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: V3

Flexion, torsion et flambage des barres composées
de parois minces.

Biegung, Drillung und Knickung von Stiben
aus dinnen Wanden.

Bending, Torsion and Buckling of Bars Composed of Thin Walls.

Dr. Ing. F. Bleich et Dr. Ing. H. Bleich, Wien.

lco — Introduction.

Ce fut Bach! qui, pour la premiére fois, détermina paI.' des essais le fait
que pour les différentes formes de poutre la répartition des contraintes longitudi-
nales dans une section, ne concorde pas avec la répartition calculée d’apreés la
théorie de la flexion de Navier. A peu prés a la méme époque, et indépendam-
ment de Bach, R. Sonntag? présenta un rapport sur la torsion des barres
a sections L, [ et L soumises a la flexion et calcula les contraintes réelles.
L’équation différentielle de la torsion des poutres en I, symétriques, fut établie
par Timoschenko.3 Weber* a généralisé ces recherches pour des poutres quel-
conques d deux semelles, c'est-a-dire pour des sections en [, L et1. Le probléme
du basculement des poutres en I fut traité par Timoschenko.? La stabilité des
barres en 1, X, L et [ a été étudiée par Ostenfeld.> Cest Eggenschwyler® qui
a étudié la torsion des barres a section rectangulaire ou en forme de caisson.

La théorie classique de la flexion et de la torsion des barres droites pris-
matiques est basée sur I’hypothése que les contraintes longitudinales de flexion
sont réparties dans la section suivant une loi linéaire, et que dans le cas de la
pure torsion, il ne se produit aucun effort longitudinal si l'on néglige les
grandeurs du second ordre de petitesse. Mais ceci ne concerne pas les barres
composées de plaques minces, ainsi qu’il a été démontré dans les travaux cités
ci-dessus. Comme en construction métallique on emploie d'une facon presque

1 (. Bach: Versuche iber die tatsichliche Widerstandsfiahigkeit von Balken mit [ -férmigem
Querschnitt. Zeitschrift des Vereins deutscher Ingenieure 1909, page 1790 et 1910, page 382.

2 R. Sonntag: Biegung, Schub und Scherung. Berlin 1909.

3 S. Timoschenko: Einige Stabilititsprobleme der Elastizititstheorie. Zeitschrift fir Math,
u. Phys. %1910, page 361.

¢ C. Weber: Ubertragung der Drehmomente in Balken mit doppelflanschigem Querschnitt.
Zeitschrift fir angew. Math. u. Mech. 1926, page 85.

5 A. Ostenfeld: Communication N° 5 et 6 du Laboratoire de statique de 1'Ecole Polytechni-
que de Copenhague, Copenhague 1931 et 1932.

6 A, Eggenschwyler: Uber die Verdrehungsbeanspruchung rechteckiger Kastenquerschnitte.
Eisenbau 1918, page 45.
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continu¢ des poutres composées de plusieurs plaques, il nous parait nécessaire
de rechercher le comportement effectif de telles poutres, sans limitation a cer-
taines formes de section.

La représentation, que nous donnons en abrégé ci-aprés, est le premier essai
d’'introduction d'une théorie aussi générale que possible du probléme de la
flexion et de la torsion des barres a parois minces. Cette recherche permet de
concevoir plus exactement les relations et les équations de portée générale, pour
I'étude des problémes spéciaux de 1'équilibre stable et instable. ‘

L’objet de cette étude est par conséquent les poutres prismatiques, composées
de différentes parois rectangulaires et dont les sections sont disposées plus ou
moins suivant la fig. 1. La fig. 1a montre un exemple de section ouverte ou
simplement composée et la fig. 1b une section fermée ou a composition

Fig. 1.

a) b)

multiple. L’épaisseur des différentes parois peut étre variable, mais nous
admettrons toujours qu’elle est petite par rapport a la hauteur de la paroi
elle-méme.

De la théorie de la flexion de Navier nous prenons 'hypothése que la forme
géométrique de la section est conservée dans la déformation engendrée par la sur-
charge. Nous reviendrons encore dans la suite sur ce point de vue fondamental.
Par contre, nous ne conserverons pas la condition disant qu'une section reste
plane au cours de la déformation. Nous supposerons que pour chaque paroi
prise individuellement, les principes de la théorie de la flexion de Navier sont.
valables. Cette hypothése ne peut naturellement pas étre exactement remplie la
ou deux ou plusieurs parois se rencontrent, a cause des épaisseurs qui ne sont pas
nulles; cependant il faut choisir cette épaisseur si réduite que l'on puisse
négliger les écarts. Nous prenons en considération les flexions des parois dans
leur plan, alors que nous négligeons les flexions perpendiculaires au plan des
parois, a4 cause de la faible résistance a la flexion dans cette direction. Nous
ne considérons des efforts tranchants que la partie qui provient de la torsion,
tandis que les contraintes de cisaillement qui proviennent de la flexion seront
négligées, a cause de leur influence tout-a-fait secondaire sur les déformations
de la barre, lorsque la longueur de cette derniére est grande par rapport aux
dimensions de sa section.

Afin d'obtenir 1'équation différentielle du probléme, dans sa forme-la plus
générale, nous partons dun principe de variation connu de la mécanique.
Nous obtenons ainsi I'avantage que l'on peut utiliser le résultat général pour
|'établissement des solutions approximatives, d’aprés le procédé de Ritz, pour
tous les cas ou une solution exacte des équations différentielles amenées par
le probléme de variation nous conduit & des complications.
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Désignons par A, le travail des forces extérieures et par A; le travail des forces
intérieures (travail de déformation), on a la condition extréme

5 (A — AA) =0 (1)

ou X est un coefficient dépendant des conditions spéciales du probléme. Dans
tous les cas que nous voulons considérer ici, il est possible de déterminer \
d’avance.

S’il s’agit des déformations du premier ordre d'un probléme de flerion
ou de torsion d’'une barre droite, A; et A, sont des fonctions du second et du
premier degré des grandeurs de déformation.” De ce fait on peut tirer d'une
maniére connue pour le coefficient X la valeur 2.

Lorsqu'il s’agit d'un probléme d’équilibre instable (probléme de flambage) on
a A\ = 1, quand il n’y a que des déformations du premier ordre dans les con-
ditions d’équilibre.

D’aprés la condition (1) on a:

dans le cas d'un équilibre stable: & (A; —2A,) = 0 (2)
dans le cas d'un équilibre instable: & (A; — A,) = 0 (3)

La plus grande partie de notre étude consiste a représenter le travail de
déformation A; et le travail des forces extérieures A,. Dans la détermination
de A; il faut faire une distinction entre les barres & composition simple et celles
a composition multiple.

2° — Le travail de déformation A,

Barres dont la section est ¢ composition simple.

Considérons une seule paroi d'une barre, son axe présentera en général, lors
de la déformation de toute la barre, une courbure K; dans le plan de la paroi et
un allongement €. En méme temps, toute la barre subit une déformation
angulaire ¢. Soit J; le moment d’inertie de la section de la paroi, avec hauteur
h; et épaisseur d; variant avec la hauteur, par rapport a I'axe passant par le
centre de gravité et perpendiculaire au plan de la paroi; soit encore F; la
surface de la section et Jg la résistance 4 la torsion de la paroi; on obtient
pour le travail de déformation total A; d'une barre de longueur 1 composée de
n parois rassemblées, 'expression:

=1

1
A= % f [ 3 (EJK? +EF & + GJo (p'2)] s, @)
i

ou dz représente la distance de deux sections infiniment rapprochées l'une de
l'autre. '

Les grandeurs K; et € ne sont cependant pas indépendantes I'une de l'autre
mais elles sont reliées entre elles par certaines conditions de transition. Au
point o deux parois se rencontrent les contraintes longitudinales et par le fait

7 Ceci est valable sous la réserve que dans les conditions d’équilibre les déformations sont
négligeables par rapport aux dimensions de la poutre.
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méme les allongements des deux parois doivent étre égaux entre eux. Pour
chaque aréte de barre on a, lorsque a est la distance de l'aréte a l'axe de
gravité de la paroi, voir fig. 2: _
Ei+a’iKi:Ei+1—ai+1Ki_|_1 (i=12...n-1) (5>
Lorsque I'on a n parois on peut établir n équations de ce genre. Soit S la
force normale qui agit dans la barre, 'allongement moyen &, est:

S

&m = L’ ou F:E;.Fi.
On a la relation d’équilibre:
EXFig=S=FEFey (6)
Avec & = &, + & les équations (5) et (6) se transforment en:
eitaKi=ep1—ap1 K, (5%
2eF: =0 (6")
Introduisons d’autre part & = €. + € dans I'équation (4) on obtient en tenant

compte de (6") et en introduisant Jq = ZJu:
1
1 . 2 2 2 2
Ai—?J[Z(EJiKi +EFie) + EFen’ + Glag™ da (1)

Les n équations (9’) et (6’) permettent d’exprimer les n grandeurs €; par les n
grandeurs K;, de telle sorte que €; apparait comme fonction, linéaire de K;.

Il est maintenant nécessaire d’établir la relation entre les courbures K; des
différentes parois et la déformation de toute la barre. Nous choisissons pour
les considérations suivantes un systéme de coordonnées suivant les trois doigts
de la main gauche, dont I'axe z coincide avec I'axe de gravité de la barre, et
dont les axes x et y se trouvent dans la section considérée et coincident avec
les axes principaux d’inertie de la section. Lors de la déformation engendrée
par la surcharge, le centre de gravité S de la section considérée se déplace
vers S, voir fig. 3. Les composantes de ce déplacement sont x et y. D’autre part

Fig. 3.
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la section tourne de l'angle ¢. L’angle ¢ sera compté positif dans le sens de
I'axe positif des x vers 'axe positif des y. Comme nous avons supposé que la
forme géométrique de la section est conservée, les trois grandeurs x, y et ¢
suffisent a déterminer la position d'un point quelconque de la section. A la
fig. 3 nous avons représenté la paroi i avec le centre de gravité S; avant et aprés
le déplacement et la rotation. Pour un point d’application quelconque de la
charge, I'axe de la barre, primitivement droit s’est modifié en une courbe

spéciale. Les projections de cette courbe sur les plans des xz et des yz ont les
d2x dzv _ .
courbures x” = Pl y' = dz% lorsque la déformation peut étre considérée
comme faible. La courbure K; de la paroi i n’est maintenant pas autre chose
que la projection de la courbure de 'axe de la barre sur le plan tourné de la

paroi. Il en résulte, lorsque I'on observe la fig. 3:
K; = x"sin (s + @) — y' cos (i + @) — pi " (8)
Cette équation peut étre simplifiée dans tous les cas ou ¢ est négligeable par

rapport a . Ceci se présente par exemple dans la plupart des probiémes
d’équilibre stable. La relation (8) prend alors la forme simplifiée:

Ki = x”smn ¥; — ¥y’ cosv; — pip” (8)

Introduisons la relation (8) dans I'équation (7) on obtient A; sous la forme
1

E 5 ‘ o i "o i LEapt)
Ai:gf[axxx“z+ayy)"2+GXS'x Yt axe X 0" +aye Y 9" +

o ; G )
g @ Fea +  Jag? | da 9
On peut controler en général que

Qxx — J)‘y Qyy == Jx, Uxy = ny — O’

ou J; et J, sont les moments d'inertie de la section de la barre par rapport
aux axes principaux x et y. J., est le moment centrifuge. D’autre part on a pour

des -section qui sont symétriques par rapport aux axes x et y, o, = 0 et
a¥e = 0.8
Lorsque l'on introduit les désignations définitives a,, = B,, a,, = B, et
a,, = B, Uéquation pour le travail intérieur devient pour les problémnes
d’équilibre stable: : ‘
E 1 G (10)
Aj= 2[[Jyx"z—{—Jx)*"2+Bxx“ (p"+B,,y~cp"+Bq,(p“2+Fgmz+EJW'2] dz

(0]
Revenons a l'équation plus exacte (8) qu'il faut employer dans bien des
problémes de stabilité; on peut écrire dans cette relation, par suite de la
petitesse supposée de ¢:

sin (b; + @) = sin b; - @ cos b;
cos (i + @) = cos b; — @ sin ¥;

8 Nous ne pouvons le démontrer ici car la place nous manque. Nous le publierons

prochainement ailleurs.
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On obtient ainsi pour K; I'expression:
Ki= (x"+y") sin ¥; + (x" ¢ — y”) cos b; — pi¢p” (11)

L’introduction de la relation (11) dans I'équation (7) fournit une formule pour
A; qui a la méme structure que l'’équation (10); x” et y” sont remplacés par
x” 4+ y”"¢ et x”¢ — y”. L'équation du travail intérieur a ainsi, dans les prob-
lémes de stabilité, la forme suivante:

1
E Y] " " YAV, i " " " “ “"
Ai=§f[Jy(x +¥ o)+ I (x" o —y P+ B (x“+y"9) 9" + By (x" ¢ — y)

+B<P(P"2 +Fgm2+ (:é Jd(p'z] dz (12)

Barres dont la section est a composition multiple.

Dans les section fermées les efforts tranchants qui existent par suite de la
torsion de la barre engendrent une flexion des différentes parois tandis que
dans les barres a section ouverte la flexion ne dépend que des contraintes
normales. Dans une section ouverte les contraintes de torsion s’écoulent dans
la section des parois aux deux arétes longitudinales en direction opposée, dans
les section fermées en méme direction. Dans le dernier cas elles ont la méme
allure que les ‘efforts tranchants de flexion. La courbure d'une paroi dans son
plan se compose ainsi dans notre cas de deux parties, des courbures résultant

des contraintes normales, K;, et des courbures provenant des efforts tranchants

de torsion K. Posons égal a T; (fig. 4) I'effort tranchant par unité de longueur
de la section de la paroi et engendré par la torsion.

L’expression du travail de déformation A; prend maintenant la forme:

1
A= JIZ @R+ R e + Fent+ 2 geti|dn (13)

G &
ou la résistance a la torsion des différentes parois est négligée car elle est petite
vis-a-vis de la résistance a la torsion de toute la section, qui est représentée dans
I'équation (13) par le dernier terme.

Pour modifier encore 'équation (13) nous employons de nouveau les ocon-
ditions de transition (5’) et les conditions d’équilibre (6") que nous adaptons
encore une fois:

z—:1+a‘iT(-1———ei+1—a1+1E+1 (14)
ZeiFi-—:O (141)
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Si la section composée de n parties est reliée r-fois (pour un cadre r = 2),
on obtient n +r — 2 équations (14) et une relation (14’), en tout n +r — 1
équations ou n grandeurs € sont inconnues. Le nombre des équations est r — 1
-fois plus grand que le nombre des inconnues. Additionnons les équations (14)
appartenant aux angles d'un systéme fermé de parois, les grandeurs &; se
simplifient et l'on gagne pour une section r fois reliée, r — 1 relations de
la forme

ou h; est la hauteur des parois et ou le prime ajouté au signe £ doit montrer
que la sommation ne doit s’étendre qu'aux parties d'un systéme a parois fermé.
Ces équations ne contiennent pas ¢€; et représentent r — 1 relations linéaires entre

les K;. Les équations (14) ne sont par conséquent pas indépendantes l'une de
l'autre. Aprés la mise de coté des équations (15) qui ne contiennent plus
aucune inconnue ¢;, il reste n relations qui n'ont une solution que lorsque
les conditions (15) sont remplies. S’il est possible de satisfaire les conditions (15)

dont dépendent les K; et nous démontrerons pour terminer que ceci est effec-
tivement le cas, les relations (14) et (14’) représentent un systéme d’'équations
linéaires sans contradiction pour les inconnues €. Dans la détermination des
€ on peut supprimer une des équations dans chaque groupe des relations (14),
qui appartient a un cadre fermé de parois.

L’équation de A; contient encore n grandeurs T;. Pour établir les relations
manquantes de T;, considérons un systéme unique de parois en cadre. Supposons
ce systétme coupé suivant une de ses arétes te telle sorte que I'on engendre une
barre a section ouverte; sous l'effet de la surcharge les deux lévres de la
coupure se déplaceront 'une par rapport a l'autre dans la direction z. Dans le
systtme fermé les deux lévres doivent étre unies l'une a l'autre. Désignons par
C le déplacement d’'un point d'une paroi dans le sens longitudinal de la barre
(direction de l'axe des z), on doit avoir, lorsque la section est partout formée,

00 .
Lf?)—sds_o (16)

Pour chaque systéme fermé de parois, une telle équation est valable de telle
sorte que 'on dispose ainsi de r — 1 relations (16).

Posons maintenant § = T’ 4 C” ou T’ est le déplacement résultant des con-
traintes de flexion o, et £ le déplacement engendré par les efforts tranchants
T;/d;.. Dans chaque paroi on a:

z

°r _ (% ot _ T o
5s = | K;dz et 58 ——Gbi PiQ

o
lorsque p; est la distance de la paroi au centre de gravité de la barre. L’intro-
duction de ces valeurs dans l'équation (16) donne:

- T
fdstidz+fG—élds—fpiq)’ds=O.
L 0 L L
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Intervertissons dans le premier membre la suite des intégrations et introduisons
des sommes s’étendant aux parois, on obtient:

. / I 1 ‘
f@ hKy) dz 4 & 2

T; h;
o

i

_(P‘leihi:().

1

Les sommes se rapportent chaque fois a une suite de parois en cadre. Comme

d’aprés 1'équation (15) le premier terme est nul, il reste les r — 1 relations
Y Ti h;
Gy o

— ¢ X by —0 (10

Les efforts tranchants T; sont coordonnés a des efforts tranchants de méme
grandeur dans la direction z. Pour chaque aréte de deux ou plusieurs parois qui
se rencontrent, on peut poser la relation d'équilibre

2" T =0, (18)

ou la somme ne s’étend qu'aux efforts tranchants des parois qui se réunissent
dans cette aréte. En tout, nous avons n — r -+ 1 équations (18) de telle sorte
que le total des relations (17) et (18) est exactement de n. Comme elles sont
linéaires, leur solution fournit les inconnues T; sous la forme simple:

Ti=piGo’ (19)
Les coefficients 3; ne dépendent que de la forme de la section.
Il reste encore & démontrer 'existence effective de 1'équation (15). Dans ce
but calculons les courbures K; engendrées par les efforts tranchants, a savoir
T 0Ty
G 0i ’ 0Z ’
La courbure totale est K; = K; — ﬁ, dou K; — K; — IT} Pour K; I'equa-
tion (8) est valable, d’'ou

K—i — Ofl Til ==

a . Ty
K = x*sin (s -+ ) — ¥ 008 (i + @) — i + (20)
Introduisons la relation (20) dans I'équation (15), on obtient:
]._ Z‘Ti hi — 0'

x' Z'hy sin (i 4 @) — y* 2 by cos (i + ¢) — ¢ Zi:l pihit 52—
i i i i

Les deux premiéres sommes sont la longueur de la projection d'un polygone
fermé, sur les axes des x et des y et par conséquent sont nulles. Le reste
s’obtient de 1'équation (17) par différentiation suivant z. Il nous parait démontré
que l'équation (15) est identiquement satisfaite.

Introduisons pour terminer I'équation (19) dans la relation (20), on obtient:
- ) , Bi ” ‘
K= xsin (s + g) — y" cos (e +9) (2 — o1 o (20)

c’est I’équation correspondant a la relation (8), pour des sections fermées.
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En remplacant ¢ par ¥, on simplifie I'équation (20’) en
— ) Bi
Ki = x" sin ; — y*" cos s + (|b_l — pi) 0" (20
: i

En partant des équations (14) et (14") on peut déterminer maintenant les ¢;
en fonction des K;. On obtient ainsi sur la base des équations (13) et en tenant
compte des relations (19) et (20”) Uéquation suivante pour le travail intérieur
(équilibre stable):

L (21)
E (- , ., G
Ai= —2~J [Jy X4 Ty 4 Bax " + By ¥y ¢ 4+ Bo " + Fen® + 1 Ja @'2] da
o 2h
oi Jo=3 B (21)

i i
L’équation (21) présente la méme structure que la relation (10), seulement
Js4 a une autre signification que dans I'équation (10). De méme la relation (12)
qui entre en ligne de compte pour les problémes de stabilité est aussi valable
pour les barres fermées, lorsque 'on définit Jq par I'équation (21').
Lorsque d; est variable a I'intérieur d'une paroi, il faut remplacer d; dans

toutes les relations de la présente étude par la valeur movenne d;, = - pour

!
h;
les barres qui ont une section fermée. Une prise en considération plus exacte
de la variation de d; ne présente aucune difficulté fondamentale cependant un

calcul plus précis nous conduirait a des formules peu pratiques.

3> — Détermination des fonctions B,, B, et B, des sections.

Le calcul des fonctions B,, B, et B, sera exécuté par exemple pour une
section symétrique en M. L’axe des x sera choisi comme axe de symétrie. Les
trois parois de cette section seront désignées par 1, 2 et 3 (voir fig. 5). Nous

. b . b \
g}_, i Slll 1’ i___
Yy
br—— — — -m}j»y Fig. 5.
3 ‘Si Sip- i
3 i 2
l
\J
X

admettons que les parois 2 et 3 ont une épaisseur variable. Pour cette raison

la distance a + ;

Nous partons des équations (5') et (6') qui s’expriment, lorsque nous com-
mencons par la paroi 2 et que nous continuons dans le sens positif x —s y:
e, +aK, = &, — bK,

g, +~bK, = ¢; — aK; ~ (a)
Fie, -+ F, (e, +85) =0

<1
5|
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Exprimons €, et €; par €;, on obtient les relations:

gg = ¢, — bK, — aK,, & = ¢, + bK, + aK, (b)

En introduisant dans la troisiéme des équations (a) avec F = F, - F, L F, ona
Fya

1 % (Ks — Ky), (c)

ou €, et g5 sont aussi déterminées en fonction des K;. Calculons maintenant la
somme XF;e;2 dans I'équation (7)

3 3 o - . )
2 Fiel = [Fea(Ke —Kg)' +Fo [2b*K,* - 2abK, (K, 4-Ky) + a* (K + K,?)] (d)
1

Les courbures K; sont a calculer d’aprés I'équation (8’) ot l'on introduit pour

les angles ®; les valeurs numériques suivantes:

ol 3n
b, = . hy = & by =

2 b

Avec ces valeurs de ¥; on obtient en considérant la fig. 5:
K1 _ y” . e(P” K2 — X" b(p” K3 — X" b(p".

On détermine ainsi la somme
ZJi Ki2 — Jl (yu _ 28)’“({)“ + e? (Pu2) + 2J2 (xuz + b?, (Pug)
1

et en employant I'équation développée ci-dessus (d), la somme

— ;44

ZlFi Ei" — F

F22 a2xl42+F2 [2 b2 (qu__ 2 eyu (P“ +e2 (Puz) _4 a b?. (yu (Pu_e(Pl,2>
+a® (2x“2 4 2b%¢"?)].

Tirons les coefficients des produits x” ¢” et y” ¢”, que nous avons désignés
ci-dessus par By et By, des sommes (e) et (f), on obtient:

B, =0 }

22
B, = —2J,e — 4F,b% (a +-e) = —2e (Jx - Fb?) ( )

Nous avons désigné par J, et J, les moments d’'inertie principaux par rapport
aux axes des x et des y de la section en [ 1.

Rassemblons tous les coefficients de ¢”2, on obtient de la méme maniére
B,==J e 2J,b% - 2b2F, (at-e)® = J.e2 4 J, b2 - 3Fb2e2.  (23)

Ci-dessous nous donnons les fonctions B,, B, et B, des sections pour quelques
formes de section avec un axe de symétrie, souvent employées en construc-
tion métallique. Elles furent calculées d’aprés la méthode que nous venons
de donner.
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Section syméltrique en 11 (fig. 6).

By=0

Be=2{—Je+2J,(h—e)—2F,b*(a+e)
—2F,(b—c¢)[c(h —e)+b(h+e)] (24)

B,==J,e*+2J,b?+2J, (h—e)*+ 2b%F, (a +¢)®
+2F,[c(h—e)+ b(h+e)

J,. J, et J, sont les moments d'inertie des parois 1, 2 et 4 par rapport a l'axe
passant par le centre de gravité et perpendiculaire a leur plan. F,, I, et I,
sont les surfaces des sections des parois correspondantes.?

Section asymétrique en X fig. 7).

B, = 0
B, — —2 [Je — Jy (b — )] (25)
B, = Je?2-~J, (h — e)

J, et J, sont les moments d’inertie des membrures 1 et 2 par rapport a I'axe
des x. ‘

b b
S B I
P ATy e by et
L ') | 2 ® N Q)’
< | . 3 3 0
! < i 4 g
i N : 2 |
oy T ?y
c c
X X
Section en T (fig. 8).
B, = 0 l
B, = —2J,¢ , (26)

J; est le moment d'inertie de la paroi 1 par rapport a I'axe des x.

Corniére a ailes égales (fig. 9).

Be=0

B_\. = l’/ 2 OJX . (27)
Fb?

B(., = 262 (J -_— ]—6) l

Js est ici le moment d'inertie par rapport a l'axe des x et F la surface de
la section de la corniére.

9 Lorsque le centre de gravité des deux membrures inférieures se trouve en dehors de
V'dme, il faut introduire ¢ négatif.

57*
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Les développements généraux servant de base aux calculs précédents, furent
établis en admettant une épaisseur de paroi variable. Les formules obtenues (22)
a (27) sont par conséquent aussi valables pour les poutres ordinaires rivées dont
les parois sont renforcées par places au moyen de corniéres ou d’autres profilés.

Dans ce cas il faut calculer les distances du centre de gravité a;, les moments
d'inertiec J; et les surfaces F; pour les sections de parois renforcées. Les
distances a, b, c, ‘etc. sont toujours a ramener au plan médian de la paroi.
Les moments d'inertie principaux J; et J, sont a déterminer suivant la méthode
connue.

Section fermée suivant la fig. 10.

Les parties supérieures doivent étre considérées comme une paroi distincte
car, au point de vue de la transmission des efforts tranchants, elles se com-
portent autrement que celles d'un cadre fermé constitué de 4 parois en forme
de caisson. Nous admettons qu’il y a symétrie par rapport a I'axe des x.

2¢ 2b 2c

i
s ,JJ~.Q.J

i
!
l2d! F272 | 24 1
¥
X

== =

La détermination de Jq dans l'expression du travail A; exige d'abord la
détermination des efforts tranchants T;. Ces efforts tranchants n’agissent que
dans le cadre rectangulaire fermé, formé des quatre parois 1, 2, 3 et 4. Par
suite de la conservation de I'équilibre des forces normales dans les quatre arétes
du cadre, ces efforts tranchants doivent étre égaux dans ces quatre parois. Il n’y
a par conséquent qu'une inconnue a déterminer, d’aprés I'équation (17), comme
fonction de I'angle de rotation ¢. On obtient ainsi:

T[b b 2h]
212D 40 ohpe =
| G5, 7o, Tsl2hbe=0
d’ou

2hb
b b 2h

>t o. 13,

T=3Gey’ avec B= (28)
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D’apréss 1'équation (21’) on obtient ainsi

4 h‘_’ b? 10
S " | 9
O, Os O3

Le calcul des grandeurs B,, B, et B, se fait de la méme facon que pour des
section ouvertes. Comme l'expression de la courbure K; par suite de la flexion,
contient aussi les efforts tranchants T;. on a aussi dans les fonctions B de la
section des termes qui dépendent des efforts tranchants T. On obtient avec les
désignations de la fig. 10:

B, =0
B5,:2[— (J1+2J4)e-}—(J2+2J5)(h—e)—{-—%b?(h—28)—

F”‘ 2 F5 9 .
— S btepett(b+dy(h e)] -
b 2
Bv:(J1+2J4)e?+(J2+2J5)(h—e)2+2J3(§_?) n
3
Fq

+§'b2(h—-2e)g+l;* (b+c)?e* + %(b—l—d)?(h—e)?

On a observé que F,, J, et F,, J, sont les surfaces et les moments d'inertie des
parois 1 et 2 de hauteur 2b et que F,, J, et F;, J; sont les surfaces et les
moments d'inertie des parois extérieures 4 et 5 de hauteur 2c et 2d.

Dans les poutres rivées il faut tenir compte de la variation de la section
a l'intérieur des différentes parois en introduisant pour d; dans les expressions

. i
de B, J; et B(;J une valeur moyerine 9;, =i—

hi’

barres avec section ouverte est valable pour F;, J; et a.

Ce que nous avons dit pour les

4 — Equations différentielles de la flexion et torsion.

Soient p. et p, les surcharges extérieures continues ou discontinues dans la
direction des axes principaux x et y et My le moment de torsion des forces
extérieures ou px, py et Mg sont a considérer comme fonctions de 1'ordonnée z.
Pour le travail extérieur A, on a l'expression.

|
1 \ ;
.‘Xa=gér[¥)xx+py)'—51dcp] dz (31)

A, est une fonction linéaire des déplacements X, y, .
La condition d'équilibre d (A; — 2 4,), équation (3), s’exprime par con-
séquent, lorsque l'on introduit A; de l'équation (10),

10 L'équation (28) concorde avec la formule connue, tirée de la théorie de l'élasticité, pour
le cadre rectangulaire. Cf. A. et L. Féppl: .Drang und Zwang', 2¢ vol. 2¢ édition, Munich et
Berlin.
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1
j[ (Jyx'? +J\:\“"+B x' (?“+B\) Q' +B<9(P )+ Jd(? I<32>

o

— pxXx — pyy + My (p‘] dz,

ou nous admettons que la force normale S — 0 et c’est pourquoi on a aussi
em = 0. On obtient trois équations différentielles simultanées

d'x  EBy d*g

By m t75 @ — =0

d'y EB, d*o ‘
Bl dz‘* + 2 dz* — =0 (83)
EB; d‘x EB, d'y dte 12 de

EB GJd

5 At T2 A T “’d‘ =0

dz

Par une transformation des coordonnées on peut simplifier I'équation (33)
d’'une facon appréciable. Exécutons la transformation:

_i & I BY
=Y Tey® YT YTaye

c’est-a-dire que l'on déplace I'axe des z, parallélement a I'axe passant par le
centre de gravité, de

By . By

Sy _ —

v 2Jy

2J

et désignons par My le moment de torsion des forces extérieures par rapport au
nouvel axe, les équations (33) se modifient en

(34)

dix

EJy s Px= 0

Al d4_‘

EJ S —pe=0 , (35)
Elo— 5 ol e =

Les deux premiéres équations sont indépendantes de ¢ et, dans leur forme,
sont identiques aux équations différentielles de la théorie de Nawvier. La
troisiéme relation est indépendante de x et y. La transformation des axes prin-
cipaux que nous avons exécutée, permet ainsi de traiter séparément dans tous
les cas la flexion et la torsion et donne ainsi un apercgu clair sur les processus de
déformation et sur la répartition des contraintes.

D’aprés la derniére des équations (35) on peut voir que pour Mg = 0 la
rotation ¢ est nulle. Si d’autre part p, = p, = 0, X et y disparaissent, I'axe
de la barre reste droit et toute la barre tourne d'un angle ¢. Dans ce cas I'axe
avec coordonnées au centre de gravité s, et s, d’aprés I'équation (34), est l'axe
de rotation dans la torsion de la barre. Nous voulons le désigner par axe de
torsion. Son point d’intersection avec la section est appelé centre de cisaillement
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ou. centre des efforts tranchants. Il fut déterminé la premiére fois pour un fer
en[. Sa signification fondamentale pour le calcul des formes de section dont
il est question ici n'est apparue avec précision quaprés avoir effectué la trans-
formation dont nous avons parlé.

D’aprés les équations (35) nous pouvons justement déterminer le com-
portement général des barres élancées, constituées de parois minces: Admettons
que les forces extérieures passent par l'axe de torsion, qui généralement ne
ooincide pas avec l'axe de gravité, il ne se produit que des contraintes de flexion
et aucune contrainte de torsion. Le calcul des déformations et des contraintes se
fait sur la base de la premiére des équations (35), donc comme d'aprés la
theorie de .Vavier, pour des surcharges qui passent par l'axe de gravité. Dans
tous les autres cas de charge il se produit aussi bien des contraintes de flexion
que des contraintes de torsion, méme lorsque p. et p, disparaissent. Si la
section posséde un axe de symétrie, le centre des efforts tranchants se trouve
sur cet axe. Lorsque I'on a deux axes de symétrie, I'axe de torsion coincide avec
I'axe de gravité. '

Les équations (34) et (35) sont aussi bien valables pour les sections
ouvertes que pour les fermées. Dans la détermination des fonctions de la
section: Jq, B.. B, et B(', seulement. il faut voir s’il s’agit d'une section & com-
position simple ou multiple. '

Pour les applications courantes on peut amener par intégration les équations
a la forme suivante:

d2?x
d3v .
EJ, S 4 M, =0 (36)
dz?
B, B,ﬂ] d'o do <
E[p— 5, — gy [t - 6§ — M=o

M, et M, sont les moments des forces extérieures dans les plans z, et z.; ¢ est
ainsi défini par l'équation différentielle du troisiéme ordre

3 /
¢ 251.59_;“‘1_:0 (37)

dz3 dz Y

_Ga
Y

La solution de I'équation de torsion (37), dépendante du mode de surcharge
et des conditions d’appui, ne dépend de la forme de la barre que par les para-
métres o et Y qui se présentent comme constantes dans la solution. Les solutions
de I'équation (37), aussi bien que les solutions de flexion de Navier, peuvent
étre établies indépendamment de la section de la barre. La relation (37) est une
généralisation de 1'équation différentielle établie par Timoschenko pour la
torsion des poutres symétriques en I.

Pour terminer ces explications générales, nous voudrions encore faire quelques
remarques sur l'hypothése que nous avons faite au début sur l'invariabilité

‘ B.? B;e]
U 2 Vi — — s e —S !
ou a et y=E [Bq, 15, 1) (37")
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de la forme de la section. Réunissons trois parois en une barre, nous nous ren-
dons facilement compte que chacune de ces parois peut subir de petites défor-
mations quelconques dans son plan sans que la liaison entre les parois soit
supprimée et sans que I'angle formé par deux parois varie. Lorsque I'on a plus
de trois parois, d'une facon générale n parois, n — 3 angles varient lorsque I'on
prévoit que les différentes parois se déformeront dans leurs plans. De ces
considérations il résulte que, dans les barres en forme de 4, L, [, T et 7L,
la condition de la conservation de la forme de la section est remplie car, lors
des déformations que subissent les différentes parois sous l'effet de la surcharge,
il n’existe aucune obligation de modifier la forme de la section. Dans les barres
composées de quatre ou d'un nombre plus grand de parois, que la section soil
a composition simple ou multiple, il faut prendre des mesures telles que la
forme de la section soit conservée. Il suffit en général de disposer de place en
place des cloisons transversales. Au point de vue pratique elles ne sont évi-
demment nécessaires que la ou la surcharge, par des effets de torsion importants,
engendre de fortes variations des angles formés par les différentes parois.
Si I'on relie deux parois d'une barre par des contrefiches, ainsi par exemple
que le représente la fig. 11, on peut calculer une telle barre comme barre fermée.
Dans le cas de la fig. 11a, lors de la détermination des valeurs B d'aprés les
formules (30), 1l faut poser J, = 0 et F, == O pour les parois du treillis.
Dans le cas de la fig. 11b il faut introduire pour J, le moment d’inertie des

a) b)

-—-- - - Fig. 11.

Versfrebung
Contre - fiche
L alticing

parois de treillis se trouvant entre les deux admes et pour F, la surface des
plaques qui sont entre les deux ames. Dans le calcul de l'effort tranchant T
au moyen de la relation (28) et de Ja suivant I'équation (29), il faut poser d,
égal a D'épaisseur de tole idéale que l'on obtient en répartissant la section f
d’une contre-fiche (fig. 11b) sur toute la hauteur 2b de la paroi.

5o — Détermination des econtraintes lors de flexion et de torsion.

Les contraintes dans la fibre extréme, engendrées par les moments M, et M,
sont calculées de la maniére usuelle, comme si les charges passaient par I'axe de
gravité de la barre. Supposons que Ma n'est pas égal a zéro, c’est-d-dire que
les charges ne passent pas exactement par l'axe de torsion, la troisiéme des
équations (35), respectivement (37) est a intégrer, aprés lintroduction de
My comme fonction de z, en tenant compte des conditions d'appui. Si ¢ est
connu en fonction de z, on peut détermiqer les contraintes additionnelles dans
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la fibre extréme et les efforts tranchants engendrés par la torsion. Dans ce but,
on calcule la courbure des différentes parois de la barre suivant les équations (8’)
et (20”) ou x et y sont les déplacements subis par l'axe de gravité lorsque la
barre tourne d'une angle ¢ autour de 1'axe de torsion. Il faut introduire ainsi
dans les relations (8) et (20”) les déplacements x = s, et y = — s,¢ de telle
sortec que d'une facon générale on a: '

. ) 3 v g
Kki= [sy sin s -+ S €OS P + (Igi — pi)] P (38)

Pour les barres a section ouverte 3; = 0.
Les contraintes o; dans la fibre extréme de la paroi i sont déterminées par les
relations:

O; — E (S; + T]K.) (39)

ou 1 est la distance de la fibre extréme, au centre de gravité de la paroi. n est
a considérer comme positif dans la direction positive x—+y. '

Introduisons dans l'équation (38) les longueurs e, s, b etc., on obtient pour

K: des expressions de la forme K; = mio”.
On calcule ainsi a l'aide de l'équation (5’) les valeurs & qui prennent aussi
la forme & = v;¢”. Toutes les valeurs numériques sont ainsi connues et l'on

peut, au moyen de l'équation (39), calculer les contraintes normales o; dans
les points extrémes considérés. Il faut ici remarquer ce qui suit: Alors que
jusqu’a présent toutes les mesures prises en considération, a, b, e, s etc. se
rapportent au plan médian des parois, les n sont a prendre pour les surfaces
extrémes et extérieures des parois. Dans un angle tel que celui représenté a la
fig. 12 par exemple, le calcul des contraintes doit se faire avec les distances

n et 1/, suivant que 'on détermine la contrainte a l'angle A dans la paroi ver-
ticale ou horizontale. Les deux contraintes calculées ainsi ne concordent pas
exactement car la solution du probléme proposé part de I'’hypothése de parois
infiniment minces. Le calcul ne concorderait que pour le point d'intersection A’.

Les contraintes normales o, engendrées par la torsion, sont finalement a com-
biner avec les contraintes o, engendrées par les moments M. et M, et calculées
par la méthode habituelle.

Les efforts tranchants de torsion sont a calculer pour chaque paroi de barre
a section ouverte suivant la formule:

7, = G ¢’max d; (40)

max d; est l'épaisseur la plus grande de la paroi considérée. Dans les barres
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a section fermée on obtient les efforts tranchants déterminants T; d’aprés la
relation:
T
Ty — 1 (41)

_ min 61

min d; est ici I'épaisseur la plus faible de la paroi considérée.

Afin de contrdler I'exactitude de la théorie que nous venons de développer,
nous allons comparer les mesures de contraintes effectuées par Bach sur un
NP C 30 avec les contraintes fournies par le calcul exact basé sur les équations
que nous avons établies ici. La poutre d'essai avait une longueur de 3 m et
elle était chargée aux tiers de la longueur pas des forces de 1500 kg, verticales,
ainsi que la fig. 13 le représente en coupe. La grandeur et I'allure des con-
traintes normales dans les ailes supérieure et inférieure du fer en [ sont repré-
sentées sur la méme figure. La concordance entre les contraintes mesurées et

Randspannungen in 1, 2,3, 4
Tensions dans la Fibre exiréme en 1,2 3, 4
1500 kg Extreme fibre slresses in 1 2,3, 4.

Fig. 13.

3

Calculées d'aprés Blerch

{ Nach Blerich berechnet
Calculsted acc. fo Bleich

Mesurees par Bach

Yon Bach gemessen
Measured by Bach

Nach Navier berechnef
""""" Calculees d'aprés Navier
Calculated acc. fo Navier

calculées est satisfaisante. Dans les diagrammes de contrainte nous avons aussi
reporté a titre de comparaison Ja contrainte de flexion de 271 kg/cm?2, uniformé-
ment répartie, et calculée suivant la méthode courante. Remarquons encore que
les points de mesurage 1 a 4 se trouvaient éloignés de 5 mm de la surface
extérieure des deux ailes. Dans le calcul des contraintes on a tenu compte de
cette position des points.!1

6° — Les équations différentielles du probléme de flambage.

Supposons une barre droite chargée d'une force longitudinale S agissant dans
son axe de gravité. Remarquons que la barre est d’abord comprimée de ¢, sous

11 1’essai de Bach fut contrélé par G. Weber au moyen des formules établies par lui pour
les barres & deux membrures.



Flexion, torsion et flambage des barres composées de parois minces 907

Peffet de S. Pour le fléchissement, aprés l'atteinte de la limite de stabilité. on
a pour le travail extérieur, I'expression connue:

1
A, = tf[—;— Sem + ; S (x'%- )"2)] dz

Pour le probléme de flambage simple que nous considérons ici, il suffit de
prendre 1'équation (10) comme expression du travail intérieur. On peut y nég-

liger les grandeurs de déformation d'un plus haut degré de petitesse. La con-

- - . 1 .
dition de variation (3), lorsque l'on observe que le terme 55 €n en A, peut

aussi étre remplacé par ?F Em- a cause de S = EF ¢,, est:

1
E . » G
bJ [5(%*“2 Iy Bex” o + By + By + 1 Jag)

o

— % S (x*2 + )”3)] dz=0.

La variation fournit les trois équations différentielles

EJ,%:Z‘JFE]; (fi‘f+s‘-’2—;‘=o,
B+ ?ﬂ“f f;;;= - @)
B by,

qui aprés avoir été intégrées deux fois ont la forme:
R .
EJ, ‘;—2} E_gx %';‘28 Sy =0, (43)
Y P G Gy =

Avec ces trois équations différentielles simultanées, le probléme du flambage
des barres a parois minces sous sa forme générale est liquidé. Les équations (43)
nous permettent de dire ce qui suit: Lorsque la section de la barre ne posséde
aucun axe de symétrie, c’est-a-dire que B, aussi bien que B, sont différents de
zéro, il se produit une rotation de la barre car ¢ ne disparait pas. Si la section
a un axe de symétrie, la barre flambe, suivant les rapports de rigidité, dans la
direction de 'axe de symétrie ou perpendiculairement a cet axe. Dans ce dernier
cas la barre se tord aussi.

Afin d'acquérir un plus ample apercu du comportement de telles barres,
faisons des recherches sur une barre de longueur I, dont la section est symétrique
par rapport a l'axe des x. La barre a des articulations a ses deux extrémités
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pour permettre le flambage dans la direction de I'axe des y et elle est assurée
contre une rotation autour de 1'axe des z.

En posant

nmz . noz
y =C, smT, o = G, sin —— n=1,23,...
on obtient, aprés introduction dans la deuxiéme et la troisiéme équation (43),
la condition de flambage

n?z? n’z* EB,
= T EJs+3) T 2 .
: EB, ( nn? ) -
g = EBy+Gla
o e e n’n’ElJy : \ s
Avec l'abréviation Sg = ¥ on obtient aprés le calcul des déterminants
- la charge de flambage
2
J«GJq
43 (B, + =5
. . 1 EJx
On obtient la plus petite valeur avec n = 1, lorsque donc Sg = e . La

résistance effective au flambage, perpendiculairement @ Uaxe de symétrie, est
par conséquent plus petite que la charge calculée d’aprés Euler. Recherchons
I'ordre de grandeur du deuxiéme terme de la parenthése, on trouve que pour
certaines formes de section en T et en I asymeétrique, on obtient des réductions
importantes de la charge de flambage calculée suivant la methode ordinaire.12
Dans le tableau qui suit nous avons donné Sk calculé d’aprés I'équation (44)
pour quelques formes de section. Les chiffres furent calculés en admettant qué
la contrainte de flambage ok, déterminée d’aprés FEuler, est exactement de
2000 kg/cm?2. Lorsque I'élancement de la barre croit, Sk se rapproche de la
charge d’Euler. L’'influence de la résistance & la torsion de la barre est trés
importante. Plus cette résistance est grande plus la charge Sk devient grande.
Son influence croit avec I'accroissement du degré d’élancement. Dans les sections
fermées, la différence entre Sk et Sg est trés faible 4 cause de la forte résistance
a la torsion.

Lorsque la charge s’éloigne du centre de gravité de la barre vers le centre
des efforts tranchants qui par exemple pour une section en T se trouve a l'inter-
section des deux parois, Sk croit d'une facon constante, comme nous le démon-
trerons ensuite, et atteint la valeur maxima Sg lorsque la charge agit exactement
dans l'axe de torsion. Pour un flambage latéral d'une barre de la forme con-
sidérée I'axe de gravité et I'axe de torsion ont intervertis leur role. Si dans une
section en 1 l'dme est haute on devrait par conséquent avoir, d'aprés les con-
sidérations que nous venons d’énoncer, une résistance plus grande que celle

12 Cette réduction de la résistance a été déterminée par Oslenfeld. Voir le travail cilé a la
note 5, page 17.
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Forme de section Rapport de la force S lors du flambage dans la

direction y a la force d’Euler SE

rﬂd ool — 10 20 30
GE— T‘:# 6‘
0010 S
YK
g = 0,699 0,930 0,974
} E
300 §—
=y | |
500 10 Q
150-10 YK
- =1 0691 0,724 0,883
)" E
—— 14 6 — 10 20 40
1 h:’ﬂ;f'l S
| K
o= 0,534 0,703 0,942
v E
X

que I'on obtient par le calcul habituel en tenant compte de l'excentricité de la
force.

Nous faisons expressément remarquer que le développement et les conclusions
que nous avons donnés, ne sont valables que pour le cas du flambage élastique.

7° — Les équations différentielles du probléme de basculement.

Par basculement nous entendons l'apparition d'un état d’équilibre instable
dans une barre sollicitée a la flexion. Il est caractérisé par le fait qu'avec ap-
parition de 1'équilibre instable la barre subit en méme temps une torsion et
s'écarte latéralement, c’est-a-dire perpendiculairement au plan de la flexion.
Afin de simplifier cette représentation, considérons seulement des barres dont
la section n'a qu'un axe de symetrie et qui sont chargées dans le plan x—z.
La barre s’écartera dans la direction de I'axe y lorsque J, est sensiblement plus
petit que J, ainsi que cela est par exemple le cas pour une poutre chargée dans
le plan de I'dme.

Soit p. la charge agissant dans le plan x—z, M, le moment de flexion
engendré par cette charge, S une des forces extérieures longitudinales agissant
dans l'axe de la barre, «a» la hauteur du point d’application de la charge p
au-dessus du centre de gravité de la section (voir fig. 14) ou a peut aussi étre
négatif. Le travail total des forces extérieures, c'est-a-dire le travail a I'état
d’équilibre stable et instable est déterminé par 1'expression

1 (M; , .
Aa=§J [-Ej;—}—Sem—{— Sy 2—|—apx(pz] dz

Quant au travail intérieur A; nous devons retourner a l'équation (12) car I'in-
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=4 — =y Fig. 14,

fluence des termes de déformation d'un ordre supérieur ne peuvent plus étre
négligés. Par conséquent la condition de variation (3), prend la forme suivante,
lorsque I'on remarque que B, = 0 & cause de la symétrie que nous avons admise:

_j (¥ )+ Ix (x" @ — ¥ )+ By (x“ ¢ —y") " + Bo g™ 4 Feun™+
G, M,* " s
’I‘EJd(?')"“(E—‘%"{“SSm“{"S)"“{'apx(?-)]dz (45)

Les variations des grandeurs x et €, lors du basculement sont petites par
rapport aux grandeurs de déplacement y et ¢ qui ne se présentent que lors
du basculement. Pour la variation nous considérons par conséquent les gran-

deurs x et &, comme invariables; elles conservent lors du basculement les

) M, S , . : .
valeurs x” == —EJ, = gF qu elles avaient exactement avant 1'apparition

de l'état instable. Introduisons ces valeurs de x et €, dans 1'équation (45) on
obtient la condition suivante dans laquelle nous avons supprimé tous les termes
de plus que le deuxiéme ordre de petitesse

! Js
> %j [Enyuz —EByy“¢" + EBy ¢ + GJap™ — 2 (1 - 3‘-;) Myy"o —

—apo® — S)“z] dz.

Si I'on varie suivant y et ¢, on arrive aux deux équations différentielles simul-
tanées:

d'y EB, dg J) d? d*y
Blhgr——9 o~ (1'—3' iz o)+ 537 =0 )
EB, d*y d*o ( Jx d) 4 I
__2_F+EB(P o 1__.3) v GJddo aps ¢ = 0.

Avec ces relations on a résolu en principe le probléme du basculement des barres
qui possédent au moins un axe de symétrie.13

Pour le cas spécial le plus simple, S et M, constants, p. = 0, on trouve, pour

13 Si Ton pose B, = 0, cest-A-dire, si I'on admet que la section a deux axes de symélrie,
on peut éliminer la fonctlon y dans le cas spécial S = 0 et I'on obtient l'équation dlfferenllelle
du troisiéme ordre, établie par Timoschenko pour le probléme de basculement de la poutre en L.
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une barre de longueur 1, assurée a ses extrémités contre une rotation autour de
I'axe z mais qui peut tourner librement autour de I'axe x, avec
nz

y = C, sin &+,

. 1Z
] (p_'—_CQSlll»~

1

la condition de stabilité

(FJ,( z —5) (EBQ Tt Gl — [I”—QB_Y "l_‘:— (1 —f]y) M,.]z:o (47)

De cette équation on peut déterminer S ou M,. Supposons que les moments M,
sont engendrés par le fait que la force S n’agit pas au centre de gravité mais

: M, :
a la distance e = —S“—, on se trouve en présence dun cas de flambage par com-
. . *EJy
pression excentrique. Avec Sg = g et (1 —~) ~ 1 l'équation (47) prend

la forme simplifiée:

Sz — 9) (LB, 12+GJd)—(

) —0 (48)

By . :
2*‘]’—: s, est la distance comprise entre le centre des efforts tranchants et le centre
X

de gravité. Choisissons e = s,, c’est-a-dire faisons agir la force normale S au centre
des efforts tranchants, S = Sg devient un maximum et égal a la force de flam-
bage d'Euler. Avec ceci nous avons démontré I'assertion que nous avions émise
dans le paragraphe précédent.
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Résumé.

La théorie ordinaire de la flexion et de la torsion des barres droites repose
sur deux hypothéses: 1° Les contraintes normales qui se produisent lors de la
flexion sont des fonctions linéaires des coordonnées x et y de la section. 2° Dans
le cas de la torsion pure, les contraintes normales sont nulles si I'on néglige les
petites grandeurs de deuxiéme ordre. Ces hypothéses ne sont pas toujours rem-
plies dans les barres composées de parois minces. - En partant de I'hypothése
que, dans chaque paroi qui compose la barre, les principes de la théorie de la
flexion de Navier sont valables, nous avons établi, 4 l'aide d'un principe de
variation, les équations différentielles de la flexion et de la torsion des barres
prismatiques. Les équations sont en général valables, aussi bien pour les barres
4 section ouverte que pour les barres a section fermée, pour les section a com-
positions simple ou multiple. Par une transformation appropriée des coordonnées,
il est possible de traiter séparément la flexion et la torsion. Cette transformation
explique aussi la signification du centre des efforts tranchants.

Aprés avoir exposé d'une facon générale la détermination des contraintes pour
la flexion et la torsion nous avons développé, dans leur forme la plus générale,
les équations différentielles du probléme de flambage des formes de barres
prises en considération et nous avons traité le cas simple du flambage d'une
barre avec section a un axe de symétrie. On a observé qu'une barre chargée
centriquement a une force de flambage qui peut se trouver bien en dessous
de la charge d'Euler. Pour terminer nous avons établi les équations différentielles
* du basculement pour les barres dont les sections ont au moins un axe de symétrie,
Ici nous avons démontré que lorsqu'une barre est chargée par une force normale
S passant par I'axe de symétrie, la charge critique Sk atteint une valeur plus
grande quand S passe par le centre des efforts tranchants.
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