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Calcul exact de la poutre en treillis rhomboidal.

Genaue Berechnung des Rautenträgers.

Girders with Rhombic Arrangement of Members.

Dr. Ing. Fr. Krabbe,
Reichsbahnoberrat. Reichsbahnzentralamt München.

/. — Caracteristiques particulieres de la poutre en treillis rhomboidal.

Gräce ä son aspect esthetique, la poutre en treillis rhomboidal a ete frequemment

employee, au cours de ces dernieres annees et l'une des plus importantes
realisations dans ce domaine est le pont sur la Vistule, ä Dirschau. La methode
de calcul generalement employee etait celle du Professeur Mehrtens, de Dresde,
methode dans laquelle la poutre consideree est decomposee en deux systemes
elementaires representant chacun une poutre ä diagonales simples. Des
investigations ulterieures precises, effectuees en particulier par Mrt/Zer-Breslau d'apres
la methode cinematique, ont cependant montre que la poutre en treillis
rhomboidal, consideree comme poutre en treillis admettant des articulations denuees
de frottement aux endroits des noeuds, accuse en particulier en ce qui concerne
les diagonales, des lignes d'influence dont l'allure differes sensiblement de celle

qui a ete anterieurement indiquee par Mehrtens, sur la base des procedes
d'investigations utilises par lui. Ces lignes d'influence presentent une forme en
zig-zag, passant alternativement, de noeud en noeud, du domaine positif au
domaine negatif et vice-versa. La fig. la represente l'allure d'une teile ligne
d'influence determinee d'apres la methode de Mehrtens, tandis que la figure lb
indique la forme relevee d'apres la methode cinematique et qui est sans aucun
doute la forme exacte dans l'hypothese d'articulations denuees de frottement
dans les noeuds, suivant la theorie courante du treillis. Les courbes de flexion
sous l'influence d'une charge concentree, telles quelles sont obtenues par la
methode cinematique, accusent egalement une forme en zig-zag (fig. 2 a). Ces

formes des lignes d'influence et des courbes de flexion, qui sont nettement
defavorables, ont conduit ä eviter l'emploi des poutres en treillis rhomboidal
comme poutres principales, dans la construction des ponts.

La ligne d'influence de la fig. 1 b n'est toutefois pas sans preter ä de

notables critiques, lorsque Fon la considere d'une maniere plus etroite et lorsque
l'on tient compte de ce fait que les lignes d'influence representent des courbes
de flexion et en particulier les courbes de flexion que Fon obtient pour les

elements de membrure en charge lorsque Fon prolonge d'une longueur «unite >

les barres considerees. La courbe de flexion representee sur la fig. 2 a fait
naturellement l'objet des meines objections. II est evident qu'en adoptant ä priori
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de telles formes pour des membrures de construction continue, on s'expose ä la
mise en jeu d'efforts tranchants considerables qui peuvent exercer une influence
notable sur la forme de la courbe de flexion. II n'a toutefois pas ete tenu
compte de ces efforts tranchants dans les calculs. Par suite« de ces considerations,

le choix du Systeme porteur prineipal

ä adopter pour la reconstruc-
tion, en 1926/1927, des

superstruetures du pont de chemin de

fer sur le Rhin, ä Wesel,1 s'est ä

nouveau porte sur la poutre en
treillis rhomboidal, que Fon evitait
d'adopter depuis dejä longtemps,
faisant ainsi table rase des objections

elevees contre ce Systeme.
Apres Fachevement de la construction,

on a verifie, par une mise

en charge ä l'aide d'une charge
concentree de 80 tonnes, la courbe
de flexion teile qu'elle avait ete
determinee par le calcul (fig. 2 a);
on a pu ainsi obtenir, par des

mesures precises, la forme exacte
de la courbe de flexion que
represente la fig. 2 b. On est ainsi
arrive directement ä cette
conclusion que la courbe de flexion de

la membrure chargee, obtenue par
prolongement d'une barre,
presente egalement, en fait une forme
sensiblement differente de celle de

la fig. lb. C'est ce que confirme-
rent par la suite les observations

rigoureuses effectuees avec le plus
grand soin par le Dr. Christiani,
sur la ligne d' influence d ' une
petite poutre en treillis rhomboidal

(fig. 3), consideree comme Systeme
72 fois statiquement indetermine et

en tenant compte de la rigidite des

membrures et des diagonales.2 Les

recherches successives de Christiani
montrerent en outre que l'influence

de la rigidite des membrures et des diagonales, dans les poutres en treillis
rhomboidal, etait teile que l'element dit de stabilite qui est necessaire pour assurer

1 Die Bautechnik, 1927, Nr. 46/47.
2 Christiani: Strenge Untersuchung an Rhomben-Fachvverken. Berlin, 1929, Julius Springer,

editeur.
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la stabilite des treillis avec articulations aux endroits des noeuds, n'est en general

pas necessaire pour assurer la stabilite du Systeme porteur et qu'en outre, cet
element de stabilite ne peut en general exercer une influence sensible que sur
les panneaux qui lui sont immediatement voisins.3

Les considerations et resultats de mesures et de recherches statiquement
rigoureuses qui viennent d'etre exposes montrent nettement que la poutre en
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treillis rhomboidal ne doit pas etre consideree comme une poutre en treillis
proprement dite au sens habituel du mot; il faut plutöt considerer que les
particularites de ses lignes d'influence et de ses courbes de flexion, telles q'uelles
sont obtenues sur la base de la theorie des treillis, la rejettent en dehors du
domaine des poutres en treillis proprement dites et que cette poutre ne peut

3 Christiani Über die angebliche Labilität von Fachuerken Der Stahlbau, 1931, n° 2
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etre calculee qu'en faisant intervenir la rigidite dans les noeuds, si Fon veut
obtenir un resusltat correspondant effectivement ä la realite. On a ete ainsi
amene ä envisager la necessite de mettre au point un procede de calcul precis,
meme pour le pont sur le Rhin ä Wesel, pont qui avait d'ailleurs ete termine
entre temps. Ceci n'a toutefois ete possible que par la mise au point d'une
methode plus simple que celle qui avait ete employee par Christiani, car le

Systeme constitue par le pont sur le Rhin ä Wesel represente, en tenant compte
de la rigidite propre et des assemblages rigides de toutes les barres, un Systeme
208 fois statiquement indetermine. Le degre d'indetermination est d'ailleurs
encore de 57 lorsque Fon neglige la rigidite propre des barres et celle de leurs
assemblages. II est en effet certain que le calcul de Systeme presentant un
degre d'indetermination statique aussi eleve, par les methodes habituellement
employees, est pratiquement impossible.

//. — Influence remarquable de la rigidite des membrures dans les poutres en
treillis rhomboidal.

Dans mon etude «La poutre en treillis rhomboidal et son calcul exact
simple»,4 je me suis limite ä l'influence de la rigidite de la membrure de la

poutre en treillis rhomboidal et j'ai considere les diagonales elles-memes comme
articulees sur des membrures de construction continue; faisant, j'ai egalement
neglige la rigidite conferee au Systeme par les rivures aux points de croisement
des diagonales.

Dans la presente etude, je me proposerai simplement d'exposer les resultats
obtenus au cours des recherches ci-dessus. Afin d'etre en mesure de tirer des

conclusions comparatives, j'ai egalement fait porter mes investigations sur le

Systeme de poutre en treillis rhomboidal traite par Christiani comme Systeme 72
fois statiquement indetermine. Mes recherches ont ete effectuees d'apres la
methode des grandeurs des deformations. J'ai constitue le Systeme prineipal par
adjonetion dans chaque losange elementaire (fig. 4a) d'un montant vertical
rigide, articule aux noeuds. J'ai obtenu, d'apres des considerations cinematiques
simples, les formes de lignes d'influence representees sur les fig. 4b ä e,

J'ai ensuite obtenu successivement les etats ^m 1» en prolongeant chacun
de ces montants rigides de la longueur unite, ces etats ayant pour consequences
des contraintes determinees O, U et D dans les barres des deux panneaux
voisins (fig. 5) et en outre la mise en charge de tous les montants rigides sous
des efforts Z. En annulant les differentes contraintes dans ces barres auxiliaires
rigides, suivant le Systeme de charges, represente sur la fig. 6a, j'ai ainsi obtenu
les deformations initiales de la poutre sous la charge consideree apres la

suppression des montants rigides, c'est-ä-dire l'allongement de ces barres Xm qui
implique Fannulation des charges des differentes barres auxiliaires.

Un calcul portant sur une serie d'exemples a ainsi montre que dans tous les

cas qui se presentent dans la pratique, une mise en charge de la poutre suivant la

fig. 6 a, aux points mG et mu ne provoque qu'un deplacement vertical appreciable des

points m0 et mu et des couples de points voisins (m -p 1)0, (m-f- l)u et (m— l)c,
(m — l)u les uns par rapport aux autres et que par suite toutes les valeurs de £,

* Der Stahlbau, 1931, n° 15.
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ä Fexception de Cn-i £m et £m_. t ne different qu'insensiblement de zero.
II en resulte la possibilite extremement interessante de determiner toutes les
deformations qui resultent d'une mise en charge ä la maniere de celle de la

fig. 6d par des systemes d'equations ne comportant que trois inconnues. La
deformation de la membrure chargee, en Foccurence la membrure inferieure,
sous l'influence de la mise en charge suivant fig. 6 a, represente naturellement
la ligne d'influence qui correspond ä l'ecartement £m; eile ne s'etend que du
noeud £m_2 au noeud "Cm + o !^g- 6°)- Comme maintenant tout £m provoque des

efforts determines dans les barres des deux panneaux voisins, on peut tres
simplement obtenir les lignes d'influence additionnelles pour ces barres en super-
posant les lignes d'influence correspondant aux differentes valeurs de £m qui
sont ä ajouter aux lignes d'influence pour le Systeme prineipal. On obtient ainsi

pour les lignes d'influence definitives les formes de fig. 7a ä d. On observera

que les lignes d'influence etablies par moi de cette maniere eoineident d'une
maniere absolument surprenante avec les lignes d'influence determinees par
Christiani [comparer avec la figure 16 de l'article faisant l'objet du renvoi (4)].

On arrive ainsi aux resultats suivants qui ne s'appliquent d'ailleurs pour le
moment qu'ä la poutre consideree:

1° — La poutre (fig. 3) est stable, meine sans barres «de stabililite»; pour
toutes ses barres, on obtient des lignes d'influence exemptes de toute
ambiguite et absolument normales.

2'1 — L'action exercee par une barre de stabilite verticale inseree dans la

poutre en treillis rhomboidale, ne s'etend que sur deux panneaux de

chaque cote de cette barre.
3° — Les lignes d'influence des barres et en particulier des diagonales, ne

passent pas ä angles vifs, d'un panneau ä l'autre, entre des valeurs
alternativement positives et negatives, mais presentent une allure
entierement normale.

4° — La forme des lignes d'influence differe notablement de celle des lignes
d'influence determinees dans l'hypothese d'articulations denuees de

frottement; par contre, les lignes d'influence que l'on obtient par
decomposition en treillis elementaires sont sensiblement exactes (fig. 7e ä h),

5° — L'influence de la rigidite des barres du treillis elles-memes et de leurs
assemblages est negligeable (bonne correspondance entre les lignes
d'influence).

6° — Les contraintes de flexion determinees dans les barres des membrures
sous Finfluence du train de charges N atteignent la valeur maximum
de 420 kg/cm*.

On peut toutefois elever ici cette objeetion d'ailleurs fondee que
la poutre qui a fait l'objet des etudes ci-dessus ne correspond en

aucune fagon ä une poutre courante; ses membrures sont en effet
tres hautes (60 cm pour une portee de 28 m). J'ai donc effectue
egalement des etudes sur une poutre semblable, mais comportant des

membrures ayant la hauteur normale de 30 cm. Je n'ai ainsi obtenu
aucune difference importante en ce qui concerne les lignes d'influence

pour les efforts dans les barres; par contre, les contraintes de flexion
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dans les membrures presentaient des valeurs plus faibles d'environ
30 o/o. J'ai ainsi ete amene ä la conclusion suivante, interessante pour
la conception pratique de la poutre en treillis rhomboidal:

7° — La rigidite des membrures que l'on obtient couramment par ailleurs
dans les poutres en treillis suffit entierement ä assurer la stabilite,
sans qu'il soit necessaire de prevoir des barres de stabilite. Des
membrures trop rigides ne sont pas ä preconiser, car elles provoquent la
mise en jeu de contraintes de flexion plus elevees dans les membrures.

IHMFVVVSWJXXJ3iffiTOTOwm104 00 104 00

D N -5
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0,1317 t B4-VFig. 8b
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E!9i± M8 10 (cm

Sur la base des resultats ainsi obtenus, et d'apres le procede ici indique, j'ai
fait effectuer le calcul precis du Systeme porteur prineipal du pont sur le Rhin
ä Wesel.5 II s'agit ici de poutres paralleles s'etendant sans articulation sur
deux travees ayant chacune 104 m de portee, avec hauteur de membrure de

90 cm absolument normale pour les treillis.6 En ce qui concerne la conduite du
calcul, je renverrai ä l'etude qui fait l'objet du renvoi (5) et je me limiterai par
suite ici ä indiquer les resultats principaux fournis par ces calculs effectues

5 Krabbe: Einfluß der Gurtsteifigkeit in ebenen Tragwerken. Leipzig, 1933, pages 12—17,
Robert Noske, editeur.

ß Bautechnik, 1927, n° 45/46.
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apres coup. On trouvera sur la fig. 8 les lignes d'influence correspondant
ä chaque barre de membrure inferieure et superieure, de meme qua chaque
barre de treillis travaillant ä la traction ou ä la compression; on trouvera en
outre sur la fig. 2 la ligne d'influence qui correspond au moment de la barre
de membrure inferieure, ä l'endroit d'un noeud. Si l'on compare la ligne
d'influence de la diagonale D4 _ v avec la ligne d'influence determinee sur la

fig. la par le procede cinematique et avec la ligne d'influence determinee
suivant la fig. lb par decomposition en treillis elementaires, il ressort sans

aucun doute que la ligne d'influence suivant fig. lb se rapproche beaucoup
plus nettement de la realite que celle de la fig. la. J'en arrive donc ä cette
conclusion que le procede cinematique avec hypothese de noeuds articules ne peut
pas etre employe dans le cas des poutres en treillis rhomboidal, mais que la

decomposition en treillis elementaires donne une bonne approximation; il est
necessaire toutefois de faire un calcul precis en tenant compte de la rigidite
des membrures.

La ligne d'influence qui correspond au moment flechissant dans la barre de

membrure inferieure donne naissance, dans le cas le plus defavorable du train
de charges N, ä des contraintes de flexion de l'ordre de 260 kg/cm2. Pour la

superposition avec les lignes d'influence et les contraintes dans les barres, on n'a
toutefois obtenu que des contraintes de flexion additionnelles de l'ordre de
10 kg/cm2, que l'on doit donc pratiquement considerer comme tout ä fait
negligeables.

Enfin, j'ai en outre calcule la courbe de flexion determinee cinematiquement
suivant la fig. 2a et mesuree suivant la fig. 2b, dans le cas d'une charge
concentree et en faisant intervenir la rigidite des membrures. Le resultat obtenu
est reproduit sur la fig. 2 c. On observa la concordance absolument remarquable
avec la courbe de flexion mesuree dans le cas d'une charge concentree,
particulierement en ce qui concerne les coudes des deux courbes.

///. — Influence additionnelle de la rigidite de flexion des diagonales et de
leurs assemblages rigides aux noeuds.

1° — Generalites.

Si la methode developpee plus haut permet d'obtenir d'une maniere simple
des resultats se rapprochant visiblement assez bien de la realite, on congoit toutefois,

en considerant de plus pres la poutre en treillis rhomboidal, par exemple
celle du pont sur le Rhin ä Wesel, que de tels systemes porteurs, avec leurs
diagonales generalement assemblees aux points de croisement par de forts
goussets, • se rapprochent beaucoup plus qu'un treillis proprement dit d'un
Systeme de barres rigidement assemblees. Le procede doit donc ici etre egalement
etendu ä la rigidite des diagonales elles-memes. On devra egalement tenir compte
des inegalites des sections et des moments d'inertie des membrures. Nous sommes
ainsi egalement en mesure de determiner exactement les contraintes de flexion
qui se manifestent dans les diagonales. Le procede est applique ä la poutre en
treillis rhomboidal de la fig. 10 a. Pour cette application, il est en principe
indifferent que les montants indiques en traits discontinus existent
effectivement ou non dans un ou plusieurs panneaux. De meme, il est sans importance
pour l'application du procede que la poutre se termine ä ses deux extremites soit
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par un losange complet (fig. 10b), soit par un demi-losange (fig. 10a). Ainsi
d'ailleurs que l'a montre le calcul ulterieur du pont du Rhin ä Wesel, la
deuxieme terminaison ci-dessus est incontestablement ä preferer du point de

vus statique. Nous adopterons comme Systeme prineipal la poutre de la fig. IIa,
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qui comporte un montant rigide sur chaque losange, ce montant etant assemble

d'une maniere rigide avec les elements des membrures et avec les diagonales.

II importe de preciser tout d'abord certaines notions qui sont importantes pour
la suite de l'etude. La poutre ici consideree possede, comme toute poutre en
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treillis, un moment d'inertie Jt, qui varie de panneau en panneau et est compose
comme il est indique ci-dessous:

1° — Moment d'inertie Jf du treillis proprement dit, dont les barres sont
considerees comme denuees de masse.

2° — Une partie correspondant aux moments d inertie des barres des mem¬
brures J0 + Ju.

3° — Une partie correspondant aux moments d'inertie des barres du reseau
du treillis Jg.
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Ell ce qui concerne la fraction 1 ci-dessus, les membrures superieure et
inferieure ont la meme section, de teile sorte que dans le cas des
contraintes de flexion pure, la barre de membrure inferieure s'allonge de la

meme quantite que se raccourcit la barre de membrure superieure (fig. 12). Les

longueurs des diagonales supposees denuees de masse ne subissent de ce fait
pas de modification: ces diagonales restent libres de toute contrainte et ne

66 F
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fournissent par suite aucune contribution ä la valeur effective du moment
d'inertie Jf. L'axe de gravite se trouve au centre et on a la relation simple:

Jf £(F0 + F0) (1)

Si l'on admet que les sections des membrures sont differentes, la somme
des variations de longueur des deux barres de membrures est alors differente
de zero. Ceci implique des allongements et des contraintes dans ces diagonales.
Elles viennent ainsi ä participer egalement au moment d'inertie Jf. D'apres la

fig. 13, ä chaque allongement d'une barre de membrure d'une unite, correspond

un allongement des deux diagonales de -^- cos a et il est ainsi mis en jeu

dans chaque diagonale un effort donne par:

L) — cos2 ct.
2 a

Les efforts lateraux horizontaux correspondants sont donnes par:

„, 1 EFd sD' — cos8 ct.
2 a

Nous pouvons donc, en ce qui concerne leur participation au moment d'inertie
Jf, supposer les deux diagonales remplacees suivant la fig. 14 par une barre
horizontale passant par le point d'intersection des deux diagonales et ayant
pour section la valeur suivante:

F'd 2Fdcos3a (2)

La position de Taxe de gravite horizontal est alors donnee par la relation
suivante, dans laquelle sont employees les notations de la fig. 14:

h 2FU + F'd
nn —

h„

2 F0 + Fu + F'd

h 2F0 + F'd
2 F0 + Fu + F'd

et l'ecartement entre le centre de figure et le centre de gravite est donne par:

h h Fu — F0
ho ^r2 2 F0 + Fn + F'd

On obtient ainsi pour le moment d'inertie:

4F0Fn + F'd-
Jf-T F'd

Fo + Fn + F'a.
(3)

Pour F0 Fu la relation (3) redevient identique ä la relation (1).
En ce qui concerne la fraction 2 du moment d'inertie Jt et independamment

de la position de l'axe de gravite, les barres de membrures apportent un moment
d'inertie additionnel egal ä J0 f- Jn.
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En ce qui concerne la fraction 3 du moment d'inertie Jt, et dans le cas d'une
distorsion suivant fig. 15, d'un angle cp, le point d'intersection des diagonales
ne peut pour des raisons cinematiques venir qu'en F. point d'intersection des

perpendiculaires elevees en E ä A'C et R'D'. On a ainsi:

EG= AV + CC'
<EFG ct.

Le triangle EFG est donc semblable au triangle CAB et Fon a par suite:

EG h AA' + CC
EF d 2EF

EF AA' + CC
d 2h

ß 2'

ou:

d'oü l'on deduit:

Les tangentes aux extremites des diagonales deformees doivent donc etre les

droites CF et D'F.
La deformation des diagonales se produit donc suivant les lignes traeees en

traits pleins, avec angles de torsion:

Ces deformations se manifestent sur la poutre elle-meme aux points A', B', C
et D' sous forme d'efforts tranchants q et de moments SR. Le moment total
ainsi exerce par les diagonales deformees sur la poutre elle-meme est donne par:

M —2q-| + 29K

et comme l'on a:

_ 4 • 6 • E Jd cp m _ 2 • 2 EJd cp

q~" d2 ~2 d 2

on en deduit:

M -

8 EJd 8 E Jd cos a
—T- " <P : 9-

Les diagonales contribuent donc au total ä la rigidite de flexion, c'est-ä-dire
au moment d'inertie de ce Systeme, suivant:

J'd 8 Ja cos a Jg (4)

Cette valeur represente le quadruple de la resistance que fourniraient deux
diagonales croisees non assemblees au centre.

On a donc pour le moment d'inertie total du Systeme:

Jt Jf -}- J0 -i- Ju 4- 8 Ja cos a (5)

expression dans laquelle Jf est ä determiner d'apres la relation (1) ou (3).
Nous arrivons ä des notions correspondantes en ce qui concerne les efforts

tranchants.
66*



1044 Fr. Krabbe

A la deformation des deux montants rigides d'une unite (fig. 16), l'ensemble
du Systeme porteur oppose une resistance Kt. L'allongement des deux diagonales
est donc donne par:

A -j-1 • sin a.

On a donc pour l'effort dans les diagonales:

n EFd sin cx cos q
~~ a

La composante verticale pour les deux diagonales est donc donnee par:

„ 2sin2acosaEFd
Kf l (b;

a

ce qui represente la resistance au cisaillement du treillis dans l'hypothese de
barres denuees de masse. Les barres des membrures restent exemptes de
contraintes.

Par suite de la deformation des deux barres de membrure, on a en outre:

K0 + Ku lüiH^- <7>

r
La deformation des deux diagonales dont les extremites ont subi une distorsion

de par rapport ä Faxe de barre, fournit une resistance aux
1 cos et r rr

efforts tranchants donnee par:

v 1
24 EJd cos5 a /cAKd 1 ^ (8)

On a donc pour la resistance totale du Systeme porteur aux efforts tranchants:

Kt Kf + K0 + Ku + Kd (9)

2E [ a J0 + Ju + 2Jdcos5a
I<d sm'5 a cos a + 6 «ou: Kt=l

II est ä remarquer ici que dans les realisations normales, telles que le pont
sur le Rhin ä Wesel, par exemple et par suite de la rigidite de flexion des
barres des membrures et des diagonales, la resistance aux efforts tranchants de
l'ensemble du Systeme porteur se trouve augmentee d'environ 13 o'o. II n'est
donc pas indique d'admettre simplement que dans le cas considere la rigidite des

barres soit ä negliger. L'elevation du moment d'inertie de l'ensemble de l'ouvrage
qui resulte de la resistance ä la flexion des barres est toutefois faible et reste
inferieure ä 1 °/o.

2° — Lignes d'influence concernant le Systeme prineipal.1

a) Lignes d'influence des barres des membrures.

La ligne d'influence de la membrure superieure est determinee par la courbe
de flexion de la membrure en charge (membrure inferieure), qui resulte de

7 En ce qui concerne les notations generalement adoptees dans la presente etude pour les

lignes d'influence, se reporter ä l'etude publiee par l'auteur dans Stahlbau, 1933, n° 2.
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l'allongement d'une unite de la barre de membrure superieure. Nous realisons
cet allongement d'une unite de la barre de membrure superieure (fig. 17), en
la coupant en son milieu et en appliquant un effort X qui provoque un
ecartement d'une unite. Si nous negligeons tout d'abord la resistance ä la flexion
des barres, nous nous trouvons en presence des efforts dans les barres qui sont
indiques sur la figure. Sous l'influence de l'effort X, qui pour des sections

identiques raccourcit dans les memes proportions la barre de membrure
superieure et la barre de membrure inferieure, les deux montants subissent Fun

par rapport ä l'autre une distorsion suivant l'angle —7-. On pourrait ainsi

determiner la ligne d'influence pour 0 pour le cas du treillis pur.
Comme toutefois les barres de membrure et diagonales deformees mettent

en jeu des reactions reciproques, l'angle de torsion est en fait inferieur ä -r-',
1

nous supposerons qu'il est egal ä -r- ju.

On en deduit directement, en se reportant aux relations 1, 3 et 5:

K-J 00)

La ligne d'influence correspondant ä la barre de membrure superieure 0 est
donc caracterisee par l'angle de torsion

et affectc la forme representee sur la fig. IIb; on obtient d'une maniere tout
ä fait analogue la ligne d'influence qui correspond ä la barre de membrure
superieure U, suivant fig. 11c.

Si les barres de membrure superieure et inferieure presentent par contre des

sections differentes, l'angle de torsion n'est plus independant de X car si les

membrures inferieure et superieure sont en fait soumises aux memes efforts
dans les barres X, les allongements qui en resultent sont toutefois differents.

Comme l'effort externe X tend ä separer d'une unite les levres de la coupure
effectuee sur la barre de membrure superieure, on a d'apres le theoreme de

Clapeyron:

EF0 rEFu ' EFdcos3ct'

Comme la valeur / 0 qui satisferait ä cette equation n'a aucune signification,

on a:
EF0 Fn\= 1

a[F0 + Fu +
2F„FU

Fd cos* a

On a par suite pour l'allongement total de la barre de membrure superieure:

Xa
Ao 1-ef;
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et pour le raccourcissement de la barre de membrure inferieure:

Xa
Au

EFU-

On a ainsi pour l'angle de torsion:

ou: »o —

»0

1 —•

Au —Ao
h

F0-Fu
Fu + F0 +

2FUF0
Fd cos8 a

(10)

Nous designerons l'expression entre les parentheses par v0 et nous aurons ainsi:

&o — j- • Vo (ii)
Pour la membrure inferieure, en procedant de la meme maniere, nous

poserons:
F0 + Fu

Vu 1 +

et nous aurons:

Fu + F0 +

1

2F»Fn
Fd cos* a

&u + T- VU

(12)

(13)

Les deux lignes d'influence sont representees sur les fig. 11 d ä e; la membrure
la plus forte admet naturellement les plus gros efforts dans les barres.

b) Lignes d'influence des diagonales.
Nous determinerons la ligne d'influence de la diagonale CB (fig. 18) eu la

considerant comme courbe de flexion de la membrure inferieure resultant de

l'allongement d'une unite de la diagonale. Dans l'hypothese de barres denuees
de masse, l'effort qui ecarte d'une unite les levres de la coupure de la diagonale,
soit X produit dans les barres les efforts indiques sur la figure. Independamment
de cet allongement d'une unite, les deux diagonales se raccourcissent dans la

meme proportion, ce qui provoque une deformation verticale reciproque de

=—-. des montants rigides; on obtient ainsi la courbe de flexion representee
2 sin a
sur la fig. 11 f et par suite la ligne d'influence des diagonales. Sous l'influence
de la rigidite de flexion des barres de membrure et des diagonales, la
deformation verticale des montants se trouve toutefois reduite: nous supposerons
qu'elle repond ä:

1

2 sin a
Nous aurons ainsi:

Kt
(equations 6— 9). (14)
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On obtient ainsi la ligne d'influence representee sur la fig. 11 f.
Si maintenant les barres de membrure superieure et inferieure ont des sections

differentes et par suite des inegalites d'allongements, on a pour un meme effort
dans les barres + Xcosa, une torsion des montants rigides Fun par rapport
ä l'autre de l'angle qui dans ce cas, d'apres la relation (10) bis, est donne par:

»= —
1 F — F1 u L o

h[Fu + F0 +
2FUF0

Fd cos3 a
cos a

On en deduit la ligne d'influence representee par la fig. 11g.

(15)

slha.

2L
cosa

t<9

fl m

h-H

09.

\ i 3 * iyf—j—1 3iJf
isN<a

1 // V^f'T

*) 4\

/ f'9Ji v\

sma

**a*

09

C°S

i \fm**
1 |

JV4 -'
1 Lwhw

M
M0l

Mdli Md

Mdk

Ü9
Mdlu

Mul

Fig. 17—22.

c) Lignes d'influence correspondant aux moments d'extremite des barres.

Nous determinerons la ligne d'influence correspondant au moment de
l'extremite droite de la barre de membrure superieure (fig. 19) en la considerant
comme courbe de flexion de la membrure en charge resultant de l'effet de

compression axiale de la barre, qui se traduit ä l'extremite droite par une
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deformation d'un angle egal ä l'unite. Par suite de cet effet de flambage, il se

trouve mis en jeu dans la barre un effort tranchant donne par:

Cet effort tranchant implique un deplacement vertical des montants rigides,
Fun par rapport, ä lautre, donne par:

boi 1 ^— (pour Kt voir relation 9)
kt

bor + i^A (]6)

En outre, il s'exerce dans la section verticale directement ä droite de 0 un
moment en sens contraire des aiguilles d'une montre donne par:

EJftM= —
a

0

de meme dans la section qui se trouve immediatement ä gauche de 0, se

manifeste le moment inverse:

EJ0
M +

a

II en resulte pour la poutre une torsion positive reciproque des deux montants

rigides, qui est donnee par:
_Ma

ou: &or= + T° (17)
•Jt

La ligne d'influence conditonnee par la deformation b et la distorsion 0-, pour
Mor, est representee sur la fig. 11h.

Nous determinerons la ligne d'influence correspondant au moment sur
l'extremite superieure de la diagonale qui monte vers la droite, soit Md™, en la
considerant comme courbe de flexion de la membrure en charge, resultant d'une
deformation d'un angle unite par suite de l'effet de flambage de cette barre
ä son extremite superieure (fig. 20).

Sous cette influence, le croisement des diagonales en 0 se trouve tout d'abord
soumis ä un moment donne par:

4 EJd cos a

Sous l'influence de ce moment, il se produit une distorsion en sens contraire

dhorloge suivant un angle de — et les diagonales subissent de ce fait un
o

flechissement additionnel indique en traits discontinus. Le point 0 ne se trouve
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alors plus soumis ä un moment, car chacune des quatre demi-diagonales in-
flechies exerce sur lui un effort egal ä:

E Jd cos a

Sous cette influence et aussi bien dans une section situee ä droite cpi'ä gauche
de 0, c'est-ä-dire dans le panneau tout entier, se trouvent mis en jeu des efforts
tranchants qui sont indiques sur la fig. 20, soit:

~ 24EJd cos3a

On a en particulier ä droite:

^ ^8 8 _ 4

et ä gauche: 2-f — 2-f -f4 4 4

6EJdcos3a

Ceci implique un deplacement des montants rigides l'un par rapport ä

lautre de:

bdro + 6EJ^ (18)
a- ivt

En outre, vient s'appliquer sur la section verticale situee immediatement
ä droite de 0, en 0, un moment en sens inverse d'horloge et donne par:

f
4 E Jd cos a 9

E Jd cos a 9
E Jd cos q

a a a

et sur la section verticale situee immediatement ä gauche de 0:

M + 2^L~a.
a

A ce moment doit venir s'opposer un moment en sens contraire resultant du
flechissement de la poutre tout entiere; pour cela, une distorsion de la poutre
est necessaire, suivant un angle donne par:

Ma 2Jdcoscx / QN

ddro-Ej;-"~—j; (1W}

La ligne d'influence conditionnee par le deplacement b et par la torsion fr

pour Mdro est representee sur la fig. Hi.
Nous determinerons la ligne d'influence pour le moment d'extremite de cette

meme diagonale directement ä droite de 0 en la considerant comme courbe
d'influence de la membrure en charge, resultant d'un effet de flambage en K
se traduisant pour cette barre par une deformation suivant un angle unite
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(fig. 21). Dans des conditions analogues aux precedentes, la charge du point de

croisement en 0 par:
8 EJd cos a

a

a pour resultat une distorsion additionnelle de ce point de croisement representee

en traits discontinus, suivant un angle —, de teile sorte qua nouveau, le point

de croisement en 0 ne se trouve plus soumis ä l'action de moments. Dans des

conditions semblables ä celles qui precedent, on a ici:

Q 0
&dK 0

d'oü:

(20)

Immediatement ä droite et ä gauche de 0, s'appliquent maintenant les

moments:

™ 4EJdcosq

A ce moment, doit s'opposer un moment resultant de la flexion de la poutre
tout entiere; ä cet effet, est necessaire une distorsion de la poutre donnee par:

frdK
4 Jd cos a

(21)

Oii arrive ainsi ä ce resultat tres interessant que l'angle de distorsion fr qui
conditionne la ligne d'influence correspondant ä MdK et qui est donne par la
relation (21) est deux fois plus grand, en sens oppose, que celui qui
conditionne la ligne d'influence correspondant ä Mdro et qui est donne par la
relation (19). Ceci correspond exactement au flechissement des diagonales par
torsion pure, c'est-ä-dire par charges constituees uniquement par des moments
suivant fig. 15. En outre, il resulte directement de la fig. 16 que pour un
deplacement purement parallele des montants rigides, il ne se manifeste aucun
moment MdK; par suite, et inversement (d'apres la loi de Maxwell), un effet de

flambage des diagonales directement ä droite de 0, suivant fig. 21, ne peut
provoquer la mise en jeu d'aucun effort tranchant susceptible de deplacer les

montants parallelement, ce qui se trouve confirme par la relation (20).
II n'est pas necessaire d'effectuer une determination speciale des lignes

d'influence qui correspondent aux autres extremites des barres, car avec les

designations de la fig. 22, on obtient directement, d'apres la fig. 15 (contrainte
due aux moments) et la fig. 16 (contrainte due aux efforts tranchants) le signe
des valeurs b et fr: on a ainsi:

(22^

pour or ol ur ul dro dlo dru dlu dK

o + — + — + — + — 0

& + + + + — — — — +
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Oil a ainsi determine toutes les lignes d'influence pour le Systeme porteur
(fig. Ha) choisi comme Systeme prineipal et comportant des montants auxiliaires

rigides, assembles rigidement dans les noeuds.

Du point de vue de ces lignes d'influence, on a etudie des dispositions variees

en ce qui concerne les sections et moments d'inertie des membrures superieure
et inferieure. Pour les corrections ä apporter ä ces lignes d'influence et qui
doivent etre determinees dans ce qui suit, on a toutefois renonce ä ces variantes
et admis la symetrie par rapport ä Faxe horizontal de la poutre, afin de ne

pas compliquer outre mesure la methode indiquee (pour des raisons particulieres,
nous adoptons comme base, pour les deux membrures, la dimension de la membrure

eloignee du tablier). Nous indiquerons, ä la fin de la presente etude, une
methode approchee qui permet de faire intervenir d'une maniere simple, les

corrections qu'exige la dissymetrie.

3° — Passage des assemblages rigides des montants auxiliaires
ä des assemblages articules.

Si les montants auxiliaires incorpores au Systeme porteur (fig. Ha) ne sont

pas rigides, mais articules aux noeuds, les noeuds subissent des torsions suivant
certains angles par rapport ä Faxe des montants rigides, sous l'influence des

differents flechissements de la poutre (lignes d'influence); ces torsions se

produisent en general dans le meme sens, c'est-ä-dire antisymetriquement par
rapport ä l'axe horizontal de la poutre. II peut egalement se manifester,
d'ailleurs independamment de ce qui precede, une distorsion des noeuds des

membrures superieure et inferieure en sens oppose, c'est-ä-dire symetriquement
par rapport ä Faxe de la poutre.

a) Torsion antisymetrique des noeuds des membrures superieure et inferieure.

Si nous provoquons la torsion des noeuds om et um d'un angle cp (fig. 23)
dans le meme sens, par rapport ä Faxe du montant auxiliaire m et si nous

supposons tout d'abord que les noeuds sont indeformables dans le sens vertical,
il se produit tout d'abord une deformation suivant fig. 23 a, dans laquelle nous
maintenons tout d'abord fixes, sans torsion, les points medians de croisement
Om et Om-j-! des diagonales. II en resulte une mise en charge de ces croisements,

par un moment ä gauche egal ä:

Q2EJd

2

Ce moment est alors compense par une rotation ä gauche du noeud, d'am-

plitude — cp. Les noeuds subissant ainsi une torsion de — cp, il en resulte la

deformation representee sur la fig. 23b.

Si nous comparons cette fig. avec les fig. 19—20, nous constatons que dans
les deux panneaux, la double deformation des deux fig. 19—20 considerees

ensemble se manifeste, avec sens opposes dans le panneau m -f- 1. II en resulte

directement, en ce qui corcerne les relations 16 ä 20, que pour la compensation
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des moments et efforts tranchants mis en jeu par suite de la deformation,
les nouvelles deformations ci-apres sont necessaires:

Panneau m:
' 6 E (J0 + J„)m 12 E Jdm cos3 et

&m +l
+1

frm

Panneau m -f- 1:

a2 Ktm a2 Ktm

6 E (J0 + Ju -f 2 Jd cos3 g)m
a2 Ktm

(Jo + Ju 4- 2 Jd cos a)n

9

<?

• cp.

« 1
6 E (J0 + J.i + 2 Jd cos3 a)m 4-1

Om + l — — 1 " ¦—jTj7a ivt(m4.i)
9

frm -f 1:
(Jo + Ju + 2 Jd cos a)m 4-1

• cp.
Jt(m-fl)

Cette deformation de la poutre est representee sur la fig. 23 c. A gauche de

m — 1 et ä droite de m-f 1, les autres panneaux se raecordent normalement
sur les montants et les points d'appui A et B viennent en A' et en B'. Apres
restauration des conditions d appui suivant la droite A' B' 011 obtient le flechissement

de la membrure inferieure conditionne par l'angle de torsion cpm 1

c'est-ä-dire par l'etat «cpm 1».

Sous cet etat, les noeuds om, um, o (m — 1), u (m — 1), o (m -r 1),
u (m -f- 1) sont soumis ä des moments, ces moments etant en fait egaux pour
les neouds superieurs et inferieurs, puisque nous admettons l'hypothese de la

symetrie.
Nous trouvons ainsi pour la charge de chacun des noeuds om et um:

ä partir de la fig. 23 a:

,p 4 E (Jom +Jo(m-fi)) 4 E (Jdm + Jd(m-H)) 6 EJ0
-*A mm — 1

a ahä partir de la fig. 23 b:

Mu _ (Jdm +Jd(m + 1)) COS «
Nl mm — "1

a

ä partir de la fig. 23 c (en se reportant aux fig. 15 et 16):
ET fr

M"/ — Jomfrm + Jo(m+l)frm + 1 — 4 Jdm COS a y
» T frm -f 1 a T Om a T ^m +1— 4 Jd(m + 1) COS a hO Jörn ho Jo(m-fl)

& a a

n T Om s i /? t Om-4-1 _ «+ 6 Jdm COS3 a + O J0(m + 1) COS3 a
a a J

Pour la charge de chacun des noeuds o (m — 1) et u (m — 1) nous trouvons:
ä partir de la fig. 23 a:

Mt ^ tl J0m
(m - 1) m
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ä partir de la fig. 23b:

Af,, EJdmcosa
M- (m - 1) m — i ~

ä partir de la fig. 23 c

M'"(m-l)m H Jörn frm + 4 Jdm COS a -^- + 6 J0m —2 a

6Jdm cos3 a

Enfin, pour la charge de chacun des noeuds o (in 4- 1) et u (m-f 1), nous
trouvons:

ä partir de la fig. 23 a:

2 E J0 (m-|-l)M (m + ])m

ä partir de la fig. 23 b:

E Jd(m+i)Cos aM' (m -f l)m 1-

ä partir de la fig. 23 c:

-ILM" (m + l)m a|
Jo (m -f l) frm +1 + 4 Jd (m + 1) COS d

rm +1

+ 6J0(m + l
Jm + l + 6Jd (m-j-l)

Jm + 1
cos3 a

a ' a

La charge totale des noeuds superieurs et inferieurs est ainsi donnee par:

Mmm 2 (M'mm 4- M"mm + M'"mm) (23)

M(m — i) m 2 (M'(m _ i) m + M"(m _ i) m + M'"(m _ t) m) (24)

M(m-j_i)m 2 (M'(m_|_])m -j- M"(m_|_i)m + M'"(m_|_i)m) (25)

Si nous considerons maintenant, sur les fig. 17—18, les deformations qui
ont donne lieu aux lignes d'influence du Systeme prineipal, considerees en tant
que courbes de flexion de la membrure chargee, nous constatons qu'ä ces
deformations correspond une charge de base des noeuds du panneau deforme, charge
que nous designerons par Mom. Cette charge est egale sur les noeuds superieurs
et sur les noeuds inferieurs; on a d'apres la fig. 17 (ligne d'influence
correspondant ä la barre de membrure superieure):

2 E
M0 (m -1) —,- [Jo + Ju + 2 Jd cos a] (avec J0 Ju) (26)

a n

Mom"= — M0 (m-1) (27)

Pour la deformation suivant fig. 18 (ligne d'influence pour la diagonale),
on a:

M0(m —1) : -Vlom
6E(J0 + JU) 1

2 sin a
12EJd 8

u H coss a
1

2 sin a
M (28)

3E
a sin a

u (J0 + Ju + 2 Jd cos8 a) (avec J0 Ju).
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Par suite de la Substitution des articulations, aux encastrements rigides des

montants, il ne peut pas se manifester de moments dans ces articulations; on
a donc dans chaque cas, pour chaque couple de points, la relation:

Mm 0 Mom + Mm (m — 1) Cpm - 1 + Mmm cpm + Mm (m + 1) 9m + 1 (29)

Cette relation ne peut pas comporter d'autres termes. Pour n noeuds, nous
avons donc toujours un Systeme d'equations ä n angles de torsion inconnus 9„,
de la forme de l'equation de Clapeyron; par exemple, pour la poutre Ha et

pour la ligne d'influence de la diagonale D, nous avons:

9i 9s 93 94 95 96 97

1 Mu Ml2

2 Mfl M22 M23

3 M32 Mss M34

~M„

M03

4 M« Mu M04

5 M54 M55 M56

6 M65 Me« M67

7 MTG M77

(29 a)

A chacun de ces angles de torsion 9m correspond maintenant une courbe de

flexion determinee de la membrure en charge (voir fig. 23c), ä savoir la courbe
de flexion que l'on a obtenue pour l'etat 9m 1 et multipliee par 9m. Ces

7 courbes de flexion doivent dont etre ajoutees aux courbes de flexion de la
membrure en charge determinees sur la fig. 18 et nous obtenons ainsi la ligne
d'influence se rapportant ä la poutre avec montants auxiliaires articules.

Pour la determination de la ligne d'influence pour la barre de membrure O
suivant fig. 17—Hb, nous utilisons le meme Systeme d'equations: il faut alors
introduire comme termes independants, dans les colonnes 3 et 4, les valeurs de

M0o et de MQ4 d'apres les relations 26—27.

b) Torsion symetrique des noeuds des membrures superieure et inferieure.

S'il s'agit maintenant de corriger les lignes d'influence conditionnees par les

deformations suivant fig. 19, 20 et 21, nous remarquerons que les noeuds des

membrures superieure et inferieure sont ici soumis ä des moments inegaux.
Sous l'influence de ces deformations, et dans les trois cas consideres, il y

a encore lieu de considerer ici, outre la charge egale des noeuds des membrures
superieure et inferieure m—1 et m que nous designerons par M0-(m_]) et
Mom, une charge particuliere sur les noeuds superieurs, ä savoir:

fig. 19: Mm_1
2EJ0

(30)

Mm =¦ 4EJ0



fig. 20:

fig. 21:
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8 E Jd cos et
Mm =¦

Mm +
4 E Jd cos a
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(31)

(32)

Nous decomposerons cette charge en charges antisymetrique et symetrique
sur les noeuds des membrures superieure et inferieure et nous aurons ainsi, pour

2 E J
la charge — - de la fig. 19:

1. — en haut:

2. — en haut:

EJ0
en bas: —

EJ0
a a

(fraction antisymetrique de la charge)

£j J0 Ei J0
en bas: -\

a a

(fraction symetrique de la charge)

On a ainsi au total:

u 2EJ0
en haut:

a

en bas: 0

Les deformations qui resultent des fractions antisymetriques des charges
doivent etre determinees d'apres le procede indique en a. Aux fractions
symetriques de la charge, il correspond toutefois egalement, si nous voulons
considerer dans leur ensemble les noeuds des membrures superieure et inferieure,
une torsion symetrique des noeuds superieurs et inferieurs (fig. 24). Nous

designerons l'angle de torsion correspondant par \\>. Contrairement ä la fig. 23a,
la fig. 24 montre que les noeuds medians Om_! et Om ne sont pas charges,
c'est-ä-dire qu'ils ne subissent pas de torsion et en outre que les efforts
tranchants et les moments dans les deux panneaux s'equilibrent, c'est-ä-dire qu'il
ne se manifeste pas d'autres deformations.

Dans ce cas, nous considererons les torsions et les charges dues aux moments
comme positive lorsqu'elles provoquent des torsions ou des charges positives
sur le noeud de la membrure superieure. Nous obtenons ainsi directement:

8E EJ0
Mmm j Jom + Jo (m + 1) + 2 (Jörn + Jd (m + 1)) COS dj — 2 -~ (33)

4 E Jom
M,(m — l)m —

m,(m + 1) m :

4EJ0 (m + l)

(34)

(35)

La deformation qui resulte de la charge symetrique des noeuds des membrures
superieure et inferieure est donc donnee par un Systeme d'equations de la
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forme de l'equation de Clapeyron, correspondant ä la relation 29. On a par
exemple pour la deformation suivant fig. 19:

*i Ü2 to *>4 to to *7

1 Mlt M12
1

1

|

2 M21 M22 M,3

3 M32 M33

M43

M34
EJ»

a

4 Mu M45
2EJ0

a

5 M54 M55 M66

6 ' M65 M6o ^67

7 M70 M77

(36)

Les coefficients correspondants seront determines d'apres les relations 33 ä 35
et les termes independants d'apres la relation (30).

Nous obtenons ainsi, dans le cas considere, 7 angles i}> de torsion symetriques;
par contre, et il y a lä une grande difference avec les angles de torsion 9, il ne se

produit aucune deformation des noeuds de la membrure en charge. On ne
constate donc aucune action des lignes d'influence (tout au moins si nous admettons

que les charges sont appliquees seulernent aux noeuds).
Les resultats ainsi obtenus seront utilises dans le prochain chapitre. Nous

sommes maintenant en possession des lignes d'influence exactes pour le Systeme

comportant des montants auxiliaires rigides, assembles par articulation.

4° — Suppression des montants auxiliaires rigides.

Prolongeons l'un des montants rigides m, tout d'abord en conservant son
encastrement rigide sur les deux membrures, de la quantite r\ c'est-ä-dire vers

le haut de— ^\ et vers le bas de la meme quantite; nous obtenons ainsi la defor-

mation de la fig. 25. Comme il se manifeste une traction dans les deux diagonales,
il se manifeste par voie de consequence une compression dans toutes les barres
de membrures; ces barres se raccourcissent donc des quantites y et y'. Le
flechissement des diagonales n'exerce naturellement aucune influence notable
tant sur les contraintes longitudinales qui se manifestent dans les diagonales et
dans les barres de membrures que sur les deformations y et y'. La valeur de y
a ete dejä determinee dans l'etude mentionnee dans le renvoi (4) (equation 7).
On a ainsi:

sin q cos2 q Fdm
T ~" 2 (cos* q Fdm + Fom) [6i)

Pour Fetablissement de cette formule, voir l'etude mentionnee. On a d'une
maniere correspondante:
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sin q cos2 gFd(m +1}
T — 2(cos8qFd(rn + 1) + F0(m + 1))

On en deduit, d'apres la fig. 25, la deformation des points de croisement
des diagonales:

_ (2 Fdm cos3 q + Fom) tg q
4 (Fom + Fdm cos3 q)

On obtient d'une maniere tout ä fait semblable la valeur de o' avec les sections
de barres correspondantes, dans le panneau m -f- 1.

De ce qui precede, on deduit maintenant la deformation des noeuds des

tangentes d'extremite, perpendiculairement aux axes des barres:
Pour les demi-diagonales interieures dans le panneau m, on a:

ö sin q + -J- cos q

m-1 m-1m+f m*1

m*i

Fig 23 a Fig 23 b

***—T> -I
2fiT^>

l'92k

Ui Leei—4 rT**1

.i m-Mlm-l^s \n m+1

Fig2± Fg25_

^T?iv-iy\~^ö ^ö'u^yi

Fig26_

l'9-JZ

D-Linie des symmetrischen Systems { i _Courbe D du Systeme symetrique
~

Fig. 23—27.

H-Itne For symmetrical System
Berichtigte endgültige D"Linie
Courbe D definitive comgee
Corrected. Final D-Iine

D'Linie des Hauptsystems
Courbe D du Systemeprincipe
ü'lme For prineipal System

67 F
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et dans le panneau m + 1, on a:

cV sin q + -1 cos q.

Pour les demi-diagonales exterieures, on a respectivement:

(b — y) sin q et (b' — y') sin q.

On en deduit maintenant tous les moments flechissants mis en jeu par la
deformation (fig. 25), ä savoir, pour le panneau de gauche:

n, 6 E Jom o L Jom

Pour les

designations,

\ oir fig. 22

Mor

Mo!

Mur

M„i

Mdr0 —

o LJ0m

+ 3^-n

^dm cos2 q /

15—V
24 E Jdm cos2 q

MdKl — Mdro

MdrQ — Mdro

MdK4 -h Mdr0

b sin q -f- -± cos q

M,dlo : M 24 E Jdm cos2 q
MdKa H 2 (° — T) sin a

(39)

A/r ™ 24 E Jdm cos2 q ._ NMdiu MdK2 § (b — y) sin q
a

Les moments aux extremites des barres dans le panneau de droite ont des

valeurs qui correspondent aux valeurs des moments d'inertie dans le panneau
m-f 1; on obtient ainsi pour la charge symetrique due aux moments, dans les

couples de noeuds m, m — 1 et m -f- 1, les valeurs suivantes pour l'etat t\ 1,

en faisant r\ 1 dans a relation 39:

M
2E

Q2
3 (J0 (m +1) — Jom) + 24 Jd (m +1) COS2 q (b' sin q + — COS q)

— 24 Jdm COS2 q (b sin q + — cos q)

2 E r 1
Mm_i T 13 Jom + 24 Jdm cos2 a (b — y) sin ql

2 E r iMm + i —2-1 3 Jo(m + l) + 24 Jd(m-f-l)COS2 q (b' — y1) sin ql

(40)

(41)

(42)

Si maintenant nous reportons dans la relation 36 ces valeurs de moments
suivants les relations 40 ä 42, ä titre de termes independants, c'est-ä-dire de
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termes de charge, nous obtenons les angles de distorsion des noeuds, i}>1 ä i|?7,

qui se manifestent apres remplacement des montants auxiliaires par des
articulations. Pour differencier cet etat de deformation de l'etat r\m 1 (fig. 25),
nous le designerons par etat £m 1" (fig. 26).

Pour l'obtention de l'etat £4 1, nous aurions ainsi ä introduire les valeurs
M3, M4 et M5 suivant equations 40 ä 42 dans les lignes horizontales 4, 3 et 5 de
la relation schematisee 36, sous forme de termes independants. Ces etats
correspondent exactement ä la deformation designee par «etat £4 1» dans l'etude
ayant fait l'objet du renvoi 4 (fig. 4). Les efforts Rmn qui s'exercent sur les

montants auxiliaires maintenant articules, peuvent etre obtenus comme suit:
On obtient d'abord, d'apxes la fig. 25, en posant m 4 pour simplifier,

comme surcharge des montants 3, 4 et 5:
Montant 4:

R44 _(D4 + D5) sin «- *1$!*+M ±
o a & a

48EJ4cos8q/ 1
' b4 sin q + — cos qa2 r* 2

48 E J5 cos3 q /c 1

2 ,b5 sin q + —cos ql.

Les valeurs D4 et D5 ci-dessus sont donnees par la relation 10 de l'etude
dejä mentionnee; on a ainsi:

1 sin q cosH q Fd4
sin q ¦

n 2 " 2(cos3qFd4 + F04) FTD4 H ^ ¥- • E Jd4 cos q.

Montant 3:
6EJ04 1 48EJ4cos3q

R34 — D4 sin q + —r— • ^+" ~* (b* — Y*) sin a

Montant 5:

R54 - D6 sin q + ^p- " ^ + --^f2^^ (b5 - y5) sin q
6 E J05 ± 48EJ5 cos3 q

2 a
+ a2"

Sil existe au point 4 un montant elastique, la valeur de Ro44 se trouve encore

augmentee de la valeur de la tension de ce montant soit:

_1EF1
h *

II se manifeste toutefois encore sur ces montants d'autres charges par suite de

la torsion suivant l'angle if>; il suffit toutefois, dans tous les cas, de tenir compte
de la charge des barres m — 1, m et m -)- 1, c'est-ä-dire dans le cas qui nous

occupe, de R3, R4 et R5.

On a ainsi d'une maniere generale:

(\ F r
Rm —g- I Jo (m + 1) (*|>m + 4>m + l) Jom (l|>m- 1 + tym) (43)

67*
+ 4 Jd (m + 1) — Jdm) COS3 q l})mJ
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R44 —g- I Jos (Ah + ^5) + J04 (t|)8 + ^4) + 4 (Jd5 — JdJ cos3 q t|)4
4 a 1 -j

R34 —r IJ04 (^s +• ^4) + J03 (^2 + ^3) + 4 (Jd4 — Jd3) cos3 q xj)3
4 a l j

fi P r "l
R54 -y I Joe (t|>5 + *!>e) + J05 (t|>4 + ^5) + 4 (Jd6 — Jd5) cos3 q l|)5
4 a l j

On a maintenant:
R44 R44 + R44

0 4

R34 R34 + R34
0 4

R54 R54 + R54
0 4

Nous obtenons ainsi, apres elimination de tres faibles charges, uniquement
des valeurs de R dont les indices ne different pas entre eux de plus d'une unite.

Si maintenant nous appliquons ä la poutre, aux points m0 et mu, un couple de

charges egales ä l'unite (fig. 26), que nous devons naturellement ajouter ä la

charge nulle Rm, les deformations £ provenant de ce couple de charges egales
o

ä l'unite sont donnees par la relation:

Rm 0 Rm (m — 1) £m — 1 + Rmm £m + Rm (m + 1) £m +1 (44)

On a 'donc dans le cas qui nous occupe, avec charges au points 4Q et 4U:

li li ^3 u l* ^6 ^7

1 Ru R12

2 Rai R22 R23

3 R32 R33 R34

4 R43 R44 R45 1

5 R54 R55 R56
'

6 R65 R66 R67

7 R76 R77

(44 a)

Le Systeme d'equations (44) est ä nouveau un Systeme de relations de la
forme de Clapeyron. En introduisant successivement la valeur independante -[- 1

dans les lignes horizontales 1 ä 7, ce Systeme donne les valeurs de £ resultant
de la mise en charge des couples 'de points 1 ä 7 par les couples de charges
egales ä l'unite.

Les sept courbes de flexion ainsi obtenues pour la membrure en charge
(membrure inferieure) constituent les lignes d'influence pour les sept valeurs

£4 ä £7. Comme ä chacune de ces valeurs de £ et suivant fig. 26, correspondent
des grandeurs nettement determinees pour les contraintes axiales des barres
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et les moments d'extremite dans les barres des panneaux voisins (nous pouvons
ä ce sujet nous limiter aux deux panneaux immediatement contigus, ä droite et
ä gauche, ä la valeur de £ consideree), on obtient pour tous les efforts dans un
panneau m des lignes d'influence additionnelles dont les ordonnees sont fournies

par la relation:
Hm |Um - 1 ^m - 1 + JUm £m (45)

Ces lignes d'influence complementaires doivent etre ajoutees aux lignes
d'influence determinees d'apres la fig. 11 et dejä corrigees par Fintervention
des courbes de flexion obtenues d'apres la fig. 23 C; nious obtenons ainsi
les courbes d'influence definitives pour toutes les valeurs d'efforts.

Une remarque est encore ä faire ici au sujet des lignes d'influence determinees
sur la base des deformations des fig. 19 ä 21. On a obtenu, ainsi que Fon sait,
non seulernent la charge antisymetrique du noeud de membrure superieure et
inferieure, mais encore une charge symetrique additionnelle ne provoquant pas
immediatement une deformation des noeuds charges, tant que les montants
auxiliaires articules existent. L'angle de torsion \\> mis en jeu par cette charge
symetrique, suivant la relation 36, provoque toutefois la mise en jeu d'efforts
sur les montants auxiliaires articules, suivant la relation 43, efforts qui introduits
dans le Systeme d'equations 44 sous forme de termes independants, donnent les
valeurs pour £4 ä £7. Les courbes de flexion qui en resultent pour la membrure
en charge sont encore ä ajouter aux lignes d'influence dejä considerees. Par
contre, une charge antisymetrique due ä des moments et qui produit l'angle de
torsion 9 a pour resultat un flechissement de l'ensemble de la poutre, suivant
fig. 25, mais il n'en resulte aucune charge sur les montants, donc aucun
ecartement.

5° — Rectification des lignes d'influence dans le cas de la poutre dissymetrique.

Nous avions dans ce qui precede determine les lignes d'influence du Systeme
prineipal en faisant intervenir differentes sections ou moments d'inertie de la
membrure superieure et de la membrure inferieure; au cours de l'etude de ces

lignes d'influence, nous n'avons toutefois pas envisage le cas de la poutre
dissymetrique et notre etude a porte, dans chaque cas, sur la membrure eloignee
du tablier; c'est dans ces hypotheses que nous avons determine la courbe de
flexion de la membrure de tablier, en la considerant comme ligne d'influence.

Si, dans la fig. 27, la courbe en traits discontinus represente la ligne
d'influence du Systeme prineipal, qui a ete determinee en tenant compte de la

dissymetrie et si la courbe en pointille represente la ligne d'influence definitive
obtenue sans tenir compte de la dissymetrie, nous pourrons ainsi determiner
l'ecart entre les moments d'inertie Jt de la poutre reelle es Js de la poutre
supposee symetrique.

Supposons maintenant que Fon flechisse une poutre ayant un moment d'inertie
Jt — Js et accusant par suite tendance ä epouser la courbe de flexion du Systeme
prineipal, de maniere ä Famener ä la position de la courbe en pointille. II en
resultera pour cette courbe de flexion de membrure la tendance ä un retour ä la

position initiale de la courbe de flexion du Systeme prineipal. Si l'on designe

par t\0 les ordonnees de la ligne d'influence du Systeme prineipal, par r\s celles
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du Systeme symetrique et par r\ celles du Systeme definitif, on aura sensiblement

pour les ordonnees exactes:

n no + (n> — no) y (46)

Comme la difference entre Js et Jt sera toujours tres faible, il en resulte que
Ferreur commise dans l'hypothese de la symetrie sera en general toujours faible,
de teile sorte que l'on peut parfaitement admettre la rectification suivant la
methode d'approximation ci-dessus indiquee.

6° — Resume synoptique du procede.

1° — Determination des lignes d'influence du Systeme prineipal pour les

efforts suivant fig. 11 des lignes d'influence, resultant de l'application
de la deformation egale ä l'unite sous l'influence des efforts
correspondants.

2° — Determination des charges sous forme de moments que cette defor¬
mation provoque aux endroits des noeuds et groupement de ces charges
en moments antisymetriques et moments symetriques sur les noeuds
des membrures superieure et inferieure (equations 26 ä 28 et 30 ä 32).

3° — Representation des differents (7) etats cpm 1 et i}?m 1 (fig. 23—24).
4° — Determination des coefficients Mmn ä partir de ces differents etats

(equations 23 ä 25 et 33 ä 35).
5° —'¦ Etablissement des systemes d'equations de Clapeyron 29a et 36 ä partir

des termes de charges independants determines suivant le paragraphe 2
ci-dessus et des coefficients determines d'apres le paragraphe 4 ci-dessus

pour les termes non independants.
6° — Resolution de ces systemes d'equations, d'oü l'on deduit les angles de

torsion aux noeuds 9m et x]v. On obtient ainsi egalement, suivant

fig. 23 c, les courbes de flexion de la membrure en charge qui
correspondent ä chacun des angles 9m trouves, qui sont ä superposer aux
lignes d'influence determinees suivant la fig. 11, tandis que les angles
symetriques de torsion \\>m ne provoquent aucune deformation des

noeuds de la membrure en charge.
7° — Representation des differents etats «n™ =1» (fig. 25); determination

des charges de moments, qui ne sont ici que symetriques, qui en resultent

pour les noeuds; introduction de ces valeurs, ä titre de termes
independants, dans le Systeme d'equations 36; resolution de ce Systeme,
ce qui permet d'obtenir tous les angles de torsion aux noeuds i^m pour
chacun des differents etats nm 1 et ainsi les etats £m 1.

8° — Determination des charges sur les montants auxiliaires qui resultent
des differents etats <£m 1.
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9° — Application de couples de charges particuliers aux differents noeuds m,
ä titre de charges de base du Systeme.

10° — Etablissement du Systeme d'equations 44 pour les differents couples
de charges particuliers, en utilisant les termes independants determines
d'apres les paragraphes 8 et 9 ci-dessus et les coefficients des termes
non independants.

11° — Par resolution des 7 systemes d'equations 44, on obtient les defor¬
mations qui correspondent aux differents couples de charges, apres la

suppression des montants auxiliaires et par suite les lignes d'influence
pour Sj ä £7.

12° — Toutes les valeurs des efforts sont representees, pour chaque panneau,
comme fonctions lineaires des deux valeurs de X qui englobent le

panneau considere et leurs lignes d'influences complementaires sont
etablies ä partir des lignes d'influence de ces deux valeurs de £.

13° — En ce qui concerne les lignes d'influence des moments aux extremites
des barres, dont les deformations donnent egalement les charges
symetriques aux noeuds, sont egalement determinees, d'apres les relations 44;
les valeurs de £ correspondantes et les fractions de £ relatives au
flechissement de la membrure en charge sont superposees aux lignes
d'influence dejä determinees.

14° — Dans les poutres dissymetriques, la relation (46) permet d'apporter des

corrections aux lignes d'influence precedemment etablies (fig. 27).

Resume.

Apres une introduction sur les caracteristiques de la poutre en treillis
rhomboidal et sur l'influence remarquable de la rigidite des membrures dans ces

poutres, l'auteur etudie fondamentalement le difficile probleme consistant ä traiter
la poutre en treillis rhomboidal comme Systeme porteur constitue par des barres
assemblees d'une maniere rigide, en n utilisant que trois systemes tres simples
d'equations de la forme de Clapeyron; il importe d'ailleurs d'observer que dans

tous les cas, seuls les termes independants varient, mais non pas les coefficients
des termes non independants de ces systemes d'equations.
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