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Calcul exact de la poutre en treillis rhomboidal.

Genaue Berechnung des Rautentragers.

Girders with Rhombic Arrangement of Members.

Dr. Ing. Fr. Krabbe,

Reichsbahnoberrat, Reichsbahnzentralamt Miinchen.

I — Caractéristiqties particuliéres de la poutre en treillis rhomboidal.

Grace a son aspect esthétique, la poutre en treillis rhomboidal a été fréquem-
ment employée, au cours de ces derniéres années et I'une des plus importantes
réalisations dans ce domaine est le pont sur la Vistule, a Dirschau. La méthode
de calcul généralement employée était celle du Professeur Mehrtens, de Dresde,
méthode dans laquelle la poutre considérée est décomposée en deux systémes
élémentaires représentant chacun une poutre a diagonales simples. Des investi-
gations ultérieures précises, effectuées en particulier par Miiller-Breslau d’aprés
la méthode cinématique, ont cependant montré que la poutre en treillis rhom-
boidal, considérée comme poutre en treillis admettant des articulations dénuées
de frottement aux endroits des noeuds, accuse en particulier en ce qui concerne
les diagonales, des lignes d’influence dont I'allure différes sensiblement de celle
qui a été¢ antérieurement indiquée par Mehrtens, sur la base des procédés
d’investigations utilisés par lui. Ces lignes d'influence présentent une forme en
zig-zag, passant alternativement, de noeud en noeud, du domaine positif au
domaine négatif et vice-versa. La fig. la représente l'allure d'une telle ligne
d'influence déterminée d’aprés la méthode de Mehrtens, tandis que la figure 1b
indique la forme relevée d'aprés la méthode cinématique et qui est sans aucun
doute la forme exacte dans Uhypothése d’articulations dénuées de frottement
dans les noeuds, suivant la théorie courante du treillis. Les courbes de flexion
sous l'influence d'une charge concentrée, telles qu'elles sont obtenues par la
méthode cinématique, accusent également une forme en zig-zag (fig. 2a). Ces
formes des lignes d'influence et des courbes de flexion, qui sont nettement
défavorables, ont conduit a éviter I'emploi des poutres en treillis rhomboidal
comme poutres principales, dans la construction des ponts.

La ligne d'influence de la fig. 1b n'est toutefois pas sans préter a de
notables critiques, lorsque l'on la considére d'une maniére plus étroite et lorsque
I'on tient compte de ce fait que les lignes d'influence représentent des courbes
de flexion et en particulier les courbes de flexion que l'on obtient pour les
éléments de membrure en charge lorsque I'on prolonge d'une longueur «unité-
les barres considérées. La courbe de flexion représentée sur la fig. 2a fait
naturellement l'objet des mémes objections. Il est évident qu'en adoptant a priori
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de telles formes pour des membrures de construction continue, on s’expose a la
mise en jeu d'efforts tranchants considérables qui peuvent exercer une influence
notable sur la forme de la courbe de flexion. Il n’a toutefois pas été tenu
compte de ces efforts tranchants dans les calculs. Par suite-de ces considérations,
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le choix du systéme porteur prin-
cipal a adopter pour la reconstruc-
tion, en 1926/1927, des super-
structures du pont de chemin de
fer sur le Rhin, & Wesel,! s’est a
nouveau porté sur la poutre en
treilis rhomboidal, que 'on évitait
d’adopter depuis déja longtemps,
faisant ainsi table rase des objec-
tions élevées contre ce systéme.
Aprés I'achévement de la construc-
tion, on a vérifié, par une mise
en charge a l'aide d'une charge
concentrée de 80 tonnes, la courbe
de flexion telle qu'elle avait été
déterminée par le calcul (fig. 2a);
on a pu ainsi obtenir, par des
mesures précises, la forme exacte
de la courbe de flexion que re-
présente la fig. 2b. On est ainsi
arrivé directement a cette con-
clusion que la courbe de flexion de
la membrure chargée, obtenue par
prolongement d'une barre, pré-
sente également, en fait une forme
sensiblement différente de celle de -
la fig. 1b. C’est ce que confirmé-
rent par la suite les observations
rigoureuses effectuées avec le plus
grand soin par le Dr. Christiani,
sur la ligne d’influence d’une
petite poutre en treillis rhomboidal
(fig. 3), considérée comme systéme
72 fois statiquement indéterminé et
en tenant compte de la rigidité des
membrures et des diagonales.? Les
recherches successives de Christiani
montrérent en outre que l'influence

de la rigidité des membrures et des diagonales, dans les poutres en treillis
rhomboidal, était telle que 1’élément dit de stabilité qui est nécessaire pour assurer

L Die Bautechnik, 1927, Nr. 46/47.

2

éditeur.

2 Christiani: Strenge Untersuchung an Rhomben-Fachwerken. Berlin, 1929, Julius Springer,
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la stabilité des treillis avec articulations aux endroits des noeuds, n’est en général
pas nécessaire pour assurer la stabilité du systéme porteur et qu'en outre, cet
élément de stabilité ne peut en général exercer une influence sensible que sur
les panneaux qui lui sont immédiatement voisins.3

Les considérations et résultats de mesures et de recherches statiquement
rigoureuses qui viennent détre exposés montrent nettement que la poutre en
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treillis rhomboidal ne doit pas étre considérée comme une poutre en treillis
proprement dite au sens habituel du mot; il faut plutt considérer que les parti-
cularités de ses lignes d'influence et de ses courbes de flexion, telles q'uelles
sont obtenues sur la base de la théorie des treillis, la rejettent en dehors du
domaine des poutres en treillis proprement dites et que cette poutre ne peut

3 Christiani: Uber die angebliche Labilitil von Fachwerken. Der Stahlbau, 1931, n° 2.
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étre calculée qu'en faisant intervenir la rigidité dans les noeuds, si l'on veut
obtenir un résusltat correspondant effectivement a la réalité. On a été ainsi
amené a envisager la nécessité de mettre au point un procédé de calcul précis,
méme pour le pont sur le Rhin a Wesel, pont qui avait d’ailleurs été terminé
entre temps. Ceci n’'a toutefois été possible que par la mise au point d'une
méthode plus simple que celle qui avait été employée par Christiani, car le
systtme constitué par le pont sur le Rhin 4 Wesel représente, en tenant compte
de la rigidité propre et des assemblages rigides de toutes les barres, un systéme
208 fois statiquement indéterminé. Le degré d'indétermination est d’ailleurs
encore de 57 lorsque I'on néglige la rigidité propre des barres et celle de leurs
assemblages. Il est en effet certain que le calcul de systéme présentant un
degré d’indétermination statique aussi élevé, par les méthodes habituellement
employées, est pratiquement impossible.

I1. — Influence remarquable de la rigidité des membrures dans les poulres en
treillis rhomboidal.

Dans mon étude «La poutre en treillis rhomboidal et son calcul exact
simple»,% je me suis limité a l'influence de la rigidité de la membrure de la
poutre en treillis rhomboidal et jai considéré les diagonales elles-mémes comme
articulées sur des membrures de construction continue; faisant, j’ai également
négligé la rigidité conférée au systéme par les rivures aux points de croisement
des diagonales.

Dans la présente étude, je me proposerai simplement d’exposer les résultats
obtenus au cours des recherches ci-dessus. Afin d’étre en mesure de tirer des
conclusions comparatives, j'al également fait porter mes investigations sur le
systétme de poutre en treillis rhomboidal traité par Christiani comme systtme 72
fois statiquement indéterminé. Mes recherches ont été effectuées d’aprés la
méthode des grandeurs des déformations. J'ai constitué le systéme principal par
adjonction dans chaque losange élémentaire (fig. 4a) d'un montant vertical
rigide, articulé aux noeuds. J'ai obtenu, d’aprés des considérations cinématiques
simples, les formes de lignes d’influence représentées sur les fig. 4b a e,
J'ai ensuite obtenu successivement les états «T,, = 1» en prolongeant chacun
de ces montants rigides de la longueur unité, ces états ayant pour conséquences
des contraintes déterminées O, U et D dans les barres des deux panneaux
voisins (fig. 5) et en outre la mise en charge de tous les montants rigides sous
des efforts Z. En annulant les différentes contraintes dans ces barres auxiliaires
rigides, suivant le systéme de charges, représenté sur la fig. 6a, j'ai ainsi obtenu
les déformations initiales de la poutre sous la charge considérée aprés la sup-
pression des montants rigides, c'est-a-dire l'allongement de ces barres Z. qui
implique I'annulation des charges des différentes barres auxiliaires.

Un calcul portant sur une série d'exemples a amsi montré que dans tous les
cas qui se présentent dans la pratique, une mise en charge de la poutre suivant la
fig. 6a, aux points m, et m, ne provoque quun déplacement vertical appréciable des
points m, et m, et des couples de points voisins (m - 1),, (m -+ 1), el (m— 1),
(m — 1), les uns par rapport aux autres et que par suite toutes les valeurs de C,

4 Der Stahlbau, 1931, n° 15.
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a l'exception de Tn_; Twm et Twm,; ne différent qu’insensiblement de zéro.
Il en résulte la possibilité extrémement intéressante de déterminer toutes les
déformations qui résultent d'une mise en charge a la maniére de celle de la
fig. 6d par des systémes d’équations ne comportant que trois inconnues. La
déformation de la membrure chargée, en 'occurence la membrure inférieure,
sous l'influence de la mise en charge suivant fig. 6a, représente naturellement
la ligne d’'influence qui correspond a l'écartement T,; elle ne s’'étend que du
noeud C,, _, au noeud Z ., fig. 6b). Comme maintenant tout C,, provoque des
efforts déterminés dans les barres des deux panneaux voisins, on peut trés sim-
plement obtenir les lignes d'influence additionnelles pour ces barres en super-
posant les lignes d’influence correspondant aux différentes valeurs de T. qui
sont a ajouter aux lignes d'influence pour le systéme principal. On obtient ainsi
pour les lignes d'influence définitives les formes de fig. 7a a d. On observera
que les lignes d'influence établies par moi de cette maniére coincident d'une
maniére absolument surprenante avec les lignes d'influence déterminées par
Christiani [comparer avec la figure 16 de I'article faisant I'objet du renvoi (4)].

On arrive ainsi aux résultats suivants qui ne s’appliquent d’ailleurs pour le
moment qu’'a la poutre considérée:

1 — La poutre (fig. 3) est stable, méme sans barres «de stabillité»; pour
toutes ses barres, on obtient des lignes d'influence exemptes de toute
ambiguité et absolument normales.

2> — L’action exercée par une barre de stabilité verticale insérée dans la
poutre en treillis rhomboidale. ne s’étend que sur deux panneaux de
chaque coté de cette barre.

3° — Les lignes d'influence des barres et en particulier des diagonales, ne
passent pas a angles vifs, d'un panneau a l'autre, entre des valeurs
alternativement positives et négatives, mais présentent une allure en-
tierement normale.

4> — La forme des lignes d'influence différc notablement de celle des lignes
d’'influence déterminées dans I'hypothése d’articulations dénuées de
frottement; par contre, les lignes d'influence que 1’on obtient par décom-
position en treillis élémentaires sont sensiblement exactes (fig. 7e a h).

5° —- L’influence de la rigidité des barres du treillis elles-mémes et de leurs
assemblages est négligeable (bonne correspondance entre les lignes
d’influence).

6 — Les contraintes de flexion déterminées dans les barres des membrures
sous l'influence du train de charges N atteignent la valeur maximum

de 420 kg/cm2.

On peut toutefois élever ici cette objection d'ailleurs fondée que
la poutre qui a fait l'objet des études ci-dessus ne correspond en
aucune facon a une poutre courante; ses membrures sont en effet
trés hautes (60 cm pour une portée de 28 m). J'ai donc effectué
également des études sur une poutre semblable, mais comportant des
membrures ayant la hauteur normale de 30 cm. Je n’ai ainsi oblenu
aucune différence importante en ce qui concerne les lignes d'influence
pour les efforts dans les barres; par contre, les contraintes de flexion
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dans les membrures présentaient des valeurs plus faibles d’environ
300/p. J'ai ainsi été amené a la conclusion suivante, intéressante pour
la conception pratique de la poutre en treillis rhomboidal:

(© — La rigidité des membrures que l'on obtient couramment par ailleurs
dans les poutres en ftreillis suffit entiérement a assurer la stabilité,
sans qu’il soit nécessaire de prévoir des barres de stabilité. Des mem-
brures trop rigides ne sont pas a préconiser, car elles provoquent la
mise en jeu de contraintes de flexion plus élevées dans les membrures.
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Sur la base des résultats ainsi obtenus, et d'aprés le procédé ici indiqué, jai
fait effectuer le calcul précis du systéme porteur principal du pont sur le Rhin
a Wesel.> Il s’agit ici de poutres paralléles s’étendant sans articulation sur
deux travées ayant chacune 104 m de portée, avec hauteur de membrure de
90 cm absolument normale pour les treillis.® En ce qui concerne la conduite du
calcul, je renverrai a I'étude qui fait I'objet du renvoi (5) et je me limiterai par
suite ici A indiquer les résultats principaux fournis par ces calculs effectués

5 Krabbe: Einfluf der Gurtsteifigkeit in cbenen Tragwerken. Leipzig, 1933, pages 12—17,
Robert Noske, éditeur. '
6 Bautechnik, 1927, n°® 45/46.
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aprés coup. On trouvera sur la fig. 8 les lignes d'influence correspondant
a chaque barre de membrure inférieure et supérieure, de méme qu'a chaque
barre de treillis travaillant a la traction ou a la compression; on trouvera en
outre sur la fig. 2 la ligne d'influence qui correspond au moment de la barre
de membrure inférieure, a l'endroit d'un noeud. Si l'on compare la ligne
d’'influence de la diagonale D, _ avec la ligne d'influence déterminée sur la
fig. 1a par le procédé cinématique et avec la ligne d’'influence déterminée
suivant la fig. 1b par décomposition en treillis élémentaires, il ressort sans
aucun doute que la ligne d'influence suivant fig. 1b se rapproche beaucoup
plus nettement de la réalité que celle de la fig. 1a. J'en arrive donc a cette con-
clusion que le procédé cinématique avec hypothése de noeuds articulés ne peut
pas étre employé dans le cas des poutres en treillis rhomboidal, mais que la
décomposition en treillis élémentaires donne une bonne approximation; il est
nécessaire toutefois de faire un calcul précis en tenant compte de la rigidité
des membrures.

La ligne d'influence qui correspond au moment fléchissant dans la barre de
membrure inférieure donne naissance, dans le cas le plus défavorable du train
de charges N, a des contraintes de flexion de l'ordre de 260 kg/cm2. Pour la
superposition avec les lignes d’influence et les contraintes dans les barres, on n’a
toutefois obtenu que des contraintes de flexion additionnelles de l'ordre de
10 kg/cm2, que l'on doit donc pratiquement considérer comme tout a fait
négligeables.

Enfin, jai en outre calculé la courbe de flexion déterminée cinématiquement
suivant la fig. 2a et mesurée suivant la fig. 2b, dans le cas d'une charge con-
centrée et en faisant intervenir la rigidité des membrures. Le résultat obtenu
est reproduit sur la fig. 2c. On observa la concordance absolument remarquable
avec la courbe de flexion mesurée dans le cas d’une charge concentrée, parti-
culiérement en ce qui concerne les coudes des deux courbes.

I11. — Influence additionnelle de la rigidité de flexion des diagonales et de
leurs assemblages rigides aux noeuds.

1o — Généralités.

Si la méthode développée plus haut permet d’obtenir d’une maniére simple
des résultats se rapprochant visiblement assez bien de la réalité, on congoit toute-
fois, en considérant de plus prés la poutre en treillis rhomboidal, par exemple
celle du pont sur le Rhin & Wesel, que de tels systémes porteurs, avec leurs
diagonales généralement assemblées aux points de croisement par de forts
goussets, - se rapprochent beaucoup plus qu'un treillis proprement dit d’un
systétme de barres rigidement assemblées. Le procédé doit donc ici étre également
étendu a la rigidité des diagonales elles-mémes. On devra également tenir compte
des inégalités des sections et des moments d’'inertie des membrures. Nous sommes
ainsi également en mesure de déterminer exactement les contraintes de flexion
qui se manifestent dans les diagonales. Le procédé est appliqué a la poutre en
treillis rhomboidal de la fig. 10a. Pour cette application, il est en principe
mdifférent que les montants indiqués en traits discontinus existent effec-
tivement ou non dans un ou plusieurs panneaux. De méme, il est sans importance
pour l'application du procédé que la poutre se termine a ses deux extrémités soit
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par un losange complet (fig. 10b), soit par un demi-losange (fig. 10a). Ainsi
d’ailleurs que 1'a montré le calcul ultérieur du pont du Rhin & Wesel, la
deuxiéme terminaison ci-dessus est incontestablement a préférer du point de
vus statique. Nous adopterons comme systéme principal la poutre de la fig. 11a,
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qui comporte un montant rigide sur chaque losange, ce montant étant assemblé
d’une maniére rigide avec les éléments des membrures et avec les diagonales.

Il importe de préciser tout d’abord certaines notions qui sont importantes pour
la suite de 1'étude. La poutre ici considérée posséde, comme toute poutre en
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treillis, un moment d’inertie Ji, qui varie de panneau en panneau et est composé
comme 1l est indiqué ci-dessous:

1> — Moment d'inertie J; du treillis proprement dit, dont les barres sont
considérées comme dénuées de masse.

2¢ — Une partie correspondant aux moments d'inertie des barres des mem-
brures J, + J..

3° — Une partie correspondant aux moments d'inertie des barres du réseau

du treillis J,.
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En ce qui concerne la fraction 1 ci-dessus, les membrures supérieure et
inférieurc ont la méme section, de telle sorte que dans le cas des con-
traintes de flexion pure, la barre de membrure inférieure s'allonge de la
méme quantité que se raccourcit la barre de membrure supérieure (fig. 12). Les
longueurs des diagonales supposées denuées de masse ne subissent de ce fait
pas de modification: ces diagonales restent libres de toute contrainte et ne

66 F - :
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fournissent par suite aucune contribution a la valeur effective du moment
d'inertie J;. L’axe de gravité se trouve au centre et on a la relation simple:

h2
Jf:‘Z(Fo+Fll> (1)

Si I'on admet que les sections des membrures sont différentes, la somme
des variations de longueur des deux barres de membrures est alors différente
de zéro. Ceci implique des allongements et des contraintes dans ces diagonales.
Elles viennent ainsi a participer également au moment d’inertie J;. D’aprés la
fig. 13, a chaque allongement d'une barre de membrure d'une unité, corre-
spond un allongement des deux diagonales de L cos o et il est ainsi mis en jeu

2
dans chaque diagonale un effort donné par:

EF
p— L =N cos?q
2 a
Les efforts latéraux horizontaux correspondants sont donnés par:
' EF
D'= L EEa a
2 a

Nous pouvons donc, en ce qui concerne leur participation au moment d’inertie
Js, supposer les deux diagonales remplacées suivant la fig. 14 par une barre
horizontale passant par le point d'intersection des deux diagonales et ayant
pour section la valeur suivante: '

F'q = 2 Facos3a (2)

La position de I'axe de gravité horizontal est alors donnée par la relation
suivante, dans laquelle sont employées les notations de la fig. 14:

h _2 2FU+F‘d
0_2 F0+Fu+F'd
h _£_2F0+Fld_

2 Fo + Fu + F‘d
et I'écartement entre le centre de figure et le centre de gravité est donné par:

h h F,—F,

ho=?=“‘2— F0+Fu+Fld

On obtient ainsi pour le moment d’inertie:

h? 4F,F, + F’d‘-’j
4 Fo + Fn + F'd )

Pour F, = F, la relation (3) redevient identique a la relation (1).

En ce qui concerne la fraction 2 du moment d’inertie J, et indépendamment
de la position de I'axe de gravité, les barres de membrures apportent un moment
d’inertie additionnel égal a J, - J..

Ji= [F + (3)
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En ce qui concerne la fraction 3 du moment d'inertie J;, et dans le cas d'une
distorsion suivant fig. 15, d'un angle ¢, le point d’'intersection des diagonales
ne peut pour des raisons cinématiques venir qu'en F, point d'intersection des
perpendiculaires élevées en E & A’C’ et B’D’. On a ainsi:

AA' 4+ CC!
2

Le triangle EF G est donc semblable au triangle CAB et l'on a par suile:
EG _h AA'+CC

EG = X EFG = a.

EF~ d~  2EF
ou EF _ AA' + CC!
’ d 2h
d’out I'on déduit: < p = g

Les tangentes aux extrémités des diagonales déformées doivent donc étre les
droites C'F et D’F.

La déformation des diagonales se produit donc suivant les lignes tracées en
traits pleins, avec angles de torsion:

Ny
2= P
Ces déformations se manifestent sur la poutre elle-méme aux points A’, B’, C’

et D’ sous forme d'efforts tranchants q et de moments . Le moment total
ainsi exercé par les diagonales déformées sur la poutre elle-méme est donné par:

| M=——2q—g—+2932

et comme l'on a:

_4-6-EJd.5p_ 9)2—2'2EJ‘1.,-
- dz 2 T d 2
on en déduit: :
, 8EJ4 8 EJ4cosa
M=—— =@

Les diagonales contribuent donc au total a la rigidité de flexion, c'est-a-dire
au moment d’inertie de ce systéme, suivant:

J'a = 8Jacosa = J; (4)
Cette valeur représente le quadruple de la résistance que fourniraient deux
diagonales croisées non assemblées au centre.
On a donc pour le moment d'inertie total du systéme:
Jo =Ji+Jo+ Ju+ 8Jacos a (5)

expression dans laquelle J; est a déterminer d’aprés la relation (1) ou (3).
Nous arrivons a des notions correspondantes en ce qui concerne les efforts
tranchants.

66*
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A la déformation des deux montants rigides d’'une unité (fig. 16), I'ensemble
du systéme porteur oppose une résistance K, L’allongement des deux dlagonales
est donc donné par: :

= 41 sina.
On a donc pour l'effort dans les diagonales:

EF4sin o cos a
a .

D—+1

La composante verticale pour les deux diagonales est donc donnée par:

2 sin® g cos a EFy
a

Ki=1

(6)

ce qui représente la résistance au cisaillement du treillis dans I'hypothése de
barres dénuées de masse. Les barres des membrures restent exemptes de con-
traintes.

Par suite de la déformation des deux barres de membrure, on a en outre:

12 (Jo ‘I‘ Ju) E
_T_

K0+Ku=l (7)

)
La déformation des deux diagonales dont les extrémités ont subi une distor-

sion de Teos s, Par rapport a l'axe de barre, fournit une résistance aux
a z

efforts tranchants donnée par:

24 EJg cos® a
= (8)

On a donc pour la résistance totale du systéme porteur aux efforts tranchants:

Ki = Kt + Ko + Ky + Ka (9)
Jo+Ju+ 2174 c0s5a]
a® )

Kog=1

a

ou: Kt_-.—_l% [Fdsin2 a cosa+ 6

Il est a remarquer ici que dans les réalisations normales, telles que le pont
sur le Rhin a Wesel, par exemple et par suite de la rigidité de flexion des
barres des membrures et des diagonales, la résistance aux efforts tranchants de
I'ensemble du systéme porteur se trouve augmentée d’environ 13 0. Il n’est
donc pas indiqué d’admettre simplement que dans le cas considéré la rigidité des
barres soit a4 négliger. L’élévation du moment d’inertie de I'ensemble de 1'ouvrage
qui résulte de la résistance a la flexion des barres est toutefois faible et reste
nférieure a 1 0jp.

2° — Lignes d’influence concernant le systéme principal.?

a) Lignes d’influence des barres des membrures.

La ligne d'influence de la membrure supérieure est déterminée par la courbe
de flexion de la membrure en charge (membrure inférieure), qui résulte de

7 En ce qui concerne les notations généralement adoptées dans la présente étude pour les
lignes d’influence, se reporter & I'étude publiée par l'auteur dans Stahlbau, 1933, n° 2
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I'allongement d'une unité de la barre de membrure supérieure. Nous réalisons
cet allongement d’une unité de la barre de membrure supérieure (fig. 17), en
la coupant en son milieu et en appliquant un effort X qui provoque un écar-
tement d'une unité. Si nous négligeons tout d'abord la résistance a la flexion
des barres, nous nous trouvons en présence des efforts dans les barres qui sont
indiqués sur la figure. Sous l'influence de l'effort X, qui pour des sections
identiques raccourcit dans les mémes proportions la barre de membrure supé-
rieure et la barre de membrure inférieure, les deux montants subissent 1'un

par rapport a l'autre une distorsion suivant l'angle K On pourrait ainsi

déterminer la ligne d'influence pour O pour le cas du treillis pur.
Comme toutefois les barres de membrure et diagonales déformées mettent

en jeu des réactions réciproques, l'angle de torsion est en fait inférieur ays

nous supposerons qu’il est égal a IF .

On en déduit directement, en se reportant aux relations 1, 3 et 5:

m=7 (10)

La ligne d’influence correspondant a la barre de membrure supérieure O est

donc caractérisée par I'angle de torsion

1

HY
et affectec la forme représentée sur la fig. 11b; on obtient d'une mameére tout
a fait analogue la ligne d'influence qui correspond a la barre de membrure
supérieure U, suivant fig. 1lc.

Si les barres de membrure supérieure et inférieure présentent par contre des
sections différentes, 'angle de torsion n’est plus indépendant de X car si les
~ membrures inférieure et supérieure sont en fait soumises aux mémes efforts
dans les barres X, les allongements qui en résultent sont toutefois différents.

Comme l'effort externe X tend a séparer d'une unité les lévres de la coupure
effectuée sur la barre de membrure supérieure, on a d’aprés le théoréme de
Clapeyron:

X?a X%a X%a
VX =R TER TP ERcor
Comme la valeur ¥ = 0 qui satisferait a cette équation n'a aucune signifi-
cation, on a:
X — 1 EF, F, o
F oof. o 2FoFu
al|kFy+ u+Fd—COS3CL

On » par suite pour I'allongement total de la barre de membrure supérieure:

Xa

A():].—ETO
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et pour le raccourcissement de la barre de membrure inférieure:

Xa
Au —_— m.
On a ainsi pour 'angle de torsion:
Au - A
§o =22
F,—F
ou: $o = — —]h_ 11— 2uF F (10)
Fy+Fo+ 25>

F4cos®a
Nous désignerons l'expression entre les parenthéses par v, et nous aurons ainsi:

1
&o-—:—i-\'o (11)
Pour la membrure inférieure, en procédant de la méme maniére, nous
poserons:

o Fo 4+ Fy
u ° " Fqcosdq
et nous aurons:
1
&u_—-"*“KVu (13)

Les deux lignes d'influence sont représentées sur les fig. 11d a e; la membrure
la plus forte admet naturellement les plus gros efforts dans les barres.

b) Lignes d’influence des diagonales.

Nous déterminerons la ligne d’influence de la diagonale CB (fig. 18) en la
considérant comme courbe de flexion de la membrure inférieure résultant de
I'allongement d'une unité de la diagonale. Dans I'hypothése de barres dénuées
de masse, 'effort qui écarte d’'une unité les lévres de la coupure de la diagonale,
soit X produit dans les barres les efforts indiqués sur la figure. Indépendamment
de cet allongement d'une unité, les deux diagonales se raccourcissent dans la
méme proportion, ce qui provoque une déformation verticale réciproque de
Ssina des montants rigides; on obtient ainsi la courbe de flexion représentée
sur la fig. 11f et par suite la ligne d'influence des diagonales. Sous Il'influence
de la rigidité de flexion des barres de membrure et des diagonales, la défor-
mation verticale des montants se trouve toutefois réduite; nous supposerons
qu'elle répond a:

Nous aurons ainsi:

= (équations 6— 9). (14)
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On obtient ainsi la ligne d'influence représentée sur la fig. 11f.

Si maintenant les barres de membrure supérieure et inférieure ont des sections
différentes et par suite des inégalités d’allongements, on a pour un méme effort
dans les barres + Xcosa, une torsion des montants rigides 'un par rapport
a l'autre de I'angle qui dans ce cas, d’aprés la relation (10) bis, est donné par:

Fu_‘F
{”z‘% ST Fy (15)
[Fu—}—FO—{— 2| cos
_ Fq cos® a

On en déduit la ligne d'influence représentée par la fig. 11g.
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c¢) Lignes d’influence correspondant aux moments d’extrémité des barres.

Nous déterminerons la ligne d’influence correspondant au moment de lex-
trémité droite de la barre de membrure supérieure (fig. 19) en la considérant
comme oourbe de flexion de la membrure en charge résultant de l'effet de
compression axiale de la barre, qui se traduit a l'extrémité droite par une
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déformation ‘d'un angle égal a l'unité. Par suite de cet effet de flambage, il se
trouve mis en jeu dans la barre un effort tranchant donné par:

6EJ,

al

Q=+

Cet effort tranchant implique un déplacement vertical des montants rigides,
l'un par rapport a l'autre, donné par:

Q

dor=1 — (pour K, voir relation 9)
t

6,
32 Kt

or = + 1 (16)

En outre, il s'exerce dans la section verticale directement a droite de O un
moment en sens contraire des aiguilles d'une montre donné par:

EJ,
a

M=

de méme dans la section qui se trouve immédiatement a gauche de O, se
manifeste le moment inverse:

M=+ EJO.

Il en résulte pour la poutre une torsion positive réciproque des deux mon-
tants rigides, qui est donnée par:

4 _M-a
or — EJ(
Jo
ou: &or:—}- - (17)

t

La ligne d'influence conditonnée par la déformation d et la distorsion ¥, pour
M.., est représentée sur la fig. 11h.

Nous déterminerons la ligne d’influence correspondant au momenl sur
Uertrémité supérieure de la diagonale qui monte vers la droite, soit Ma,,, en la
considérant comme courbe de flexion de la membrure en charge, résultant d'une
déformation d'un angle unité par suite de l'effet de flambage de cette barre
a son extrémité supérieure (fig. 20).

Sous cette influence, le croisement des diagonales en O se trouve tout d’abord
soumis & un moment donné par:

4EJqcosa
. :
Sous l'influence de ce moment, il se produit une distorsion en sens contraire
: o 1 . . ;
d’horloge suivant un angle de — et les diagonales subissent de ce fait un

8

fléchissement additionnel indiqué en traits discontinus. Le point O ne se trouve
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alors plus soumis & un moment, car chacune des quatre demi-diagonales in-
fléchies exerce sur lui un effort égal a:

EJqcos a

_I._

a

Sous cette influence et aussi bien dans une section située a droite qu'a gauche
de O, c’est-a-dire dans le panneau tout entier, se trouvent mis en jeu des efforts
tranchants qui sont indiqués sur la fig. 20, soit:

24 EJd_ cos® a

Q____ a?
On a en particulier a droite:
C g_,Q_20_0Q
8 8 4 ~ __6EJ4qcos’a
‘ _ Q ,Q_Q [ @
et a gauche: 21— Viaivy

Ceci implique un déplacement des montants rigides 1'un par rapport a
I'autre de:

6 EJacos®a
Baro =+~ s (18)

En outre, vient sappliquer sur la section verticale située immédiatement
a droite de O, en O, un moment en sens inverse d’horloge et donné par:

M=

_4EJdcosa+2EJdcosa:_2EJdcosa

a a a

et sur la section verticale située immédiatement a gauche de O:

M:+2EJ"§ﬁ9‘.

A ce moment doit venir s’opposer un moment en sens contraire résultant du
fléchissement de la poutre tout entiére; pour cela, une distorsion de la poutre
est nécessaire, suivant un angle donné par:

gy Ma__ 2dscosa
drO—’EJt_ Jt,

(19)

La ligne d'influence conditionnée par le déplacement d et par la torsion &
pour Ma,, est représentée sur la fig. 11i.

Nous déterminerons la ligne d'influence pour le moment d’extrémité de cette
méme diagonale directement a droite de O en la considérant comme courbe
d’influence de la membrure en charge, résultant d'un effet de flambage en K
se traduisant pour cette barre par une déformation suivant un angle unité
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(fig. 21). Dans des conditions analogues aux précédentes, la charge du point de
croisement en O par:
1 8EJgcosa

a

a pour résultat une distorsion additionnelle de ce point de croisement représentée

en traits discontinus, suivant un angle T de telle sorte qu'a nouveau, le point

de croisement en O ne se trouve plus soumis a 'action de moments. Dans des
conditions semblables a celles qui précédent, on a ici:

Q=20 d’ou:
duk = O (20)

Immédiatement & droite et a gauche de O, s’appliquent maintenant les
moments:

4 EJqcosa
. .

M=+
A ce moment, doit s'opposer un moment résultant de la flexion de la poutre
tout entiére; a cet effet, est nécessaire une distorsion de la poutre donnée par:

4 J5 cos a

Ji

$ak = + (21)
On arrive ainsi a ce résultat trés intéressant que l'angle de distorsion & qui
conditionne la ligne d’influence correspondant & Msk et qui est donné par la
relation (21) est deux fois plus grand, en sens opposé, que celui qui con-
ditionne la ligne d’influence correspondant & Ma,, et qui est donné par la
relation (19). Ceci correspond exactement au fléchissement des diagonales par
torsion pure, c’est-a-dire par charges constituées uniquement par des moments
suivant fig. 15. En outre, il résulte directement de la fig. 16 que pour un
déplacement purement paralléle des montants rigides, il ne se manifeste aucun
moment Max; par suite, et inversement (d’aprés la loi de Mazwell), un effet de
flambage des diagonales directement a droite de O, suivant fig. 21, ne peut
provoquer la mise en jeu d'aucun effort tranchant susceptible de déplacer les
montants parallélement, ce qui se trouve confirmé par la relation (20).

Il n’est pas nécessaire d’effectuer une détermination spéciale des lignes
d’influence qui correspondent aux autres extrémités des barres, car avec les
désignations de la fig. 22, on obtient directement, d’aprés la fig. 15 (contrainte
due aux moments) et la fig. 16 (contrainte due aux efforts tranchants) le signe
des valeurs d et ¥: on a ainsi:

pour or ol ] ur ul d,, d; d d dy

(22)
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On a ainsi déterminé toutes les lignes d'influence pour le systéme porteur
(fig. 11a) choisi comme systéme principal et comportant des montants auxili-
aires rigides, assemblés rigidement dans les noeuds.

Du point de vue de ces lignes d’'influence, on a étudié des dispositions variées
en ce qui concerne les sections et moments d’inertie des membrures supéricure
et inférieure. Pour les corrections a apporter a ces lignes d'influence et qui
doivent étre déterminées dans ce qui suit, on a toutefois renoncé a ces variantes
et admis la symétrie par rapport a l'axe horizontal de la poutre, afin de ne
pas compliquer outre mesure la méthode indiquée (pour des raisons particuliéres,
nous adoptons comme base, pour les deux membrures, la dimension de la mem-
brure éloignée du tablier). Nous indiquerons, a la fin de la présente étude, une
méthode approchée qui permet de faire intervenir d'une maniére simple, les
corrections qu’exige la dissymétrie.

3° — Passage des assemblages rigides des montants auxiliaires
a des assemblages articulés.

Si les montants auxiliaires incorporés au systéme porteur (fig. 11a) ne sont
pas rigides, mais articulés aux noeuds, les noeuds subissent des torsions suivant
certains angles par rapport a l'axe des montants rigides, sous l'influence des
différents fléchissements de la poutre (lignes d’influence); ces torsions se pro-
duisent en général dans le méme sens, c’est-a-dire antisymétriquement par
rapport a4 l'axe horizontal de la poutre. Il peut également se manifester,
d’ailleurs indépendamment de ce qui précéde, une distorsion des noeuds des
membrures supérieure et inférieure en sens opposé, c’est-a-dire symétriquement
par rapport a I'axe de la poutre.

a) Torsion antisymétrique des noeuds des membrures supérieure et inférieure.

Si nous provoquons la torsion des noeuds om et um d'un angle ¢ (fig. 23)
dans le méme sens, par rapport 4 l'axe du montant auxiliaire m et si nous
supposons tout d’abord que les noeuds sont indéformables dans le sens vertical,
il se produit tout d’abord une déformation suivant fig. 23a, dans laquelle nous
maintenons tout d’abord fixes, sans torsion, les points médians de croisement
O et On4, des diagonales. Il en résulte une mise en charge de ces croisements,
par un moment a gauche égal a:

— 2

2EJ4
d P
2
[ J

Ce moment est alors compensé par une rotation a gauche du noeud, d’am-

1 . . . 1 : ;
plitude 19 Les noeuds subissant ainsi une torsion de 19 il en résulte la

déformation représentée sur la fig. 23b.

Si nous comparons cette fig. avec les fig. 19—20, nous constatons que dans -
les deux panneaux, la double déformation des deux fig. 19—20 considérées
ensemble se manifeste, avec sens opposés dans le panneau m - 1. Il en résulte
directement, en ce qui corcerne les relations 16 a 20, que pour la compensation
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des moments et efforts tranchants mis en jeu par suite de la déformation,
les nouvelles déformations ci-aprés sont nécessaires:

Panneau m:

. 6E(J0—|—J")m 12 EJdm cos® o
. __( __"_'_iu + 2 Jd cos® a)m
+ 1 a- Ktm @
Jo+Ju+21J -
&m:—f—( + +J2 dCOSa) Q.
tm
Panneau m -- 1:
5 — 1 E(J0+Jn+2Jdcos3a)m+_.(
m 32Kt(m+1) P
Jo+Ju+2Jacos a)m +1
\‘f’m +1— — J — Q.
t(m-1)
Cette déformation de la poutre est représentée sur la fig. 23c. A gauche de
m — 1 et & droite de m + 1, les autres panneaux se raccordent normalement

sur les montants et les points d’appui A et B viennent en A’ et en B’. Apres
restauration des conditions d'appui suivant la droite A’ B’ on obtient le fléchisse-

ment de la membrure inférieure conditionné par l'angle de torsion ¢, =1
c'est-a-dire par l'état «¢, = 1».
Sous cet état, les noeuds om. um, o (m — 1), u (m — 1), o (m + 1),

u (m -+ 1) sont soumis a des moments, ces moments étant en fait égaux pour
les neouds supérieurs et inférieurs, puisque nous admettons I'hypothése de la
symétrie.
Nous trouvons ainsi pour la charge de chacun des noeuds om et um:
a partir de la fig. 23a:
‘ 4E(Jom+Jo(m+l)) 4E(Jdm+Jd(m+l)) 6EJ0
M = — 2= — —2

a a

a partir de la fig. 23b:
Y (R (Jam + Jd(u;+1)) cos a
a partir de la fig. 23¢ (en se reportant aux fig. 15 et 16):

E ¥m
MY = a [Jom&m + JO(m +1)¥m41— 4 Jam cos a:2_

Y om
*— 4Ja@m+1) cOS @ +1+6J0m 22 46 Jow o+ =

+ 6Jdmb——COS a+6J0(m+1) bm+1 COS3 a].

Pour la charge de chacun des noeuds o (m — 1) et u (m — 1) nous trouvons:
a partir de la fig. 23a:
2 EJom

a

I\"Il(m —1)m = —
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4 partir de la fig. 23b:
M“@-nym =+ Edam co Jdm‘lcos_oi

a partir de la fig. 23c:

Om

a

E Ym
i\l'“(m—l)m =4 i’y — Jom ¥m + 4 Jam cos a ":7 + 6 Jom
4 on
+ 6 Jam o costal.
Enfin, pour la charge de chacun des noeuds o (m 4 1) et u (m 4 1), nous
trouvons:

a partir de la fig. 23a:
2EJom+1)

i\I'(m-i-])m:'_‘ a

a partir de la fig. 23b:
EJ4 @ 41)cos a

M”(m +1)m =

a
a partir de la fig. 23c:
4 E ‘{” . 1
M (m+”m=;l-—Jo(m+1)3m+l+'4Jd(m+1)COSO(. m;
0 1 Om +1
+6J0(m+1) ma-[- +6Jd(m+]) ma COSsa .

. La charge totale des noeuds supérieurs et inférieurs est ainsi donnée par:

Mpm =2 M'mm +M'mm +M“mm) (23)
Mo e =2Mu@m-nm+Mm@m-1ym+M'm-nm) (24)
M(m+l) m=2 (M‘(m—}-l) m T 1““(m+ Hm+ Mm(m'*-‘) m) (25)

Si nous considérons maintenant, sur les fig. 17—18, les déformations qui
ont donné lieu aux lignes d'influence du systéme principal, considérées en tant
que ocourbes de flexion de la membrure chargée, nous constatons qu’a ces défor-
mations correspond une charge de base des noeuds du panneau déformé, charge
que nous désignerons par M,.. Cette charge est égale sur les noeuds supérieurs
et sur les noeuds inférieurs; on a d'aprés la fig. 17 (ligne d’influence corre-
spondant a la barre de membrure supérieure):

Mo m—1 :—23—:;; Jo+Ju+2Jacosa] (avec J, =Jy) (26)

1\Iomnz - 1\’10 (m —1) (27)

Pour la déformation suivant fig. 18 (ligne d'influence pour la diagonale),
on a:

6EUo+Jy) 1 12EJs

— ———¢

1

a 2sin a a “2sina (28)
3E ‘ g

= udo+Jo42J5c08*a) (avec Jo=1J,).

T asin g

M, (m—1) = Mom =
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Par suite de la substitution des articulations, aux encastrements rigides des
montants, il ne peut pas se manifester de moments dans ces articulations; on
a donc dans chaque cas, pour chaque couple de points, la relation:

)Im =0= I\‘Iom‘I“I\Im(m—l) (Pm«—l_}‘ 1wmm (Pm+ 1\[m(m-}-]) Pm +1 (29)

Cette relation ne peut pas comporter d’autres termes. Pour n noeuds, nous
avons donc toujours un systéme d’équations a n angles de torsion inconnus ¢,
de la forme de 'équation de Clapeyron; par exemple, pour la poutre 1la et
pour la ligne d’'influence de la diagonale D, nous avons:

P1 P2 ?s P4 P P6 ?7
1M, | M,
2 | M, | M, | My o
3 Mgy | Mgy | Mgy | 1 My, (29)
4 My | My | M, Mo,
5 HENEER
6 o Mg | Mg | Mg
7 My | M

A chacun de ces angles de torsion ¢, correspond maintenant une courbe de
flexion déterminée de la membrure en charge (voir fig. 23¢), a savoir la courbe
de flexion que l'on a obtenue pour l'état ¢, = 1 et multipliée par ¢.. Ces
7 courbes de flexion doivent dont étre ajoutées aux courbes de flexion de la
membrure en charge déterminées sur la fig. 18 et nous obtenons ainsi la ligne
d’influence se rapportant a la pouire avec montants auxiliaires articulés.

Pour la détermination de la ligne d’influence pour la barre de membrure O
suivant fig. 17—11b, nous utilisons le méme systéme d’équations: il faut alors
introduire comme termes indépendants, dans les colonnes 3 et 4, les valeurs de
M,; et de M,, d’'apreés les relations 26—27.

Dl
b) Torsion symétrique des noeuds des membrures supérieure et inférieure.

S’il s’agit maintenant de corriger les lignes d’influence conditionnées par les
déformations suivant fig. 19, 20 et 21, nous remarquerons que les noeuds des
membrures supérieure et inférieure sont ici soumis a des moments inégaux.

Sous l'influence de ces déformations, et dans les trois cas considérés, il y
a encore lieu de considérer ici, outre la charge égale des noeuds des membrures
supérieure et inférieure m — 1 et m que nous désignerons par M,-,, _;, et
M..., une charge particuliére sur les noeuds supérieurs, a savoir:

2EJ,

a

fig. 19: My 1= — (30)

__4EJ,

a

Mp =
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E

fig. 20: My —=— .S_L__a. 31)
EJ

fig. 21: My =+ 4__";’& - (32)

Nous décomposerons cette charge en charges antisymétrique et symétrique
sur les noeuds des membrures supérieure et inférieure et nous aurons ainsi, pour

2EJ :
la charge — " 2 de la fig. 19:
1. — en haut: _EJ en bas: _EJo
a a
(fraction antisymétrique de la charge)
9. — en haut: —-EaJ° en bas: —{-EaJO

(fraction symétrique de la charge)

On a ainsi au total:

2EJ,

«

en haut:

en bas: 0

Les déformations qui résultent des fractions antisymétriques des charges
doivent étre déterminées d’aprés le procédé indiqué en a. Aux fractions symé-
triques de la charge, il correspond toutefois également, si nous voulons con-
sidérer dans leur ensemble les noeuds des membrures supérieure et inférieure,
une torsion symétrique des noeuds supérieurs et inférieurs (fig. 24). Nous
désignerons I'angle de torsion correspondant par ¥. Contrairement a la fig. 23a,
la fig. 24 montre que les noeuds médians O, _,; et O, ne sont pas chargés,
c'est-a-dire qu’ils ne subissent pas de torsion et en outre que les efforts tran-
chants et les moments dans les deux panneaux s’équilibrent, c’est-a-dire qu’il
ne se manifeste pas d'autres déformations.

Dans ce cas, nous considérerons les torsions et les charges dues aux moments
comme positive lorsqu’elles provoquent des torsions ou des charges positives
sur le noeud de la membrure supérieure. Nous obtenons ainsi directement:

8 E ) EJ,
My = — a [Jom +Jo m+1) + 2 (Jom + Ja (m +1)) co5 a] —2 h (33)
4EJom
Muw—1ym =— a (34)
4EJ0 m +— ~

La déformation qui résulte de la charge symétrique des noeuds des membrures
supérieure et inférieure est donc donnée par un systéme d'équations de la
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forme de l'équation de Clapeyron, correspondant a la relation 29. On a par
exemple pour la déformation suivant fig. 19:
by D) b3 Oy L-H) v v3
1
L] My | Mg 5
—
2 | My | My | My ;
8 Mg, | Mgy | M, _Edo
= N (36)
o
4 My | M, | M, _2EJ
a
5 Mg | My | Mg | -
6 | | Mg | Mg ' M,
I | My M o
|

Les coefficients correspondants seront déterminés d'apreés les relations 33 a 35
et les termes indépendants d’aprés la relation (30).

Nous obtenons ainsi, dans le cas considéré, 7 angles b de torsion symétriques:
par contre, et il y a la une grande différence avec les angles de torsion ¢, il ne se
produit aucune déformation des noeuds de la membrure en charge. On ne con-
state donc aucune action des lignes d'influence (tout au moins si nous admettons
que les charges sont appliquées seulement aux noeuds).

Les résultats ainsi obtenus seront utilisés dans le prochain chapitre. Nous
sommes maintenant en possession des lignes d’influence exactes pour le systéme
comportant des montants auxiliaires rigides, assemblés par articulation.

4> — Suppression des montants auziliaires rigides.

Prolongeons I'un des montants rigides m, tout d’abord en conservant son
encastrement rigide sur les deux membrures, de la quantité n c’est-a-dire vers
le haut de; n et vers le bas de la méme quantité; nous obtenons ainsi la défor-
mation de la fig. 25. Comme il se manifeste une traction dans les deux diagonales,
il se manifeste par voie de conséquence une compression dans toutes les barres
de membrures; ces barres se raccourcissent donc des quantités y et i’. Le
fléchissement des diagonales n’exerce naturellement aucune influence notable
tant sur les contraintes longitudinales qui se manifestent dans les diagonales et
dans les barres de membrures que sur les déformations y et y’. La valeur de y
a été déja déterminée dans l'étude mentionnée dans le renvoi (4) (équation 7).
On a ainsi:

__ sinacos®a Fan
¥~ 2(cos® a Fam + Fom)

Pour l'établissement de cette formule, voir 1'étude mentionnée. On a d'une
maniére correspondante:

(37)
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. 2L F

— Sin a €Co8™ a4 'qm+1) )

2(cos®aFam+1)+Fom+n)

On en déduit, d’aprés la fig. 25, la déformation des points de croisement
des diagonales:

Y (37a)

_x_ b
b= 2+4a n

(2 Fam cos® o + Fom) tg a

ou: o= ' ——
4 (Fom + Fam cos® a)

On obtient d’'une maniére tout a fait semblable la valeur de d’ avec les sections
de barres correspondantes, dans le panneau m + 1.

De ce qui précéde, on déduit maintenant la déformation des noeuds des
tangentes d’extrémité, perpendiculairement aux axes des barres:
Pour les demi-diagonales intérieures dans le panneau m, on a:

(38)

bsina—{——'lcosa

Courbe [ du systémeprincips!
J-line for principal systerm

2
m-1 m mef
1
s \
1 \ 1
4 V)4
N—""__
Fig23a Lig 238
. _—
! |
12’ I
1 2. 13 4 1 5 ) 7
=
FgZe \ 7
A \ \
A }
= £
4 2 3 % — NI/ ¢
| 3 g f S _1Cs
P 3/ L y77 &’ B’
m
m-1 m me/ m-fJ'z"" me!
\!
/ Fig. 23—27.
sz X OQTIQK| [ 2222
\ | T AU
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A S N T3y
-~ — = -
P Ty I
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fig 26
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et dans le panneau m + 1, on a:
o' sin q + % Cos Q.
Pour les demi-diagonales extérieures, on a respectivement:

(d— Y) sin o et (d — Y') sin q.

On en déduit maintenant tous les moments fléchissants mis en jeu par la
déformation (fig. 25), a savoir, pour le panneau de gauche:

n 6EJom EJ
Mor————'é—'—;z =—3 a;)m.n
EJ,
Mol —_— + 3 aam . rl
E Ju
1\'Iur - + 3 aQE n
: EJ,
My = —3 a? =. n
EJam cos® : 39
pour | Mdro=_24 Jda2 cos a(b s1na+%cos a) (89)
our les
désignations, < Mak, = — Maro
voir fig. 22 Mgra = — Maro
Mak, = + Maro
24 E Jam cos® .
Mo = Mak, = da2 “®—v)sina
24 E Jgp cos?® .
Mgy = Mgg, = — = S —y)sina

Les moments aux extrémités des barres dans le panneau de droite ont des
valeurs qui correspondent aux valeurs des moments d’inertie dans le panneau
m -+ 1; on obtient ainsi pour la charge symétrique due aux moments, dans les
couples de noeuds m, m—1 et m 4+ 1, les valeurs suivantes pour l'état n =1,
en faisant n = 1 dans a relation 39:

2E , 1
M, = v [3 (Jo m+1 — Jom) + 24 Ja (m 41y cOS® a (b sin q -+ 5 cos a) (40)

— 24 Jgm cos® a (b sin o —12— cos a)]

My =—— 23? [3 Jom + 24 Jam cos? o (5 — y) sin a| (41)
2FE e e
1“111+1 = ? [3Jo(m+1) + 24 Jd (m +41) COS8" @ (b —Y ) sin a] (42)

Si maintenant nous reportons dans la relation 36 ces valeurs de moments
suivants les relations 40 a 42, A titre de termes indépendants, c’est-a-dire de
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termes de charge, nous obtenons les angles de distorsion des noeuds, ¥, a b,
qui se manifestent aprés remplacement des montants auxiliaires par des arti-
culations. Pour différencier cet état de déformation de I'état n., = 1 (fig. 25),
nous le désignerons par état T, = 1” (fig. 26).

Pour l'obtention de I'état T, — 1, nous aurions ainsi & introduire les valeurs
M;, M, et M suivant équations 40 & 42 dans les lignes horizontales 4, 3 et 5 de
la relation schématisée 36, sous forme de termes indépendants. Ces états corre-
spondent exactement a la déformation désignée par «état ¢, = 1» dans 'étude
ayant fait I'objet du renvoi 4 (fig. 4). Les efforts R, qui s’exercent sur les
montants auxiliaires maintenant articulés, peuvent étre obtenus comme suit:

On obtient d’abord, d'aprés la fig. 25, en posant m = 4 pour simplifier,
comme surcharge des montants 3, 4 et 5:

Montant 4:
6 E (Jo, + J05)_ ' _1_

1344=—(D4+D5) Sina_ az 2a
EJ,
e 48%& (64 sma—l——;—cos a)
__48EJ;cos’ o

(65 sin o + % cos oc).

aZ
Les valeurs D, et D, ci-dessus sont données par la relation 10 de I'étude
déja mentionneé; on a ainsi:

sin g cos® o Fa,

sin a

D4——=-I-~2T —§(c:s3aFd4+F04) -EJg, cos a.
Montant 3: :
534.: — D, sin o -+ 611']04 ¢ él—a—l—ﬂ:z—mﬁg (dy — v4) sina
Montant 5:
R, — — Dsma+§hL~§;fﬁEEfM“@k—ngut

S’il existe au point 4 un montant élastique, la valeur de R, se trouve encore
augmentée de la valeur de la tension de ce montant soit:

1 Bl

h

Il se manifeste toutefois encore sur ces montants d’autres charges par suite de
la torsion suivant 'angle ¥; il suffit toutefois, dans tous les cas, de tenir compte
de la charge des barres m — 1, m et m |- 1 c’est-a-dire dans le cas qui nous
occupe, de Ry, R, et Ry, '

On a ainsi d'une maniére générale:

R._ﬁE[

o(m+1) (¢m+‘~pm+1)““~]0m (q)m—l"*“q)m) <43)

+ 4Jd(m+1) -— Jdm) COS a 1bm]
6%



1060 Fr. Krabbe

donc:
6E 7
I}u = 2z Jos (‘P4 + 11)5) + Jou (ﬂ’s + 11J4) + 4 (Jd5 — Jd;) cos® a ¢4_
6Er
l}s; = at _J04 (g 4 Wy) + Jos (s + Ps) + 4 (Jag — Jag) cos® o ‘l’aj
6E -
1}54 = _Joe (W5 1 D) + Jog Py + P5) + 4 (Jag — Ja5) cos® @ ¥s |-

On a maintenant:
P‘44 = I(}M - P:u

R34 - 13‘34 + [234
R54 = R54 + R54
0 4

Nous obtenons ainsi, aprés élimination de trés faibles charges, uniquement
des valeurs de R dont les indices ne différent pas entre eux de plus d'une unité.
Si maintenant nous appliquons a la poutre, aux points m, et m,, un couple de
charges égales a l'unité (fig. 26), que nous devons naturellement ajouter a la

charge nulle R., les déformations T provenant de ce couple de charges égales

a l'unité sont données par la relation:

Rm—:o-_—"Rm(m—l)Zm—l‘{“Rmmlm+Rm(m+1)lm+1 (44)

On a ‘donc dans le cas qui nous occupe, avec charges au points 4, et 4,

Ty ‘ [ £ Cs 43 ) 3
|

1 Ry | Rye
2 Ry | Ry | Ry
3 Ry, [ Ry | Ry (44 a)
4 Rz | Ry | Ry 1
5 Ris | Res | Ree 4‘\
6 Rz | Res | R
1 Ry | Ry

Le systtme d'équations (44) est a nouveau un systéme de relations de la
forme de Clapeyron. En introduisant successivement la valeur indépendante +- 1
dans les lignes horizontales 1 & 7, ce systtme donne les valeurs de T résultant
de la mise en charge des couples‘de points 1 & 7 par les couples de charges
égales a 'unité.

Les sept courbes de flexion ainsi obtenues pour la membrure en charge
(membrure inférieure) constituent les lignes d’influence pour les sept valeurs
T, a C;. Comme a chacune de ces valeurs de T et suivant fig. 26, correspondent
des grandeurs nettement déterminées pour les contraintes axiales des barres
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et les moments d'extrémité dans les barres des panneaux voisins (nous pouvons
a ce sujet nous limiter aux deux panneaux immédiatement contigus, a droite et
a gauche, a la valeur de T considérée), on obtient pour tous les efforts dans un

panneau m des lignes d'influence additionnelles dont les ordonnées sont fournies
par la relation:

nm:}«lm—llm——l_{_HmZm (45)

Ces lignes d'influence complémentaires doivent étre ajoutées aux lignes
d'influence déterminées d’aprés la fig. 11 et déja corrigées par l'intervention
des courbes de flexion obtenues d’aprés la fig. 23C; nous obtenons ainsi
les courbes d’influence définitives pour toutes les valeurs d’efforts.

Une remarque est encore a faire ici au sujet des lignes d'influence déterminées
sur la base des déformations des fig. 19 a 21. On a obtenu, ainsi que l'on sait,
non seulement la charge antisymétrique du noeud de membrure supérieure et
inférieure, mais encore une charge symétrique additionnelle ne provoquant pas
immédiatement une déformation des noeuds chargés, tant que les montants
auxiliaires articulés existent. L’angle de torsion b mis en jeu par cette charge
symétrique, suivant la relation 36, provoque toutefois la mise en jeu d’efforts
sur les montants auxiliaires articulés, suivant la relation 43, efforts qui introduits
dans le systéme d’équations 44 sous forme de termes indépendants, donnent les
valeurs pour T, a ;. Les courbes de flexion qui en résultent pour la membrure
en charge sont encore a ajouter aux lignes d'influence déja considérées. Par
contre, une charge antisymétrique due a des moments et qui produit I'angle de
torsion ¢ a pour résultat un fléchissement de I'ensemble de la poutre, suivant

fig. 25, mais il n’en résulte aucune charge sur les montants, donc aucun
écartement.

5° — Rectification des lignes d’influence dans le cas de la poutre dissymétrique.

Nous avions dans ce qui précéde déterminé les lignes d'influence du systéme
principal en faisant intervenir différentes sections ou moments d’inertie de la
membrure supérieure et de la membrure inférieure; au cours de I'étude de ces
lignes d’influence, nous n’avons toutefois pas envisagé le cas de la poutre
dissymétrique et notre étude a porté, dans chaque cas, sur la membrure éloignée
du tablier; c’est dans ces hypothéses que nous avons déterminé la courbe de
flexion de la membrure de tablier, en la considérant comme ligne d’influence.

Si, dans la fig. 27, la courbe en traits discontinus représente la ligne
d'influence du systéme principal, qui a été déterminée en tenant compte de la
dissymétrie et si la courbe en pointillé représente la ligne d'influence définitive
obtenue sans tenir compte de la dissymétrie, nous pourrons ainsi déterminer
I'écart entre les moments d'inertie J. de la poutre réelle es J, de la poutre
supposée symétrique.

Supposons maintenant que I'on fléchisse une poutre ayant un moment d’inertie
J. — J; et accusant par suite tendance a épouser la courbe de flexion du systéme
principal, de maniére a4 I'amener a la position de la courbe en pointillé. Il en
résultera pour cette courbe de flexion de membrure la tendance & un retour a la
position initiale de la courbe de flexion du systéme principal. Si l'on désigne
par n, les ordonnées de la ligne d'influence du systéme principal, par n, celles
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du systéme symétrique et par n celles du systéme définitif, on aura sensiblement
pour les ordonnées exactes:

Js
n="no+ (ns — o) - (46)

Comme la différence entre J, et J, sera toujours trés faible, il en résulte que
I'erreur commise dans I'hypothése de la symétrie sera en général toujours faible,
de telle sorte que l'on peut parfaitement admettre la rectification suivant la
méthode d’approximation ci-dessus indiquée.

1°

30
4(7

60

6° — Résumé synoptique du procédé.

— Détermination des lignes d’influence du systéme principal pour les

efforts suivant fig. 11 des lignes d'influence, résultant de l'application
de la déformation égale a l'unité sous l'influence des efforts corre-
spondants.

Détermination des charges sous forme de moments que cette défor-
mation provoque aux endroits des noeuds et groupement de ces charges
en moments antisymétriques et moments symétriques sur les noeuds
des membrures supérieure et inférieure (équations 26 a 28 et 30 a 32).
Représentation des différents (7) états pm =1 et b =1 (fig. 23--24).
Détermination des coefficients M,,, a partir de ces différents états

(équations 23 a 25 et 33 a 35).

- Etablissement des systémes d’équations de Clapeyron 29a et 36 & partir

des termes de charges indépendants déterminés suivant le paragraphe 2
ci-dessus et des coefficients déterminés d’aprés le paragraphe 4 ci-dessus
pour les termes non indépendants.

Résolution de ces systémes d’équations, d'ou l'on déduit les angles de
torsion aux noeuds ¢, et b, On obtient ainsi également, suivant
fig. 23c, les courbes de flexion de la membrure en charge qui corre-
spondent a chacun des angles ¢, trouvés, qui sont a superposer aux
lignes d’influence déterminées suivant la fig. 11, tandis que les angles
symétriques de torsion ¥, ne provoquent aucune déformation des
noeuds de la membrure en charge.

Représentation des différents états «n, = 1» (fig. 25); détermination
des charges de moments, qui ne sont ici que symétriques, qui en résul-
tent pour les noeuds; introduction de ces valeurs, a titre de termes
indépendants, dans le systéme d’équations 36; résolution de ce systéme,
ce qui permet d’obtenir tous les angles de torsion aux noeuds ¥, pour
chacun des différents états nm = 1 et ainsi les états T, = 1.

— Détermination des charges sur les montants auxiliaires qui résultent

des différents états ¢, = 1.
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Application de couples de charges particuliers aux différents noeuds m,
a titre de charges de base du systéme.

Etablissement du systéme d’équations 44 pour les différents couples
de charges particuliers, en utilisant les termes indépendants déterminés
d’aprés les paragraphes 8 et 9 ci-dessus et les coefficients des termes
non indépendants.

Par résolution des 7 systémes d’équations 44, on obtient les défor-
mations qui correspondent aux différents couples de charges, aprés la
suppression des montants auxiliaires et par suite les lignes d'influence
pour T, a C,.

Toutes les valeurs des efforts sont représentées, pour chaque panneau,
comme fonctions linéaires des deux valeurs de T qui englobent le
panneau considéré et leurs lignes d'influences complémentaires sont
établies a partir des lignes d'influence de ces deux valeurs de C.

En ce qui concerne les lignes d'influence des moments aux extrémités
des barres, dont les déformations donnent également les charges symé-
triques aux noeuds, sont également déterminées, d’apreés les relations 44;
les valeurs de T correspondantes et les fractions de 7 relatives au
fléchissement de la membrure en charge sont superposées aux lignes
d’influence déja déterminées.

— Dans les poutres dissymétriques, la relation (46) permet d’apporter des

corrections aux lignes d'influence précédemment établies (fig. 27).

Résumé.

Aprés une introduction sur les caractéristiques de la poutre en treillis rhom-
boidal et sur l'influence remarquable de la rigidité des membrures dans ces
poutres, 1'auteur étudie fondamentalement le difficile probléme consistant a traiter .
la poutre en treillis rhomboidal comme systéeme porteur constitué par des barres
assemblées d'une maniére rigide, en n'utilisant que trois systémes trés simples
d’équations de la forme de Clapeyron; il importe d’ailleurs d'observer que dans
tous les cas, seuls les termes indépendants varient, mais non pas les coefficients
des termes non indépendants de ces systémes d’équations.
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