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V3
Flexion, torsion et flambage des barres composees

de parois minces.

Biegung, Drillung und Knickung von Stäben
aus dünnen Wänden.

Bending, Torsion and Buckling of Bars Composed ofThin Walls.

Dr. Ing. F. Bleich et Dr. Ing. H. Bleich, Wien.

1° — Introduction.
Ce fut Bach1 qui, pour la premiere fois, determina par des essais le fait

que pour les differentes formes de poutre la repartition des contraintes longitudinales

dans une section, ne Concorde pas avec la repartition calculee d'apres la
theorie de la flexion de Navier. A peu pres ä la meme epoque, et independamment

de Bach, R. Sonntag2 presenta un rapport sur la torsion des barres
ä sections L, C et ~L soumises ä la flexion et calcula les contraintes reelles.

L'equation differentielle de la torsion des poutres en I, symetriques, fut etablie

par Timoschenko.3 Weber4" a generalise ces recherches pour des poutres quel-
conques ä deux semelles, c'est-ä-dire pour des sections en L,~Letl. Le probleme
du basculement des poutres en I fut traite par Timoschenko.3 La stabilite des

barres en 1, I, "L et L a ete etudiee par Ostenfeld.5 C'est Eggenschwyler6 qui
a etudie la torsion des barres ä section rectangulaire ou en forme de caisson.

La theorie classique de la flexion et de la torsion des barres droites
prismatiques est basee sur l'hypothese que les contraintes longitudinales de flexion
sont reparties dans la section suivant une loi lineaire, et que dans le cas de la

pure torsion, il ne se produit aucun effort longitudinal si l'on neglige les

grandeurs du second ordre de petitesse. Mais ceci ne concerne pas les barres

composees de plaques minces, ainsi qu'il a ete demontre dans les travaux cites
ci-dessus. Comme en construction metallique on emploie d'une fagon presque

1 C. Bach: Versuche über die tatsächliche Widerstandsfähigkeit von Balken mit Q -förmigem
Querschnitt. Zeitschrift des Vereins deutscher Ingenieure 1909, page 1790 et 1910, page 382.

2 R. Sonntag: Biegung, Schub und Scherung. Berlin 1909.
3 -S. Timoschenko: Einige Stabilitätsprobleme der Elastizitätstheorie. Zeitschrift für Math,

u. Phys. %L910, page 361.
4 C. Weber: Übertragung der Drehmomente in Balken mit doppelflanschigem Querschnitt.

Zeitschrift für angew. Math. u. Mech. 1926, page 85.
5 A. Ostenfeld: Communication N° 5 et 6 du Laboratoire de statique de l'Ecole Polytechnique

de Copenhague, Copenhague 1931 et 1932.
6 A. Eggenschwyler: Über die Verdrehungsbeanspruchung rechteckiger Kastenquerschnitte.

Eisenbau 1918, page 45.
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continue des poutres composees de plusieurs plaques, il nous parait necessaire
de rechercher le comportement effectif de telles poutres, sans limitation ä
certaines formes de section.

La representation, que nous donnons en abrege ci-apres, est le premier essai

d'introduction d'une theorie aussi generale que possible du probleme de la
flexion et de la torsion des barres ä parois minces. Cette recherche permet de
concevoir plus exactement les relations et les equations de portee generale, pour
l'etude des problemes speciaux de l'equilibre stable et instable.

L'objet de cette etude est par consequent les poutres prismatiques, composees
de differentes parois rectangulaires et dont les sections sont disposees plus ou
moins suivant la fig. 1. La fig. la montre un exemple de section ouverte ou
simplement composee et la fig. 1 b une section fermee ou ä composition

a.)

Fig. 1.

multiple. L'epaisseur des differentes parois peut etre variable, mais nous
admettrons toujours qu'elle est petite par rapport ä la hauteur de la paroi
elle-meme.

De la theorie de la flexion de Navier nous prenons l'hypothese que la forme
geometrique de la section est conservee dans la deformation engendree par la
surcharge. Nous reviendrons encore dans la suite sur ce point de vue fondamental.
Par contre, nous ne conserverons pas la condition disant qu'une section reste
plane au cours de la deformation. Nous supposerons que pour chaque paroi
prise individuellement, les principes de la theorie de la flexion de Navier sont
valables. Cette hypothese ne peut naturellement pas etre exactement remplie lä
oü deux ou plusieurs parois se rencontrent, ä cause des epaisseurs qui ne sont pas
nulles; cependant il faut choisir cette epaisseur si reduite que l'on puisse
negliger les ecarts. Nous prenons en consideration les flexions des parois dans
leur plan, alors que nous negligeons les flexions perpendiculaires au plan des

parois, ä cause de la faible resistance ä la flexion dans cette direction. Nous
ne considerons des efforts tranchants que la partie qui provient de la torsion,
tandis que les contraintes de cisaillement qui proviennent de la flexion seront
negligees, ä cause de leur influence tout-ä-fait secondaire sur les deformations
de la barre, lorsque la longueur de cette derniere est grande par rapport aux
dimensions de sa section.

Afin d'obtenir l'equation differentielle du probleme, dans sa forme'la plus
generale, nous partons d'un principe de Variation connu de la mecanique.
Nous obtenons ainsi l'avantage que l'on peut utiliser le resultat general pour
l'etablissement des Solutions approximatives, d'apres le procede de Ritz, pour
tous les cas oü une Solution exacte des equations differentielles amenees par
le probleme de Variation nous conduit ä des complications.
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Designons par Aa le travail des forces exterieures et par Ai le travail des forces
interieures (travail de deformation), on a la condition extreme

o (Aj - XAa) 0 (1)

oü X est un coefficient dependant des conditions speciales du probleme. Dans
tous les cas que nous voulons considerer ici, il est possible de determiner X

d'avance.
S'il s'agit des deformations du premier ordre d'un probleme de flexion

ou de torsion d'une barre droite, Ai et Aa sont des fonctions du second et du

premier degre des grandeurs de deformation.7 De ce fait on peut tirer d'une
maniere connue pour le coefficient X la valeur 2.

Lorsqu'il s'agit d'un probleme d'equilibre instable (probleme de flambage) on
a X 1, quand il n'y a que des deformations du premier ordre dans les
conditions d'equilibre.

D'apres la condition (1) on a:

dans le cas d'un equilibre stable: b (Ai —2Aa) 0 (2)

dans le cas d'un equilibre instable: b (Ai — Aa) 0 (3)

La plus grande partie de notre etude consiste ä representer le travail de

deformation Ai et le travail des forces exterieures Aa. Dans la determination
de Ai il faut faire une distinction entre les barres ä composition simple et celles
ä composition multiple.

2° — Le travail de deformation Ai.

Barres dont la section est ä composition simple.

Considerons une seule paroi d'une barre, son axe presentera en general, lors
de la deformation de toute la barre, une courbure Ki dans le plan de la paroi et
un allongement ii. En meme temps, toute la barre subit une deformation
angulaire cp. Soit Ji le moment d'inertie de la section de la paroi, avec hauteur
hi et epaisseur bi variant avec la hauteur, par rapport ä l'axe passant par le
centre de gravite et perpendiculaire au plan de la paroi; soit encore Fi la
surface de la section et Jdi la resistance ä la torsion de la paroi; on obtient
pour le travail de deformation total A; d'une barre de longueur 1 composee de

n parois rassemblees, l'expression:

-iJUAt -£- 2 (E Ji Kf + E F, - + G Jd. ^ dz, (4)

O

oü dz represente la distance de deux sections infiniment rapprochees l'une de
l'autre.

Les grandeurs Ki et ei ne sont cependant pas independantes l'une de l'autre
mais elles sont reliees entre elles par certaines conditions de transition. Au
point oü deux parois se rencontrent les contraintes longitudinales et par le fait

7 Ceci est valable sous la reserve quo dans les conditions d'equilibre les deformations sont
negligeables par rapport aux dimensions de la poutre.
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meme les allongements des deux parois doivent etre egaux entre eux. Pour
chaque arete de barre on a, lorsque a est la distance de l'arete ä laxe de

gravite de la paroi, voir fig. 2:

ii + a'iKi ei + i —ai-fiKi + i (i 1' 2> • • • n-1} (5)

Lorsque l'on a n parois on peut etablir n equations de ce genre. Soit S la

force normale qui agit dans la barre, lallongement moyen em est:

S
em EF^' °Ü F 2Fi.

On a la relation d'equilibre:

ElFiii S EF8m (6)

Avec 8i em -f- £; les equations (5) et (6) se transforment en:

ei + a'Ki ei + i — ai + 1Ki + 1 (5')

Ie;F; 0 (6')
i

Introduisons d'autre part 8i em -f- e-, dans l'equation (4) on obtient en tenant
compte de (6') et en introduisant Ja EJdi:

Ai _ Y ('[^(EW + EFlEi2) + EFem2 + G Jdcp"] dz (7)

Les n equations (5') et (6') permettent d'exprimer les n grandeurs £[ par les n
grandeurs Kj, de teile sorte que 6; apparait comme fonetion lineaire de Ki.

II est maintenant necessaire d'etablir la relation entre les courbures Ki des

differentes parois et la deformation de toute la barre. Nous choisissons pour
les considerations suivantes un Systeme de coordonnees suivant les trois doigts
de la main gauche, dont laxe z coincide avec l'axe de gravite de la barre, et
dont les axes x et y se trouvent dans la section consideree et coi'ncident avec
les axes principaux d'inertie de la section. Lors de la deformation engendree

par la surcharge, le centre de gravite S de la section consideree se deplace
vers S', voir fig. 3. Les composantes de ce deplacement sont x et y. D'autre part

ai* ^•-r
Fig. 2.

\ I

Vn
M l

*
i \

üej
i

Fig. 3.
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la section tourne de l'angle cp. L'angle cp sera compte positif dans le sens de

laxe positif des x vers laxe positif des y. Comme nous avons suppose que la
forme geometrique de la section est conservee, les trois grandeurs x, y et cp

suffisent ä determiner la position d'un point quelconque de la section. A la

fig. 3 nous avons represente la paroi i avec le centre de gravite Si avant et apres
le deplacement et la rotation. Pour un point d'application quelconque de la

charge, Faxe de la barre, primitivement droit s'est modifie en une courbe

speciale. Les projections de cette courbe sur les plans des xz et des yz ont les

d^x d"v
courbures x" ,-„ et v" ~t~V lorsque la deformation peut etre consideree

dz- J dz- - r
comme faible. La courbure Kj de la paroi i n'est maintenant pas autre chose

que la projection de la courbure de Faxe de la barre sur le plan tourne de la

paroi. II en resulte, lorsque l'on observe la fig. 3:

Ki x" sin (ijn + cp) — y" cos (i^ + cp) — pi cp" (8)

Cette equation peut etre simplifiee dans tous les cas oü cp est negligeable par
rapport ä \\>. Ceci se presente par exemple dans la plupart des problemes
d'equilibre stable. La relation (8) prend alors la forme simplifiee:

K, x"sin ibi — y"cos^ - p.cp" (8')

Introduisons la relation (8') dans l'equation (7) on obtient Ai sous la forme
l

i2Ai — j I ctxx x"2 + ctyy y"2 + ctxy x" y" + ax9 x" cp" + ay9 y" cp'' +
° Gl+ awcp''2 + Fem2 + -g-Jdcp'2 dz (9)

On peut controler en general que

Ctxx JA? ClN^ Jx, ttXY Jxv z== V/,

oü Jx et Jv sont les moments d'inertie de la section de la barre par rapport
aux axes principaux x et y. Jxy est le moment centrifuge. D'autre part on a pour
des section qui sont symetriques par rapport aux axes x et y, ctX} 0 et

a*? 0.8

Lorsque l'on introduit les designations definitives cxx? Bx, aY? B> et

a99 B9 Vequation pour le travail interieur devient pour les problemes
d'equilibre stable:

A c -.
(10>

|jyx"2 + Jxy"2 + Bxx"9" + Byy"9" + B9cp"2 + Fem2+^Jd(p'2ldzA-E

Bevenons ä l'equation plus exacte (8) qu'il faut employer dans bien des

problemes de stabilite; on peut ecrire dans cette relation, par suite de la

petitesse supposee de cp:

sin (if>i -f cp) sin i|?i -J- cp cos xhi

cos (if>i -|- cp) cos i]?i — cp sin if>i

8 ISous ne pou\ons le demontrer ici car la place nous manque. Nous le publierons
prochainement ailleurs.
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On obtient ainsi pour Ki l'expression:

Ki (x" + y"cp) sin ifc 4- (x"cp — y") cos ifc — Picp" (11)

L'introduction de la relation (11) dans l'equation (7) fournit une formule pour
Ai qui a la meme strueture que l'equation (10): x" et y" sont remplaces par
x" + y"9 et x"9 — y"- L'equation du travail interieur a ainsi, dans les
problemes de stabilite, la forme suivante:

l

Ai=!/[jy(x"^
+ B9cp^+Fem2+gJdcp,2]^ (12)

Barres dont la section est ä composition multiple.

Dans les section fermees les efforts tranchants qui existent par suite de la
torsion de la barre engendrent une flexion des differentes parois tandis que
dans les barres ä section ouverte la flexion ne depend que des contraintes
normales. Dans une section ouverte les contraintes de torsion s'ecoulent dans
la section des parois aux deux aretes longitudinales en direction opposee, dans
les section fermees en meme direction. Dans le dernier cas elles ont la meme
allure que les efforts tranchants de flexion. La courbure d'une paroi dans son
plan se compose ainsi dans notre cas de deux parties, des courbures resultant
des contraintes normales, Ki, et des courbures provenant des efforts tranchants
de torsion Ki. Posons egal ä Ti (fig. 4) l'effort tranchant par unite de longueur
de la section de la paroi et engendre par la torsion.

Fig. 4.

L'expression du travail de deformation Ai prend maintenant la forme:

^ i-JTI (EJj Ki* + EFi £i2) + F em* + 2 ^| T,»l dz, (13)
O

oü la resistance ä la torsion des differentes parois est negligee car eile est petite
vis-ä-vis de la resistance ä la torsion de toute la section, qui est representee dans

l'equation (13) par le dernier terme.
Pour modifier encore l'equation (13) nous employons de nouveau les

conditions de transition (5') et les conditions d'equilibre (6') que nous adaptons
encore une fois:

ei+ a'iKi ei + i — ai + 1Ki + i (14)

2eiFi 0 (14')

TV
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Si la section composee de n parties est reliee r-fois (pour un cadre r 2),
on obtient n + r — 2 equations (14) et une relation (14'), en tout n + r — 1

equations oü n grandeurs e sont inconnues. Le nombre des equations est r — 1

fois plus grand que le nombre des inconnues. Additionnons les equations (14)
appartenant aux angles d'un Systeme ferme de parois, les grandeurs 6i se

simplifient et l'on gagne pour une section r fois reliee, r — 1 relations de
la forme

rhiK; 0 (15)
i

oü hi est la hauteur des parois et oü le prime ajoute au signe Z doit montrer
que la sommation ne doit s'etendre qu'aux parties d'un Systeme ä parois ferme.
Ces equations ne contiennent pas 6i et representent r — 1 relations lineaires entre
les Ki. Les equations (14) ne sont par consequent pas independantes l'une de

l'autre. Apres la mise de cote des equations (15) qui ne contiennent plus
aucune inconnue £i, il reste n relations qui n'ont une Solution que lorsque
les conditions (15) sont remplies. S'il est possible de satisfaire les conditions (15)
dont dependent les Ki et nous demontrerons pour terminer que ceci est
effectivement le cas, les relations (14) et (14') representent un Systeme d'equations
lineaires sans contradiction pour les inconnues 6i. Dans la determination des

6i on peut supprimer une des equations dans chaque groupe des relations (14),
qui appartient ä un cadre ferme de parois.

L'equation de Ai contient encore n grandeurs Ti. Pour etablir les relations
manquantes de Ti, considerons un Systeme unique de parois en cadre. Supposons
ce Systeme coupe suivant une de ses aretes te teile sorte que l'on engendre une
barre ä section ouverte; sous l'effet de la surcharge les deux levres de la

coupure se deplaceront l'une par rapport ä l'autre dans la direction z. Dans le
Systeme ferme les deux levres doivent etre unies l'une ä l'autre. Designons par
£ le deplacement d'un point d'une paroi dans le sens longitudinal de la barre
(direction de l'axe des z), on doit avoir, lorsque la section est partout formee,

Jgds 0 (16)
L

Pour chaque Systeme ferme de parois, une teile equation est valable de teile
sorte que l'on dispose ainsi de r — 1 relations (16).

Posons maintenant £ £' + £" oü £' est le deplacement resultant des
contraintes de flexion ö, et ^ le deplacement engendre par les efforts tranchants
Ti/bi. Dans chaque paroi on a:

^1= fKJdz et <^ JL_pi(p<,
s J 8s G&i MlY

lorsque p; est la distance de la paroi au centre de gravite de la barre. L'introduction

de ces valeurs dans l'equation (16) donne:

Jds JKjdz + J~ ds — JPi(p'ds 0.
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Intervertissons dans le premier membre la suite des integrations et introduisons
des sommes s'etendant aux parois, on obtient:

J(S'hlK;) dz + -=- 2' -*-^ — cp' 2' pi hi 0.
<J i Öi

Les sommes se rapportent chaque fois ä une suite de parois en cadre. Comme
d'apres l'equation (15) le premier terme est nul, il reste les r — 1 relations

i_I<Ii^_cp'2'pihi o (17)
<J i Oi i

Les efforts tranchants Ti sont coordonnes ä des efforts tranchants de meme
grandeur dans la direction z. Pour chaque arete de deux ou plusieurs parois qui
se rencontrent, on peut poser la relation d'equilibre

2"Ti 0) (18)
i

oü la somme ne s'etend qu'aux efforts tranchants des parois qui se reunissent
dans cette arete. En tout, nous avons n — r-fl equations (18) de teile sorte

que le total des relations (17) et (18) est exactement de n. Comme elles sont
lineaires, leur Solution fournit les inconnues Ti sous la forme simple:

Ti ß,Gcp' (19)

Les coefficients ßi ne dependent que de la forme de la section.
II reste encore ä demontrer l'existence effective de l'equation (15). Dans ce

but calculons les courbures Ki engendrees par les efforts tranchants, ä savoir

K== li r rp t 0 li
i — 7rr, ou Tf —G&i Bz

La courbure totale est Ki Ki Ki, d'oü Ki Ki — Ki. Pour Kt l'equation

(8) est valable, d'oü
— T'
Ki x" sin (i|)i + cp) — y" cos (i|h + cp) — pi<?" + -qJ- (20)

Introduisons la relation (20) dans l'equation (15), on obtient:

x" 1' hi sin (tyi + cp) — y" 2' ^ cos (^ + 9) — 9" I' p, h, + ~ 2'^—' 0.
i i i *¦* i Oi

Les deux premieres sommes sont la longueur de la projection d'un polygone
ferme, sur les axes des x et des y et par consequent sont nulles. Le reste
s'obtienl de l'equation (17) par differentiation suivant z. II nous parait demontre

que l'equation (15) est identiquement satisfaite.

Introduisons pour terminer l'equation (19) dans la relation (20), on obtient:

Ki x'1 sin (t|>i + cp) - y" cos (xjh + cp) + (| - Pl) cp" (20')

c'est l'equation correspondant ä la relation (8), pour des sections fermees.
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En remplagant cp par i^, on simplifie l'equation (20') en

Ki x" sin i|n — y" cos ifn + (^ — Pi) cp" (20")
^Oi '

En partant des equations (14) et (14') on peut determiner maintenant les ej

en fonetion des Kj. On obtient ainsi sur la base des equations (13) et en tenant
compte des relations (19) et (20") l'equation suivante pour le travail interieur
(equilibre stable):

(2i)

Ai j | Tjy X"2 + Jx y»t + ßx x« 9« + ßy y« 9« + B<? 9'.2 + F £m2 + | Jd y* j dz

O

oü jd=2^i (21')
i Oi

L'equation (21) presente la meme strueture que la relation (10), seulernent
J,i a une autre signification que dans l'equation (10). De meme la relation (12)
qui entre en ligne de compte pour les problemes de stabilite est aussi valable

pour les barres fermees, lorsque l'on definit Jti par l'equation (21').
Lorsque bi est variable ä Finterieur d'une paroi, il faut remplacer bi dans

Fi
toutes les relations de la presente etude par la valeur moyenne bim t- pour
les barres qui ont une section fermee. Une prise en consideration plus exacte
de la Variation de bi ne presente aucune difficulte fondamentale cependant un
calcul plus precis nous conduirait ä des formules peu pratiques.

3° — Determination des fonctions Bx, B% et B des sections.
Le calcul des fonctions Bx, By et Bv sera execute par exemple pour une

section symetrique en rn. L'axe des x sera choisi comme axe de symetrie. Les
trois parois de cette section seront designees par 1, 2 et 3 (voir fig. 5). Nous

1

b b

s,\ ,1

14
3*

sr ~s\~ ~s~
i

-*)-—y Fig. 5.

•2

I

X

admettons que les parois 2 et 3 ont une epaisseur variable. Pour cette raison

v h
la distance a + —

Nous partons des equations (5') et (6') qui s'expriment, lorsque nous com-
mencons par la paroi 2 et que nous continuons dans le sens positif x —? y:

e2 -f- aK2 ex — bKx ]

^1 ~ bK5 8^ — aK3 \ (a)

Fiei-rF2(e2 + e3) =0 J
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Exprimons e2 et e3 par sv on obtient les relations:

82 8i — b^! — aK2, e3 e± -f- b^ + aK3 (b)

En introduisant dans la troisieme des equations (a) avec F Ft -f- F2 -f F3 on a

ei-^(K2-Ks), (c)

ou e2 et e3 sont aussi determinees en fonetion des Kj. Calculons maintenant la

somme ZFie;2 dans l'equation (7)

| Fiei2 -!,-[Faa(Kä -K8)f + F2[2b2K12 + 2abK1(Kä + K,) + a2(K22 + K32)] (d)
1 r

Les courbures K; sont ä calculer d'apres l'equation (8') oü Fon introduit pour
les angles i(>i les valeurs numeriques suivantes:

*1>1 *• ^2 2"' ^8 -y
Avec ces valeurs de fy on obtient en considerant la fig. 5:

Kt y" — ecp" K2 x" — bep" K3 — x" — bep".

On determine ainsi la somme

2 JtK,» J^y" — 2ey"cp" + e8 cp"2) + 2 J2 (x"2 + b29"2)
1

et en employant l'equation developpee ci-dessus (d), la somme

2Fie12 --jFä2a2x"2+F2[2b2(y"2-2ey"<p" + e2cp"2)-4ab2(y"cp"-e(p"2)

+ a'2(2x"2 + 2b9cp"2)].

Tirons les coefficients des produits x" cp" et y" cp", que nous avons designes
ci-dessus par Bx et By, des sommes (e) et (f), on obtient:

B* ° 1 (22)
By —2Jxe — 4F2b2 (a + e) —2e (Jx + Fb2) |

v

Nous avons designe par Jx et Jv les moments d'inertie principaux par rapport
aux axes des x et des y de la section en j |.

Bassemblons tous les coefficients de cp"2, on obtient de la meme maniere

B9^ Jie2 + 2J2b2-h2b2F2 (a + e)2 Jxe2 + Jvb2 + 3 Fb2e2. (23)

Ci-dessous nous donnons les fonctions Bx, B, et B^ des sections pour quelques
formes de section avec un axe de symetrie, souvent employees en construction

metallique. Elles furent calculees d'apres la methode que nous venons
de donner.



Flexion, torsion et flambage des barres composees de parois mince 899

Section symetrique en II (fig. 6).

Bx 0
Bv 2 (— Jxe + 2 J4 (h — e) — 2 Fo b2 (a + e)

-2F4(b-c)[c(b-e) + b(h + e)]} (24)
Bv==Jie2 + 2J2b* + 2J4(h-e)a + 2b2F3(a + e)8

+ 2Fl[c(h-e)tb(h + e)f

3V J2 et JA sont les moments d'inertie des parois 1, 2 et 4 par rapport ä Faxe

passant par le centre de gravite et perpendiculaire ä leur plan. Vv F2 et FA

sont les surfaces des sections des parois correspondantes.9

Section asymetrique en I (fig. 7).

B, 0 ]
Bv -2 [V - J, (h - e)] (25)
B9= Jxe2 J2 (h - e)2. J

Jx et J.> sont les moments d'inertie des membrures 1 et 2 par rapport ä Faxe
des x.

r*—•+¦—^

l

,...4-^1 —
I

I

I *" i 7
C ' C

X

.2 <*

y Fig. 6.

~"T

Ji

-\+y Fig. 7.

Section en T ("//gr. SJ.

Bx 0
B, — 2JlC
B Jxe2. i

(26)

Jx est le moment d'inertie de la paroi 1 par rapport ä Faxe des x.

Corniere ä ailes egales (fig. 9).

Bx 0
Bv 2K2eJx

B0 2e
\ 16'

(27)

J^ est ici le moment d'inertie par rapport ä Faxe des x et F la surface de
la section de la corniere.

9 Lorsque le centre de gra\ite des deux membrures inferieures sc trouve en dehors de

Tarne, il faut introduire c negatif.
57*
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Les developpements generaux servant de base aux calculs precedents, furent
etablis en admettant une epaisseur de paroi variable. Les formules obtenues (22)
ä (27) sont par consequent aussi valables pour les poutres ordinaires rivees dont
les parois sont renforcees par places au moyen de cornieres ou d'autres profiles.

Ji

-4y Fig. 8

-2 -2s?(Y~-*y Fig. 9.

Dans ce cas il faut calculer les distances du centre de gravite ai, les moments
d'inertie Ji et les surfaces Fi pour les sections de parois renforcees. Les
distances a, b, c, etc. sont toujours ä ramener au plan median de la paroi.
Les moments d'inertie principaux Jx et Jy sont ä determiner suivant la methode

connue.

Section fermee suivant la fig. 10.

Les parties superieures doivent etre considerees comme une paroi distincte

car, au point de vue de la transmission des efforts tranchants, elles se

comportent autrement que celles d'un cadre ferme constitue de 4 parois en forme
de caisson. Nous admettons qu'il y a symetrie par rapport ä Faxe des x.

2b2C 2Cr—i
%ji$F,J,

-J?. ---—/ Fig. 10.

FjJj <;
FsJs,

L .1

lÄJ,2cf 2d

La determination de Jd dans l'expression du travail Ai exige d'abord la

determination des efforts tranchants Ti. Ces efforts tranchants n'agissent que
dans le cadre rectangulaire ferme, forme des quatre parois 1, 2, 3 et 4. Par
suite de la conservation de l'equilibre des forces normales dans les quatre aretes
du cadre, ces efforts tranchants doivent etre egaux dans ces quatre parois. II n'y
a par consequent qu'une inconnue ä determiner, d'apres l'equation (17), comme
fonetion de l'angle de rotation cp. On obtient ainsi:

d'oü
£[£+£+£]-""¦*-

T ßG<p' avec
2hb

_b_ b 2h
b. bi b3

(28)
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D'apress l'equation (21') on obtient ainsi

4 h2 b2

_b_ _b_ 2h
Oi b2 ö3

(29)

Le calcul des grandeurs Bx, B, et B^ se fait de la meme facon que pour des

section ouvertes. Comme l'expression de la courbure K; par suite de la flexion,
contient aussi les efforts tranchants T;. on a aussi dans les fonctions B de la
section des termes qui dependent des efforts tranchants T. On obtient avec les

designations de la fig. 10:

Bx 0

Bv 2 - (3. + 2 J4) e + (Jä + 2 J3) (h - e) +^ b2 (h - 2e) -
-^(b + c)2e + ^-(b + d)2(h-e

} (30)

B9 (J. + 2 JJ e2 + (J2 + 2 J5) (h - e)2 + 2 J3 (|-- yf +

+ ^b2(h-2e)2 + F2Mb + c)2e2+^(b + d)2(h-e)2

On a observe que Fv Jx et F2, J2 sont les surfaces et les moments d'inertie des

parois 1 et 2 de hauteur 2b et que F4, JA et F5, J5 sont les surfaces et les

moments d'inertie des parois exterieures 4 et 5 de hauteur 2c et 2d.

Dans les poutres rivees il faut tenir compte de la Variation de la section
ä Finterieur des differentes parois en introduisant pour b-. dans les expressions

Fi
de B, Ja et B9 une valeur movenne bim =r-. Ce que nous avons dit pour les

barres avec section ouverte est valable pour Fi, Ji et a;.

4° — Equations differentielles de la flexion et torsion.

Soient px et py les surcharges exterieures continues ou discontinues dans la

direction des axes principaux x et y et Md le moment de torsion des forces
exterieures oü px, py et Md sont ä considerer comme fonctions de l'ordonnee z.
Pour le travail exterieur Aa on a l'expression.

i t
Aa — J [px x + py y — Md cp'] dz (31)

Aa est une fonetion lineaire des deplacements x, y, cp.

La condition d'equilibre b (Ai — 2 Aa), equation (3), s'exprime par
consequent, lorsque l'on introduit Aj de l'equation (10),

10 L'equation (28) concorde avec la formule connue, tiree de la theorie de l'elasticite, pour
le cadre rectangulaire. Cf. A. et L. Föppl: ..Drang und Zwang", 2e vol. 2e edition, Munich et
Berlin.
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b f[| (Jyx"2 + Jxy"2 + Bxx"cp'' + Byy"cp" + B9c?"2) + | Jd9'

— px x — py y + Md cpM dz,

(32)

oü nous admettons que la force normale S 0 et c'est pourquoi on a aussi
£m 0. On obtient trois equations differentielles simultanees

d4x EBX d4<p
ljJy SZi "T r, j_4

EJx
dS EBy d4

"dz4"
<?

px=0

Py 0
2 dz4

•d^--rEB*d?"~GJdd? dT-°
Eßx d^x_ EBy d4y _ d4<p „T d2cp dM
~2~ dzr + "

(33)

Par une transformation des coordonnees on peut simplifier l'equation (33)
d'une fagon appreciable. Executons la transformation:

J*
2JT

- By

c'est-ä-dire que Fon deplace Faxe des z, parallelement ä Faxe passant par le
centre dc gravite, de

sx 2J' 2JV

et designons par Md le moment de torsion des forces exterieures par rapport au
nouvel axe, les equations (33) se modifient en

EJy
d4X

dz4
— Px 0

EJX
d4y
dz4" — Py 0

vU*
Bx2 By2

4JV 4J: J dz4"
TT d*V

dz''
dM,

dz
0

(35)

Les deux premieres equations sont independantes de cp et, dans leur forme,
sont identiques aux equations differentielles de la theorie de Navier. La
troisieme relation est independante de x et y. La transformation des axes
principaux que nous avons executee, permet ainsi de traiter separement dans tous
les cas la flexion et la torsion et donne ainsi un apergu clair sur les processus de

deformation et sur la repartition des contraintes.

D'apres la derniere des equations (35) on peut voir que pour Md 0 la
rotation cp est nulle. Si d'autre part px pN 0, x et y disparaissent, Faxe
de la barre reste droit et toute la barre tourne d'un angle cp. Dans ce cas l'axe
avec coordonnees au centre de gravite sv et s, d'apres l'equation (34), est l'axe
de rotation dans la torsion de la barre. Nous voulons le designer par axe de

torsion. Son point d'intersection avec la section est appele centre de cisaillement
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ou. centre des efforts tranchants. II fut determine la premiere fois pour un fer
en C • Sa signification fondamentale pour le calcul des formes de section dont
il est question ici n'est apparue avec precision qu'apres avoir effectue la
transformation dont nous avons parle.

D'apres les equations (35) nous pouvons justement determiner le

comportement general des barres elancees, constituees de parois minces: Admettons

que les forces exterieures passent par Faxe de torsion, qui generalement ne
coincide pas avec Faxe de gravite, il ne se produit que des contraintes de flexion
et aucune contrainte de torsion. Le calcul des deformations et des contraintes se

fait sur la base de la premiere des equations (35), donc comme d'apres la
theorie de Navier, pour des surcharges qui passent par Faxe de gravite. Dans
tous les autres cas de charge il se produit aussi bien des contraintes de flexion

que des contraintes de torsion, meine lorsque px et px disparaissent. Si la

section possede un axe de symetrie, le centre des efforts tranchants se trouve
sur cet axe. Lorsque Fon a deux axes de symetrie. Faxe de torsion coincide avec
Faxe de gravite.

Les equations (34) et (35) sont aussi bien valables pour les sections
ouvertes que pour les fermees. Dans la determination des fonctions de la
section: Jd, Bv, B^ et B9 seulernent, il faut voir s il s'agit dune section ä

composition simple ou multiple.
Pour les applications courantes on peut amener par integration les equations

ä la forme suivante:

d2x
EJy^ + My 0

EJX Jl + Mx 0
dz-

Bx2 ByMd<cp dep v

(36)

Mx et M, sont les moments des forces exterieures dans les plans z% et zv; cp est
ainsi defini par l'equation differentielle du troisieme ordre

ou et - T

!cp ,dcp Md
— er —

GJ„

dz» -dz-V=° (37)

et ^Eh-K-4x] <8r>

La Solution de l'equation de torsion (37), dependante du mode de surcharge
et des conditions d'appui, ne depend de la forme de la barre que par les
parametres et et y qui se presentent comme constantes dans la Solution. Les Solutions
de l'equation (37), aussi bien que les Solutions de flexion de Navier, peuvent
etre etablies independamment de la section de la barre. La relation (37) est une
generalisation de l'equation differentielle etablie par Timoschenko pour la
torsion des poutres symetriques en I.

Pour terminer ces explications generales, nous voudrions encore faire quelques

remarques sur l'hypothese que nous avons faite au debut sur Finvariabilite
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de la forme de la section. Reunissons trois parois en une barre, nous nous re.n-
dons facilement compte que chacune de ces parois peut subir de petites
deformations quelconques dans son plan sans que la liaison entre les parois soit
supprimee et sans que l'angle forme par deux parois varie. Lorsque l'on a plus
de trois parois, d'une fagon generale n parois, n — 3 angles varient lorsque Fon
•prevoit que les differenltes parois se deformeront dans leurs plans. De ces
considerations il resulte que, dans les barres en forme de ±, L, C, I et ~L,
la condition de la conservation de la forme de la section est remplie car, lors
des deformations que subissent les differentes parois sous l'effet de la surcharge,
il n'existe aucune Obligation de modifier la forme de la section. Dans les barres

composees de quatre ou d'un nombre plus grand de parois, que la section soil
ä composition simple ou multiple, il faut prendre des mesures telles que la
forme de la section soit conservee. II suffit en general de disposer de place en

place des cloisons transversales. Au point de vue pratique elles ne sont
evidemment necessaires que lä oü la surcharge, par des effets de torsion importants,
engendre de fortes variations des angles formes par les differentes parois.

Si l'on relie deux parois d'une barre par des contrefiches, ainsi par exemple
que le represente la fig. 11, on peut calculer une teile barre comme barre fermee.
Dans le cas de la fig. IIa, lors de la determination des valeurs B d'apres les

formules (30), il faut poser J2 0 et F2 0 pour les parois du treillis.
Dans le cas de la fig. IIb il faut introduire pour J2 le moment d'inertie des

Verstrebung
Contre - Fiche

Latticing

Fig. 11.

parois de treillis se trouvant entre les deux ämes et pour F2 la surface des

plaques qui sont entre les deux ämes. Dans le calcul de l'effort tranchant T
au moyen de la relation (28) et de Jd suivant l'equation (29), il faut poser b2

egal ä l'epaisseur de töle ideale que Fon obtient en repartissant la section f
d'une contre-fiche (fig. IIb) sur toute la hauteur 2b de la paroi.

5° — Determination des contraintes lors de flexion et de torsion.

Les contraintes dans la fibre extreme, engendrees par les moments Mx et My

sont calculees de la maniere usuelle, comme si les charges passaient par l'axe de

gravite de la barre. Supposons que Md n'est pas egal ä zero, c'est-ä-dire que
les charges ne passent pas exactement par l'axe de torsion, la troisieme des

equations (35), respectivement (37) est ä integrer, apres l'introduction de

Md comme fonetion de z, en tenant compte des conditions d'appui. Si cp est

connu en fonetion de z, on peut determiner les contraintes- additionnelles dans
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la fibre extreme et les efforts tranchants engendres par la torsion. Dans ce but,
on calcule la courbure des differentes parois de la barre suivant les equations (8')
et (20" j oü x et y sont les deplacements subis par l'axe de gravite lorsque la
barre tourne d'une angle cp autour de Faxe de torsion. II faut introduire ainsi
dans les relations (8') et (20") les deplacements x s,cp et y — sxcp de teile
sorte que dune fagon generale on a:

Ki [sy sin xl* + sx cos ifn + (| — Pi)] cp" (38)

Pour les barres ä section ouverte ßi 0.

Les contraintes ö; dans la fibre extreme de la paroi i sont determinees par les

relations:
öi E(Ei + nKi) (39)

oü r\ est la distance de la fibre extreme, au centre de gravite de la paroi. r\ est
ä considerer comme positif dans la direction positive x—?y.

Introduisons dans l'equation (38) les longueurs e, sx, b etc., on obtient pour
Ki des expressions de la forme Ki jJ-i cp".

On calcule ainsi ä l'aide de l'equation (5') les valeurs Si qui prennent aussi
la forme E[ Vicp". Toutes les valeurs numeriques sont ainsi connues et Fon

peut, au moyen de l'equation (39), calculer les contraintes normales öi dans
les points extremes consideres. II faut ici remarquer ce qui suit: Alors que
jusqu'a present toutes les mesures prises en consideration, a, b, e, s etc. se

rapportent au plan median des parois, les r\ sont ä prendre pour les surfaces
extremes et exterieures des parois. Dans un angle tel que celui represente ä la

fig. 12 par exemple, le calcul des contraintes doit se faire avec les distances

^ ri'
A ~~

T

\\ et r\', suivant que l'on determine la contrainte ä l'angle A dans la paroi
verticale ou horizontale. Les deux contraintes calculees ainsi ne concordent pas
exactement car la Solution du probleme propose part de l'hypothese de parois
infiniment minces. Le calcul ne concorderait que pour le point d'intersection A'.

Les contraintes normales ö, engendrees par la torsion, sont finalement ä com-
biner avec les contraintes ö, engendrees par les moments Mx et My et calculees

par la methode habituelle.

Les efforts tranchants de torsion sont ä calculer pour chaque paroi de barre
ä section ouverte suivant la formule:

n G cp' max bi (40)

max bi est l'epaisseur la plus grande de la paroi consideree. Dans les barres
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ä section fermee on obtient les efforts tranchants determinants Ti d'apres la
relation:

Ti
Tl min bi

(41)

min bj est ici l'epaisseur la plus faible de la paroi consideree.

Afin de controler l'exactitude de la theorie que nous venons de developper,
nous allons comparer les mesures de contraintes effectuees par Bach sur un
NP C 30 avec les contraintes fournies par le calcul exact base sur les equations
que nous avons etablies ici. La poutre d'essai avait une longueur de 3 m et
eile etait chargee aux tiers de la longueur pas des forces de 1500 kg, verticales,
ainsi que la fig. 13 le represente en coupe. La grandeur et l'allure des
contraintes normales dans les ailes superieure et inferieure du fer en Q sont
representees sur la meme figure. La concordance entre les contraintes mesurees et

1500 kg

Ctf30

3

f

Randspannungen in /, 2, 3t 4

Tensions dans la Fibre extreme en I, 2, 3, 4
Extreme Fibre stresses in / 2,3, 4

472
45t

//
271

r 127/

S1S502

518

(Nach
Bleich berechnet

Calculees d'apres Bleich
Calculated acc. lo Bleich

Von Bach gemessen
Mesurees par Bach
Measured by Bach

Nach Navier berechnet
Calculees d'apres Navier
Calculated acc to Navier

Fig. 13.

calculees est satisfaisante. Dans les diagrammes de contrainte nous avons aussi

reporte ä titre de comparaison Ja contrainte de flexion de 271 kg/cm2, uniformement

repartie, et calculee suivant la methode courante. Bemarquons encore que
les points de mesurage 1 ä 4 se trouvaient eloignes de 5 mm de la surface
exterieure des deux ailes. Dans le calcul des contraintes on a tenu compte de

cette position des points.11

6° — Les equations differentielles du probleme de flambage.

Supposons une barre droite chargee d'une force longitudinale S agissant dans

son axe de gravite. Bemarquons que la barre est d'abord comprimee de em sous

11 L'essai de Bach fut contröle par G. Weber au moyen des formules elablies par lui pour
les barres ä deux membrures.



Flexion, torsion et flambage des barres composees de parois minces 907

l'effet de S. Pour le flechissement, apres l'atteinte de la limite de stabilite, on
a pour le travail exterieur, 1 expression connue:

Att f[y S em + l S (x'2 + y'2)] dz

Pour le probleme de flambage simple que nous considerons ici, il suffit de

prendre l'equation (10) comme expression du travail interieur. On peut y
negliger les grandeurs de deformation d'un plus haut degre de petitesse. La

condition de Variation (3), lorsque Fon observe que le terme ^-Sem en Aa peut

E
aussi etre remplace par — F £m2 ä cause de S E F sm, est:

l

b C\j(Jyx"2 + Jvy"* + Bxx" cp" + Byy"cp" + B9cp"2 + | Jdcp'a) -
¦yS(*-« + v4 o.

La Variation fournit les trois equations differentielles

d4x EBX d4o „d2x

dz4 '

2 dz4 ' dz2

EBX d4x

0,

EBy d*\ d4<r>

+ EB|?^i — GJd
dz4 ' """ dz4 ~"a dz22 dz4 ' 2

qui apres avoir ete integrees deux fois ont la forme:

¦ + Sx 0,
;- z uz-

d2y

o,

(42)

pT d2x EBX d2cp

EJ*dz2 '

EB, d2x

2

EBy d2<p

~2~ dz2 -|-Sy 0,

EBT d2v ^ d2<p

2 dz 2 dz2+EB9^--GJdcp-0

(43)

Avec ces trois equations differentielles simultanees, le probleme du flambage
des barres ä parois minces sous sa forme generale est liquide. Les equations (43)
nous permettent de dire ce qui suit: Lorsque la section de la barre ne possede

aucun axe de symetrie, c'est-ä-dire que Bx aussi bien que B> sont differents de

zero, il se produit une rotation de la barre car cp ne disparait pas. Si la section
a un axe de symetrie, la barre flambe, suivant les rapports de rigidite, dans la

direction de Faxe de symetrie ou perpendiculairement ä cet axe. Dans ce dernier
cas la barre se tord aussi.

Afin d'acquerir un plus ample apergu du comportement de telles barres,
faisons des recherches sur une barre de longueur 1, dont la section est symetrique
par rapport ä Faxe des x. La barre a des articulations ä ses deux extremites
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pour permettre le flambage dans la direction de l'axe des y et eile est assuree
contre une rotation autour de l'axe des z.

En posant

r - n:rz n • n:TZ / 100 \y Lx sm —j—, cp — C2 sm —p— (n 1, 2, 3,

on obtient, apres introduction dans la deuxieme et la troisieme equation (43),
la condition de flambage

(-^EJX + S
:i2ÜT c\ nV EBV

l2 2

n2^2 EBy / n2:r
l2 (-^EB9 + GJd)

0.

Avec l'abreviation Se —-^—~ on obtient apres le calcul des determinants

la charge de flambage

2 P T

On obtient la plus petite valeur avec n 1, lorsque donc Se -—]r^' La

resistance effective au flambage, perpendiculairement ä Vaxe de symetrie, est

par consequent plus petite que la charge calculee d'apres Euler. Becherchons
l'ordre de grandeur du deuxieme terme de la parenthese, on trouve que pour
certaines formes de section en T et en I asymetrique, on obtient des reductions
importantes de la charge de flambage calculee suivant la methode ordinaire.12
Dans le tableau qui suit nous avons donne Sk calcule d'apres l'equation (44)
pour quelques formes de section. Les chiffres furent calcules en admettant que
la contrainte de flambage ök, determinee d'apres Euler, est exactement de
2000 kg/cm2. Lorsque l'elancement de la barre croit, Sk se rapproche de la
charge d'Euler. L'influence de la resistance ä la torsion de la barre est tres
importante. Plus cette resistance est grande plus la charge Sk devient grande.
Son influence croit avec l'accroissement du degre d'eiancement. Dans les sections
fermees, la difference entre Sk et Se est tres faible ä cause de la forte resistance
ä la torsion.

Lorsque la charge s'eloigne du centre de gravite de la barre vers le centre
des efforts tranchants qui par exemple pour une section en T se trouve ä l'intersection

des deux parois, Sk croit d'une fagon constante, comme nous le demon-
trerons ensuite, et atteint la valeur maxima Se lorsque la charge agit exactement
dans Faxe de torsion. Pour un flambage lateral d'une barre de la forme
consideree l'axe de gravite et l'axe de torsion ont intervertis leur role. Si dans une
section en J. Fäme est haute on devrait par consequent avoir, d'apres les
considerations que nous venons d'enoncer, une resistance plus grande que celle

12 Gette reduction de la resistance a ete determinee par Ostenfeld. Voir le travail eile a la
note 5, page 17.
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Forme de section Rapport de la force SK lors du flambage dans la

direction y ä la force d'Euler Sß

300
t» -*i omra 10 20 30

~\t3oo lo y

t
X

SK

SE~
0,699 0,930 0,974

w-J00

»y
S00 10

0
10 20 30

SK

sE~ 0,691 0,724
1

Jl

ISO 10

f

0,883

h so°
b 10 20

I
j \30014

'
300 f
X

40

sK

Se"" 0,534 0,703 0,942

que Fon obtient par le calcul habituel en tenant compte de l'excentricite de la
force.

Nous faisons expressement remarquer que le developpement et les conclusions

que nous avons donnes, ne sont valables que pour le cas du flambage elastique.

7° — Les equations differentielles du probleme de basculement.
Par basculement nous entendons l'apparition d'un etat d'equilibre instable

dans une barre sollicitee ä la flexion. II est caracterise par le fait qu'avec
apparition de l'equilibre instable la barre subit en meme temps une torsion et
s'ecarte lateralement, c'est-ä-dire perpendiculairement au plan de la flexion.
Afin de simplifier cette representation, considerons seulernent des barres dont
la section n'a qu'un axe de symetrie et qui sont chargees dans le plan x—z.
La barre s'ecartera dans la direction de Faxe y lorsque Jx est sensiblement plus
petit que Jy ainsi que cela est par exemple le cas pour une poutre chargee dans
le plan de l'äme.

Soit px la charge agissant dans le plan x—z, My le moment de flexion
engendre par cette charge, S une des forces exterieures longitudinales agissant
dans l'axe de la barre, «a» la hauteur du point d'application de la charge p
au-dessus du centre de gravite de la section (voir fig. 14) oü a peut aussi etre
negatif. Le travail total des forces exterieures, c'est-ä-dire le travail ä l'etat
d'equilibre stable et instable est determine par l'expression

r2

Aa ytf[^+s^+sy,,+«H dz

Quant au travail interieur Ai nous devons retourner ä l'equation (12) car l'in-
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i
3\-- +y Fig. 14-t

af2

fluence des termes de deformation d'un ordre superieur ne peuvent plus etre
negliges. Par consequent la condition de Variation (3), prend la forme suivante,
lorsque Fon remarque que Bx 0 ä cause de la symetrie que nous avons admise:

i

by |JE (jy (x" + y"T)» + Jx (x"cp - y' )2 + By(x"<p - y")<p" + B^cp"2 + Fem2T-

W*)- (|j- + Sem + Sy'2 + ap.cp2)] dz (45)+ |Jd

Les variations des grandeurs x et em lors du basculement sont petites par
rapport aux grandeurs de deplacement y et cp qui ne se presentent que lors
du basculement. Pour la Variation nous considerons par consequent les grandeurs

x et em comme invariables; elles conservent lors du basculement les

Mv S
i> ¦ •valeurs x — ~- et em jttt qu elles avaient exactement avant 1 apparition

de l'etat instable. Introduisons ces valeurs de x et em dans l'equation (45) on
obtient la condition suivante dans laquelle nous avons supprime tous les termes
de plus que le deuxieme ordre de petitesse

1

ö y f [EJxy"2 - EByy"cp" + EB^cp"2 + GJdcp'2 - 2 (l - Jj Myy"cp -
— apcp2 — Sy'2 dz.

Si l'on varie suivant y et cp, on arrive aux deux equations differentielles simultanees

:

EJ,
d*y EBy d4c

T ~dz?-('-:)^i + s^ft
EBy d4y ^„ d4cp L ix\„ d2y nl d2cp

—2"d?-+EB*d^—(1-J:)M'd?-GJad^-aP^=0•
(46)

Avec ces relations on a resolu en principe le probleme du basculement des barres

qui possedent au moins un axe de symetrie.13
Pour le cas special le plus simple, S et Mv constants, px 0, on trouve, pour

13 Si l'on pose By 0, c'est-a-dire, si l'on admet que la section a deux axes de symetrie,
on peut eliminer la fonetion > dans le cas special S 0 et l'on obtient l'equation differenlielle
du troisieme ordre, etablie par Timoschenko pour le probleme de basculement de la poutre en I.
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une barre de longueur 1, assuree ä ses extremites contre une rotation autour de

l'axe z mais qui peut tourner librement autour de Faxe x, avec

n ziz ;tz
y L>1 sm -j-, cp Lg sin i-

la condition de stabilite

(EJx £ - S) (EB9 £ + GJd) - [^ £ - (l - £) M5] 0 (47)

De cette equation on peut determiner S ou Mv. Supposons que les moments My
sont engendres par le fait que la force S n'agit pas au centre de gravite mais

Mv
ä la distance e - *-, on se trouve en presence d'un cas de flambage par com-

n2EJ / J \
pression excentrique. Avec Se

]2
y et ll —y I ^ 1 l'equation (47) prend

la forme simplifiee:

(SE - S) (EB9 f2 + G Jd) _(i SE - S e)2= 0 (48)

^-y- sx est la distance comprise entre le centre des efforts tranchants et le centre

de gravite. Choisissons e sx, c'est-ä-dire faisons agir la force normale S au centre
des efforts tranchants, S Se devient un maximum et egal ä la force de flambage

d'Euler. Avec ceci nous avons demontre Fassertion que nous avions emise
dans le paragraphe precedent.



912 F. Bleich et H. Bleich

Resume.

La theorie ordinaire de la flexion et de la torsion des barres droites repose
sur deux hypotheses: 1° Les contraintes normales qui se produisent lors de la
flexion sont des fonctions lineaires des coordonnees x et y de la section. 2° Dans
le cas de la torsion pure, les contraintes normales sont nulles si Fon neglige les

petites grandeurs de deuxieme ordre. Ces hypotheses ne sont pas toujours remplies

dans les barres composees de parois minces. En partant de l'hypothese
que, dans chaque paroi qui compose la barre, les principes de la theorie de la
flexion de Navier sont valables, nous avons etabli, ä l'aide d'un principe de

Variation, les equations differentielles de la flexion et de la torsion des barres
prismatiques. Les equations sont en general valables, aussi bien pour les barres
ä section ouverte que pour les barres ä section fermee, pour les section ä com-
positions simple ou multiple. Par une transformation appropriee des coordonnees,
il est possible de traiter separement la flexion et la torsion. Cette transformation
explique aussi la signification du centre des efforts tranchants.

Apres avoir expose d'une fagon generale la determination des contraintes pour
la flexion et la torsion nous avons developpe, dans leur forme la plus generale,
les equations differentielles du probleme de flambage des formes de barres
prises en consideration et nous avons traite le cas simple du flambage d'une
barre avec section ä un axe de symetrie. On a observe qu'une barre chargee
centriquement a une force de flambage qui peut se trouver bien en dessous
de la charge d'Euler. Pour terminer nous avons etabli les equations differentielles
du basculement pour les barres dont les sections ont au moins un axe de symetrie.
Ici nous avons demontre que lorsqu'une barre est chargee par une force normale
S passant par Faxe de symetrie, la charge critique Sk atteint une valeur plus
grande quand S passe par le centre des efforts tranchants.
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