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VI 1

Le developpement du calcul des barrages arques.

Entwicklung der Berechnung von Bogen-Staumauern.

Development of the Analysis of Arch Dams.

Z. Ba zant,
Professor de l'Ecole polytechnique tcheque, Prague.

Introduction.

Les barrages en maconnerie etaient construits d'abord droits et calcules de

teile sorte que l'on prenait un element entre deux profils verticaux de la hauteur
maximale comme une poutre en haut libre et en bas encastree, chargee par son
poids propre et par la pression de l'eau. Les deux charges produisent une
sollicitation ä la flexion et ä la pression qui permet d'utiliser faiblement la
resistance de la maconnerie, notamment quand on neglige la resistance ä la traction.
Pour eliminer les effets dangereux de la Variation de la temperature, on cons-
truisait les barrages un peu incurves en plan; mais on calculait les efforts comme

pour un barrage droit. On supposait que le barrage incurve s'accommodait
facilement aux variations de longueur, produites par les changements de temperature,
en modifiant seulernent sa courbure. L'encastrement du barrage dans les flancs
de la vallee devait contribuer ä la securite pour le poids propre et la pression de
l'eau. L'examen statique detaille a montre qu'avec les grandes epaisseurs exigees

par le calcul usuel, une petite courbure du barrage n'a pas les consequences
favorable que l'on en attendait. Si l'on envisage le barrage comme un are horizontal

charge par la pression de l'eau, le calcul donne, vue la petite courbure et la

grande epaisseur de l'arc, des tractions considerables: aux appuis, ä l'extrados et
ä la cie de l'arc ä l'intrados, et ces tractions peuvent produire des fissures
verticales dans la maconnerie du barrage1. Quoique l'on s'efforce d'eliminer par
une epaisseur plus grande les tractions aux joints horizontaux, neanmoins il
peut se presenter des tractions aux joints verticaux; le renforcement du barrage

par un surplus de la maconnerie est seulernent apparent, parce que la
maconnerie n'est pas placee d'une maniere correcte.

Calcul du barrage arque comme un Systeme d'arcs horizontaux independants.

En comparaison d'une poutre, libre ä une extremite et encartree ä l'autre,
l'arc est un element de construction beaucoup plus approprie, puisqu'il permet,
en supposant une disposition correcte, une repartition des tensions plus uniforme
et une meilleure utilisation de la resistance de la maconnerie. La premiere
application intelligente date de 1800 au barrage Meer Allum pres d'Hyderabad
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aux Indes2 qui possede 21 arcs horizontaux entre piliers verticaux, et de 1845

au barrage, bati d'apres le projet de M. Zola2 a Aix-en-Provence dans une
vallee etroite, en forme d'une seule voüte horizontale.

Les considerations suivantes supposent en general que la face d'amont du

barrage est verticale.
Les barrages arques furent calcules d'abord approximativement de teile sorte

que l'on prenait des ares horizontaux aux differentes hauteurs comme des arcs

independants, charges par la pression de l'eau totale distribuee uniformement sur
toute la longueur de l'arc. Cette methode neglige la connexion mutuelle dans la

direction verticale; eile neglige par consequent les efforts tangentiels aux plans
horizontaux entre les arcs voisins qui sont la consequence de divers deplacements
horizontaux. Pour un reservoir vide, le poids des couches superieures se transmet
aux arcs inferieurs comme dans un barrage droit; pour un reservoir plein, cette
methode envisage des elements horizontaux comme des voütes independantes,
dont chacune supporte toute sa pression d'eau. Si la face d'amont est inclinee,
la composante verticale de la pression d'eau s'ajoute au poids propre du barrage.5
f)elocre qui est l'auteur du premier traite theorique concernant les barrages
arques,4 supposait approximativement le centre de pression au sommet et aux
appuis de l'arc pour un barrage charge par la pression d'eau aux limites
superieures du noyau de la section. Pelletreau5 prend pour une pression d'eau
radiale et uniformement repartie la ligne moyenne circulaire de la voüte horizontale

pour la ligne des pressions (comme pour des enveloppes minces
cylindriques, chargees de la meme maniere); il suppose donc une pression uniforme
dans toutes les sections de la voüte. Cette methode fut usuelle dans la majorite
des cas notamment en Amerique (le premier barrage arque est le barrage Bear

Valley en Californie, construit en 1886); de meme les nombreux barrages arques
en Australie etaient calcules par cette methode qui est defendue encore par
H. Hawgood.6 Les barrages calcules de la sorte ont prouve avoir une tres
bonne securite. La transmission des forces exterieures par l'action des arcs a

naturellement pour consequence une beaucoup meilleure distribution des efforts
et une tres grande diminution de l'epaisseur en comparaison des barrages, oppo-
sant ä la pression d'eau seulernent le poids de la maconnerie et agissant comme
des poutres verticales, libres en haut et encastrees en bas, ce que est tres desavan-

tageux. en ce qui ooncerne la distribution des efforts et l'utilisation de la
resistance de la maconnerie.

R. Ruffieux1 fut le premier qui calculait la voüte horizontale d'un barrage
aique comme un are elastique sans articulations (d'apres la theorie de J. Resal);
il prenait aussi en consideration l'effet de l'effort normal qui est ici assez

essentiel, et il se servait de la theorie de Varc mince. La meme methode de calcul
fut employee ensuite parE. Mörschs, H.Ritter9, C.Guidi10, W.Cain11, R.Kelen12
et G. Ippolito.1^

En calculant le barrage arque comme un Systeme d'arcs horizontaux independants,

on supposait ordinairement, comme pour des couches cylindriques minces,

que les tensions sont distribuees uniformement selon l'epaisseur t, c'est-ä-dire que
la ligne moyenne circulaire est la ligne funiculaire pour une charge radiale
uniforme p2 ä l'extrados de l'arc, ayant le rayon r2 (fig. 1). Cela donne dans

chaque section de l'arc l'effort normal NQ — p2r2 ou la tension
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No
Vo T

Pär2
bt (1)

pour un are d'une largeur b, ayant l'aire de la section A bt; l'effort normal N
et la tension v sont positifs en cas de traction. Au lieu de la pression p2 sur
l'extrados, on peut prendre la pression p, distribuee uniformement sur la ligne
moyenne de rayon r; on a alors

P P2 (2)

Cette methode correspondrait au calcul d'un are elastique, si l'on negligeait
l'effet de l'effort normal, car alors la ligne des pressions eoineiderait avec la

ligne moyenne. Mais un examen plus detaille a montre que l'on ne peut pas
negliger l'effet de l'effort normal, meme pour des arcs hauts. L'effort normal
raecoureit la ligne moyenne qui se transformerait en un are circulaire de rayon
plus petit si les appuis etaient libres; mais puisque la portee de l'arc encastre

aux appuis ne change pas, l'arc ne peut pas rester circulaire et c'est pourquoi

la ligne funiculaire actuelle doit s'ecarter de la ligne moyenne. La ligne
mojenne, deformee par l'effort normal NG, en supposant les appuis libres, peut

a -*

a-
4H ML

»atf

Fig. 1.

Öe

Fig. 2

etre amenee dans la position, oü les appuis sont ä leur emplacement original,
en ajoutant une force horizontale AH au centre de gravite de la ligne moyenne
comme une reaction additionnelle, agissant exterieurement aux deux appuis8
(fig. 1); sa valeur est

P cos cp d s

AH „ „u JV. ,- (3)
/y2ds P cos2 (pds

~1~ J Ä

pour une epaisseur constante

AH. N„I N01

J>ds + fCos>ds (I?+1)fe(r-h) + | yl2,.2121V (3a)
st2

oü A — aire de la section, J -= moment d'inertie et s 2r a la longueur de la

ligne moyenne.
La Variation de la temperature, egale en tous points de l'arc, produit une force

horizontale
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„ oeEl

j I y ds -tj I cos*cpds x '

oü b Variation de la temperature, e coefficient de 1'expansion par
temperature et E module d'elasticite. Si le changement de la temperature varie
lineairement de b1 ä l'intrados ä b2 ä l'extrados (fig. 2) dans toutes les sections,
eile produit aux appuis seulernent le moment

ftM't -(b1-b1)eE j^ (5)

J

pour une epaisseur constante
,JM't= -(&2-&i)bE-. (5a)

Un examen detaille, fait dejä par H. Ritter9 et plus tard d'apres lui par
A. Stucky,1* montra que l'effort tranchant aussi peut avoir une influence, assez
considerable pour les arcs bas. Pour la determiner, on doit remplacer le deno-
minateur de la formule (3) pour AH par une valeur generale

Pyy'ds Tcos2cpds E Tsin2cpds
J ~T~~ J Ä |3

G J Ä '

oü ß coefficient de reduction pour l'effort tranchant (pour une section rec-

tangulaire -^), G «= imodule d'elasticite au glissement, y' ordonnee de
ö

l'antipole de l'axe de gravite de la ligne moyenne par rapport ä Fellipse d'elasticite
de l'element d'arc envisage. Pour matieres isotropes E/G 2,5, alors ß E/G 3.

Pour les arcs minces on a approximativement y' y et pour une epaisseur
constante on peut ecrire

AH Prl2 r _«/_ + _" 2sina\. r _lan al a 2sina\ n 2a /ou,
n 2 i n *2' C1 6 cosa + - ; C2 ^ cosa. (3b)C^ + L^t2 \ sina a / sina

//. Ritter9 a calcule les tableaux pour Cv C2 ce qui facilite le calcul; ils sont
aussi contenus dans le livre de G. Ippolito.1^ Une Variation constante de la

temperature donne une force horizontale

_ öeEt3
Ht-Cir2+C2t2 (4a)

dans l'axe de gravite de la ligne moyenne, Ritter determine l'influence de la
Variation de la temperature aussi dans le cas oü la temperature varie dans la
section d'apres une courbe de zero ä l'extrados ä une valeur maximale ä l'intrados.
Si la Variation de la temperature est symetrique par rapport au centre de la
section (reservoir ä vide), eile produit la force horizontale Ht d'apres la
formule (4 a), en designant par b la Variation moyenne de la temperature dans la
section.
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Un examen tres detaille de l'arc charge par une pression radiale fut donne dans
le traite de W. Cain11 et la discussion suivante, puis dans le traite de

F. A. Noetzli15 et la discussion de celui-ci. W. Cain publiait dans son traite et
dans sa conclusion ä la discussion16 les formules finales pour le calcul des arcs
encastres, charges par des pressions radiales uniformement reparties (fig. 3):
La force horizontale Hc ä la cie de l'arc est donnee par la formule

X p r — Hc ~- • 2 -ö a sin a,& rz (6)

oü #= ll + -gl a(a + — sin 2a] — 2sin2a + 2,88-^ala — —sin2a); (6a)

i rayon d'inertie (i2=r7^)- ^e facteur numerique 2,88 ß E/G (avec E/G 2,4
r*

pour le beton au lieu de E/G 2,5 pour des matieres isotropes et ß =— pouro
section rectangulaire). Le membre au facteur 2,88 provient de l'effort tranchant,
dont l'influence peut etre negligee pour les angles centraux 90° < 2a < 120°:

wm

%-Y V..

*-.. -
ft«

Fig. 3

««dy

Fig. 4.

pour les angles plus petits et pour de grandes valeurs de t/r l'influence de l'effort
tranchant peut etre assez considerable. Au point M de l'arc, donne par l'angle cp

dc son rayon avec l'axe de symetrie, l'effort normal (positif pour la traction) est

l'effort tranchant
N X cos cp — pr,

T X sin cp (8)

et le moment flechissant (positif dans le sens de rotation des aiguilles d'une
montre, s'il s'agit des forces ä gauche)

M Xr /sina
\ a

cos cp (9)

c'est aussi le moment au point M de la force X, substituant le cöte droit et

agissant ä droite au centre de gravite E de la ligne moyenne, ayant l'abseisso
t» giji CL

OE Ces resultats signifient que l'on doit ajouter dans chaque section

ä l'effort normal N0

ligne moyenne.
pr — p2r2 la force X ä l'axe de gravite de la
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Les charges radiales uniformes produisent ä la cie de l'arc un deplacement
(positif dans la direction du centre de l'arc)

pr2
n=cogT; (10)

OU Cö —
a 17 i2\ i2
— (1—cosa) ll + -^)(a — sina) + 2,88 -g (a + sina) (10a)

La Variation de la temperature b, egale en tous points de l'arc, donne une force
horizontale

TT EJ 2asina
Ht be.-?-—— (11)

passant par le centre de gravite de la ligne moyenne, et le deplacement de la cie
de l'arc

r\t — co • ber; (12)

o) est le coefficient donne par (10a). On a un bon contröle des formules prece-
dentes en ce sens qu'elles deviennent pour a 0, des formules pour une poutre
droite encastree aux deux extremites; cela se fait en substituant ä sin et cos
des series infinies et en admettant a 0.

S'il n'y a pas de jonction rigide entre l'arc et les fondations (ancrage des

barres de l'armature), l'arc peut se fissurer aux appuis et il se rapproche alors de
Varc ä deux articulations, specialement lorsque l'arc est mince. On a alors (fig. 4),
en negligeant l'influence de l'effort tranchant, ce qui est possible pour un are
mince,

v tt Pr rti2 •X pr — Hc ^7.2^sina, (13)

$' a(2 + cos2a) — -^-sin2a +-^la + — sin 2a|, (I3a)

M Xy. (14)

N et T sont determines par les formules (7), (8). Le deplacement de la cie de

l'arc est
pr2

n co.^ (15)

1—cosc
avec co

V
sina + a(l — 2 cosa) + -g(a— sina (15a)

La Variation de la temperature b, egale en tous points de l'arc, produit aux
appuis des reactions horizontales

ti.* ti «l
EJ 2sina

un deplacement Ht be • —g —t— (16)

et de la cie:
T]t — co' • ber. (17)

Cam. Guidi10 transformait les equations valables pour Varc encastre, en y
introduisant des longueurs au lieu de fonctions trigonometriques. A l'effort



Le developpement du calcul des barrages arques 1121

normal NQ — p2r2 — pr, on doit ajouter en toutes les sections une reaction
horizontale supplementaire, passant par le centre de gravite de la ligne moyenne
(voir fig. 1); sa valeur est

AH -^-2^ (18)

8 r —h 21 „ i" /_ s r-hv

Le resultat represente les influences du moment flechissant. de l'effort normal
et de l'effort tranchant avec ß E/G 3 (comme pour des matieres isotropes).
Une Variation de la temperature b, egale en tous points de l'arc, donne la force

' __bsEt3
Hl-6F?' (Ha)

passant par le centre de gravite de la ligne moyenne. Ine pression radiale
uniforme p produit le deplacement du sommet de l'arc

EtJH'^k-^'-^]}- <•*>

d'oü l'on peut calculer de deplacement produit par une Variation de la temperature
constante d'apres la formule

öeEt
nt V—> (12a)

ce qui Concorde a\ec la formule (12) provenant de W. Cain. Guidi facilite le
calcul ä l'aide de tableaux donnant pour differentes valeurs de l'angle central 2 aiii s s 1 1 prles valeurs des rapports -, —, n : fr etc. 11 examine aussi le cas d unerr r 1 s 2r E

pression dc l'eau non uniforme qui se presente pour les axes inclines des arcs aux
barrages ä arcs multiples, puis l'influence du poids propre pour des voütes ä axe
incline, les voütes ä epaisseur variables et les piliers d'un barrage ä arcs multiples.
Dejä H. Ritter9 calcule une voüte de forme generale et d'epaisseur variable.

Pour un calcul rapide preliminaire on peut employer avantageusement les

simples formules donnees par F. A. Noetzli11 II a neglige l'influence de l'effort
normal et de l'effort tranchant, remplace la ligne moyenne approximativement
par une paraole et neglige la difference entre la longueur de l'arc et sa corde,

n supposant un are peu eleve; il a obtenu

\r
AH — 0,94p3r3 -s. (19)

Au lieu de 0,94 le coefficient suivant serait plus exact:

e

\oetzli apporte un nomogramme pour k,, donnant les valeurs de ce coefficient
pour divers angles centraux et divers rapports t h. Le coefficient kL n'est pas

71 F
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encore exact, mais il tient compte de l'effort normal et de l'effort tranchant
(approximativement, en prenant 1 au lieu de ßEG 3): il donne des valeurs
tres proches des valeurs exactes, ce que W. A. Miller18 a prouve. Noetzli donne

pour l'effet de la temperature la formule approximative

Ht 0,94beEp, (20)

ayant la meme base que la formule (19); il prend la force Ht approximativement

ä la distance ^ de la cie de la fibre moyenne. Le retrait du beton a la meine
o

influence qu'une Variation de la temperature de — 35° F — 20° C); il
donne dans la meme ligne d'action, comme la .Variation de la temperature, la
reaction horizontale

AniE.As t8
Hs= — 0,94—j— -p, (21)

si l'on designe par As le raccourcissement de la fibre moyenne par le retrait du
beton.

On peut calculer les tensions normales et les valeurs extremes de M. N par la
formule

N Me N 6M
^Ä^^b^bT2' (22)

oü e signifie la distance de l'intrados et de l'extrados ä la ligne moyenne.
Li

p2 1*2

Autrement, on ajoute a la tension pnmaire v„ — constante pour tout

l'arc, les tensions supplementaires aux fibres extremes, produites par une force
horizontale A H agissant dans laxe de gravite de la fibre moyenne; cette force
donne dans chaque section le moment M et l'effort normal N, desquels on calcule
les valeurs extremes des tensions v1>2 par la formule (22).

Guidi10 donne pour un are d'epaisseur constante aux formules pour les
tensions extremes dans le joint de la cie et aux appuis une forme tres simple et
publie, pour faciliter le calcul, les tableaux des coefficients qui se trouvent dans
les formules. La tension ä la cie est:
ä l'intrados

v.=-p(f-»*t)-eE(&lHl-^=^). ^-ijf-ZÜ + i-), (23a)

ä l'extrados

v2 -p(^) + eE(olMä-^), H^^f^-e-J: (28b)

la tension ä l'appui:
ä l'intrados

(24a)v,=-pG^.m»^.*^ „,=±ii-'-=ü(.+iy
ä l'extrados (24b)
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Les formules supposent le changement de la temperature variable dans la section
d'apres une ligne droite (fig. 2) avec la valeur b± ä l'intrados, b2 ä l'extrados et
b ä la fibre moyenne.

L'epaisseur des barrages arques atteint des valeurs considerables dans les

par lies inferieures par rapport au rayon de courbure et ä la longueur de l'arc.
Alors la condition principale du calcul usuel des arcs disant que les dimensions
des sections doivent etre petites par rapport au rayon de courbure et ä la
longueur de l'arc, n'est pas satisfaite. Pour des arcs epais (ä grande courbure) on
a la theorie connue plus exacte qui mene ä la loi hyperbolique pour les tensions
normales, ce que H. Bellet19 ä dejä remarque; il essaya aussi un calcul plus exact
de l'influence de l'effort normal et de l'effort tranchant, mais il arriva pour les
tensions normales ä la formule (de Lame) pour enveloppes cylindriques epaisses,

parce qu'il supposait que l'angle de deux sections voisines n'etait pas change par la
deformation, ce qui est vrai seulernent pour les enveloppes cylindriques epaisses,
chargees par des pressions radiales uniformes.

De l'hypothese que les sections planes restent planes apres la deformation, ce

qui mene pour les arcs epais ä la loi hyperbolique des tensions normales,

Äs

i^k"cK,
M
X' >%

.tr. r

**0

Fig. 5.

B. F. Jakobsen20 deduisait une Solution pour les arcs circulaires ä section

constante, charges par des pressions radiales uniformes. W. Cain21 dans sa contribution

ä la discussion sur le traite de Jakobsen donnait aux formules finales

une forme plus convenable. II obtient (fig. 5)

»ö (a + {8in2a)(l+y

X^p2r2
;2, i — cos 2 a

tt P2r2 o • l
Hc ^-2.2sina—2.

tfo ro
(25)

a
+ 2,88---j-,(a—s-sin2a), (25a)

r0 i0 \ & I

en designant par r0 le rayon de la fibre neutre qui differe ici de la fibre

moyenne; la difference est
t

r_r0==c=r —.
log nat (^) (26)

Les forces exterieures d'un cote de la section 0Mo, formant l'angle cp avec

Taxe de symetrie OC, donnent au point M0 de la fibre neutre le moment

M v /sina \
Xr0 coscp J, (27)

71*
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ce qui est le moment au point M„ de la force X, agissant ä droite, s'il s'agit de

l'action de la moitie droite de l'arc, ä la distance rQ du centre 0, c'est-ä-dire
a

au centre de gravite de la fibre neutre. Dans la section 0 M0 on obtient aussi
l'effort normal d'apres la formule (7) ?s X cos cp — p.> i\,
et l'effort tranchant d'apres (8) T Xsincp:
cela signifie que l'on doit ajouter ä l'effort normal — p.> r2, uniformement dis-
tribue dans la section, la force X agissant au centre de gravite de la fibre neutre
perpendiculairement ä laxe de symetrie de 1 are.

Le moment M et l'effort normal X produisent ä la distance z de la fibre
neutre une tension normale

_ _Nr0
__

M rQz

V-(r0+z)t J 'r0 + z: ^28)

N est v sont positifs en cas de traction, le moment M est positif. s'il agit dans
le sens des aiguilles d'une montre pour les forces ä gauche de la section. et z

est positif au cöte exterieur de la fibre neutre. La formule (28) determine

les tensions ä l'extrados avec z — -j- c, rt) -\- z i\> et ä l'intrados avec

2
— c)> r« -r z rv

La pression de 1 eau produit un deplacement de la cie de l'arc (positif vers
le centre 0)

P2r2ro
n C00" ET' (29)

oü* coo^ — (1 — cosa)
#0

1 + Ti) + 2'88 T ¦ Ts (° + sin a) (29a)

Par rapport aux formules pour un are mince, les formules pour l'arc epais
donnent une traction plus petite et une compression plus grande; l'influence d'une
grande courbure de l'arc est alors favorable.

Une constante Variation de la temperature donne une reaction horizontale

u ^ t*, i2 2sina

agissant ä laxe de gravite de la fibre neutre. Le deplacement de la cie de l'arc.
provenant de la Variation de la temperature, est

T]t — co0 • ber0. (31)

Le calcul d'apres les formules de Cain est facilite par les nomogrammes que
F. H. Fowler22 construisait pour les tensions normales ä l'intrados et ä l'extrados
du joint ä la cie et aux appuis, pour les arcs minces et epais. Les resultats
numeriques montrent que l'on peut negliger l'effort tranchant pour t/r 0,02
ä 0,06.

* II y a une erreur d Impression dans le traite de Cain (Transact. A.S.C.E.. \o\. 90. p. ")41.

formule 109); la comparaison a>ec l'equation precedente le montre clairement.
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Les formules indiquees pour les arcs epais donnent de bons resultats, si

l'epaisseur de 1 are n'est pas trop considerable. Pour les dimensions tres grandes
que l'on rencontre quelquefois dans les parties inferieures des barrages arques.
meme ce calcul est inexaet. Le calcul correct des tensions doit etre base dans

ce cas sur la theorie mathematique de l'elasticite; R. Chambaud2^ a prouve
que cela mene ici ä des resultats tres bons. II part des relations mathematiques
de la theorie de l'elasticite et n'introduit aucune autre hypothese que la loi de
Hooke. Chambaud donne la Solution pour un are ä section rectangulaire; eile

peut etre appliquee ä tous les arcs epais ^barrages arques, tunnels et conduites
souterraines). ensuite aussi aux enveloppes cylindriques

*

epaisses. Cette theorie
donne naturellement des formules compliquees, mais de nombreux nomogrammes
permettent une application rapide et simple. Les resultats satisfont tres bien
ä toutes les conditions de surface, excepte pour une petite partie aux appuis;
on peut les adapter pour une distribution quelconque des forces exterieures ä

l'intrados et l'extrados, et pour une distribution quelconque des dilatations ä

1'interieur de l'arc, par consequent, pour les retraits varies en divers endroits (causes

par ex. par la methode de construction) ou pour les variations de temperature
irregulieres. Cette Solution a surtout une grande importance, parce qu'elle donne
en general des resultats beaucoup plus favorables que la theorie de l'arc epais,
mentionnee auparavant. La theorie usuelle des arcs epais (et encore plus la
theorie usuelle des arcs minces, basee sur la distribution lineaire des tensions
dans les sections) mene d'ordinaire aux tractions considerables ä la cie de l'intrados
et specialement aux appuis de l'extrados, oü d'apres cette theorie se trouve le point
le plus faible de la construction. De grandes tractions causeraient des fissures
dans une voüte sans armature et la consequence serait que la maconnerie intacte
formerait une nouvelle voüte capable de resister avec securite aux forces exterieures;

J. Resal1 fut le premier qui la remarque (il supposait la voüte «active/
comme parabolique), apres lui M. Malterre21 (avec une voüte «active» circulaire
d'epaisseur constante et variable) et L. J. Mensch.25 Le calcul exact d'apres la

theorie de Chambaud montre que les tensions actuelles sont beaucoup plus
favorables; notamment les tractions ä l'extrados disparaissent (ce qui est surtout
important pour l'impermeabilite de la maconnerie), les tractions ä l'intrados sont
limitees ä une petite partie ä la cie. Le calcul exact donne en somme de petites
differences par rapport ä la theorie usuelle des arcs epais, en ce qui concerne
l'influence des moments flechissants; une difference considerable se manifeste
dans l'influence de l'effort normal qui depasse l'influence des moments flechissants

pour les arcs epais, si l'on calcule exactement. Les differences de tensions
concernent principalement le voisinage de l'intrados. Outre cela, le calcul exact

envisage d'une maniere propre les efforts tranchants. La theorie usuelle des arcs
epais ne donne pas de bons resultats pour une epaisseur trop grande, parce
qu'elle est basee sur des hypotheses qui ne sont pas correctes: eile neglige les

tensions normales dans la direction radiale et determine les tensions normales

aux sections, comme si les sections planes restaient planes apres la deformation.
Notamment la derniere hypothese n'est pas correcte pour des pieces courbes

(arcs), puisqu'ici la determination de l'influence de l'effort normal et de l'effort
tranchant ne peut se faire separement, comme pour les pieces droites. La theorie
exacte donne pour les tensions normales (vx dans la direction du rayon, v2 dans
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celle de la tangente ä l'arc et v3 dans celle de l'axe de la voüte) et pour les
tensions tangentielles x (perpendiculaires ä laxe de la voüte) dans la section radiale
et dans la section cylindrique) en general des courbes; la fig. 6 montre ces
courbes pour la section ä la cie Cx C2 et pour la section d'appui Ax A2 pour un

are de rayon r t Cx C2 Ax A2. Chambaud faisait son calcul pour un are
sollicite par des forces exterieures et des tensions interieures symetriques au plan
de la fibre moyenne. L'application ä d'autres cas donne naturellement des resultats

approximatifs.
Le calcul d'un barrage arque comme un Systeme d'arcs horizontaux supportant

independamment la pression d'eau et les effets de la Variation de temperature,
du retrait et des gonflement du beton, peut etre tres convenable, si par ex. par
construction en couches la liaison des couches dans le sens vertical est detruite;
on peut le remarquer aux brusques deviations des lignes elastiques des sections

Q At\H

Fig. 6.

verticales.15 Ce calcul serait exact, si le barrage etait reellement divise en arcs
horizontaux independants avec les joints de dilatation horizontaux, remplis par
ex. d'asphalte avec une tole de cuivre pliee, pour obtenir l'impermeabilite; c'est
la proposition de .4. Pena Boeuf.26 Autrement ce calcul est seulernent approximatif.

Calcul du barrage arque comme un Systeme d'arcs horizontaux et des poutres
verticales.

En realite, les arcs horizontaux sont en connexion mutuelle dans le sens vertical

et ne peuvent pas se deformer librement; cela provoque des reactions mutu-
elles entre les arcs horizontaux dans le sens verticale. Un calcul plus exact des

barrages arques considere le barrage divise par sections horizontales en des arcs
horizontaux et par sections radiales verticales en poutres verticales, en haut libres
et en bas encastrees. Les forces exterieures sont divisees entre ces deux systemes.
Les conditions de leur distribution sont donnees par la deformation du barrage
qui doit etre la meme en chaque point pour les deux systemes. Si l'on considerait
toutes les composantes de la deformation en chaque point (trois composantes de

deplacement dans trois axes de coordonnees et trois composantes de rotation
autour de ces axes), on aurait un calcul exact. Mais comme le calcul par cette
methode est pratiquement presque impossible, on le simplifie en negligeant
toutes les rotations et les tensions dues ä la torsion, en negligeant aussi la

composante tangentiale du deplacement horizontal et les tensions respectives au
glissement. On peut negliger aussi la composante verticale du deplacement, si
l'on considere le barrage, apres que la deformation par le poids propre est
achevee. II reste alors seulernent la composante horizontale du deplacement.
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perpendiculaire ä la fibre mogenne de l'arc horizontal (deplacement radial), et

par consequence une seule condition pour chaque point, oü la fibre moyenne de
l'arc horizontal imagine croise 1 axe de la poutre verticale. Ainsi on substitue au
barrage un Systeme des poutres verticales et des arcs horizontaux qui s'appuient
Tun sur l'autre simplement (sans encastrement27). Les tensions de torsion,
negligees par cette methode, diminuent en realite un peu les tensions de flexion
et augmentent la securite.

Le calcul correct par cette methode serait difficile, puisque le deplacement
d'un point quelconque de la poutre (ou de l'arc) depend de toutes les charges
agissant sur la poutre (sur l'arc). Les conditions d'un deplacement egal en tous
points des arcs horizontaux et des poutres verticales menent ä des equations,
dont chacune contient un grand nombre d'inconnues.

S. H. Woodard2S simplifie le calcul en considerant la deformation du barrage
seulernent dans la section verticale, passant par les des des arcs (oü la hauteur
du barrage est maximale); il suppose dans l'arc une simple compression, determine

la fleche de la cie comme pour un are ä deux articulations et admet la
distribution de la pression d'eau entre le Systeme des arcs horizontaux et des

poutres verticales, calculee de la section des sommets, uniforme le long des

arcs. R. Shireffs29 cherchait ä ameliorer le calcul en determinant la fleche de la
cie de l'arc comme pour un are encastre, employant autrement la meme methode
de calcul; mais il a neglige l'influence de l'effort normal et sa formule est trop
compliquee, et incorrecte, comme W. Cain11 l'a montre. H. Bellet19 determine
la distribution des pressions enjtre les arcs et les poutres en partant de la
supposition incorrecte que la dilatation relative de la fibre moyenne de l'arc est en
chaque point egale zero.

H. Ritter9 procedait dans un exemple numerique (publie en 1913) d'une facon
approximative, en supposant sur chaque are horizontal une charge radiale
uniforme et en determinant sa valeur par comparaison du deplacement de la cie de

l'arc et de la poutre verticale dans la section passant par les sommets des arcs.
D'une maniere analogue L. R. Jorgensen30 considere seulernent la section verticale

mediane, mais il calcule la distribution des pressions seulernent avec une
approximation grossiere; L. J. Mensch 31 emploie pour le calcul de la distribution
des pressions entre les arcs et les poutres la condition peu appropriee de l'egalite
des travaux des forces interieures. J. Resal1 envisage aussi seulernent la section
mediane.

H. Ritter?*2 a indique le principe d'un calcul plus exact de la distribution des

charges entre les poutres verticales et les arcs horizontaux ainsi: La fleche au
point quelconque M de la poutre verticale AB (fig. 7) peut etre calculee ä l'aide
de sa ligne d'influence (c'est-ä-dire la ligne elastique de la poutre AB chargee

par P 1 au point M); eile a une valeur

V £P'nTW (32)

oü P'n designe une charge agissant au point N sur la poutre. Cette fleche egale
la fleche de l'arc horizontal au meme point pour les charges P"„ Pn — P'n;
P„ est la charge totale au point N. On obtient de la sorte autant d'equations que
l'on a d'elements horizontaux, en supposant la charge des arcs horizontaux
uniforme et l'on a alors pour chaque are horizontal une seule inconnue P"n ä cal-
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euler avec ces equations. On pourrait proceder de meme pour une section
verticale quelconque du barrage et on trouverait pour differentes sections verticales
des charges differentes pour les arcs horizontaux; la distribution des charges sur
les arcs n'est par consequent pas uniforme.

A. Stucky14: fut le premier qui considerait en realite (dans le calcul du barrage
de la Jogne, fait en collaboration de 4. Rohn au bureau de //. E. Grüner ä Bäle)
toutes les poutres verticales et tous les arcs horizontaux (les deux ä section
variable) et tenait compte non seulernent des portees et hauteurs differentes des

arcs, mais aussi des hauteurs differentes des sections verticales qui ont une
influence essentielle sur leur rigidite et par consequent sur la distribution de la

pression d'eau entre les poutres verticales et les arcs horizontaux. La Solution des

equations resultantes peut etre facilitee, en resolvant separement le Systeme des

equations concernant chaque poutre verticale et en envisageant seulernent les

charges agissant sur une seule poutre. Les valeurs approximatives calculees de la

sorte peuvent etre corrigees des equations originales par iteration. Mais parce
qu'un accomplissement exact des hypotheses du calcul ne peut etre garanti pour
les barrages en maconnerie en vue de leur construction et du materiau employe,
on doit considerer chaque calcul du barrage comme approximatif; c'est pour

B
__ A.A4Oan.
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Fig. 7

^MMJK

Fig. 8.

cela que les resultats du premier calcul approximatif sont souvent suffisants. On

peut controler les resultats, en calculant les deplacements des poutres verticales
et des arcs horizontaux pour la distribution des charges calculees; il suffit, si les

deux deplacements en un meme point ne different pas de plus de 10 o/o.

Une methode d'essai pratique fut donnee par F. 1. Noetzli11 et completee par
IV. Cain^. On doit avant tout s'informer. si les arcs horizontaux ont une action
statique. A cette fin on determine la ligne elastique \1AI2B2 (fig. 8) de la poutre
verticale entre deux sections verticales radiales au milieu du barrage pour la

pression d'eau totale WB. On calcule aussi les deplacements des arcs
horizontaux, en supposant qu'ils supportent toute la pression d'eau. Si les deplacements

des poutres verticales sont partout plus petits que ceux des arcs (ligne
B3M3). les poutres verticales supportent toute la charge; les arcs pourraient etre
hollicites seulernent, si la temperature s'eleve et diminue leur deplacement. Ce

cas se presente, si l'epaisseur du barrage est calculee, en negligeant l'influence
des arcs (comme pour un barrage droit).

Dans un barrage d'epaisseur plus petite, une partie de la pression d'eau est

supportee par les poutres verticales, l'autre partie par les arcs horizontaux. Les

poutres verticales supportent ä leur base toute la pression d'eau, parce que leur
deplacement est lä tres petit (plus petit que le deplacement de l'arc pour toute la
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pression d'eau). De la base ä la couronne du barrage la charge des arcs croit
approximativement d'apres une ligne droite AB' (fig. 9): dans la partie
superieure du barrage, les arcs, assez rigides, empechent le deplacement de la

poutre verticales (ils se deplacent moins que la poutre, de sorte qu'ils la sou-
tiennent), et agissent par consequent sur la poutre verticale avec des reactions

opposees ä la pression d'eau. Du diagramme de la pression d'eau AA'B, les

arcs supportent la partie AB'B, les poutres verticales la partie AA'BB' (AA'C
est positif, C'B'B negatif). On envisage ici la section verticale la plus haute et
l'on suppose sur les arcs approximativement une charge uniforme. Du
diagramme de la charge pour la poutre verticale on obtient aisement (au mieux
par calcul) les moments flechissants et l'on determine la ligne elastique de la

poutre verticale comme un polygöne funiculaire au diagramme des charges,

ayant des ordonnees M-y; JQ est un moment d'inertie constant, J est le moment

d'inertie de la section. Dans un point C choisi arbitrairement, toute la charge
est supportee par l'arc. On determine en C le deplacement du sommet de l'arc

r 2-3
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pour toute la pression d'eau. Si la poutre verticale possede en C un deplacement
yc plus grand que l'arc, il est necessaire de choisir le point C plus en bas et de

repeter le calcul. La position exacte de C est determinee par une interpolation
lineaire entre les deux points Cv C2, choisis auparavant (d'apres la fig. 10, oü

Cj^C^, C2C'2 sont les deplacements des arcs et C1C"1, C2C"2 les deplacements
des poutres). Le point C oonnu, on compare les deplacements de la poutre et

ceux Ides arcs sur toute la hauteur du barrage. D'ordinaire on n'arrivera pas ä

une concordance absolue. Pour avoir non seulernent en C, mais aussi ä la

couronne des deplacements egaux, on doit changer le diagramme des charges

pour les arcs horizontaux, en substituant la ligne droite C'B" ä C'B'; les arcs

supportent alors la charge donnee par le diagramme AC'B"B et la poutre a une

charge donnee par le diagramme AC'B"BA' (AC'A' est positif, C'B"B negatif).
On change le point B", jusqu'a ce que l'on obtient en C et B des deplacements

egaux pour les arcs et la poutre. En d'autres points les deplacements ne doivent

pas etre les memes, car en realite on devrait avoir une courbe au lieu de la ligne
brisee ACB". On peut determiner cette courbe, en prenant pour les arcs une
charge plus petite (plus grande), oü le deplacement calcule de l'arc soit plus
grand (plus petit) que celui de la poutre.

La pression d'eau produit dans les poutres les plus grandes tensions au joint
de base, oü des tractions considerables pourraient se presenter sur la face d'amont.
S'il n'y a pas lä une armature, il peut se produire des fissures horizontales sur
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la face d'amont, ä la base du barrage. En ce cas, la poutre verticale ne se

comporte pas comme une poutre parfaitement encastree, mais seulernent comme
une poutre partiellement encastree ou articulee ä sa base. On peut alors trouver
la Solution correcte par essai, en choisissant la tangente ä la ligne elastique ä la
base de la poutre; on fait ensuite le calcul indique auparavant et on constate
si les deplacement de la poutre sont partout en aecord avec ceux des arcs.

R. Chambaud2^ a indique aussi une methode pour trouver la division des

charges entre les arcs horizontaux et les poutres verticales. II partait d'une loi
quelconque (approximative) pour la part de la pression d'eau supportee par les

arcs, supposait sur chaque are horizontal approximativement une charge
uniforme et calculait les deplacements des cles des arcs et les deplacements
de la poutre verticale par les charges qui leur correspondent. Pour un second

calcul, il introduit la demi-somme de ces deplacements, determine d'elle la

distribution des charges entre les arcs et les poutres, et repete le calcul. De
cette maniere il se rapproche des valeurs exactes. II envisage aussi approximativement

les tensions normales aux sections horizontales, avec leur valeur moyenne.
A. Rohnu recommande pour la premier calcul cette methode approximative:

On attribue ä la poutre verticale une part du diagramme des charges A V B

\4'-A
A,«inmx

Fig. 11.

(fig. 11) de la pression d'eau totale, part triangulaire AA'D avec la base

AA' x hauteur du barrage, et AD n • x, oü n ==— ä— pour b h 1,1

ä 1,8; b est la longueur du barrage ä la couronne, h hauteur. Le reste de la
pression d'eau agit sur les arcs horizontaux. II recommande aussi de considerer
toujours la sous-pression d'eau avec un diagramme de charge triangulaire
Ax Cx A2 (comme pour un barrage droit), oü AXA2 m • x pour m <^ 1: ä la
partie superieure du barrage il suffit de prendre m 0,8. Pour un profil
triangulaire du barrage, l'epaisseur necessaire ä la base est

¦..,l/_L
r y —i

(33)

1
1, n 2» Y 2,3 (tm3) on

Y-

Y =¦ poids specifique de la maconnerie. Pour m

aurait y 0,22 x.
La distribution uniforme des pressions radiales sur les arcs horizontaux,

supposee dans la majorite des methodes approximatives de calcul, n'est pas
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suffisamment exacte. La distribution de la pression d'eau entre les arcs
horizontaux et les poutres verticales depend tres essentiellement de la forme du

profil de la vallee. II est alors neccessaire pour un calcul exact, d'envisager non
seulernent une (la plus haute) poutre, mais un nombre plus grand de poutres
verticales et d'arcs horizontaux; A. Stucky1* procedait dejä de la sorte. Une autre
methode d'essai a ete donnee par C. H. Howell et A. C. Jaquith 35 qui choisissaient

pour 4es arcs une charge non uniforme, determinaient pour cette charge les

deplacements des arcs et pour le reste de la charge les deplacements des poutres,
et variaient successivement la charge des arcs, jusqu'a ce qu'ils obtenaient en
tous points les deplacements des arcs et des poutres pratiquement egaux. II est
naturellement necessaire de faire plusieurs essais, pour obtenir une coincidence
satisfaisante. De la charge resultante on peut calculer les tensions dans les arcs
et dans les poutres. Howell et Jaquith suppriment dans leur calcul les parties
inactives (tendues) des arcs et des poutres, et ils limitent le calcul final du barrage
(sans armatures) seulernent aux parties travaillant ä la compression; ils obtiennenl

E'E

_£

B D

Fig. 12.
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Fig. 13

toujours des arcs d'une epaisseur variable et ils negligent l'influence de l'effort
tranchant.

La comparaison de plusieurs cas montra que le calcul du barrage arque
comme un Systeme d'arcs horizontaux independants n'est pas exact et qu'il
exige aussi plus de maconnerie, notamment si l'on calcule avec une approximation
grossiere les arcs comme couches cylindriques minces, comme cela se faisail
autrefois. On ne devrait pas negliger dans les projets des barrages arques
l'influence des poutres verticales qui apparait en realite toujours et change la

charge et les tensions des arcs horizontaux. La derniere methode de calcul peut
etre appliquee pour un profil quelconque de la vallee. aussi pour un profil
dissymetrique.

L'influence des changements de la temperature qui peut produire des tensions

plus grandes que la pression d'eau, peat etre calculee par la meme methode que
la pression d'eau. On peut meine la remplacer (Ritter9) par une pression d'eau

qui produirait les memes deplacements des arcs horizontaux que le changement
de la temperature; cette pression d'eau equivalente se divise entre les poutres
verticales et les arcs horizontaux de meme que la pression d'eau reelle.

Une Solution par essai de l'influence du changement de la temperature fut
donnee par F. A. Noetzli11 et amelioree par W. Cain21 On suppose encore le

barrage divise en poutres verticales et en arcs horizontaux. La fibre moyenne
de l'arc ACB (fig. 12), fixe aux extremites et autrement libre, adopterait par
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lc changement de la temperature la forme ACB; le deplacement de la cie serait

d'apres la formule (31) pour arcs epais

nt C C — co0 • b e i\.

Ce deplacement est empeche par les reactions p' de la poutre verticale DCE;
en les supposant constantes sur toute la longueur de l'arc, on a d'apres (29) le

deplacement

n/ C" C (Oo •

Le deplacement resultant est

P r2r0
Et *

y CC'' Wor0(!^-&e). (34)

La ligne elastique resultante de la poutre verticale est DCE". On determine
la charge p' par le calcul du barrage. A la base du barrage il y a

y — coofo/yj-2 —bel 0, alors p'0
beEt

r»

On choisit ä la couronne une petite pression specifique (fig. 13) et dans la
section verticale une courbe pour la distribution des pressions p' (au premier
essai on peut choisir une ligne droite). Pour les charges choisies on determine

dans la poutre verticale les moments flechissants M et les valeurs M y-; J est le

moment d'inertie de la section de la poutre, JQ un moment d'inertie constant.

La ligne M -y represente la ligne de charge dont le polygöne funiculaire donne

la ligne elastique. Le calcul est correct, si les deplacements y des poutres
verticales concordent avec les deplacements des arcs, calcules par la
formule (34); les arcs ont la meme charge p' que les poutres verticales, mais
en sens oppose. S'il n'y a pas concordance. on doit corriger le calcul en

changeant la ligne courbe de p'.
La diminution de la temperature peut etre combinee avec le retrait du beton;

si e' represente le retrait par unite de longueur, le deplacement resultant du
deplacement de la cie de l'arc est

a CC" co0io(e'-be - jj; (34a)

le changement b de la temperature ici est negatif, la reaction p' des poutres
verticales (l'equation contient sa valeur absolue) agit vers l'exterieur de l'arc.
Le retrait du beton a la meme influence qu'une diminution de temperature qui
causerait le meme raccourcissement que le retrait.

Une elevation de la temperature produit le deplacement du barrage en amont
pour un reservoir vide: ce deplacement des poutres verticales a pour consequence
des tractions sur la face aval de la partie inferieure du barrage. Dans les arcs
il y a par contre des tractions ä la cie ä la face amont; sans armature, des
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fissures peuvent se produire ici. Pour un reservoir plein et avec une diminution
de la temperature, le barrage se deplace vers l'aval; des tractions peuvent se

presenter eventuellement dans les poutres ä la partie inferieure de la face amont,
dans les arcs ä la cie ä la face aval. On devrait disposer une armature
convenable partout oü il peut y avoir des tractions; autrement des fissures verticales

pourraient se former successivement sur les deux faces aux sommets des arcs
et pourraient influencer tres defavorablement la securite du barrage. Si l'on
neglige la distribution des charges entre les arcs horizontaux et les poutres
verticales (en tenant compte seulernent de la resistance des arcs), une construction
malproprc peut avoir aisement pour consequence des fissures horizontales,
ce que semblent montrer les resultats des mesures effectuees ä quelques
barrages.17

Quant ä l'etendue des changements de la temperature, F. A. Noetzli11 recommande

pour les hauts barrages qui ont ä la base une epaisseur plus grande,
de prendre ä la couronne le changement de la temperature maximale (ä peu
pres — 14° C), ä la base un changement nul et entre deux les changements
variant d'apres une ligne droite; pour un calcul exact il n'y a pas encore assez
de resultats de mesures effectives. Au barrage Arrow-Rock%Q l'oscillation annuelle
de la temperature ä la couronne fut trouvee de 27° F, ä la base 6,5° F seulernent.
II peut y avoir aussi diverses combinations du changement de la temperature
ä la face amont et aval; il est surtout necessaire de considerer pour un reservoir
vide les meines diminutions maximales de la temperature sur les deux faces,
et pour reservoir plein diverses diminutions de la temperature ä la face amont
(jusqu'a la temperature la plus basse de l'eau) et ä la face aval (jusqu'a la

temperature la plus basse de l'air).
Dans les barrages epais, les variations de la temperature ne penetrent pas de

la meme maniere dans tout le barrage; A. Stucky1^ a fait un examen detaille
de cela. G. Ippolito13 suivit en detail la penetration des variations de la
temperature de l'air dans la maconnerie et deduit des formules simples pour la
distribution de la temperature dans la magonnerie; on peut s'en servir pour une
construction quelconque en magnnerie dans le calcul des changements jourrialiers
et annuels de la temperature. Le meme auteur examine aussi l'influence de

l'elevation de la temperature pendant la prise du beton et donne des resultats
de la mesure des temperatures ä plusieurs barrages; il y en a peu et ils ne

permettent pas d'arriver ä des conclusions süres. Les calculs donnent d'ordinaire

pour les changements de la temperature des tensions trop grandes, lorsqu'on
prend le changement de la temperature constant ou lineairement variable
ä travers l'epaisseur du barrage, ce qui ne repond pas ä la realite. Les
deformations causees par les changements de la temperature peuvent avoir aussi

une influence assez favorable sur la grandeur des tensions, s'il y a des

deformations plastiques aux appuis ou ä Finterieur du barrage.
LTne simple formule pour la penetration des changements de la temperature

dans 1'interieur d'une maconnerie epaisse, derivee des mesures americaines, est
donnee par H. Ritter9

&= v > (35a)
3|x
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oü b est le changement de la temperature dans la magonnerie ä une distacne x
de la surface, b± le changement de la temperature de l'air. G. Paaswell31 donne

pour ce cas la formule
b b1e_kxcosk\; (35 b)

k est une constante dependant du materiau et du temps: pour le beton et la

periode d'un jour k 0,079, pour le beton et la periode d'une annee k 0,00413.
On peut eliminer les influences trop grandes des changements de la temperature

et du retrait du beton par les joints de dilatation. Pour un barrage calcule

comme une poutre en haut libre et en bas encastree, ces joints sont au point
de vue statique inoffensifs. Pour un barrage arque, un trop grand nombre de

joints de dilatation est desavantageux par rapport ä la stabilite.

Calcul du barrage arque comme une couche mince.

Le barrage arque est en realite une couche libre ä la couronne et appujee ou
encastree aux flancs et au fond de la vallee. Le calcul du barrage arque comme
une couche mince est tres difficile. On doit partir des equations d'equilibre et de

deformation d'un element infiniment petit (comme dans le calcul des plaques)
et satisfaire aux conditions donnees par les appuis aux flancs et au fond de la
vallee et par la surface libre ä la couronne. L'idee de ce calcul fut formulee dans

son principe par G. Pigeaud3
B. A. Smith38 fut le premier qui essaya de calculer le barrage arque comme

une couche mince. II simplifia le calcul, en considerant seulernent la partie la plus

Fi?. 14.

;
Fig 15

haute du barrage et en supposant, dans la direction horizontale, dans toute
l'etendue du barrage les memes conditions que dans la section la plus haute: il
elimina de la sorte la variabüite dans la direction horizontale (dependance de l'angle
cp). II considere les conditions aux bords seulernent pour la couronne et la base de

la section verticale: cela concorde en realite avec le calcul d'une enveloppe
cylindrique de reservoir. La connexion des elements dans le sens horizontal est

envisagee, en ce qui corcerne les tensions, mais pas pour les deformations: il est
seulernent montre avec une approximation grossiere que pour les angles centraux
plus petits que 120°, le deplacement du sommet d'un are horizontal peut etre
calcule comme un are en demi-cercle, si l'on substitue pour le module d'elasticite

E0 de l'arc la valeur E(). Smith envisage aussi les efforts tranchants dans les

plans horizontaux et des conditions d'equilibre des force-^ agissant sur l'element
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t. ds. d} (entre deux plans horizontaux, deux plans radiaux verticaux et les deux
faces du barrage), de la deformation de la poutre verticale, produite par le
moment flechissant, et celle de l'arc horizontal provenant de l'effort normal (en
negligeant les moments flechissants dans les arcs) arrive ä l'equation fondamentale

d* / d2zUE0f
(36)

r2 est le rayon de la face amont (fig. 14), p la pression exterieure (d'eau)
uniformement repartie le long de l'arc horizontal, t epaisseur du barrage,

C1 E1J= —Ett3 est la rigidite en flexion (pour un element vertical de

largeur egale ä l'unite de longueur), Ex le module d'elasticite pour la poutre
verticale (il peut differer du module E0 pour l'arc horizontal, s'il y a une autre
armature dans les deux sens), z deplacement radial et y profondeur
mesuree verticalement de la surface de l'eau (ä la hauteur de la couronne du

barrage). Le calcul presente le defaut que la poutre verticale, enlevee du barrage,
est envisagee comme une poutre independante, sans connexion avec les autres
poutres; alors le coefficient de Poisson ne rentre pas dans les equations.

Smith faisait le calcul pour un barrage d'epaisseur constante et pour un
barrage, dont l'epaisseur varie lineairement, donc la section verticale est trape-
zoi'dale. Dans le premier cas la Solution est analogue ä la Solution connue pour
l'enveloppe cylindrique du reservoir; seulernent la constante de Poisson ne se

trouve pas dans les resultats. Pour une epaisseur lineairement variable SmWi
donne une Solution par series sous forme des fonctions speciales de Michell; le
traite contient des tableaux numeriques de ces fonctions, facilitant le calcul, et
deduit la connexion de ces fonctions avec les fonctions complexes de Bessel.

W. Cain33 montra dans un exemple numerique que les methodes de Smith
et Noetzli donnent des resultats absolument identiques, quoique Noetzli negligeait
les efforts tranchants, ce qui est alors admissible. L'accord des deux methodes
est assez naturel, parce que leur fondement est en realite le meme: les deux
envisagent la poutre verticale au centre du barrage et negligent la Variation des

valeurs dans la direction horizontale. La seule difference est que Smith integre
une equation differentielle, se sert alors d'elements infiniment petits, tandis que
Noetzli prend des elements finis, mais cela n'a pas d'influence essentielle sur les

resultats, si le nombre des elements de la section verticale n'est pas trop petit.
G. Paaswell31 deduit des relations fondamentales de la deformation et du

travail de deformation l'equation differentielle generale pour la flexion d'une
couche elastique:

EJ /a4z 2 84z 1 a4z 2282z 2 82z z

— u^ay4 r23y28cp2 r48cp4 r28y* r48cp* r4

z — deplacement de la couche, y distance verticale de la surface de l'eau

(fig. 15), cp angle mesure dans un plan horizontal du plan de symetrie,
r —. ra^on de la surface moyenne cylindrique, p pression exterieure radiale
(pression de l'eau), et \x constante de Poisson. Pour r oo (et r dep dx)
l'equation (37) se transforme en equation fondamentale des plaques. Paaswell ne
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determine pas l'integrale generale de l'equation (37): il donne seulernent une
Solution particuliere et deduit d'elle le rapport des moments flechissants dans la

poutre et dans l'arc. II montre que les moments flechissants de la poutre sont
ä la base du barrage beaucoup plus grands que les moments de l'arc, et que les

moments des arcs ä la partie inferieure du barrage changent de signe.
Dans la publication excellente «Report on Arch Dam Investigation, Vol. I.»2

H. M. Westergaard s'occupe de la theorie du barrage arque comme une couche
mince; il considere pour les sections radiales et horizontales les efforts normaux
et deux composantes de l'effort tranchant (dans la direction radiale et
perpendiculaire), ensuite les moments flechissants pour les sections verticales et pour
les arcs horizontaux, et les moments de torsion; il suppose la meme distribution
des tensions comme dans les plaques: les tensions normales et tangentielles
variables lineairement ä travers l'epaisseur du barrage, en supposant un barrage
de petite epaisseur. II arrive, en partant de l'equilibre et de la deformation d'un
element pris dans toute l'epaisseur du barrage limite par deux sections horizontales

infiniment proches et par deux sections radiales, ä l'equation differentielle
de la flexion du barrage

a4z a4z a4z i a-z " *** '*** *s*
* av4 r2 ax2 ^ r2 df \ av3 ax2 a> r2 Wax4 ox2 ay2 ay4 r2 ax2 r2 ay

+ M^+^8tf + 5I)-NtP-T + Pyr +Ttr)=0
et l'equation differentielle des forces interieures

Dans ces equations, z est le deplacement, r rayon du cylindre de reference

(fig. 15), x distance mesuree sur ce cylindre dans la direction horizontale
du plan vertical de symetrie (passant par l'axe de symetrie OC ä la couronne),

y — distance verticale de la couronne du barrage. t epaisseur du barrage:

ensuite r' -tA r" J • i\ ravon de la surface mediane (dependant
dy dy2 • - \ i

seulernent de y), E module d'elasticite de la magonnerie, ju, constante de

Et3
Poisson 0,15 pour le beton), N

2, rigidite du barrage en

2N' N" dN d2N
flexion, K -^-, k ^^. N' -p-, N" -r—OJ p pression d'eau sur

IN i\ d> d\d L L

l'unite de surface du cylindre de rayon r, y poids specifique de la magonnerie.
Px =¦ effort normal par unite de longueur d'une section verticale radiale.
P, effort normal par unite de longueur d'une section horizontale. Enfin,
F designe une fonetion des tensions qui determine les forces Px, Pv Pv ä l'aide
des equations

a2F a2F, py a2F

o

Px> est l'effort tranchant vertical par unite de longueur dans la section radiale.
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Dans la meme publication, W. Slater deduit de l'equation differentielle pour
une plaque, une equation differentielle plus simple pour la flexion du barrage
arque

94z,0 a4z ,a4z, ia2z a i—u2
ax4+2^^2 + a?+r2^-Jr(Ax + ^Xy) p--EJ ^ (41)

A aire de l'element dans la section verticale radiale, J son moment d'inertie,
A* et \y sont les dilatations relatives dans les directions x et y.

Pour un calcul exact du barrage il serait necessaire de resondre les equations
differentielles (38), (39), en considerant les conditions de surface ä la couronne,
oü le barrage est libre, et aux appuis. Cette Solution fut donnee par H. M. Wester-
gaard. En calculant le barrage, on peut envisager d'apres Fred. Vogt39 la
deformation du sol de fondation (roc). Fred Vogt40 deduisait les formules et calculait
numeriquement l'influence d'un deplacement de la fondation rocheuse du barrage
en are. II arriva au resultat que le deplacement de la fondation rocheuse peut
etre tres approximativement calcule, en prolongeant le barrage (jusqu'a une
fondation fixe imaginaire, ä une distance 0,45 t de la base. Le deplacement de la
fondation change naturellement les tensions et les deformations d'un barrage
arque. Pour des epaisseurs petites, ce deplacement n'a aucune influence essentielle.
Pour de grandes epaisseur (dans les parties inferieures des hauts barrages) le

deplacement des fondations diminue le moment flechissant ä l'appui de l'arc
et alors diminue aussi la traction ä l'extrados de l'arc; par contre le momenti
flechissant ä la cie de l'arc et la traction ä l'intrados croissent. Les tensions
produites par le changement de la temperature, le retrait et le gonflement
du beton deviennent en regle plus petites par suite du deplacement, le deplacement

de la cie croit considerablement (jusqu'a une valeur double).
La resolution des equations differentielles fondamentales (38), (39) pour un

barrage arque est tres oompliquee et difficile. Pour des cas pratiques ordinaires
cette methode est trop laborieux.

Forme des barrages arques.

On construisait d'abord les barrages arques en general avec la face amont
verticale et un rayon »de courbure constant dans toutes les sections horizontales,
ou meme avec un rayon croissant vers la base. Une teile forme couvient pour
une largeur constante dans toutes les sections horizontales, donc pour un are
entre piliers verticaux, quoique meme lä il soit preferable d'employer dans les

parties inferieures avec epaisser plus grande un rayon plus petit, en vue d'obtenir
des arcs plus flexibles. Si le barrage se trouve dans une vallee dont la largeur
diminue vers la base, les arcs sont fortement surbaisses dans la pertie inferieure.
En calculant le barrage comme un Systeme de poutres verticales et d'arcs horizontaux

(ce qui est admis dans les cas suivants), on obtient sur les arcs une petite
partie de la pression d'eau, la plus grande partie etant supportee par les poutres
verticales; par suite de la flexion dans les poutres verticales, cela exige beaucoup
de magonnerie. II est pourtant mieux de diminuer le rayon de courbure de la
couronne vers le bas; cela transmet la plus grande partie de la charge aux arcs, oü

72 F



1138 Z. Bazant

les tensions sont plus uniformes et la resistance du beton utilisee d'une fagon
meilleure (Stucky1*). L. R. Jorgensen30 projette pour cette raison les barrages
avec angle central constant dans tous les plans horizontaux; de tels barrages ont
ete construits tres souvent en Amerique en de grandes dimensions. Mais la
constance de l'angle central n'est pas necessaire et l'on ne peut l'atteindre
exactement en pratique.

L'idee de l'angle central constant fut exprimee dejä en 1879 par Pelletreau*
qui determina aussi le premier la meilleure valeur de l'angle central, en negligeant
l'influence de l'effort normal, par la valeur approximative 134°, donnant le
volume de l'arc minimal. Si l'on envisage l'influence de l'effort normal, d'apres
Ritter9 le meilleur angle central se trouve entre 120° et 180°; dans cet intervalle
le volume de la magonnerie necessaire ne change que peu. Pour eliminer les
tractions idans un are mince, charge par dies pressions radiales uniformes, on
doit employer un angle central plus gran'd que 158°, si l'epaisseur de l'arc est
constante: pour un angle central plus petit on peut eliminer les tractions ä

l'extrados des naissances, en augmentant l'epaisseur de l'arc aux naissances,
si l'angle central est plus grand que 115°. Par rapport ä l'influence des changements

de la temperature, Ritter9 montre qu'un are semi-circulaire est le meilleur.

Les conditions de la plus grande economie possible sont examinees en detail

par Ippolito13 sur la base de la theorie d'un are elastique d'epaisseur relativement
petite; il envisage le barrage comme un Systeme d'arcs horizontaux independants.
II montre que pour un are d'epaisseur constante, le meilleur angle central est
entre 133° et 180°, et qu'il depend de la profondeur de l'eau; dans le cas d'une
profondeur en metres egale ä la limite permise des tensions k en kg/cm2, le
meilleur angle est approximativement 180°. II determine ensuite pour un are
de largeur constante (donc pour un are entre piliers verticaux) le meilleur angle
central, pour lequel le volume de tout le barrage est minimum. Pour un barrage
arque dans une vallee dont la largeur diminue de haut en bas, il construisit des

nomogrammes qui permettent, pour un angle central donne ä la couronne, de
determiner le volume des arcs en diverses hauteurs (en cas de rayon constant de
la surface mediane ou de la face amont), ensuite par addition, le volume de tout
le barrage et, par une comparaison des resultats pour angles centraux differents,
le meilleur angle central ä la couronne, menant ä un volume minimum de tout
le barrage.

Pour une pression radiale uniforme, la meilleure forme de la fibre moyenne
est un cercle, ce qui est aussi avantageux pour la construction. En realite, la
pression sur les arcs n'est pas uniforme, parce que par suite d'une resistance
differente des poutres verticales de hauteur inegale (si l'on calcule le barrage
comme un Systeme d'arcs horizontaux et de poutres verticales) les arcs ont ä

supporter en divers points des portions differentes de toute la pression d'eau. II
serait naturellement possible d'adapter la forme du barrage ä cette circonstance,
en choisissant pour la fibre moyenne dans chaque section horizontale une ligne
funiculaire pour les charges calculees, agissant sur l'arc (Stucky)u. L'economie
eventuelle du beton serait probablement surpassee par les inconvenients ren-
contres pendant la construction pour laquelle les arcs circulaires qui permettent
aussi le calcul le plus simple sont les meilleurs.41 En outre, le calcul de la
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distribution des pressions ä l'arc est assez complique et l'on ne peut pas le faire
avec une exactitude absolue; si l'on adapte la forme de l'arc ä la distribution
des pressions calculee, il se peut qu'en realite la distribution reelle des pressions
soit differente et ne responde pas ä la forme determinee de l'arc, et alors les
tensions reelles pourraient exceder les valeurs extremes calculees.

Un profil triangulaire de la section verticale, convenable pour un barrage droit
ou ä petite courbure, oü l'on peut negliger l'effet des arcs, ne convient pas pour
les barrages arques. Par rapport aux tensions, il y a avantage ä faire le barrage
mince et ä agrandir son epaisseur vers les appuis aux flancs et au fond de la
vallee (Stucky)1^ specialement pour les barrages de hauteur modeste (jusqu'a
30 m), oü l'on ne peut pas atteindre la resistance considerable des charges echoit
aux poutres verticales. Un grand nombre d'inoonnues dans le calcul de la
distribution des charges entre le Systeme de poutres verticales et d'arcs horizontaux
a pour consequence que le barrage arque est tres sensible aux variations des

dimensions; avec des variations convenables de l'epaisseur, on peut toujours
ameliorer l'utilisation de la resistance du materiau ou diminuer le volume de la
magonnerie, parce que ces variations peuvent changer essentiellement la souplesse
des arcs horizontaux et des poutres verticales, et par consequence la distribution
des forces exterieures entre les deux systemes, ce qui fut montre aussi par
Howell et Jacquith35.

Meme pour les barrages arques de grande hauteur, le renforcement aux* appuis
est avantageux, et dans des vallees plus larges aussi, une face amont verticale
donne aux poutres verticales une rigidite plus grande.35 L'effet 'de la sous-
pression est beaucoup moins dangereux pour les barrages arques que pour les

barrages droits, puisque seuls les appuis aux flancs empechent le renversement
du barrage. Mais il est utile d'envisager la sous-pression surtout lä oü la plus
grande partie des charges agit sur les poutres verticales.

Une precaution speciale est necessaire pour determiner les dimensions du
barrage aux endroits oü la largeur de la vallee change brusquement. En ces

endroits aussi la portee des arcs horizontaux adjacents change brusquement et
ces arcs doivent avoir des deformations tres differentes. Pour eviter les tensions

tangentielles (au glissement) trop grandes, il convient d'etablir en ces endroits
des piliers puissants, donnant avec les flancs et le fond de la vallee une forme
plus reguliere ä la circonference du barrage arque et permettant d'utiliser
completement la resistance de la magonnerie, en evitant les tensions trop grandes
(Resalj1

G. S. Williams12 a projete pour le barrage Six-Mile Creek pres Ithaka en
USA. une forme singuliere, avec l'intention d'eliminer l'action des poutres
verticales et de porter toute la charge sur les arcs horizontaux. Le bas du barrage
a la forme d'un coupole retournee qui fournit au barrage meme ä la base des

appuis süres; la pression d'eau sur la coupole compense en partie le poids du

barrage.
Les coupoles de grandes dimensions furent employees dans le barrage Coolidge

sur Gila River (\rizona)43. Le barrage d'une hauteur de 67,1 m, contient, entre
deux piliers verticaux distants de 55 m et les flancs de la vallee, trois coupoles
de forme ovale. Le barrage fut calcule comme un Systeme d'arcs independants
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que l'on a obtenus de chaque coupole par des sections planes, perpendiculaires
aux droites inclinees des appuis.

La distribution des forces exterieures horizontales entre le Systeme de poutres
verticales et d'arcs horizontaux depend du rapport de la hauteur ä la longueur
totale du barrage. Avec la longueur du barrage arque croit la longueur des arcs
horizontaux et leur souplesse, mais les poutres verticales restent egalement
rigides. C'est pour cela que la grande partie des charges horizontales agit sur les

poutres verticales et le barrage se rapproche successivement dans son action
statique d'un barrage droit ä hauteur constante, oü toute la charge est supporte
par des poutres verticales, sollicitees ä la flexion et ä la compression. Au
contraire, dans les barrages plus courts la grande partie des charges horizontale»
echoit aux arcs horizontaux; avec la diminution de la longueur, l'action des

poutres verticales diminue et celle des arcs horizantaux grandit. D'apres les

barrages construits et calcules, Resal1 et Stucky1* montrent que Vaction des

arcs a une valeur remarquable seulernent dans les barrages, pour lesquels Ir
rapport de la longueur en couronne t d la hauteur h est 1/h <^ 2,5. Les barrages
ä longueur 1 > 2,5 h, dont l'epaisseur est considerable, sont ä calculer comme les

barrages droits (ä gravite). On peut negliger en ce cas l'action des arcs qui
est insignifiante; eile est aussi utile ä la stabilite du barrage, parce qu'elle
soulagc un peu, surtout dans la partie superieure, les poutres verticales. Pour
les barrages relativement minces, meme plus longs, l'action des arcs horizontaux
peut etre considerable35.

Les barrages arques ont naturellement besoin de solides appuis aux flancs
de la vallee; on peut les construire seulernent si les flancs sont constitues d'une
röche solide. Les arcs devraient etre, aux naissances, approximativement
perpendiculaires aux lignes horizontales du terrain, pour avoir des appuis süres.

Si l'on calcule le barrage arque d'une maniere plus exacte, si l'on s'efforce de
determiner les tensions plus en detail et si l'on considere aussi l'influence de la

temperature, on peut admettre des limites plus grandes des tensions (par
analogie des constructions de ponts) par rapport au calcul superficiel usuel.

Stucky1* recommande en ce cas pour le beton la limite de compression jusqu'a
35 kg/cm2 et la limite de traction jusqu'a 10 kg/cm2. Juillard*1 objecte que
l'on ne devrait pas depasser les limites appliques jusqu'a present, tant qu'une
experience plus longue ne prouve pas la sürete des nouvelles methodes de calcul.

Les fatigues reelles dans un barrage arque peuvent dependre essentiellement
du mode de construction44. Pour que l'action des arcs se fasse valoir, il est
necessaire que le barrage forme dans la direction verticale et horizontale un
monolithe; toutes les considerations precedentes sur les tensions dans les barrages

arques supposent donc que toutes les couches sont bien jointes entre eile*
pendant la construction ou liees par des grandes pierres. S'il y a des joints de

dilatation verticaux, l'action des arcs peut etre considerablement reduite. ou
meine eliminee par les joints ouverts. Si les joints de dilatation etroits sont
remplies plus tard dans toute leur etendue, alors les forces horizontales
transversales (en arcs horizontaux) peuvent agir; le frottement dans les joints de

dilatation. produit par la compression agissant sur eux, aide ä cela. On peut
alors calculer avec l'action des arcs (du moins en partie).
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Confirmation de la.theorie par les mesures et experiences.

On peut determiner les tensions dans un barrage, en partant des deplacements
mesures, comme l'a montre F. A. Noetzli*5. Soit As le raccourcissement de la
fibre moyenne de l'arc (valeur absolue), la force horizontale, produite seulernent

par As, est
Et3

H -kf m As, (42)

oü* h2 s
kf -,/ Py2ds Pcos2cpds f'sin2cpds\y2 d s Pcos2 cp d s T sin2 cp d s \' (42a)

il s'agit ici d'un are ä une largeur b 1; la signification des autres quantites
est la meme qu'auparavant (v. fig. 1). Les valeurs du coefficient kf pour divers
angles centraux 2 a et divers rapports t/h sont contenues dans un nomogramme,
etabli par Noetzli. Approximativement, pour un are parabolique, en tenant compte
seulernent des moments flechissants, kf 0,94; l'influence des efforts normaux
et tranchants y comprise, kf 0,75. Le raccourcissement de la fibre moyenne
As donne approximativement, en supposant la fibre moyenne deforme circulaire
(comme pour un are ä deux articulations), le deplacement du sommet de l'arc
(positif dans le sens vers le centre de l'arc)

•
3 S

An l6-h-As-
En introduisant As de cette equation dans (42), on obtient

16. Ets
H=-ykf-hi^- (43)

2

Les valeurs approchees kf 0,75, y- 8,3 r donnent

H=-0,48j^-n; (43a)

r est le rayon de la fibre moyenne. La force H passe par le centre de gravite de

la fibre moyenne, donc approximativement ä la distance — de la cie de l'arc; on
o

peut alors calculer facilement les tensions a la cie et aux naissances de l'arc.

Les formules de Noetzli peuvent donner, d'apres W. CainVD, des resultats
suffisamment bons pour les angles centraux 0—30° et pour les arcs minces; pour les

angles centraux plus grands et pour les arcs epais, les resultats peuvent differer
considerablement de ceux du calcul exact.

En considerant la pression d'eau p (ä la face amond) et la charge radiale
uniforme p' (positive vers le centre de l'arc), provenant du changement de la

h2l*
* Le numerateur de kf devrait etre au de lieu b's, ce qui resulte de la deduction de

s

la formule.
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temperature et du retrait du beton, on obtient pour le deplacement de la cie de

l'arc d'apres W. Cain21 une formule plus exacte

: coo r0 bs + -^t— (44)

avec les memes signes que peux l'equation (34a): pour une diminution de la

temperature, b et p' seraient negatifs. On peut calculer de (44) la valeur (ptp'\
cest-ä-dire la charge radiale totale de 1 are (uniforme, comme on suppose), si
Ion mesure le deplacement reel y et les autres quantites de la formule. Les
relations (44), de meme que (34, 34a) sont valables seulernent, si tout l'arc
considere dans le calcul est en action, dons s'il n'y a pas de fissures produites par le

retrait du beton ou par des tractions trop grandes.
Sil y a dans le barrage des fissures verticales qui alterent l'action des arcs

horizontaux (en changeant leurs sections), la mesure des deplacements et de la

temperature devrait etre faite ä une epoque, oü les fissures sont fermees; de

deux observations en divers moments on peut deduire, de la difference des valeurs
observees. le deplacement y et le changement de la temperature b que l'on doit
introduire dans la formule. On doit aussi faire attention que 1 on elimine les

effets defavorables d'un module d elasticite inegal (heterogenite du beton) et
d'une distribution non uniforme de la temperature. On parvient ä cela, en

mesurant les deplacements et la temperature dans une periode de plusieurs jours,
pendant laquelle la temperature de l'air ne change pas. Si le calcul, partant des

valeurs observees, donne une pression p ä peu pres egale ä la pression d'eau en
bas du barrage ou meine plus grande. cela prouve qu'il > avait des fissures
verticales dans le barrage ou que la distribution de la pression d eau etait trop
inegale; on ne peut alors pas employer les resultats de telles mesures.

Du deplacement radial mesure i] ä la cie de 1 are horizontal, on peut calculer
le moment flechissant ä la cie par la formule

Et3
Mo ~a-"hT-i' (45)

qui peut etre appliquee aussi bien pour le deplacement produit par la pression
d eau que pour le deplacement engendre par la temperature. Le coefficient a

possede la valeur: pour un are encastre21, si l'on considere linfluence de l'effort
tranchant.

1_

6

/1 sincx\
sin all 1

- - i2- °-i2 (45a)
(a — sina)(l + -^) + 2,88 — • A, (a + sin 2 a)

\ ro~' ro ro~

et pour im are ä deux articulations10, en negligeant linfluence de 1 effort
tranchant.

1 sina(l — cosa)
6 • i 1 o \ i

l2
/ • \

'
(45b)

sina + a(l — 2cosa) + -^ (a — sina)

Le coefficient a depend seulernent de l'angle central 2 a et du rapport : on peut
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alors calculer a d'avance pour divers angles et et divers rapports --. On peut alors

prendre a directement d'un tableau numerique etabli de la sorte et determiner
M0 par Substitution de a dans (45). De cela resulte la force X pr — Hc, parce
que M„ represente le moment de cette force X, agissant au centre de gravite de

la fibre neutre, pour un are encastre (dans la droite de jonction de deux artir
culations pour un are ä deux articulations); on calcule ensuite Hc et, de cette

W \m

soo

»5, *

tot-*,*
0.10

m
160^

*,Ü

n
i*

ÄWr-

n
160

Vi

Fig. 16.

force et du moment MQ, les tensions dans la section de la cie de l'arc. En se

servant des formules mentionnees auparavant, on peut determiner de M0 et Hc le

moment flechissant et l'effort normal ä la section ä la naissance et les tensions
ä la naissance de l'arc.

Si l'action complete de l'arc est assuree dans tous cas de charge et de changements

de la temperature, c'est-ä-dire si le barrage arque est tellement arme et
fixe au roc sur les flancs de la vallee, que des fissures verticales ne peuvent
se presenter, on peut calculer ä l'aide de mesures exactes du deplacement et de la

temperature le module d'elastacite E. II est necessaire pour cela de determiner

par le calcul (d'apres Smith ou Noetzli) la charge radiale p' de l'arc horizontal;
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E est alors donne par l'equation (34). II est mieux d'eliminer le changement de la

temperature, en employant les mesures des deplacements ä diverses profondeurs
de l'eau et pour une temperature egale.

Le calcul peut etre contröle par mesures effectuees dans quelques cas sur des

barrages actuels46; on peut aussi confirmer la theorie par des experiences
systematiques sur modeles. Cam. Guidi47 faisait des essais avec un modele de barrage
arque en forme d'une voüte semi-circulaire de rayon 2,61 m, d'epaisseur
constante de 16 cm et de hauteur de 5 m; il chargeait la voüte par la pression d'eau
contenue entre cette voüte et une plus grande ä meme axe, distante de 1,01 m,
d'epaisseur de 20 cm (fig. 16). Les deux voütes etaient fixees aux fond et ä deux

grands piliers lateraux; la voüte exterieure etant aussi fixee ä une dalle en beton
en haut, mais la voüte interieure finissait au-dessous de cette dalle et etait jointe
ä la dalle d'une fagon elastique, pour rendre possibles les epreuves de l'arc sous
pression produite par des presses hydrauliques. Les essais ont montre que la

ligne elastique de l'arc horizontal ne correspond pas ä une pression d'eau
uniforme, mais qu'elle est en bon aecord avec une charge, comportant ä la cie

3/4 de la pression d'eau et croissant continuellement vers les appuis jusqu'a
une pression d'eau complete; c'est ce que Guidi recommandait dejä dans son
livre sur la statique des barrages10.

Pour les essais sur modeles, A. Mesnager et J. Veyrier18 proposaient en
1926 une tres bonne methode, permettant d'obtenir au modele ä echelle reduite
les memes tensions que dans la construction reelle. En employant au lieu de l'eau
un liquide ä poids specifique n-fois plus grand (par. ex. mercure avec le poids
specifique n =¦ 13,6), on obtient dans le modele, construit du meine materiau
que le barrage reel, et reduit ä une echelle 1 : n, en chaque point les memes
pressions exterieures et en consequence les memes tensions qu'au point
correspondant du barrage reel; la deformation sera proportionnelle. En employant
pour le modele un materiau ä resistance m-fois plus petite et pour la charge un
liquide de poids specifique n, on obtient les memes resultats par rapport ä la

rupture avec un modele ä l'echelle 1 : m n. De teile maniere, Mesnager et Veyricr
essayaient le modele d'un barrage ä charge fractionnee* qu'ils projettaient pour
une hauteur fötale de 70 in (5 gradins de 14 m) sur la Dordogne ä Marege48.
Ils employaient pour la charge le mercure avec le poids specifique 13,6 et fabri-
quaient le modele en plätre, prepare de teile fagon que sa resistance etait
7.33-fois plus petite que celle du beton; alors ils pouvaient employer un modele ä

l'echelle l:mn 1 : 13,6x7,35 — 1: 100. Ils chargeaient le modele jusquä
la rupture et fixaient que le coefficient de securite de chaque are dans la
construction reelle serait de 3 ä 5 d'apres leur projet. Ils avaient trouve aussi que
les formules et les tableaux de Guidi sont bons et sürs en pratique.

Les essais avec les barrages arques furent faits ä grande echelle aux Etats-
Lnis d'Amerique, oü sur l'impulsion de F. A. Noetzli un barrage d'essai arque
fut construit en 1926 sur le Stevenson Creek en Californie: les essais furent
decrits dans une publication speciale2. Ces essais americains sont de la plus
grande importence pour la confirmation des diverses theories, par leur grande

* Le premier barrage ä charge fractionnee fut projette par Boule en 1894 pour le barrage sw

le Nil ä Assouan. eiiMiite en 1912 par Rutenberg en Italie.
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etendue et par l'analyse soigneuse des resultats. Ils donnaient des resultats
interessants et montraient clairement quelles theories employees jusqu'ici sont
correctes.

Securite des barrages.

Les barrages droits ont d'ordinaire un coefficient de securite petit, en regle
ä peine plus grande que 1,5. Cela est prouve par les aeeidents qui se sont
produits sur barrages droits. Au barrage de Ronzey, un rehaussement de 80 cm
du niveau suppose de l'eau suffisait ä produire la rupture49; le coefficient de

securite n'etait ici qu'un peu plus grand que 1. Beaucoup d'autres aeeidents
etaient aussi causes par un rehaussement du niveau d'eau au-dessus du niveau
extreme considere dans le projet (ä cause de l'insuffisance des deversoirs) et par
l'inondation du barrage. La securite du barrage croit considerablement sans une
modification du profil, par une courbure du barrage en plan; cela peut aussi
essentiellement ameliorer les effets defavorables des changements de temperature
et du retrait du beton, qui peuvent etre eiimines dans un barrage droit par des

joints de dilatation.
Le coefficient de securite d'un barrage arque est au contraire considerablement

plus grand que celui du barrage droit. Cela est demontre aussi par le fait que
les aeeidents aux barrages arques sont tres rares et causes pour la plupart par
l'insuffisance des fondations les barrages (Moyie River50, Lake Lanier50 et
Gteno51 en Italie). Des barrages arque bien construits ont une securite considerable,

beaucoup plus grande que les barrages droits. Le barrage droit oppose ä la
pression d'eau seulernent le poids de la magonnerie. Si la pression d'eau croit
seulernent un peu (par un rehaussement non prevu du niveau d'eau), la
compression maximale ä l'extremite aval du joint de base peut croitre considerablement;

la charge de rupture est souvent ä la charge supposee dans le projet du
barrage dans un rapport (coefficient de securite) depassant de peu 1. La courbure

du barrage agrandit considerablement sa securite; un barrage courbe est

par sa forme seule assure contre le renversement. Les essais de M. Mesnager ont
montre que la charge supportee avec securite par le barrage, peut etre elevee

plusieurs fois avant la rupture; le coefficient de securite, donne par le rapport de
la charge de ruptuire ä la charge reelle, est ici semblable au coefficient de securite
des autres constructions civiles.

Litterature :

1 /. Resal: «Formes et dimensions de grands barragos en maconnerie» (Annales des Ponls
et Chaussees 1919, II, p. 165—221).

2 .,Report on Arch Dam Investigation, vol. I" (Proceedings of the American Society of Civil
Engineers, Mai 1928).

3 G. Pigeaud: «Notes sur le calcul des barrages en voüle» (Genie civil 1922, vol. 81,p. 106).
4 Delocre: «Sur la forme du profil ä adopter pour les grands barrages cn maconnerie des

reservoirs» (Annales des Ponts et Chaussees 1866, II, p. 212).
5 Pelletreau: «Barrages cintres en forme de voüte» (Annales des Ponts et Chaussees 1879,

I, p. 198—218).
6 H. Hawgood: ,,Huacal Dam, Sonora, Mexico" (Transactions; of the Amer. Society of Civil

Engineers 1915, vol. 78. p. 564).



1146 Z. Bazant

7 R. Ruffieux: «Etude sur la resistance des barrages en maconnerie» (Annales des Ponts et
Chaussees 1901, I. p. 197—234).

8 E. Morsch: ..Berechnung kreisförmiger Gewölbe gegen Wasserdruck" (Schweizerische
Bauzeitung 1908, vol. 51, p. 233—235).

9 H. Ritter: ,,Die Berechnung von bogenförmigen Staumauern", Karlsruhe 1913.
10 Cam. Guidi: ..Statica delle dighe per laghi artificiali" le ed. 1921, 3e ed. Torino 1928).
11 W. Cain: „The Circular Arch under Normal Loads" (Proceedings of the Amer. Society of

Civil Engineers 1921, vol. 47, p. 285—300).
12 R. Kelen: ..Die Staumauern", Berlin 1926.
13 G. Ippolito: (trad. par. J. Roudet:) «Nouvelle contribution- ä l'etude des barrages en are»,

Paris 1927.
14 A. Stucky: «Etude sur les barrages arques», Lausanne 1922 (Bulletin technique de la

Suisse romande).
16 F. A. Noetzli: ,,The Relation between Deflections and Stresses in Arch Dams" (Transactions

of the Amer. Society of Civil Engineers 1922, vol. 85, p. 284—307).
16 Transactions of the Amer. Society of Civil Engineers 1922, vol. 85, p. 264—283.
17 F. A. Noetzli: ,,Gravity and Arch Action in Curved Dams" (Transactions of the Amer.

Society of Civil Engineers 1921, vol. 84, p. 1—60).
18 Transactions of the Amer. Society of Civil Engineers 1922, vol. 85, p. 334.
19 //. Bellet: «Barrages en maconnerie et murs de reservoirs» Paris 1907.
20 B. F. Jakobsen: ,,Stresses in Thick Arches: of Dams" (Transactions of the Amer. Society

of Civil Engineers 1927, vol. 90, p. 475—521.
21 Transactions of the Amer. Society of Civil Engineers 1927, vol. 90, p. 522—547.
22 F. H. Fowler: ,,A Graphic method for Determining the Stresses in Circular Arches under

Normal Loads bv the Cain Formulas" (Proceedings of the Amer. Society of Civil Engineers
1927, vol. 53, P/l893—1917).

23 R. Chambaud: «Le probleme elastique des voütes epaisses et des pieces ä forte courbure»,
Paris 1926 (Genie civil).

24 M. Malterre: «Calcul des grands barrages de reservoirs en forme de voütes» (Annales des

Ponts et Chaussees 1922, II, p. 223).
25 Transactions of the Amer. Society of Civil Engineers 1902, vol. 85, p. 249.
26 A^inales des Travaux Publics de Belgique 1928, p. 142.
27 H. Juillard: «Influence de l'encastrement lateral dans les grands barrages» (Schweizerische

Bauzeitung 1921, vol. 78, p. 271).
28 S. H. Woodard: „Analysis of Stresses in Lake Cheesman Dam" (Transactions of the Amer.

Society of Civil Engineers 1904, vol. 53, p. 108).
29 In the discussion to ,,Lake Cheesman Dam and Reservoir" (Transactions of the Amer.

Society of Civil Engineers 1904, vol. 53, p. 155).
30 L. R. Jorgensen: ,,The Constant Angle Arch Dam" (Transactions of the Amer. Society of

Civil Engineers 1915, vol. 78, p. 685).
31 Transactions of the Amer. Society of Civil Engineers, 1915, vol. 78, p. 610.
32 Transactions of the Amer. Society of Civil Engineers, 1921, vol. 84, p. 124.
33 Transactions of the Amer. Society of Civil Engineers, 1921, vol. 84, p. 71—91.
34 A. Rohn: ,.Beitrag zur Berechnung massiver Staumauern" Schweizerische Bauzeitung 1922,

vol. 79, p. 126).
35 C. H. Howell and A. C. Jaquith: ,,Analysis of Arch Dams by the Trial Load Method"

(Proceedings of the Amer. Society of Civil Engineers 1928, vol. 54, p. 61—95).
36 A.J. Wiley: in Transactions of the Amer. Society of Civil Engineers 1921, vol. 81, p. 109.
37 Transactions of the Amer. Society of Civil Engineers 1927, vol. 90, p. 567.
38 B. A. Smith: „Arched Dams" (Transactions of the Amer. Societv of Civil Engineers

1919—1920, vol. 83, p. 2027—2093).
39 Fred. Vogt: „Über die Berechnung der Fundamentdeformation", Oslo 1925.
40 Transactions of the Amer. Society of Civil Engineers 1927, vol. 90, p. 554—567.
41 H. Juillard: «Calcul des barrages arques» (Schweizerische Bauzeitung 1923, vol. 81, p. 11).
42 Transactions of the Amer. Society of Civil Engineers 1904, vol. 53. p. 182.
43 Engineering News-Record 1926, vol. 96, p. 865.
44 D.C.Henny: in Transactions of the Amer. Society of Civil Engineers 1915, vol. 78. p. 685.
4& Transactions of the Amer. Society of Civil Engineers 1922, vol. 85, p. 310—320.



Le developpement du calcul des barrages arques 1147

46 Schweizerische Bauzeitung 1923, vol. 81, p. 21.
47 Cam. Guidi: «Etudes experimentales sur les constructions en beton arme» (Traduit par

A. Paris, Lausanne 1927, Bulletin technique de la Suisse romande).
48 A. Mesnager et J. Veyrier: «Les barrages-reservoirs ä voütes et a charge fractionnee»

(Annales des Travaux Publics de Belgique, 1928, p. 219—257).
49 A. Mesnager: «Les barrages h)drauliques», Paris 1928.
5° Engineering News-Record 1926, vol. 97, p. 616.
51 Der Bauingenieur 1924, p. 382. *

Resume.

La construction des barrages arques a passe jusqu'a ce jour par une longue
periode d'evolution. Aussi la theorie de ces barrages commencee par un traite
publie en 1866, a evoluee des commencements tres simples jusqu'a la perfection
d'aujourd'hui. Les barrages arques sont employes de plus en plus et leurs
dimensions croissent toujours; ils garantissent la securite de la region situee en
aval. II est interessant de suivre l'evolution de leur theorie qui montre clairement,
comment la pensee humaine penetre le vrai sens et l'action de cette importante
construction civile.

Au commencement, le barrage arque etait envisage comme un Systeme d'arcs
horizontaux independants, resistant ä la pression de l'eau et eventuellement
ä l'influence des changements de temperature et du retrait du beton. Le fondement
de la theorie est ici le meme que pour les arcs ordinaires, sollicites par des

charges verticales. Toutefois, les charges radiales exigent une theorie un peu
differente et specialement plus complete que la theorie ordinaire des arcs
verticaux. La theorie des arcs horizontaux fut successivement perfectionnee,
en tenant compte de l'effort tranchant, en plus des moments flechissants et
de l'effort normal. Ensuite, la theorie des arcs minces fut remplacee par la
theorie des arcs epais, au debut approximative, puis exacte, basee sur la theorie
mathematique de l'elasticite.

Les hauteurs toujours plus grandes des barrages ont conduit ä la necessite
de considerer la liaison des arcs horizontaux dans le sens vertical. On est parvenu
ä cela en considerant le barrage arque comme un Systeme d'arcs horizontaux
et de poutres verticales. La repartition des charges sur les deux systemes fut
calculee d'abord approximativement, en supposant une repartition uniforme des

charges sur les arcs. La theorie fut perfectionee peu ä peu et aujourd'hui on
est capable de calculer exactement la repartition des charges sur les arcs
horizontaux et les poutres verticales, pour les barrages symetriques ou as-

symetriques.
La derniere etape de la theorie du barrage arque est la theorie de la couche

mince, elaboree en pratique pour la premiere fois aux Etats Unis d'Amerique
et perfectionnee dans ce pays.

Les ingenieurs americains, travaillant ä la theorie des barrages arques, ont aussi
te grand merite d'avoir execute ä une grande echelle des experiences avec un
barrage arque de grandes dimensions et d'avoir compare les resultats de ces

epreuves avec les essais sur modeles. Ces experiences ont elucide beaucoup de

questionsj concernant la theorie des barrages arques et promettent de montrer
clairement la voie correcte pour la theorie et la construction de ces barrages.
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