte des armatures dans les arcs de béton armé.

Par suite du retrait et de la partie de la déformation lente qui n'est pas purement plastique, le béton est soumis à des contraintes de traction et l'armature à des contraintes de compression même sous l'effet des purs raccourcissements plastiques. Si l'on n'élimine que partiellement ces contraintes résiduelles par un procédé de décoffrage avec vérins hydrauliques ou si l'on ne veut pas employer ce procédé pour des ponts de petite portée, il est toujours possible de les réduire ou de les éliminer par une mise en tension préalable des armatures, ainsi que nous l'avons dit dans notre rapport.

Dans ce cas, les armatures doivent être continues sur toute la longueur de l'arc. Il faut assembler par soudage les différents tronçons et réaliser la précontrainte à l'aide de manchons à vis. Les fers sont ancrés sur une certaine longueur dans les culées et on leur donne des appuis intermédiaires, représentés soit par des blocs de béton déjà durci, soit par des treillis métalliques qui reposent sur le coffrage et qui garantissent un appui exact et régulier des fers. Ces appuis, distants de 10 à 15 m doivent transmettre au coffrage la compression engendrée par la précontrainte des fers. Dans les arcs à section creuse, les cloisons intermédiaires peuvent remplir cette fonction. Les manchons à vis peuvent être placés dans les joints ménagés lors du bétonnage, on peut ainsi régler la précontrainte pour les voussoirs à bétonner quoique la mise en tension ait déjà été effectuée sur toute la longueur.

Si l'on veut introduire dans les fers une traction de 1000 kg/cm², il faut les allonger de 4,76 cm pour une longueur de 100 m.

Une telle mise en tension préalable transformerait la courbe régulière des armatures en un polygone, réduirait le moment d'inertie aux pliures et aurait pour conséquence un recouvrement variable des fers lorsque l'arc n'est pas luimême polygonal. Pour assurer la stabilité des tronçons de l'armature placée à l'extrados on peut introduire des étriers métalliques.

L'emploi de ce procédé nous permet d'utiliser dans la plupart des cas l'acier de construction ordinaire.

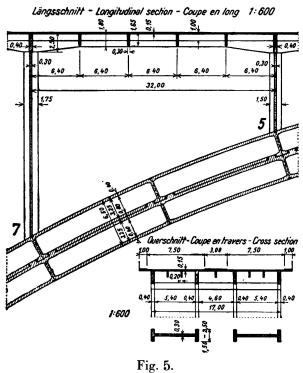
Même lorsque l'on emploie une armature rigide on peut engendrer ces efforts de traction, inégaux peut-être à l'intrados et à l'extrados, en introduisant des coins entre les arcs métalliques et l'échafaudage.

Dans les arcs articulés on peut réalisér cette mise en tension préalable en fixant provisoirement les fers dans les culées et éventuellement à la clé; on pourra toujours couper les fers aux articulations après le bétonnage.

Le point de vue économique décidera de l'emploi de ce nouveau procédé ou de son abandon avec utilisation d'acier à haute résistance.

IV. Projet d'un arc de 400 m de portée.

Dans notre rapport nous avons exposé un projet nouveau pour la construction des ponts en arc de grande portée (fig. 5, p. 818).



Construction du tablier.

La nouveauté de ce projet consiste en ce que l'arc principal se compose de deux arcs superposées, l'arc inférieur étant construit sur un échafaudage. Une fois cet arc terminé on le décoffre suivant un procédé permettant, à l'aide de vérins hydrauliques, de supprimer complètement les contraintes de retrait et les affaissement provenant de la déformation lente.

Sur cet arc jouant le rôle d'échafaudage on construit le second arc. On relie alors les deux arcs afin qu'ils travaillent en collaboration. Les coupes en long et en travers du tablier ainsi que des montants sont représentées à la fig. 5.

Nous allons ci-dessous compléter nos explications et améliorer notre projet.

1º — La liaison des deux arcs superposés.

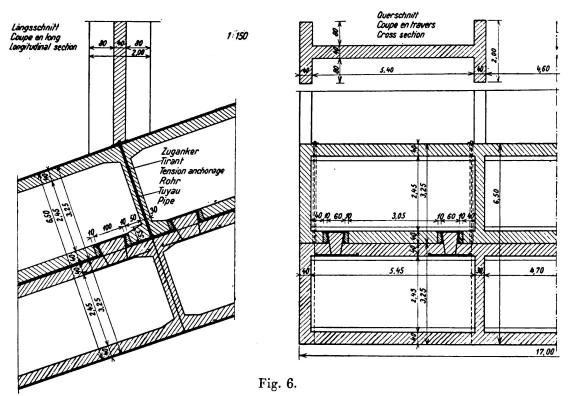
Ainsi que le montre la fig. 6, la liaison des deux arcs est réalisée par des «goujons» en forme de queue d'hirondelle non seulement en plan mais encore en coupe. Cette disposition empêche tout décollage des deux arcs car le coin est armé. Ces coins empêchent le soulèvement de l'arc supérieur. Les goujons ont été placés aux environs des raidisseurs transversaux et les plaques ont des goussets en ces endroits, il n'y a donc pas de danger que la plaque ne cède. A titre de sécurité on a encore prévu des tirants qui traversent les deux arcs. Ces tirants sont bétonnés dans l'arc inférieur et sont placé dans des tuyaux d'acier dans l'arc supérieur. Le jeu des tirants à l'intérieur des tuyaux permet le réglage des arcs au moyen de vérins hydrauliques. L'état définitif atteint, on peut couler du mortier de ciment dans les tuyaux et l'on peut serrer les vis placées à l'extrémité des tuyaux.

La construction du tablier ne facilitera pas le décollage des arcs, bien au contraire l'effet du retrait et de la déformation lente, qui est plus grand dans l'arc supérieur que dans l'arc inférieur éliminera tout décolage.

On peut donc être certain que les charges futures (poids de la superstructure) ou le retrait plus grand de l'arc supérieur provoqueront non seulement l'appui de l'arc supérieur sur ses culées mais en outre agiront de telle sorte que l'arc supérieur reposera élastiquement sur l'arc inférieur. On peut calculer les réactions réciproques ainsi que les moments additionnels.

Au point de vue constructif, on peut encore développer cette idée de liaison surtout pour obtenir un plus grand moment d'inertie de l'arc inférieur en construisant des nervures supérieures ou des parois verticales qui seront ensuite bétonnées dans l'arc supérieur.

En outre, on pourrait partager en deux, dans le sens longitudinal, l'arc portant et relier des deux arcs par des parois, lorsque la sécurité au flambage latéral le permet. On pourrait ainsi employer deux fois, en tout ou en partie, l'échafaudage



Liaison des deux arcs.

construit pour le premier arc. Les arcs fortement surbaissés permettent de réaliser une économie dans les échafaudages.

Dans la Publication Préliminaire nous n'avons donné que les principes de ce projet.

2³ — L'échafaudage.

Nous allons exposer ici le calcul et l'exécution complète des échafaudages (fig. 7). L'échafaudage fixe se compose de 4 poutres principales disposées au droit des parois verticales de l'arc et reposant sur les pylônes au moyen de vérins hydrauliques. Les poutres métalliques qui supportent le coffrage reposent sur des entretoises. Ces dernières reposent directement sur les 4 poutres principales dans la partie fixe de l'échafaudage tandis que dans la partie centrale elles sont suspendues aux câbles à leurs extrémités. Lorsque le pont est large, des poutres à âme pleine double sont nécessaires. Ces poutres sont reliées entre elles par des poutres réticulées verticales fixées à leurs extrémités et par des contreventements. L'échafaudage possède ainsi une rigidité suffisante (fig. 8).

Au lieu de deux câbles principaux il serait préférable d'en employer trois ou quatre plus faibles, ce qui permettrait de réduire le poids des entretoises et des contreventements ainsi que le poids des câbles, car la portée des entretoises est de cette façon fortement réduite. On peut se servir des pylônes soutenant l'échafaudage fixe pour appuyer les câbles.

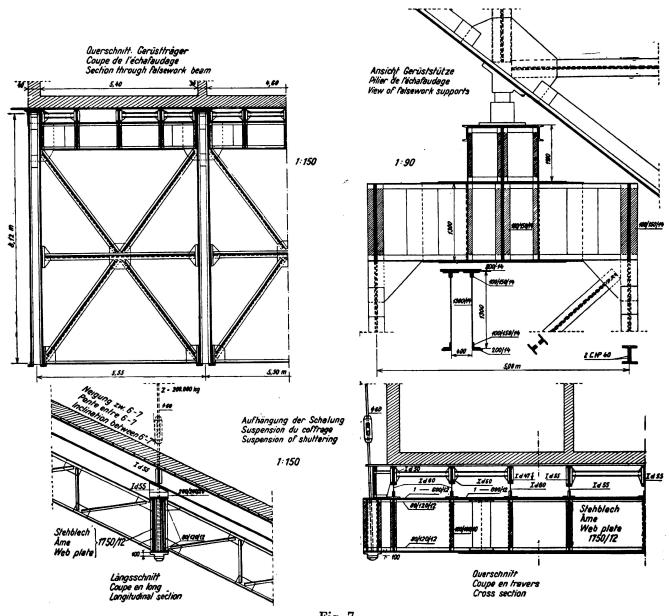


Fig. 7.
Coffrage et échafaudage.

Le poids d'un arc de béton armé, du coffrage, des entretoisements longitudinaux et transversaux, des câbles et des suspentes se monte à g'=55 t/m, ce qui représente une réaction total sur les pylônes de P=11500 t. Les câbles de retenue sont soumis à une force R=10500 t et l'effort maximum que supportent les câbles dans l'ouverture centrale se monte à S=6800 t. La fig. 8 indique les forces et les réactions agissant sur un câble.

Pour une sollicitation admissible de 7000 kg/cm², la section des câbles, lorsque l'on n'a que deux câbles, est de $f_r = 1500$ cm² dans les ouvertures latérales et $f_s = 972$ cm² dans l'ouverture centrale.

Le poids total de l'échafaudage métallique est le suivant:

Pylônes							
Echafaudage							
C						•	 3450 t

Par rapport au cube total $^2/_3$ f·l·b = $480\,000$ m³ on a donc un poids d'échafaudages de 3450 t: $480\,000$ m³ = 0.0072 t/m³.

Au pont de Traneberg, l = 181 m, le poids de l'échafaudage était de 948 t, la largeur totale est de 18 m, le cube est donc de

$$^{2}/_{3} \times 181 \times 26.2 \times 18 = 56\,000 \text{ m}^{3}$$

et le poids unitaire de 0,0167 t/m³. Quoique l'échafaudage que nous projetons s'étende sur toute la largeur du pont, le poids spécifique est plus petit que la moitié, exactement 0,43 fois celui du pont de Traneberg qui fut employé deux fois. Voilà donc une preuve de l'économie de notre projet.

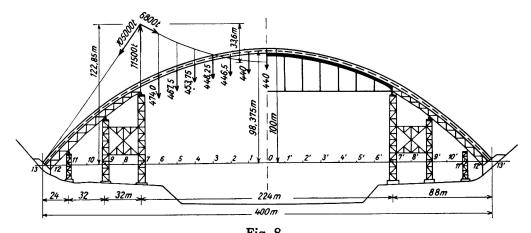


Fig. 8.

Forces agissant sur un câble porteur.

On peut évaluer comme suit le coût de l'échafaudage:

					K	(1 =	= :	11.95	millions	Kč
1100 t à 5	6000 K č	٠		•				5,50	millions	Kč
2150 t à 3	3000 K č					•		6,45	millions	Κč

tandis qu'il se montait au pont de Traneberg à 744 000 couronnes suèdoises \times 6,55 = K_2 = 4,83 millions Kč. Le rapport des prix K_2 : K_1 = 0,405, ce qui correspond au rapport des poids 0,43. Il serait possible de réaliser d'autres économies en employant deux fois les échafaudages, mais nous n'en avons pas tenu compte ici.

Pour des arcs assez surbaissés on pourrait incliner vers l'extérieur les pylònes de suspension du coffrage ce qui permet d'avoir des forces égales dans le càble de retenue et dans le càble de l'ouverture centrale. L'avantage serait que la section du câble pourrait rester la même sur toute la longueur. La disposition du câble sur le pylône serait également simplifiée car dans ce cas il suffit de

plier le câble à section constante. Cependant, l'emploi d'un pylône incliné nécessite la construction d'une contre-fiche inclinée servant d'appui à l'échafaudage fixe.

Il est finalement possible de remplacer la construction suspendue par un arc métallique avec tirant de 224 m de portée (fig. 8). Dans le cas de deux arcs adjacents on pourrait aussi déplacer cet arc métallique sur son échafaudage. Il serait possible de déplacer et cet arc et l'échafaudage lorsque la portée n'est pas trop grande, ce qui permettrait de réaliser une économie importante.

3° — L'emploi de matériaux.

Les quantités nécessaires de béton sont:

pour	l'arc			•					$15650\;{ m m}^3$
pour	les parois de l'arc		•						610 m^3
pour	la superstructure			•	•				$5690~\mathrm{m}^3$
						au	tota	al	$21950~{\rm m}^3$

ce qui représente 0,0456 m³ par m³ de volume bâti sans les culées (projet Dischinger 20 800 m³, c'est-à-dire 0,0434 m³ par m³ de volume bâti).

Pour une puissance de 100 m³ par jour, la construction de l'arc demande 156 jours de travail, c'est-à-dire 3 mois environ par arc.

4040 m³ de bois sont nécessaires pour les coffrages.

4° -- Moments, efforts normaux et contraintes.

Le calcul statique fournit les moments et efforts normaux donnés aux tableaux I et II en introduisant dans le calcul de l'arc une charge accidentelle de

Tableau I.
Moments en tm.

	Point 0 Clé	3	6	9	13 naissance
Poids propre du tablier et de ses colonnes, sans l'arc	— 13260	— 240	+ 4520	+ 10860	— 21960
Surcharge agissant sur la moitié de l'arc p = 6 t/m	+ 404	+ 8090 7234	+ 8306 8506	+ 1604 - 2908	— 12554 gauche + 14804 droite
Température ± 15 °C E $= 210000 \text{ kg/cm}^2$	∓ 1920		+ 746		± 3420
Retrait — 15 ° C	+ 1920		+ 746		— 3420
Somme $\sum_{1=3}$	— 14776				— 41354
Moment résultant du vent, flexion	± 10780		<u>+</u> 937		± 53723
Moment résultant du vent, torsion	0		<u>+</u> 3522		± 3295

6 t/m, une variation de température de $\pm 15^{\circ}$ C et un retrait correspondant à une variation de température de -15° C. La pression du vent a été comptée à 250 kg/m^2 .

	Tak	oleau II	.•	
Efforts	normaux	en t	(Compression	=-).

			` •	<u> </u>	
	Point 0 Clé	3	6	9	13 naissance
Poids propre d'un seul arc	— 8760	— 9000	— 9780	— 10730	12800
Poids propre du tablier et des colonnes	— 5367	— 5544	— 5818	— 7050	— 8400
Surcharge agissant sur la moitié de l'arc p = 6 t/m	— 608	- 604 - 644	— 694 — 649	— 862 — 629	— 1125 — 600
Température ± 15 ° C	∓ 53,3		= 48,7		- 35,9
Retrait — 15° C	+ 53,3		+ 48,7		+ 35,9

Ces moments et ces efforts normaux donnent aux points 0, 6, 13 les contraintes maxima indiquées au tableau III. On y a tenu compte du poids propre, de la surcharge agissant sur une moitié, d'une chute de température de -15° C et d'un retrait correspondant à -15° C.

Tableau III. Contraintes maxima dans le béton de l'arc, en kg/cm².

Point	Poids propre Demi-surcharge Température — 15° C Retrait — 15° C	Vent 250 kg/m²	Sans réglage. En tout	Avec réglage au moyen de vérins H _z == 280 t
0 (Clé)	86,7 Compr. 30,5	= 9,6	96,3 Compr.	97,1 Compr.
6	9 2 ,9 39 ,9 Compr.	= 0,84	93,7 Compr.	106,0 Compr.
13 . (naissance)	166,1 13,1 Compr.	<u>+</u> 48,0	214,1 Compr.	163,4 Compr.

Si l'on veut réduire la contrainte maxima de $214.1~kg/cm^2$ aux naissances, il faut introduire à la clé une force supplémentaire H_z au moyen de vérins hydrauliques. Le moment M_1 engendré par cette force aux naissances est:

$$M_1 = H_z \cdot f = 100 H_z$$

et l'effort normal

$$N_{z} = H_{z} \, \cos \phi_{K} = 0.672 \, \cdot H_{z}.$$

Si l'on pose la condition que les contraintes maxima doivent être égales dans les deux naissances pour le poids propre, la demi-surcharge, une chute de température de -15° C et un retrait correspondant à -15° C, on peut poser les équations suivantes pour une pression centrée à la clé, lorsque M_1 est négatif et M_2 positif:

$$\frac{N_{1} + N_{z}}{F} + \frac{M_{1} - H_{z}f}{W} = \frac{N_{2} + N_{z}}{F} + \frac{M_{2} - H_{z}f}{W}$$

$$H_{z} = \frac{W}{2f} \left(\frac{N_{1} - N_{2}}{F} + \frac{M_{1} - M_{2}}{W} \right)$$

et

 N_1 et M_1 sont pour la naissance de gauche et N_2 et M_2 pour la naissance de droite. Les moments négatifs aux naissances sont à introduire avec leur valeur absolue.

$$\begin{array}{lll} \text{Pour} & \text{M}_1 = -\,41\,354 \text{ tm,} & \text{N}_1 = 35\,053,\!2 \text{ t} \\ & \text{M}_2 = -\,13\,996 \text{ tm,} & \text{N}_2 = 34\,528,\!2 \text{ t} \\ & \text{F} = 39,\!1 \text{ m}^2, & \text{W} = 54 \text{ m}^3 \end{array}$$

et si l'on choisit $H_z = 280 t$

les plus grandes contraintes qui se présentent sont à la clé, elles sont de 115.4 kg/cm^2 et, avec le vent, de $115.4 + 48 = 163.4 \text{ kg/cm}^2$. L'armature de l'arc ne se monte pour cela qu'à 1%. Toutes les autres contraintes sont plus faibles. Elles sont de 97.1 kg/cm^2 à la clé et de 106 kg/cm^2 aux reins, y compris l'effet du vent. Le réglage permet donc de réduire la plus grande contrainte sans vent de 30.5% et avec vent de 23.6%.

On pourrait réduire les contraintes de compression du béton en élargissant légèrement l'arc aux naissances de telle sorte que la contrainte maxima soit de 150 kg/cm^2 , vent y compris ou encore, sans élargissement de l'arc, en choisissant un $H_z = 340$ t. Avec une telle force horizontale supplémentaire, les contraintes dans les fibres extrêmes seraient égales aux naissances et aux reins.

Nous avons ainsi démontré qu'il est possible de construire avec une compression maxima dans le béton de 150 kg/cm² un arc relativement élancé à section constante et qu'une pression très moyenne de 340 t à la clé suffit lors du décoffrage.

Ce nouveau projet de construction des ponts à grande portée, tout-à-fait justifié par des chiffres, peut donc être considéré comme une méthode de construction adéquate qui permettra le développement des ponts en arc de béton armé.

IVb8

Le calcul des ponts en Albanie.

Über Brückenprobleme in Albanien.

Bridge Problems in Albania.

G. Giadri, Ingenieur, Generalsekretär des Arbeitsministeriums Tirana.

Nous parlerons ici de l'étude statique spéciale d'un pont de béton armé encastré, d'une portée de 55 m, construit à Gomsice, en Albanie du nord, et ouvert au trafic en 1935 (fig. 10). Les principaux ouvrages de l'Albanie ont été projetés par les Ingénieurs du Ministère des Travaux publics mais dans le cas considéré ici, le Bureau de statique n'a fait que contrôler les plans, présentés par une entreprise italo-albanaise, ainsi que la résistance de l'ouvrage.

Nous montrerons en outre comment le Bureau de statique a résolu le problème par une méthode partiellement personnelle.

La détermination des grandeurs hyperstatiques de l'arc encastré s'est effectuée en utilisant simultanément deux systèmes de référence: la poutre encastrée d'une part et l'arc à deux articulations d'autre part.

La connaissance des lignes d'influence des moments M_{oa} et M_{ob} de la poutre encastrée et de la poussée horizontale H_o de l'arc à deux articulations permettait de déterminer sans autre les lignes d'influence des moments aux naissances M_a et M_b et de la poussée horizontale H de l'arc encastré. Cette méthode dispensait du calcul du centre de gravité des poids élastiques.

Le premier pas pour la détermination de M_{oa} et M_{ob} était la détermination du moment M_{β} de la poutre reposant sur un appui simple d'une part et encastrée d'autre part. Ce premier pas se fait d'après le schéma connu, en supprimant l'encastrement puis en calculant la ligne élastique de Maxwell-Mohr à partir des ordonnées de charge $\frac{x}{l} \cdot \frac{1}{J}$ engendrées par la force auxiliaire $M_{\beta} = 1$ au bout des x_s et en divisant par la réaction élastique à l'encastrement supprimé (fig. 4).

 x_s correspond à l'élément d'arc sur la distance x de l'appui de gauche au point d'application de la charge (fig. 2). A partir de M_{α} , le symétrique de M_{β} , et de M_{β} , le Bureau de statique a construit d'une manière simple les lignes d'influence de M_{oa} et M_{ob} de la poutre encastrée.

Il est important pour cela de connaître les angles de la tangente aux lignes d'influence M_{α} et M_{β} au droit des appuis (fig. 4). En chargeant les angles d'influence τ avec les moments M_{oa} et M_{ob} de la poutre encastrée, on obtient M_{oa} et M_{ob} aux encastrements de droite et de gauche.

La condition d'équilibre $\Sigma M = 0$, fournit à droite la relation $M_{ob} = M_{\beta} - M_{oa} \cdot \tau$

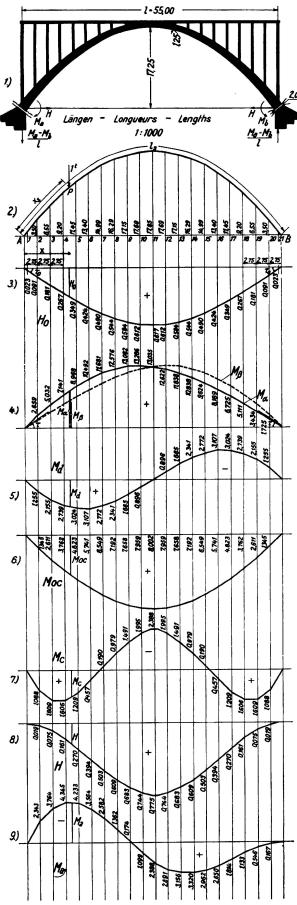


Fig. 1-9. Lignes d'influence des grandeurs hyperstatiques H, M_{th} und M_{b} .

et à gauche la relation $M_{oa} = M_{\alpha}$ — $M_{ob} \cdot \tau$. En résolvant ces deux équations par rapport à M_{oa} et M_{ob} et en introduisant les relations $M_{oc} = \frac{M_{oa} + M_{ob}}{2}$ et $M_{od} = \frac{M_{oa} - M_{ob}}{2}$, on obtient $M_{oc} = \frac{M_{\alpha} + M_{\beta}}{2(1 + \tau)}$ et $M_{od} = \frac{M_{\alpha} - M_{\beta}}{2(1 - \tau)}$.

A l'aide de ces expressions simples on a calculé les lignes d'influence de Ma et Mb de l'arc encastré sans employer d'autres surfaces de charge que celles qui étaient nécessaires à la détermination des moments engendrés dans la poutre par la poussée horizontale Ho de l'arc à deux articulations. L'expression $M_{od} = M_d$ permettait déjà de calculer l'influence d'une surcharge agissant sur la moitié de l'arc encastré. $M_d = \frac{M_a - M_b}{2}$ agit pour soi et n'engendre aucune poussée horizontale aux endroits articulés d'un arc à deux rotules. On pouvait donc séparer M_d de $M_c = \frac{M_a + M_b}{2}$ qui engendre une poussée horizontale (fig.5).

Le problème se limitait donc à l'étude d'un système deux fois statiquement indéterminé. Le système de référence était un arc à deux articulations. L'angle de départ vo de la ligne d'influence de la poussée horizontale H_o jouait un rôle analogue à celui de l'angle de départ \u03c4 de la ligne d'influence de M₃ (fig. 3). En faisant agir aux articulations de l'arc à deux rotules les grandeurs hyperstatiques H et M_c et en égalant les forces horizontales agissant à une articulation on a obtenu la relation $H = H_o - M_c \cdot 2 \tau_o$ d'où l'on

pouvait tirer la ligne d'influence de la poussée horizontale H. La ligne d'influence de M_c fut ainsi rapidement établie. A l'aide de la relation $X_c = M_a + M_b$ et en introduisant aux articulations, à droite et à gauche, $M_c = -\frac{1}{2}$, engendrée par la force auxiliaire $X_c = -1$, on a obtenu l'équation

$$M_{c} = + rac{1}{2} \, \cdot \, rac{\int \left(rac{1}{2} - au_{o} \cdot y
ight) rac{M_{o} \, \mathrm{ds}}{J}}{\int \left(rac{1}{2} - au_{o} \cdot y
ight)^{2} rac{\mathrm{ds}}{J}}$$

où $\int\!\!\left(\!\frac{1}{2}-\tau_o\cdot y\right)^2\frac{\mathrm{d}s}{y}$ était identifié à la constante $\delta_{cc}.$

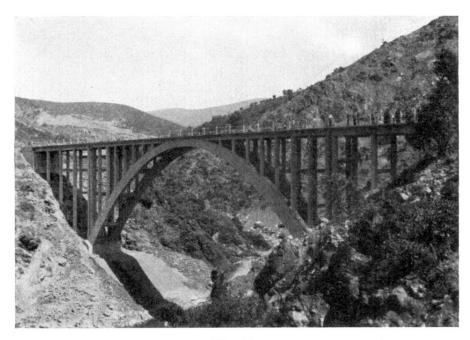


Fig. 10.

Pont de Gomsice.

Séparons en deux le numérateur et introduisons $M_{oc} \cdot \delta_{zz} = \int \frac{M_o \cdot ds}{J}$ et $H_o \delta_{hh} = \int \frac{y \cdot M_o \cdot ds}{J}$, M_c devient une fonction de valeurs connues.

On obtient

$$M_{c} = \frac{M_{oc} \cdot \delta_{zz}}{4 \, \delta_{cc}} - \frac{H_{o} \cdot \tau_{o} \cdot \delta_{hh}}{2 \, \delta_{cc}}.$$

On tire les constantes δ_{zz} et δ_{hh} de $\int \frac{ds}{J}$ et de $\int y^2 \frac{ds}{J} + \int \frac{ds}{F}$ (fig. 7). L'influence des efforts normaux est prise en considération grâce à $\int \frac{ds}{F}$. Dans les numérateurs des grandeurs hyperstatiques on a négligé l'influence des efforts normaux car le pont a une flèche de 17,85 m. Finalement on a pu déterminer à partir de

 $M_c + M_d$ la ligne d'influence du moment hyperstatique M_a . La ligne d'influence de M_b est symétrique à celle de M_a par rapport à l'axe (fig. 9).

L'influence d'une variation de température $t=\pm 20^o$ était facile à calculer à partir de δ_{hh} , δ_{cc} et $E \omega t l$.

Le Bureau de statique voulait tirer de cette théorie un jugement direct sur le comportement statique de l'arc. Le calcul de l'arc encastré d'après la méthode usuelle est tout aussi simple mais exige le calcul des moments dans la poutre pour trois surfaces de charge. Le calcul des trois grandeurs hyperstatiques indépendantes les unes des autres est lié à la condition de la disparition des déplacements ayant des signes différents. Cette condition impose une quatrième opération, le calcul du centre de gravité des poids élastiques. Les grandeurs hyperstatiques dépendent d'équations générales qui ne permettent pas une résolution directe. En limitant le calcul des moments dans la poutre à deux surfaces de charge et en éliminant le calcul du centre de gravité des poids élastiques, le Bureau de statique du Ministère albanais des Travaux publics pense avoir trouvé une méthode simplifiée de calcul des lignes d'influence des grandeurs hyperstatiques de l'arc encastré.

Nous devons encore dire que le Bureau de statique a établi des formules propres pour le calcul de la poutre continue. Ces formules permettent de calculer très simplement les lignes d'influence des moments aux appuis des poutres continues à trois et quatre champs pour autant que l'on connaisse la ligne d'influence du moment sur appui de la poutre continue à deux champs. Cette méthode a été employée pour la résolution de différents problèmes de béton armé. Elle s'est montrée avantageuse car elle permet de tenir très facilement compte de la variation des moments d'inertie et parce qu'elle dispense de l'emploi des tables, très utiles mais peu instructives.

IVb9

Inconvénients des constructions minces en béton armé.

Nachteile der dünnen Eisenbetonkonstruktionen.

Disadvantages of Thin Construction in Reinforced Concrete.

J. Killer, Baden (Schweiz).

Au cours de ces dernières années on a construit un grand nombre de ponts en béton armé, souvent de grande portée. Une partie de ces ponts possède des éléments très exactement dimensionnés comme par exemple des parois portantes de 10 cm et des voûtes de 20 cm et moins. Il s'agit ici des arcs à multiples articulations ou des parois des sections en forme de caisson des ponts en arc ordinaires. Il est très intéressant d'exécuter des ouvrages avec un emploi aussi faible que possible de matériaux; cependant les sections trop légères ne sont pas toujours avantageuses dans les constructions de ponts. Les exigences statiques ne jouent pas seules un rôle car l'ouvrage est exposé aux influences extérieures telles que les intempéries et le gel. De même que les pierres naturelles se détériorent avec le temps, ainsi le béton, qui ne possède pas toujours les qualités d'une bonne pierre, est à la merci des influences extérieures. Nous ne devons pas oublier qu'il n'existe aucun béton absolument résistant au gel car le béton le plus compact contient un certain pourcentage de pores dans lesquels l'eau peut s'infiltrer et provoquer des dommages en cas de gel. Si l'on pense encore que les ponts franchissent souvent des vallées profondes où ils sont tout spécialement exposés au vent, à la pluie et à la neige, il faut attacher une attention toute spéciale à ces influences extérieures lors du dimensionnement. Il existe des ponts qui, jusqu'à présent, ne présentent aucune détérioration due au gel, mais ce n'est pas une raison pour conclure que le gel ne cause aucun dégât aux ponts. Nous ne pouvons pas encore savoir comment le béton se comporte avec l'âge et comment se fera sentir la fatigue, car l'emploi du béton est encore trop récent pour pouvoir tirer des conclusions. Il est recommandable par conséquent de dimensionner avec le plus grand soin et même un peu trop fortement les constructions de béton armé soumises à de hautes sollicitations. Si par hasard le gel cause des détériorations dans les éléments de construction très minces, une réduction d'épaisseur de quelques centimètres seulement peut suffire pour mettre en danger la résistance du pont. Il est très difficile, pour ne pas dire impossible, de réparer de tels dommages et tout spécialement dans les éléments portants de la voûte. Pour cette raison il ne faudrait pas dimensionner trop faiblement la voûte, surtout si l'on tient compte du fait que le pont peut avoir à supporter dans la suite une charge utile plus grande que celle admise dans le calcul. Les ponts sont des

ouvrages d'art qui subsistent plusieurs siècles lorsque les matériaux employés sont de bonne qualité.

En outre, les constructions auxiliaires telles que les échafaudages, les coffrages, etc. des constructions fortement sollicitées coûtent beaucoup plus cher que le béton lui-même, c'est donc une raison pour ne pas économiser le béton. D'autre part, le prix unitaire du béton est plus élevé dans les constructions légères que dans les constructions massives car le coût des installations telles que les ponts transporteurs, les grues, les malaxeurs, etc. reste le même. La préparation du béton demande aussi beaucoup plus de travail dans une construction légère. Nous savons actuellement qu'un béton très liquide, tel qu'il est employé dans les constructions minces, est beaucoup moins résistant au gel; c'est là une raison de plus pour ne pas dimensionner trop exactement les éléments des ponts.

Avec la mécanisation toujours plus poussée des chantiers, il est possible de préparer le béton à très bon marché, tandis que l'érection de l'échafaudage et du coffrage reste un pur travail manuel. Lorsque les salaires augmentent, le coût de l'échafaudage et du coffrage augmente par rapport au coût total de la construction tandis que le coût du béton diminue. Il est très intéressant de constater que le coût des parties permanentes par rapport au coût total est plus faible dans les constructions à parois minces fortement sollicitées tandis que le coût des installations auxiliaires, nécessaires à la construction, est important et tend à augmenter pour les raisons que nous venons d'indiquer. Cela nous montre que, dans les ponts, il faut donner la préférence aux constructions massives. Les constructions légères sont aussi beaucoup plus sensibles aux vibrations et aux oscillations. A ce point de vue, nous pouvons beaucoup appendre des anciens maîtres de la construction des ponts qui se sont attachés à donner une force suffisante aux éléments principaux des ouvrages.

Les constructions légères et fortement sollicitées contribuent puissamment au développement des ouvrages; elles n'ont cependant pas leur place dans la construction des ponts car le gel peut leur faire subir de graves détériorations.

IVb 10

Progrès de l'architecture des ouvrages d'art en béton armé.

Fortschritte der Architektur der Kunstbauten in Eisenbeton.

Progress in the Architecture of Reinforced Concrete Structures.

S. Boussiron,
Paris.

A très juste titre plusieurs orateurs de la construction métallique ont fait ressortir les efforts qui se poursuivent pour fixer l'architecture de leur matériau.

Fort judicieusement ils ont souligné l'intérêt que présente à cet égard la collaboration de l'ingénieur et de l'architecte.

Certes, pour la construction métallique qui peut fêter son centenaire, les exemples abondent de beaux ouvrages dus à cette collaboration, même dès l'origine, mais la recommandation demeure toujours d'actualité, surtout à l'heure où apparaît nettement le succès des efforts faits pour fixer le style de notre époque, alors que presque un siècle s'est écoulé sans laisser le souvenir d'une particularité architecturale; à l'heure aussi où le développement du tourisme, où l'invitation plus pressante à jouir des beautés de la nature s'accomoderaient mal d'une négligence dans tout ce qu'il faut faire pour en faciliter l'accès.

Le béton armé devait faire l'objet des mêmes préoccupations et peut-être mème d'une manière plus heureuse en raison de la facilité avec laquelle il peut épouser les formes et les profils que l'ingénieur et l'architecte jugent le mieux convenir aux circonstances.

Les ouvrages qui sont cités par les divers rapporteurs des tendances actuelles dans les grands ouvrages en béton armé témoignent tous des recherches ayant les mêmes mobiles.

Il se trouve cependant que, en grande majorité, leurs exemples se réfèrent à des arcs en dessous. Cette majorité n'a rien qui doive nous étonner; elle est des plus légitimes. Toujours il faudra rechercher cette solution qui place le tablier de circulation au-dessus du gros oeuvre de manière que rien ne fasse obstacle à la vue du paysage. Au demeurant, l'attrait permanent de ces ouvrages est leur ressemblance avec les beaux ponts en maçonnerie que les siècles nous ont légués. Les plus grands d'entre eux et aussi les plus beaux, le pont sur l'Elorn à Plougastel de Monsieur Freyssinet, le pont de Traneberg à Stockholm de Monsieur Kasarnowsky tirent le mieux de leur beauté d'apparaître comme une amplification d'arches en maçonnerie.

Les ingénieurs sont moins heureux, qui ont à traiter un problème dont les données de passage libre et de tirant d'air imposent forcément la solution du type d'arcs au-dessus du tablier.

Fort heureusement, les cas sont rares où cette solution s'impose intégralement pour contraindre au bow-string; c'est alors que, dans l'étude du tracé général de la voie, l'esthétique n'a pas compté.

Des ressources pourront presque toujours être laissées à l'ingénieur, à l'architecte par la possibilité d'une légère surélévation du tablier au-dessus des naissances de manière à ne pas cesser d'accuser la butée des arcs sur les culées.

La construction d'un pont de 161,00 m de portée sur la Seine à La Roche-Guyon m'a fourni l'occasion de poursuivre mes recherches en vue d'améliorer l'esthétique de ce type d'ouvrage. Ce n'est qu'à ce point de vue que je traite ici cette question puisque les développements théoriques et constructifs se trouvent dans le mémoire général.

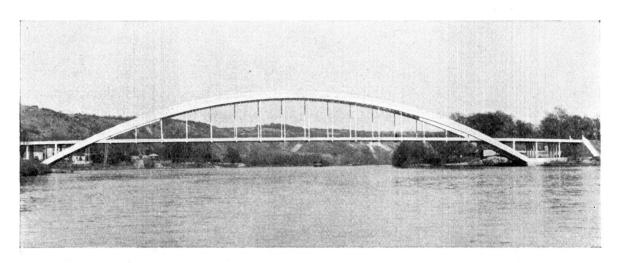


Fig. 1.

Pont sur la Seine, à La Roche-Guyon. Portée: 162 m.

D'abord, le type de pont (fig. 1). A mon sens, la meilleure position du tablier coupant l'arc, place deux tiers de sa flèche au-dessus et un tiers au-dessous. On voit de combien peu cette solution empiète sur le tirant d'air et, comme je le disais à l'instant, les cas seront très rares où cet empiètement ne pourra ètre admis.

Volontairement, l'arc a été fait très mince, l'élancement est je crois le plus grand qui ait été atteint puisque la hauteur moyenne de la section est le ¹/₈₀ de la portée: 2,00 pour 161,00 m.

Dans ce type d'ouvrage plus rapproché de la construction métallique que de la maçonnerie, la légèreté est ce qui convient le mieux pour bien accuser les propriétés du béton armé. Elle convient aussi pour réduire au minimum l'obstacle à la visibilité aux intersections des arcs et du tablier.

Sur toute la longueur entre ces intersections, la visibilité est presque la même qu'avec un pont à arcs inférieurs car les suspentes légères espacées de 8,50 m ne sont que des obstacles infimes.

Le degré de légèreté s'aperçoit très bien sur la fig. 1.

Une autre question m'a longtemps obsédé dans la construction des ponts à arcs supérieurs, c'est celle du contreventement.

J'ai jugé d'un aspect fâcheux les grandes barres transversales, éléments de triangulation de diverses sortes. Elles m'apparaissent comme étant en discordance avec le sens général de l'ouvrage qui est d'inviter libéralement au passage.

Dans les ponts à grande portée, surtout, tous les éléments doivent s'élancer dans le sens de la portée.

Voici ce qui a été fait au Pont de La Roche-Guyon (fig. 2).

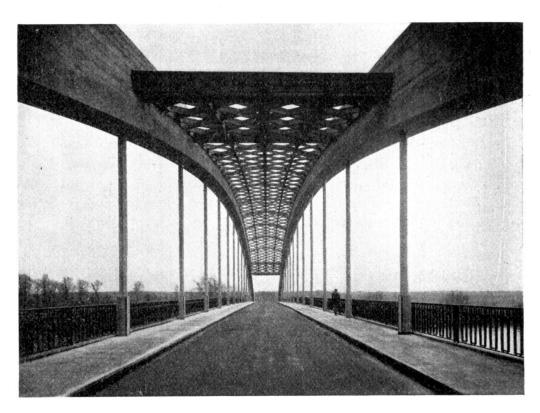


Fig. 2.

Assurément l'indéformabilité exige qu'il y ait des barres de treillis, mais ici la triangulation a été réalisée par des barres menues d'un treillis multiple rappelant plutôt le plafond ajouré que la poutre à treillis.

Au surplus, à part les deux premières entretoises formant portique d'entrée, on ne voit plus, sur toute la longueur, aucune barre transversale; le treillis est supporté par des arcs se poursuivant sur une longueur d'environ 100,00 m sans que rien ne contrarie leur élancement.

Certes, le moulage de ces barres de treillis est plus coûteux que ne le serait celui d'un nombre moindre de barres de plus forte section, mais la différence est peu de chose comparativement au prix de l'ouvrage d'une telle portée.

Je me garderai de prétendre que d'autres solutions ne pourraient pas réclamer le même mérite des recherches esthétiques; il m'a semblé cependant que l'A.I.P.C. verrait avec intérêt une preuve des efforts qui sont faits pour améliorer cette difficile solution des ponts en béton armé à arcs supérieurs.

La fig. 3 montre l'aspect de l'ouvrage dans le paysage environnant.

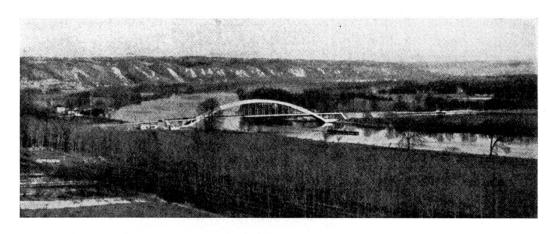


Fig. 3.

On reconnaîtra que, dans un ouvrage dont le degré d'élancement dépasse de beaucoup ce qui a été fait jusqu'ici, il était indispensable que le contreventement supérieur, dont je me serais bien privé si je l'avais pu, fut étudié de manière à n'être pas en opposition avec cet élancement.

IVb 11

Sur les ponts en arc avec suspentes obliques.

Über Bogenträger mit schräg gestellten Hängestangen.

On Arch Bridges with Inclined Hangers.

A. E. Bretting,

Oberingenieur i. Fa. Christiani & Nielsen, Kopenhagen.

Dans son très intéressant rapport sur les tendances actuelles dans la construction des grands ouvrages en béton armé, Monsieur *Boussiron* tire quelques conclusions avec lesquelles je ne suis pas entièrement d'accord.

Il compare l'arc autostable de la Roche Guyon avec l'arc à tablier porté par des suspentes obliques. Il pense que ce dernier type de ponts ne convient pas, pour différentes raisons, à des portées de plus de 150 m.

Il semble que Monsieur Boussiron n'a pas parfaitement saisi le mode d'action réel de ce système avec suspentes obliques. Il ne s'agit pas d'une poutre en treillis parabolique dans laquelle le treillis ne doit supporter aucun effort de compression, mais d'une construction en arc dans laquelle les moments sont fortement réduits par la disposition de suspentes obliques.

Le mode d'action de cette construction persiste même lorsque toutes les suspentes d'une direction n'agissent plus et même dans ce cas les moments sont beaucoup plus faibles que dans un arc ordinaire correspondant.

La Maison Christiani et Nielsen a exécuté un grand nombre d'arcs de ce genre; trois de ces ponts d'une portée de plus de 100 m existent ou sont en construction. L'exemple le plus important est le pont de Castelmoron dont parle Monsieur *Boussiron* dans son rapport.

Lors de l'établissement du projet de ces ponts, on a précisément constaté que l'arc avec suspentes obliques convient moins bien aux petites portées et n'est vraiment avantageux que pour les grandes.

Quand je dis que les arcs principaux du pont de Castelmoron — pont-route à gros trafic, de 143 m de portée et 8,5 m de largeur entre les axes des poutres-maîtresses — n'ont à la clé qu'une section de 100×120 cm, on ne pourra pas prétendre que l'on a atteint la limite de capacité du système.

On a souvent étudié pour certains cas spéciaux des projets de ponts de plus de 200 m de portée et rien ne s'oppose à la construction de portées plus grandes encore d'après ce système.

A côté de l'inclinaison des suspentes, le rapport de la charge utile au poids propre a une forte influence sur l'efficacité du système; elle est favorable lorsque le poids propre est grand et comme avec l'accroissement de la portée ce n'est pas la charge utile, mais le poids propre qui augmente, les conditions les plus favorables se présentent donc pour les grandes portées.

Contrairement à ce que pense Monsieur Boussiron, on ne réduira pas l'inclinaison des suspentes avec l'accroissement de la portée. Il existe au contraire une inclinaison optima de laquelle on ne s'écartera pas trop et pour les très grandes portées les suspentes se croiseront peut-être, ce qui est toujours possible mais ne s'est pas révélé nécessaire dans les ponts exécutés jusqu'à aujourd'hui.

Pour plus de détails, je renvoie le lecteur aux articles du *Dr. O. F. Nielsen*, inventeur du système, articles parus dans le 1^{er} et le 4^e volumes de « Mémoires » de l'Association Internationale des Ponts et Charpentes.

IVb 12

Application de la théorie de "l'élasticité à liaisons internes" à l'équilibre des arcs.

Anwendung der "Bindungs "Elastizitäts "Theorie" für das Studium der Bogen.

Application of the Theory of "Internal Elastic Bond" to the Equilibrium of Arches.

Prof. Ing. E. Volterra, Rome.

L'étude des déformations des solides élastiques peut être conduite d'une manière simple en partant, non pas des hypothèses spéciales sur les tensions (de Saint-Venant), mais des hypothèses spéciales sur les déplacements.

Dans bien des cas on peut supposer avec une grande approximation que les déplacements des corps élastiques s'effectuent comme si ces derniers étaient assujettis à des liaisons internes. L'introduction de ces liaisons réduit en partie la liberté du système. Cela produit une simplification importante au point de vue analytique, en ramenant les problèmes de l'élasticité à des équations différentielles ordinaires (au lieu des équations à dérivées partielles). En cela consiste la simplification de la nouvelle méthode. J'appelle cette méthode « méthode de l'élasticité à liaisons internes ». Elle est très utile pour l'étude des déformations des solides élastiques à axe rectiligne ou curviligne.

Les liaisons qu'on impose dans ce cas au solide élastique consistent en ce que les sections transversales (c'est-à-dire normales à l'axe) restent planes. Par conséquent chaque section plane est soumise à une déformation dans son plan et à un déplacement rigide.

Ainsi l'étude analytique des déformations se résume, dans le cas le plus simple d'un arc plan, à la résolution d'un système de quatre équations différentielles ordinaires avec quatre inconnues. Leur détermination nous donne les composantes du déplacement élastique.

Considérons le cas d'une poutre d'épaisseur constante ayant un axe rectiligne. Les équations différentielles correspondantes s'intègrent immédiatemment et l'on obtient l'effort tranchant et le moment fléchissant.

Supposons maintenant que la poutre à section constante possède un axe curviligne. On démontre alors qu'on peut calculer les déplacements en ajoutant à ceux qu'on obtient dans le cas d'un axe rectiligne des termes de correction où l'on tient compte de la courbure de l'axe.

Il est aussi possible d'étendre la solution au cas où l'épaisseur est variable en introduisant de nouveaux termes de correction.

Il est impossible d'exposer en peu de mots les détails du calcul. On les trouvera dans les Notes que j'ai publiées dans les « Rendiconti dell'Accademia dei Lincei » de Rome et dans les « Comptes Rendus de l'Académie des Sciences » de Paris. ¹

Les différents types d'arc que l'on rencontre dans la pratique, c'est-à-dire les arcs à axe circulaire, elliptique, parabolique, etc. rentrent tous dans la théorie dont je viens de donner un court aperçu.

¹ Voir E. Volterra: 1º Elasticità vincolata e sua schematizzazione matematica. Rend. Acc. R. dei Lincei, vol. XVI — série 6 — 2º semestre, fasc. 5 et 6 — septembre 1932. — 2º Questioni di elasticità vincolata: Iº Componenti di deformazione e potenziale elastico in coordinate qualsivogliono, id., id., vol. XX id., id. fasc. 11 — décembre 1934. — 3º Id., id., id.: IIº Forma appropriata del ds² e conseguenze del vincolo geometrico. Id., id., id., vol. XX id., id., fasc. 12 — décembre 1934. — 4º Id., id., id.: IIIº Espressioni della Θ e della Ψ nel caso generale. Le equazioni dell'elasticità vincolata pei solidi la cui fibra baricentrica è piana. Id., id., id.: vol. XXI, id., id., fasc. 1 — janvier 1935. — 5º Id., id., id.: IVº Significato del vincolo geometrico. Id., id., id. — Séance du 1 mars 1936. — 6º Sugli archi elastici piani: I. Le equazioni differenziali delle deformazioni. Id., id., id. — Séance du 15 mars 1936. — 7º Id., id., id.: II. Direttrice rettilinea. Id., id., id. — Séance du 5 avril 1936. — 8º Id., id., id.: III.Direttrice qualsiasi. Id., id., id., id. — Séance du 19 avril 1936. — 9º Sur la déformation des arcs élastiques. Comptes-rendus des séances de l'Académie des Sciences, t. 202, p. 1558.

Voir aussi E. Volterra: 10º Elasticità libera ed elasticità vincolata. Applicazioni del concetto di elasticità vincolata. «Comptes-rendus du Congrès International de Mathématique», Zurich, septembre 1932. — 11º Ricerche sugli archi elastici: Iº Metodo generale ed applicazione alle travi ad asse rettilineo. «Annali dei Lavori Pubblici», 1936 — XIV°.

IV b 13

Les portées théoriquement maxima des ponts en arc de béton armé.

Die theoretisch größtmöglichen Spannweiten von Eisenbetonbogenbrücken.

The Theoretical Maximum Spans of Reinforced Concrete Arch Bridges.

Dr. techn. F. Baravalle, Ingenieur im Stadtbauamt Wien.

L'Ingenieur S. Boussiron a calculé et représenté entre autres, dans son intéressant rapport de la Publication préliminaire, l'allure de la variation de la section moyenne d'un arc en fonction du taux de travail pour des arcs de béton armé de portées différentes mais de surbaissement constant $\frac{f}{l} = \frac{1}{5}$ (Publication préliminaire, p. 755, fig. 11). Les hypothèses introduites dans ses calculs sont représentées par les considérations théoriques qu'il indique $\left(l = \frac{\epsilon \cdot R^n}{e^{\alpha}} \dots\right)$ et par l'hypothèse que chaque arc doit supporter outre son propre poids une charge permanente provenant du tablier, des suspentes, etc. de 4,6 t/m et une charge utile de 2 t/m (correspondant à $\sim \frac{2}{4} = 0.5 \, t/m^2$). Les variations de température sont prises égales à $\pm 25^{\,0}$ C.

Les courbes représentées montrent que pour $\frac{f}{l} = \frac{1}{5}$ et $\sigma_{adm} = 100 \text{ kg/cm}^2$ la portée maxima est d'environ 600 m et pour $\sigma_{adm} = 150 \text{ kg/cm}^2$ d'environ 900 m.

Pour compléter ces explications et la contribution à la discussion du Professeur Dr. Ing. K. Gaede nous voudrions exposer nos études qui conduisent à la détermination des portées maxima des ponts en arc de béton armé.

Hypothèses fondamentales.

Le type d'arc qui autorise les portées maxima, et par conséquent qui servira de base à notre étude, est l'arc à encastrement total, sans articulation, avec tablier surélevé.

D'après la méthode de calcul indiquée par l'Ingénieur A. Stra β ner¹ nous avons déterminé, pour les contraintes admissibles de $\sigma_b = 100$ et 150 kg/cm², les épaisseurs à la clé et aux naissances correspondant à différents surbaissements avec les hypothèses suivantes:

I. Type d'arc.

Encastré, sans articulations, à section pleine et avec tablier surélevé.

II. Calcul.

(Les principes fondamentaux du calcul sont qu'avec l'application d'une loi de variation de la charge, l'axe de la voûte, tiré du funiculaire du poids propre, soit représenté par une fonction géométrique de ce dernier et que les grandeurs hyperstatiques soient déterminées avec les équations d'élasticité. La variation de l'épaisseur de la voûte est introduite dans le calcul sous forme de loi. Nous avons entièrement conservé les notations du Dr. Ing. A. Straßner).

- 1º Les forces agissent dans le plan principal de symétrie longitudinale.
- 2º La détermination du système d'axes dans le sens vertical résulte du choix des grandeurs m_a et m_b. Ces valeurs sont choisies de telle sorte que

$$\gamma_a + \epsilon_a m_a = 0$$

$$\gamma_b + \epsilon_b m_b = 0$$

c'est-à-dire que les angles des naissances pour une charge H=1 et les angles de la section d'encastrement pour la même charge, respectivement pour une charge de sens contraire, coïncident.

3° La détermination du système d'axe dans le sens horizontal résulte du choix des grandeurs z_a et z_b. Ces valeurs sont choisies de telle sorte que

$$\label{eq:za} \textbf{z}_{a}\;(\alpha_{a}+\beta+\epsilon_{a})\,=\,\textbf{z}_{b}\;(\alpha_{b}+\beta+\epsilon_{b}).$$

- 4° Equilibre entre les forces internes et externes.
- 5° Module d'élasticité E constant sur toute la longueur de l'arc.
- 6° Loi de répartition linéaire des contraintes d'après Navier.
- 7º Proportionnalité entre les contraintes et les allongements (loi de Hook) $\sigma = \epsilon \cdot E$.

8°
$$Z = \int z^2 \cdot \frac{r}{r+z} \cdot dF \approx J$$
, exactement $J = \int z^2 \cdot dF$

$$\frac{r}{r+z} = 1 - \frac{z}{r} + \left(\frac{z}{r}\right)^2 - \left(\frac{z}{r}\right)^3 \dots \dots$$

Pour la section rectangulaire on obtient

$$Z = J \left[1 + \frac{3}{5} \left(\frac{d}{2 r} \right)^2 + \frac{3}{7} \left(\frac{d}{2 r} \right)^4 \dots \right]$$

équation qui donne pour le cas où r = 10 d; Z = 1,0015 J.

¹ Dr. Ing. A. Straßner: Neuere Methoden zur Statik der Rahmentragwerke. Berlin 1927.

9º On néglige:

- a) la valeur $\frac{M}{r}$ par rapport à N dans l'expression $\epsilon = \frac{1}{E \cdot F} \cdot \left(N + \frac{M}{r}\right)$ de telle sorte que l'on a $\epsilon = \frac{N}{E \cdot F}$.
- b) La valeur $\frac{\varepsilon}{r}$ par rapport à $\frac{M}{EJ}$ dans l'expression $\frac{\Delta d\phi}{ds} = \frac{M}{EJ} + \frac{\varepsilon}{r}$ et l'on obtient $\frac{\Delta d\phi}{ds} = \frac{M}{EJ}$.

10° Arc symétrique avec encastrement total des deux côtés.

De là on a $z_a = z_b = \frac{1}{z}$

$$m_o = \frac{\int y_o \cdot dw}{\int dw}; \quad \psi = 0. \quad \cdot$$

11° Loi de charge géométrique $g_z = g_s \left(1 + \frac{y'}{f}(m-1)\right)$.

12° L'axe de la voûte coïncide avec le funiculaire du poids propre.

$$y' = \frac{f}{m-1} (Ch \zeta k - 1).$$

13° Variation géométrique des moments d'inertie des différentes sections

$$\frac{J_{\rm s}}{J_{z}\cos\phi} = 1 - (1-n)\cdot\zeta^{1}. \label{eq:Js}$$

14° Seule la contrainte de compression du béton est considérée pour le calcul des épaisseurs de l'arc. Les contraintes de traction sont supportées par les armatures.

III. Charge.

1º Par suite du poids propre.

La variation de section de la clé aux naissances doit suivre la loi indiquée ci-dessus

$$\frac{Js}{J_z\,\cos\phi} = 1 - (1-n)\,\zeta^{\scriptscriptstyle 1}\!, \ où \ n = \frac{Js}{J_k\,\cos\phi_k}. \label{eq:cosphi}$$

2º Par suite du poids du tablier et de la superstructure ajourée.

Pour le poids du tablier, comprenant le poids du revêtement, de la dalle, des longerons et des entretoises nous avons introduit une charge de 2 t/m². Pour la superstructure de l'arc on a également introduit une charge en t/m², à savoir:

$$1.9~\rm t/m^2~pour~une~port\'ee~jusqu'à~250~m$$

$$8.0 \text{ t/m}^2$$
 pour une portée de 750 m

Cette simplification est erronée mais elle n'influence que peu le résultat final.

3º Par suite de la charge utile. Nous avons admis comme charge mobile répartie $p=1.0 \ t/m^2$ ce qui correspond à peu près à la surcharge d'un pontroute de $1^{\rm ère}$ classe (Oenorm B 6201, cas 1). Comme il s'agit en général ici de portées de plus de 100 m, la valeur de p est tout-à-fait suffisante et correspondrait encore à une augmentation éventuelle de la charge. La charge utile a une si faible influence dans les grandes portées qu'une réduction de p ne jouerait aucun rôle sur le résultat final; on est donc en droit de conserver pour p la valeur de 1,0 t/m^2 . Pour le calcul de M_p et N_p nous avons employé les ordonnées des lignes d'influence calculées par le Dr. Ing. A. Straßner.

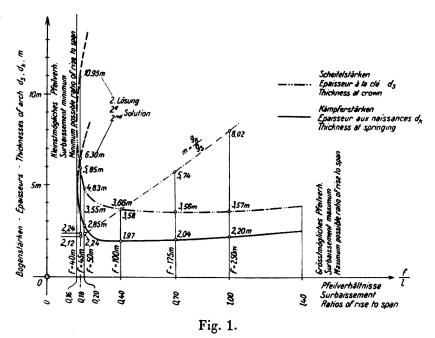
 4° Les variations de température ont été posées égales à \pm 15° C et la chute de température correspondant au retrait à - 15° C. Les mesures effectuées aux ponts de Langwies et de Hundwilertobel justifient complètement ces valeurs. L'effet du retrait peut être fortement limité par des méthodes spéciales d'exécution mais nous avons négligé cette possibilité dans notre étude.

5° Nous avons négligé les sollicitations engendrées par la pression du vent, par les forces de freinage et par les mouvements des culées.

Résultats.

a) De l'étude avec $\sigma_{badm} = 100 \ kg/cm^2$.

Considérons d'abord l'arc de 250 m de portée. Si l'on reporte les épaisseurs calculées de la voûte pour les différents surbaissements, on obtient une représentation très instructive (fig. 1).



Epaisseur à la clé et aux naissances d'un pont en arc de 250 m de portée et de surbaissement variable.

$$\sigma_{\mathrm{b\,adm}} = 100\ \mathrm{kg/cm^2}.$$

Les courbes ainsi obtenues ont une tangente verticale pour le surbaissement minimum, elles présentent ensuite une courbure maxima et deviennent rapidement plates pour les grands surbaissements. Après avoir atteint une valeur minima, les épaisseurs croissent lentement mais d'une façon continue avec l'accroissement de la flèche f. Les courbes prennent fin pour le surbaissement correspondant

à la flèche maxima calculée. La courbe en traits-points représente le rapport

$$m = \frac{g_k}{g_s}$$
.

Nous avons reporté à la fig. 2 l'épaisseur à la clé en fonction de la seule flèche f; cette figure est expliquée par les résultats de la fig. 1.

Pour simplifier nous ne considérerons dans la suite que l'allure de l'épaisseur à la clé. Du fait que la clé et les naissances de l'arc suivent la même loi, les résultats obtenus pour la clé peuvent être appliqués à la section aux naissances.

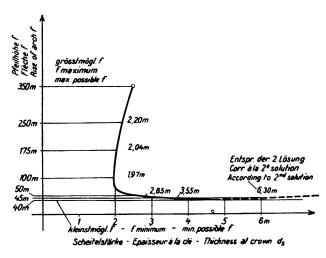


Fig. 2.

Epaisseur à la clé d'un pont en arc de 250 m de portée et de surbaissement variable.

$$\sigma_{b \text{ adm}} = 100 \text{ kg/cm}^2$$
.

Si l'on reporte maintenant les épaisseurs à la clé, calculées pour des arcs de différentes portées (fig. 3), on constate que les extrémités des courbes, extrémi-

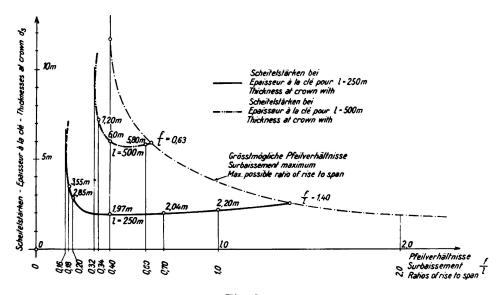


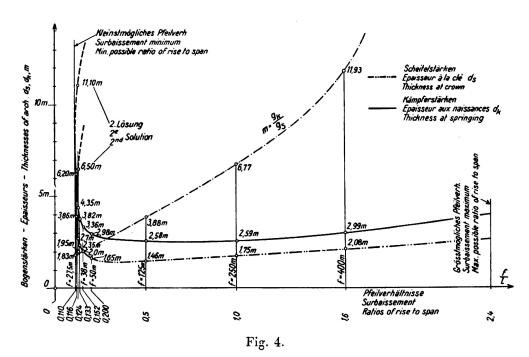
Fig. 3.

Epaisseur à la clé d'arcs de portée et de surbaissement variables.

$$\sigma_{\rm b \ adm} = 100 \ \rm kg/cm^2$$
.

tés qui correspondent à la flèche maxima, peuvent être reliées par une ligne continue (en traits-points à la fig. 3).

Si maintenant l'on reporte (fig. 7), pour les différentes portées, ces points ainsi que les surbaissements correspondant aux flèches minima, on obtient au point d'intersection la portée maxima.



Epaisseur à la clé et aux naissances d'un pont en arc de 250 m de portée et de surbaissement variable.

$$\sigma_{b~adm} = 150~kg/cm^2.$$

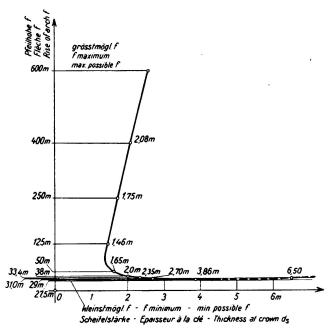


Fig. 5.

Epaisseur à la clé d'un pont en arc de 250 m de portée et de surbaissement variable.

$$\sigma_{b~adm}=150~kg/cm^2.$$

La surface comprise entre les courbes limites supérieures et inférieures représente le domaine de tous les arcs possibles. On voit comme cette surface décroît

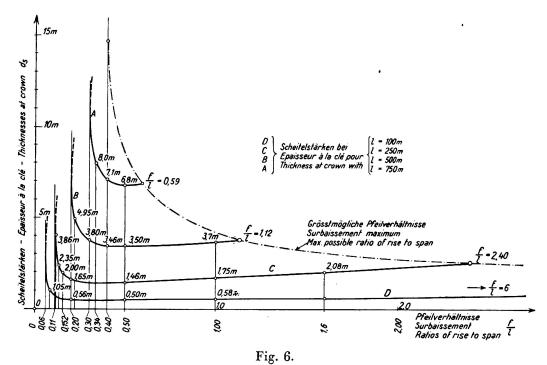
rapidement pour les grandes portées, pour finir par un point. La portée maxima, qui est ici de 650 m, n'est possible que pour un seul surbaissement $\left(\frac{f}{l}=0.40\right)$.

b) De l'étude avec $\sigma_{badm} = 150 \ kg/cm^2$.

Nous avons considéré à la fig. 4 l'arc avec $l=250\,\mathrm{m}$ seulement. A la fig. 5 nous avons représenté les épaisseurs à la clé en fonction de la flèche f. Les courbes ainsi obtenues présentent le même caractère que celles obtenues sous a).

Ce que nous avons dit dans ce cas est entièrement valable ici.

Par suite de la plus forte compression admissible du béton nous obtenons d'autres limites, représentées aux fig. 4 à 7. La portée maxima est de 1000 m et n'est aussi possible dans ce cas que pour un seul surbaissement $\left(\frac{f}{l}=0,40\right)$.

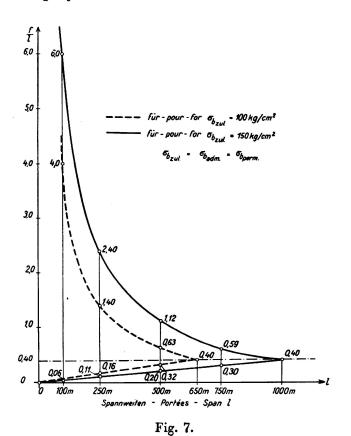


Epaisseur à la clé d'arcs de portée et de surbaissement variables. $\sigma_{b\;adm} = 150\;kg/cm^2.$

Les domaines de tous les surbaissements $\frac{f}{l}$ possibles pour des portées et des compressions admissibles différentes sont représentés à la fig. 7.

On peut s'attendre encore à bien des progrès dans la construction des ponts en arc de béton armé. Preuve en est le fait que l'on parle actuellement de prendre en considération des compressions admissibles du béton de 200 à 300 kg/cm² pour les ouvrages en arc exceptionnels et qu'il existe des projets sérieux pour des ponts en arc de béton armé de 400 m (Hawranek, $\sigma_{badm} = 160 \text{ kg/cm}^2$) et de 1000 m de portée (Freyssinet, $\sigma_{badm} = 280 \text{ kg/cm}^2$).

Le développement des techniques d'exécution et de préparation du béton, ainsi que le développement de la théorie statique de ces ouvrages, permettront de passer à la réalisation de ces projets.



Courbes des arcs possibles et des portées maxima pour les hypothèses admises.

IVb 14

Le pont sur l'Esla en Espagne.

Die Brücke über den Esla in Spanien.

The Bridge over the Esla in Spain.

C. Villalba Granda,

Ingénieur des Ponts et Chaussées, Madrid.

Le pont de Plougastel et le pont de Traneberg, construit 5 ans plus tard, sont de magnifiques réalisations dans le domaine des ponts en arc de grande portée. Le pont sur l'Esla, que l'on construit actuelle-

arc de grande portée. Le ment en Espagne, aura une ouverture qui dépassera celle des ponts que nous venons de citer. L'Esla forme, à l'emplacement du pont, un lac artificiel d'une profondeur de plus de 40 m. Ce pont est destiné au Chemin de fer de Zamora à la Corogne à double voie normale (fig. 1). A la suite d'un avant-projet de l'ingénieur M. Gil, j'ai établi un projet définitif de cette construction.

Nous allons donner une comparaison des dimensions principales des trois ponts dont nous venons de parler.



	Plougastel	Traneberg	Esla
Ouverture	 $172,60 \mathrm{\ m}$	178,50 m	192,40 m
Portée théorique	 186,40 m	181,00 m	172,00 m
Flèche	 35,30 m	27,00 m	38,80 m
Taux de travail du béton	 75.0 kg/cm^2	98.5 kg/cm^2	86.0kg/cm^2

Le pont se compose d'un grand arc central et d'une série d'arcs latéraux, qui constituent, sur les deux rives, les viaducs d'accès (fig. 2 et 3).

L'arc central est creux, il est constitué par trois cellules longitudinales et ses faces latérales ont un talus de 1,5 %, commun à tous les éléments de la partie

centrale; à la clef il a une largeur de 7,90 m et une épaisseur de 4,52 m et aux naissances une largeur de 9,063 m et une épaisseur de 5,50 m. Le tablier repose

3 Elévation de l'ouvrage 172,00 4.50 200 0 8 % છુ

sur l'arc par l'intermédiaire de colonnes. Les viaducs d'accès ont 5 arcs de 22 m de portée du côté de Zamora et 3 arcs de même portée du côté de la Corogne.

Io - Description de l'ouvrage.

Viaducs d'accès. — Les arcs des viaducs d'accès sont en plein cintre avec intrados circulaire de 11 m de rayon. Ils ont 1,10 m d'épaisseur à la clef et sont armés de profilés laminés et d'aciers ronds (fig. 4). Les poutres-longerons sont rigidement unies aux montants de 9,50 m de hauteur, situés à la verticale des piles; elles s'appuyent sur les reins de l'arc par l'intermédiaire de montants articulés de 2,10 m de hauteur et sur l'extrados de l'arc à la clef par l'intermédiaire de plaques de glissement. Les piles de ces viaducs sont creuses, elles ont des parois longitudinales de 0,90 m d'épaisseur au couronnement et des redents de 0,10 m. Les parois transversales ont 1,50 m d'épaisseur et des redents de 0,25 m. La hauteur de ces piles varie entre 9,70 m et 38,70 m, depuis l'arrasement des fondations jusqu'à la naissance des arcs; les fondations ont une profondeur qui varie de 1,22 m à 6,77 m, elles descendent jusqu'à la roche parfaitement saine et compacte.

Arc principal. — Passons à la description de l'arc principal. Nous avons déjà donné plus haut ses dimensions principales; ajoutons que sa section est constituée par deux têtes d'égale épaisseur, variant de 0,70 m à la clef à 1,05 m aux naissances, reliées par 4 cloisons d'épaisseur constante égale à 0,40 m (fig. 5). Les armatures de l'arc sont uniquement prévues pour résister aux efforts secondaires. La fibre moyenne correspond à l'équation

$$y = 206,7 (x - 2x^2 + 2x^3 - x^4)$$

où y est exprimé en valeur absolue et où x est le rapport de l'abscisse du point considéré à la portée, l'origine étant à l'une des naissances. Cette fibre neutre est sensiblement le funiculaire des charges fixes et la section totale de l'arc, ainsi que son moment d'inertie, obéissent à la condition que leur projection verticale reste constante.

Les tympans de l'arc principal comprennent trois

parties distinctes. Une partie centrale de 20 m de longueur comprend des petits murs longitudinaux servant à contenir le remplissage de pierres. Dans la zone intermédiaire de 12 m de longueur, le tablier, en dalle continue sur 5 ouvertures, repose sur des cloisons transversales, articulées à leur base et encastrées dans

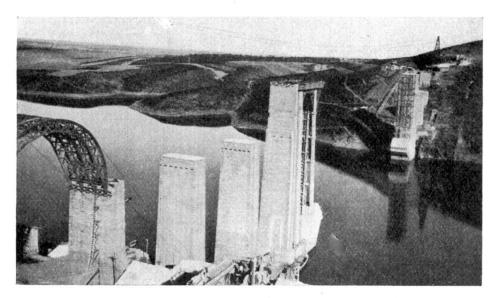


Fig. 3. Vue d'ensemble.

le tablier. La partie extrême est constituée par des travées de 12,50 m de portée reposant sur l'arc par l'intermédiaire de colonnes. Le tablier se compose d'une dalle de 0,20 m d'épaisseur, soutenue par 4 poutres de $1,80\times0,60$ m. La hauteur maxima des colonnes atteint 38,72 m.

Les grandes piles-culées (fig. 6 et 7) ont un talus transversal de 2 %. L'armature des culées massives est constituée de profilés laminés et d'aciers ronds. Les premiers sont entourés d'armatures circulaires. Aux naissances, les culées ont 10,41 m de largeur et 6,70 m de hauteur.

En ce qui concerne les fondations, les ardoises et quarzites constituant le terrain sont à nu; il a donc suffit d'atteindre la partie saine de la roche.

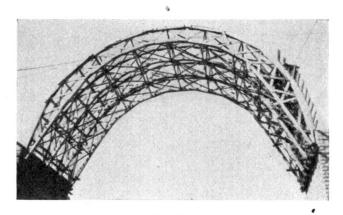


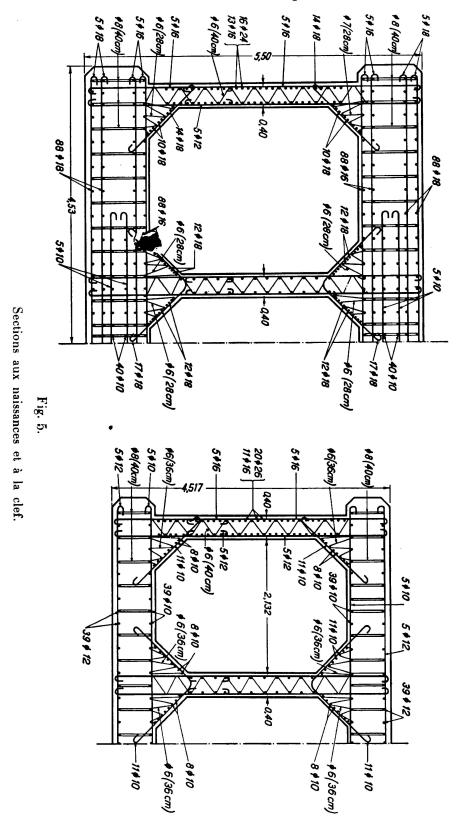
Fig. 4. Cintre d'un arc de 22 m.

Matériaux: Viaducs d'accès: culées extrêmes en moëllons, fondations en béton cyclopéen à 150 kg, parois des piles en blocs de béton à 250 kg, remplissage en béton à 200 kg, arcs et poutres en béton à 350 kg. Ouverture principale: fondations en béton cyclopéen à 200 kg, culées en béton à 325 kg, arc en béton à 400 kg et superstructure en béton à 350 kg. Le tout au ciment portland artificiel.

Le coût total de l'ouvrage a été estimé à 6,5 millions de pesetas.

IIº - Calculs statiques.

a) Viaducs d'accès. Les arcs circulaires ont un diamètre théorique de 23,40 m. Ils ont été étudiés en tenant compte d'une variation de température de $\pm 20^{\circ}$, y compris le retrait. Les efforts maxima, compte tenu des forces de freinage



et du vent, se montent dans les naissances à 46,5 kg/cm² pour la compression du béton et à 1010 kg/cm² pour la traction de l'acier. Les contraintes de cisaillement engendrées par les moments de torsion atteignent dans l'arc la valeur de 5 kg/cm². Dans le calcul des arcs on a tenu compte également de la flexion des piles et de la déformation des arcs adjacents.

Les portiques qui constituent les tympans ont été calculés d'une façon très approfondie, en tenant compte de toutes les influences.

b) Arc principal. L'axe de la voûte est une parabole du quatrième degré qui s'adapte aussi bien que possible au funiculaire du poids mort. La surcharge introduite dans le calcul est constituée des deux trains-type des prescriptions

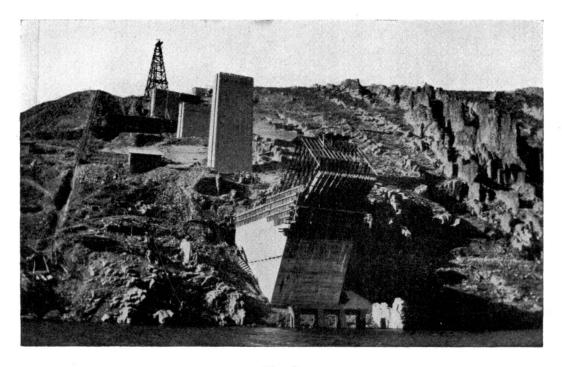


Fig. 6.

Culée (côté Zamora) avec ses armatures; à l'arrièreplan un pylône de la grue aérienne.

espagnoles, ce qui permet d'obtenir des efforts inférieurs à la moitié de ceux qui resultent des charges fixes.

Les efforts secondaires atteignent une importance extraordinaire dans ces types d'arcs de grande portée. Pour le calcul, on a tenu compte des variations de température, de la collaboration de l'arc et du tablier ainsi que du flambement de l'arc. L'ouvrage étant très étendu, on a admit que le vent pouvait agir sur une partie du pont seulement.

La méthode de calcul du moment d'inertie polaire des sections rectangulaires massives et creuses (une alvéole) a été donnée par *Mesnager* et *Föppl. Lorenz* et *Pigeaud* ont étudié la section de forme quelconque mais n'ont obtenu que des résultats approximatifs.

Dans le cas d'une section à plusieurs alvéoles, comme celle qui nous intéresse, on peut choisir différentes méthodes:

- 1° Supposer que la section est massive, étudier la répartition des efforts dans cette section et reporter dans les têtes et les montants les tensions qui devraient être supportées par les parties creuses. Cette solution est sûre et simple mais fournit des tensions trop élevées.
- 2º Supposer les montants centraux articulés et considérer la section comme n'ayant qu'une seule alvéole. De cette façon on néglige une bonne partie de la rigidité de la section.
- 3° Supposer que le moment de torsion se répartit entre les trois alvéoles en admettant que les trois sections auxiliaires aient le même angle de giration. C'est cette dernière méthode que l'on a adoptée.

On a déterminé les lignes d'influence de toutes les réactions hyperstatiques par la méthode des charges virtuelles et de la superposition des efforts.

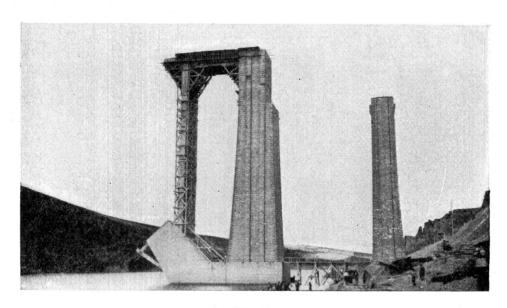


Fig. 7.

Pile-culée et partie de la superstructure déstinée au montage du cintre de l'arc principal.

Nous avons admis une variation de température de \pm 150 C.

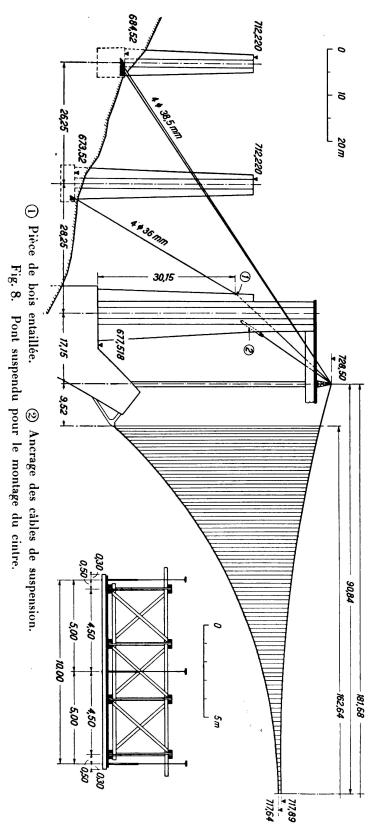
Dans le calcul des colonnes nous avons tenu compte des effets de freinage et de démarrage, de l'influence de la déformation de l'arc, de la déformation des colonnes, etc.

Les grands arcs doivent avoir des culées très résistantes pour assurer leur encastrement. Pour déterminer l'élasticité de ces culées on a calculé les lignes d'influence des déformations en assimilant l'arc à une poutre d'inertie variable rigidement encastrée. Ces lignes d'influence ont été calculées par la méthode de Müller et l'on a trouvé 0,0044 mm pour le déplacement de la section extrême des culées, ce qui est très faible.

IIIº - Exécution.

Le cube de béton nécessaire à la construction de cet ouvrage se monte à 32 000 m³, ce qui représente 28 000 m³ de pierres concassées et 15 000 m³

de sable. Les installations permettaient de produire en 8 heures 100 m³ de pierres et 30 m³ de sable. Le chantier était desservi par une grue aérienne sur



cable de 500 m de longueur, supporté par deux pylônes de bois de 28 m de hauteur. Les vitesses de déplacement du treuil sont 1 m/sec en élévation et 4 m/sec dans le sens horizontal. Un moteur de 46 CV actionne cette grue.

Le cintre projeté est un arc en bois. Il est constitué de fermes de 3,50 m de hauteur dont les membrures sont en madriers de $23 \times 7,5$ cm. Il prend naissance sur des plates-formes en encorbellement en béton armé. Sur ces encorbellements s'effectuera le réglage du cintre à l'aide de vérins hydrauliques.

Le montage du cintre se fera au moyen d'un pont suspendu constitué par trois groupes de câbles porteurs (fig. 8). L'ensemble est contreventé par un réseau de câbles qui en assure la stabilité (fig. 9). Les suspentes sont des câbles rigides de 8,1 mm de diamètre et les câbles porteurs, au nombre de 15, sont réunis en trois groupes de 5.

Le bois du cintre est au maximum sollicité à 78 kg/cm² car on a adopté un ordre de bétonnage spécial. Ce bétonnage comprend trois couronnes et le bétonnage de la première se subdivise en deux étapes, une de trois rouleaux et l'autre de deux.

Le décintrage et les corrections se feront à l'aide de 36 vérins hydrauliques placés à la clef.

On a prévu 86 ausculteurs noyés dans la masse de béton. Cela permettra de contrôler en tout temps la plus ou moins grande exactitude des calculs et des

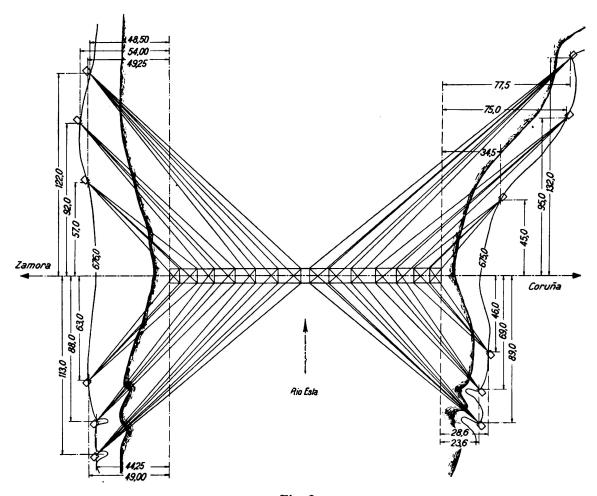


Fig. 9.

Réseau de câbles assurant la stabilité du cintre.

hypothèses. L'ouvrage est situé dans une région à climat rude et sec; les observations pourront fournir des résultats très intéressants sur le retrait et la déformation lente, surtout si on les compare avec les résultats obtenus aux deux ponts de Plougastel et de Traneberg, situés sur les côtes du Nord où le climat est humide et froid.