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IVa3

Coupoles massives, réservoirs cylindriques
et constructions semblables.

Massive Kuppeln, zylindrische Behailter
und ihnliche Konstruktionen.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,
Dozent an der Kéniglichen Technischen Hochschule, Stockholm.

Le calcul exact des contraintes de flexion dans une coupole massive est trés
compliqué. Un travail de doctorat! présénté a 1'Ecole polytechnique de Stock-
holm fait ressortir ces difficultés et 1'on peut se demander si 1'Ingénieur occupé
dans la pratique trouvera le temps et l'occasion de calculer les dimensions d'une
coupole sur la base de la théorie exacte. L’établissement des équations fon-
damentales est déja compliqué et leur intégration exacte conduit a des séries qui
sont difficiles 4 manier et qui ne convergent que lentement. Alors que la
convergence est satisfaisante pour bien des épaisseurs de paroi, une modi-
fication de cette épaisseur peut faire disparaitre cette bonne convergence. Méme
lorsque I'Ingénieur posséde a fond la théorie mathématique de ce probléme, le
calcul d'un cas de charge déterminé exige beaucoup trop de travail. Il serait
toutl-a-fait impossible d’arriver a une méthode pratique en partant du chemin
suivi par Meissner, Bolle, Dubois, Honegger, Ekstrém, etc. Par exemple, pour
les coupoles sphériques, on obtient lors de l'intégration dans les cas les plus
simples, des séries hypergéométriques qui ne peuvent étre pour I'Ingénieur un
instrument exact a cause de leur lente convergence.

En considération de ces faits, il importe avant tout, pour le développement
plus ample de la théorie des coupoles, de se diriger vers des solutions qui
satisfassent les exigences de la pratique, méme si I'on doit introduire cerfaines
approximations. Ainsi que I'a montré Geckeler,? il est possible de trouver par
des moyens mathématiques relativement simples, une solution qui ne s’éloigne
que peu de la solution exacte et qui est simple et agréable a employer lorsque
I'épaisseur de la paroi et le rayon sont constants. La bonne concordance entre
la théorie de Geckeler et la théorie exacte nous permet d'expliquer plus exacte-
ment la théorie approchée, lorsque l'on est au clair sur les hypothéses que 1'on

1 John Erik Ekstrém: ,Studien iiber diinne Schalen von rotationssymmetrischer Form und
Belastung mit konstanter und veriinderlicher Wandstirke'. Stockholm 1932.
? cf. par ex. ,Handbuch fiir Eisenbetonbau®, 6¢ vol., Berlin 1928.



726 A. Granholm

introduit. On s’approche encore un peu plus de la théorie exacte en employant
le procédé d'intégration asymptotique de Blumenthal et Steuermann, ce qui peut
se faire méme lorsque 1'épaisseur de la paroi est variable. Ce procédé représente
un gros progrés par rapport aux méthodes qui sont basées sur des solutions
en forme de séries infinies, ou l'on doit toujours supposer que l'épaisseur de la
paroi varie suivant une fonction déterminée pour obtenir une solution.

Un examen plus approfondi des équations finales données par Geckeler montre
que ces équations sont exactement du méme type que celles pour une poutre
sur appuis élastiques. L’analogie physique n’est pas non plus difficile & remar-
quer. On peut considérer comme une poutre le méridien de la coupole qui est
soutenu par les cercles paralléles ou ceintures. Comme ceux-ci se laissent
comprimer ou étirer ils correspondent au point de vue stathue a des appuis
élastiques.

Cette conception nous fait voir la statique de la coupole avec une exactitude
suffisante. Pour I'établissement des équations d’équilibre, il n’est plus nécessaire
de reprendre les équations différentielles de Meissner et il est possible de poser
directement et simplement les équations nécessaires a l'aide de la théorie des’
poutres sur appuis élastiques. Ceci signifie, pour I'Ingénieur qui est dans la
pratique qu’il n’a plus besoin de s’efforcer tout d’abord de comprendre la théorie
classique, assez compliquée, de la coupole; de plus il peut établir de lui-méme les
équations nécessaires.

Les travaux de Geckeler montrent qu'il n’a lui-méme pas complétement saisi
la baute signification des approximations qu’il propose; c’est-a-dire qu’il n’a
pas compris quen gros la coupole agit comme une série continue de poutres
sur appuis élastiques. La maniére de voir que je propose peut naturellement
étre étendue en ce sens que l'on peut considérer le méridien non comme une
poutre mais comme un arc appuyé élastiquement sur les éléments annulaires de
la coupole.

Par l'introduction de cette conception plus exacte, on obtient un apercu plus
juste de la statique de la coupole et les équations que 1'on obtient ainsi sont les
mémes que celles de Meissner.

Il est notoire que spécialement dans les coupoles trés plates, ou par conséquent
I'effet de volte dans les éléments de méridien est trés marqué, il est nécessaire
d’introduire cette derniére maniére de voir afin d'obtenir l'exactitude désirée.
Plus la tangente a la coupole au droit de I'appui est inclinée, plus sera exacte
la conception du méridien en tant que poutre sur appuis élastiques et dans le
cas spécial ou la tangente a la coupole est partout verticale, c'est-a-dire lorsque
la coupole se transforme en un cylindre, cette maniére de voir est tout-a-fait
exacte.

Afin de faire mieux voir la simplicité du pmbléme de la coupole traité de
cette facon, j’ai calculé quelques problémes et j’ai comparé les résultats ainsi ob-
tenus avec ceux de la théorie exacte. La concordance est partout étonnement
bonne.

Comme premier exemple, choisissons une coupole sphérique de béton armé
d’épaisseur constante, & = 16 cm, de rayon r = 1000 cm et d’angle d'ouverture
400. Supposons que la coupole soit chargée par un liquide & la pression con-
stante p = 1,0 kg/cm? et que l'aréte soit complétement encastrée (fig. 1).



‘Coupoles massives, réservoirs cylindriques et constructions semblables 727

Si I'on calcule les contraintes dans cette coupole d’aprés la théorie des mem-
. ) . pr .
branes, on obtient une compression dans le méridien T, = 9 et une compres-

r . (1 .
sion dans les paralléles Ty = BZ. Ces contraintes dans le méridien et le paralléle

2

sont constantes sur toute la coupole et la solution par la théorie des membranes
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Fig. 1.

Comparaison entre la grandeur du moment méridien calculée d’abord d’aprés I'équation 5
et ensuite d’aprés la méthode exacte au moyen de séries hypergéométriques. Les écarls
sont insignifiants pour la pratique.

est trés simple. Sous I'effet de ces contraintes de compression T, et T, la cou-

. Ie e . - r ’ \ .
ole est comprimée de telle sorte que son rayon se réduit de —s—, cest-a-dire
p P q Yy Eo
pr? A ,
2 E s Cette réduction du rayon n'est pas grande; dans notre exemple, pour

E = 210000 kg/cm?, elle ne se monte qu'a 0,15 cm. Mais comme la coupole
est fixée tout autour de son aréte, elle ne peut pas modifier librement sa forme;
les parties situées prés de l'aréte conserveront le rayon primitif mais plus on
s'éloigne de l'aréte, plus la liberté de mouvement de la construction est grande
et plus les déformations pourront se produire librement. Quoique dans notre
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cas la compression soit relativement faible, il se produit cependant aux environs
des arétes certaines perturbations qui engendrent des moments d'un ordre de
grandeur tel que I'on ne peut pas les négliger.

Nous voulons rechercher maintenant quels moments sont engendrés dans une
poutre sur appuis élastiques lorsque 'on admet qu’elle subit un fléchissement

9

. r- .
correspondant a la valeur que nous avons calculée ci-dessus Ep2 5 La relation
entrc le moment et le fléchissement est donnée par I'équation:

d®y

et l'influence de l'appui élastique des éléments de paralléle est exprimée par
I'équation:

d*M Ed
5 =Y (2)
Eliminons M; de ces deux équations, on obtient
d? d?y|  Ed .
i BT 50y =0 39)
S ol 5 Em? 9
ou en admettant que la rigidité EJ est constante et égale a 119 °"2
d4
dxz 4+ 4k* y=—o
2 (3b)
ol Kt — 3 (m 1) 1

me TRy
L’intégrale générale de I'équation 3b peut s’écrire sous la forme connue
y = e~ ** (A cos kx 4 B sinkx) + e** (C cos kx + D sin kx) (4a)

c’est-a-dire que l'on peut considérer le fléchissement comme la somme de deux
oscillations sinusoidales, 'un avec amplitudes décroissantes et I'autre avec ampli-
tudes croissantes. On peut poser en général que les coefficients G et D sont
nuls en admettant que la poutre n’est pas trop courte et que l'origine peut étre
déplacée au point d’ou part la perturbation. Pour les coupoles fermées, on peut
par conséquent écrire I'intégrale avec précision suffisante sous la forme:

y = e~k (A cos kx -+ B sin kx) (4b)

Ici x désigne la longueur d’arc du méridien, mesurée a partir du bord de la
coupole. Dans ce cas, il est facile de déterminer les constantes arbitraires en
partant des conditions d’appui:

2

. __Ppr .
y= 2T et yY=—o0
on obtient:
2
—B—_— P
A 25

et le fléchissement du méridien est ainsi

pr* .
e T (cos kx -+ sin kx).
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Aprés introduction de cette valeur dans l'équation 1 on obtient l'expression
suivante pour le moment dans le méridien:

M, = 11/—23 pr de—kX (— cos kx + sin kx) 5)
Dans cette expression on a négligé la contraction du matériau c'est-a-dire que
l'on a posé le nombre de Poisson m = co.

A laide des valeurs données dans le tableau I pour les fonctions e =% cos kx et
e sin kx, 1l est facile de représenter graphiquement I'équation 5. Dans la fig. 1,
on voit trés bien comment le moment dans le méridien M, varie avec 1'éloigne-
ment du bord de la coupole. A titre de comparaison, nous avons donné les
valeurs exactes calculées d’aprés la méthode de Bolle avec séries hypergéométri-
ques.® Ainsi que 'on peut le voir, la concordance entre les résultats exacls et,
les valeurs approximatives est étonnement bonne c’est pourquoi il n’y a aucune
raison de faire du probléme de la coupole un travail mathématique étendu. Dans
les coupoles avec angle d'ouverture plus grand que dans notre cas, la concor-
dance entre les valeurs exactes et approchées est encore meilleure. Seulement
pour les coupoles dont la pente aux appuis est trés faible, I'influence des hypo-
théses que 1'on a faites a une signification pratique. Remarquons en passant que
de telles coupoles ne sont pas appropriées, a cause des fortes perturbations qui
se produisent a la liaison de la coupole a la ceinture d’appui.

Pour le calcul des contraintes dans la coupole, il n'y a pas que le moment
dans le méridien qui rentre en ligne de compte mais aussi les moments dans le
paralléle M, et I'accroissement des compressions dans le méridien et le paralléle
qui en résulte, car les conditions d’appui ne ocorrespondent pas aux hypothéses
de la théorie des membranes. Ces grandeurs M,, AT, et AT, peuvent étre cal-
culées directement a partir des relations suivantes. La concordance entre les
valeurs obtenues d’aprés la méthode approchée que nous donnons et celles
obtenues par la méthode exacte est aussi trés bonne, ainsi que 'on peut le voir
d’aprés la comparaison donnée dans le tableau II.

L’établissement des expressions mathématiques pour les forces supplémentaires
AT, et AT, se fait de la facon la plus simple par application de I'analogie, en
considérant le méridien comme une poutre sur appuis élastiques. Le supplément
de la compression dans le méridien, AT,, peut étre considéré comme |'effort de
cisaillement dans la poutre multiplié par cotga, ou « est I'angle formé par le
méridien et le plan horizontal. On obtient

d®y
AT, =cotga EJ - 1. (6)
dx

Le supplément de compression dans le parallele AT,, est une mesure pour
I'effet d’appui élastique et AT, est par conséquent directement proportionnel au’
fléchissement y du méridien, donc

AT, =22y (7)

Tr

3 cf. Ekstrém, p. 124.
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Tableau I.
Valeurs des fonctions e~kxcos kx, e—kx sin kx, e—kx (cos kx — sin kx) et e—kx (cos kx - sin kx)
kx _e~kxcosks | e—kxsinkx | e—kx (coskx —sink) | e—kx (cos kx + din k)
0 1.0000 0.0000 1.0000 1.0000
% 0.6239 -0.2584 0.3655 0.8823
% 0.3225 0.3225 0.0000 0.6450
?181‘_ 0.1179 0.2845 — 0.1665 0.4024
% 0.0000 0.2079 — 0.2079 0.2079
%" — 0.0536 0.1297 —0.1833 0.0761
3T" — 0.0671 0.0671 —0.1342 0.0000
%" — 0.0592 0.0245 — 0.0837 — 0.0347
x — 0.0432 0.0000 —0.0432 —0.0432
?él — 0.0269 — 00112 —0.0157 — 0.0381
54_" — 0.0139 —0.0139 0.0000 —0.0279
‘;" — 0.0051 —0.0123 0.0072 —0.0174
3’2_" 0.0000 — 0.0090 0.0090 — 0.0090
1:; x 0.0023 — 0.0056 0.0079 — 0.0033
141 0.0029 —0.0029 0.0058 0.0000
2 00026 | —0.0011 0.0087 0.0015.
27 0.0019 0.0000 0.0019 0.0019
% x 0.0011 0.0005 0.0006 0.0016
_Z_ 0.0006 0.0006 0.0000 0.0012
% 0.0002 0.0005 — 0.0003 0.0007
% 0.0000 0.0004 — 0.0004 0.0004
28_1 . — 0.0001 0,0003 — 0.0004 0.0002
111 x — 0.0001 0.0001 — 0.0002 0.0000
%3 . — 0.0001 0.0001 — 0.0002 0.0000
3x — 0.0001 0.0000 — 0.0001 — 0.0001
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Le moment dans le paralléle M, s’obtient de la facon la plus simple en déter-
minant les modifications de courbure du parallélet et l'on obtient en négligeant
I'influence de la contraction

EJ dy
M, = cotg a - i (8)
Introduisons dans les équations 6, 7 et 8 'équation pour le fléchissement du
méridien

BT e—kx (cos kx + sin kx)

Y= 7 2Ebs
on obtient les expressions suivantes pour AT,, AT, et M,:
pr‘!. 62
AT, =—cota e k3 e—kx cos kx (6a)
ATy, =— g e—%x (cos kx + sin kx) (7a)
M, =cota pro- k e—¥x gin kx. (8 a)

12

Le tableau II contient les valeurs calculées ainsi pour les contraintes dans le
méridien et le paralléle et les moments dans le paralléle en comparaison avec les
valeurs exactes.

Tableau IL

Comparaison entre les valeurs approchées et exactes des contraintes dans le méridien et le
paralléle et les moments dans le parallele.

Pente du T+ AT T, 4+ AT M
méridien a[t;r_oché 1e_):lct ' 32 -}r_oécgg Tze;};cAtT2 appro2ché e)lcv;f:t
a kg/cm kg/cm PP kg cm/cm
40° 443 439 0 0 0 0
35° 474 481 215 193 99 115
30° 503 504 437 427 62 73
25° 506 H0o8 517 520 12 17
20° 503 504 518 523 —8 — 10
15° 501 501 511 510 —9 — 14
10° 499 499 501 501 —5 — 9
5o . 499 498 499 498 0 — 3

Le probléme que nous venons de calculer correspond aux conditions d’appui
les plus simples. Afin de démontrer I'applicabilité de cette méthode a des con-
ditions d’appui compliquées, j'ai calculé une coupole jointe a4 un cylindre suivant
la fig. 2. Afin de simplifier le probléme, dans une certaine mesure, on a admis
que la pression de l'eau est constante sur la coupole. Ce probléme fut complé-
tement résolu par Ekstrom avec les mémes hypothéses. Le tableau III contient

4 cf. par exemple Foppl, ,Drang und Zwang*, 2°¢ vol., Berlin 1928.
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les valeurs exactes pour le moment dans le méridien, M; et pour la contrainte
dans le paralléle, T,.

Pour toutes les constantes de la coupole, nous utiliserons I'indice 1 et pour les
constantes du cylindre I'indice 2.

Le calcul de cette construction fut effectué de la maniére suivante. Si la
coupole intérieure et le cylindre sont libérés 1'un de I'autre et s’ils peuvent se
déformer sans entrave sous l'effet de la surcharge, on obtient d’aprés la théorie
de la membrane:

2 . 10%
une réduction du rayon de la coupole de 2pErlbl=p ElO - 3,12 cm
. i ) r,> p-10t
une augmentation du rayon du cylindre de s =5 1,72 cm.
La paroi du cylindre forme donc un petit angle avec la verticale de T«:Q 1,72

(cf. fig. 2).

Comme cette déformation n’est pas conciliable avec les conditions d’apput
réelles, il faut introduire des forces et des moments supplémentaires pour tenir

82 =24cm

Fig. 2.

compte des- conditions de continuité. Ces conditions de continuité sont les
suivantes:

Le cylindre et la coupole doivent avoir le méme fléchissement et la méme
variation d’angle au point de liaison et le point de liaison doit en outre étre en
équilibre quant aux moments et aux forces agissantes. Ceci représente quatre
" conditions d’appui qui peuvent s’exprimer par quatre équations d’ou l'on peut
tirer toutes les inconnues: déformations, moments, etc.
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Afin de simplifier 1'établissement des équations nous donnons ci-dessous les
expressions générales pour le fléchissement et ses dérivées. On a
y = e [A cos kx 4 B sin kx] ‘
y = ke [(B—A) cos kx — (A -+ B) sin kx]
y” = 2k2e* [— B cos kx 4+ A sin kx]
y” = 2 k3 e* [(A-LB) cos kx + (B — A) sin kx] X 9)
La premiére condition que les fléchissements du cylindre et de la coupole
doivent étre égaux au bord, s’exprime par I'équation suivante:

p - 10°
E

Pour que les déformations d'angle soient égales on doit avoir:

— A;sin40° A, = (3,12 sin 40° + 1,72).

10
ky (B, —A)) =k, (B, — Ay) — T 1,72

et pour l'équilibre des moments on peut poser:
k,>EJ, B, = k,* EJ, B,.

La derniére condition doit exprimer que la réaction horizontale, résultant de
la surcharge de la coupole intérieure par l'effort de cisaillement dans le cylindre
ainst que par l'effort de cisaillement et la contrainte du méridien dans la coupole,
doit étre supportée, c’est-a-dire que

— 2K ET, (A + B Ls — 2k B (A, By) = p - 500 - cos 40"

00
Par élimination on peut tirer de ces quatre équations pour p = 1 kg/cm? les
valeurs suivantes pour les constantes
_ 10* 10*
A1=—15,35-T B1=—7’16“E—
10* . 10*
A2:_ 6,13'T B2: 2,00"’E_-

Le probléme est ainsi complétement résolu; on peut maintenant calculer sans
difficulté les moments, etc. pour chaque point du cylindre et de la coupole. Le
tableau Il donne une comparaison entre les valeurs calculées et les valeurs
exactes pour le moment de méridien et la contrainte dans le paralléle de la
coupole. La concordance est satisfaisante dans tous les points.

Ces deux exemples nous montrent que la méthode proposée est pratiquement
utilisable pour résoudre le probléme et qu'elle donne facilement les résultats a
trouver.

Ainsi que nous l'avons déja dit, la solution approchée donne des résultats
d’autant plus exacts que la coupole a une forte pente et que I'épaisseur est mince.
Ce dernier point surtout a une grosse importance, ainsi que I'a démontré entre
autres Steuermannd. L’équation exacte pour le fléchissement du méridien ne

5 E. Steuermann: ,Some Considerations on the Calculation of Elastic Shells“, Congrés
international de meécanique, Stockholm 1930.
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Tableau III.

Moments de méridien et compression dans le paralléele de la coupole
d’aprés la fig. 2.

Pente du M, M, T, + AT, T, + AT,
méridien approché exact approché exact
a kg cm/cm kg cm/cm kgicm kg/cm
40° — 5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
250 596 764 618 639
20° —_ 6 9 572 593
15° — 99 — 141 520 526
10° — b4 — 80 498 498
50 — 8 — 15 495 493
i

contient pas comme |'équation 3b que les expressions du quatriéme ordre et de
I'ordre nul mais aussi des expressions avec dérivées du premier, deuxiéme et
troisitme ordre qui cependant sont toutes multipliées avec des polynomes de
cot a. Lorsque o croit, le sens de ces expressions diminue et pour a = 909,
c’est-a-dire pour le cylindre, ces expressions tombent complétement ce qui fait
que I'équation 3b est alors tout-a-fait exacte. La réduction de 1'épaisseur de la
coupole a une influence semblable sur 1'équation différentielle compléte. On voit
directement d’'ou cela provient. Lorsque I'épaisseur de la paroi est faible, le sens
de la compression du méridien n’est que restreint par rapport a l'influence de
la variation de courbure. En d’autres termes, cela signifie que le travail des
forces normales par suite de la compression du méridien peut étre négligée, dans
les coupoles minces, vis-a-vis du travail des moments de méridien et des con-
traintes du paralléle.

Dans les problémes que nous avons traités jusqu’a présent, nous avons toujours
admis une épaisseur constante. Lorsque 1'épaisseur d est variable, on ne peut pas
partir de I'équation 3b mais il faut employer l'équation 3a. Comme la théorie
simple de la poutre sur appuis élastiques donne des résultats suffisamment
exacts dans les cas cidessus, c’est-a-dire avec épaisseur constante, c’est une raison
pour admettre qu’il doit en étre de méme lorsque 1'épaisseur est variable.

La théorie de la poutre sur appuis élastiques avec moments d'inertie variable
et appuis variables” a été étudiée jusqu'a présent par différents savants,’ en.
général & l'aide des séries. Les résultats obtenus sont malheuresement plus ou |
moins inutilisables actuellement. Par suite de la grande parenté qui existe entre
les équations 3a et 3b, il est naturellement évident que les solutions des deux
équations ont en gros la méme construction mathématique. C'est pourquoi I'on
peut admettre que I'on peut écrire la solution de I'équation 3, par exemple, sous
la forme suivante:

y = ue*z (Acosz - Bsinz) (12)

6 cf. par exemple Hayashi: ,Theorie des Triigers auf elastischer Unterlage®, Berlin 1921.

“
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ol u et z sont certaines fonctions de x. Par I'emploi du procédé d'intégration
asymptotique de Blumenthal, 1l est possible de déterminer les fonctions u et z de
telle sorte que 1'équation 12 représente vraiment, avec une trés bonne approxi-
mation, une intégrale de 1'équation 3a.

: . . oy Ed®
Si comme précedemment nous introduisons la rigidité de la poutre EJ:I—Z,
nous obtenons pour les fonctioms u et z les expressions suivantes:
1
}o?

et Z_V—erb ' (14)

On obtient ce résultat de la facon suivante: Opérons la dérivation de I'équa-
tion 3a, nous obtenons aprés simplification I'équation

Y+ pi Yy Py Py +psy=o (15)
: _ g0
ou pp==6 S
) 6‘2 b“
P’—"(bﬂL?)
ps=20
12
4—1‘262

Multiplions les équations

=1 (z)

' =12z

C=f'7" {2

" —_— f‘ z“l + 3f“ Zl " + flll '8

vV =o' 2V 4 £ (4 2 2" + 3 2"'%) + 6 £ z®z" + ¥V 24

< < < =<

ou f' représente gf ' g par les facteurs Q,, Q;, Q,, Q, et 1 et additionnons

les, nous obtenons en posant égal 4 O le membre de gauche, premiérement
I'équation:

V4 Qu v+ Qe v 4+ Qv +Quv=0 (16)
et secondement lorsque l'on pose les facteurs f, f” et f chacun pour soi égal
a zéro

274 Q2" 4+ Q2" 4+ Qgz' =0 .
4z z“‘+3z“2)—|—3z‘ z'-Q,4+z%Q,=o0 (17)
12 “+Z‘3Q1‘—“0

- De ces équations, on peut tirer Q,, Q, et Q; tandis que la fonction f (z) est
déterminée par la condition

9

774 1 Q,f = o (18)
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Si I'on choisit le facteur Q, égal & 4z’%, notre équation 18 devient

4
d f —I— 4f=o0
c’est-a-dire
f(z) = = (Acesz - Bsinz) (19)
ou Z est déterminé par la condition:
dz f/@
— = =t 20
dx 4 (20)

Si 'on introduit dans I'équation 15:y = uv on obtient aprés introduction et
division par u:

vMHWGSﬂQ+wff g+
[4u’’ 2u’ 1)
+v (= +——~pl )+vp4=o

En posant égaux les coefficients pour v et v/ dans les équations 16 et 21 on
peut déterminer les fonctions inconnues Q, et u. On obtient alors Q, = p, et
par suite d’aprés 1'équation 20

z=jvggx

= (Q,, on obtient, en employant la derniére des .

ouavec p,=

équations 17

ou u =g (13)
]/b3
Si T'on résume le résultat des calculs ci-dessus on peut écrire la solution
de I'équation 3a en négligeant les expressions qui contiennent le facteur e+,
sous la forme suivante:

y=ie—z (A cos z + B sin z) (12a)

yo?
ou z lest déterminé par la condition
*dx
Vro

Au premier aspect, I'équation 12a pardit peut-étre incommode et peu appro-
priée & un emploi pratique a cause de la construction compliquée de la fonction z

z_]/3

1 ,
et du facteur supplémentaire i/ . Dans la pratique, le cas se pose plus
63

simplement. Il n’est pas nécessaire de donner la fonction z autrement qu’al-
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gébriquement et c’est pourquoi elle peut étre calculée trés facilement en partant
de I'équation 14, par exemple par la régle du trapéze. La dérivation de I'équa-
tion 12a donne des expressions assez compliquées lorsque l'on n’introduit
aucune approximation. Remarquons que les dérivées z”, z’”, u” et u’” sont petites
et par conséquent peuvent étre négligées pour les dimensions qui se présentent
dans la pratique. On obtient des dérivées de la forme suivante:

y =—ue*(Acosz+ Bsinz)
y —=uz'e?[(B—pA)cosz— (A+ pB)sing]

Y/ =2uz?e*[—(uB+vA)cosz+ (WA —vB)sinz] (9a)
y,u — Quzde? [(A + W B) cos z + (B — A) sin Z]
Al u‘
ou y =
uz
u =1—v
“1 oy 1 _ 3 Ve
Dans le cas ou l'épaisseur est constante on obtient v =0 et p = =1

et les équations ci-dessus sont exactement les mémes que les équations 9.

Les équations 9a sont construites de la méme maniére que les dérivées données
dans les équations 9 pour une poutre avec rigidité constante. Le calcul d'une
coupole d’épaisseur variable se laisse par conséquent exécuter de la méme
maniére et sans beaucoup plus de peine que dans le cas d’épaisseur constante.
Les exemples calculés ci-dessus (cf. fig. 1 et 2) sont aussi figuratifs pour le
cas ou d est variable et les équations d’équilibre sont a établir de méme en
apportant seulement les modifications éxigées par la différence entre les équa-
tions 9 et 9a.

Dans le probléeme de la coupole, nous n’avons pas considéré le fait que la
poutre-méridien s’amincissait vers le haut et avait une largeur nulle a la clé de
la coupole, nous avons plutét admis une largeur constante. Ceci correspond a la
réalité lorsque la coupole est cylindrique mais, dans les coupoles en général, il
existe dans chaque hypothése une certaine approximation. Si nous considérons ce
retrécissement, nous pouvons écrire, pour une coupole sphérique, le moment
d'inertie de la poutre-méridien a une distance angulaire ¢ de la clé de la fagon
suivante: '

63 sin o
9
J 12 Sin Co <-1)

Avec cette expression pour le moment d'inertie, nous obtenons _pour les fonc-
tions u et z

1 1

ua = —

i/g’ %/siI:;

*/sin a,
et I o . dx.
ferb sm o

Les relations ci-dessus concernent principalement le probléme de la coupole
mais 1l est évident que I'on peut les appliquer a un réservoir cylindrique et a des
constructions semblables qu’il faut considérer comme cas particuliers. Les
méthodes usitées pour le calcul de tels réservoirs? ainsi que leurs développement

47 F




738 A. Granholm

en séries peuvent étre avantageusement remplacées par la méthode donnée
ci-dessus. On rencontre un cas spécial intéressant de ce probléme dans le calcul
des barrages en arc massifs. Jusqu'a présent on partait, pour résoudre de tels
problémes, de I'équation 3b et I'on introduisait une valeur moyenne de 1'épaisseur
de la paroi.8

En traitant I'équation 3a d’aprés la méthode ci-dessus, on peut sans difficulté
tenir compte de 'anisotropie en différentes directions et a différents points de
la construction. Il peut s’agir d’'une pure qualité du matériau ou d'une pure
anisotropie constructive. Par exemple, par l'introduction de différentes quan-
tités de fer d’armature dans différentes directions, le module apparent d’élasti-
cité du matériau est variable pour les différentes directions, ce qui doit étre
considéré comme anisotropie du matériau; pour introduire une anisotropie con-
structive dans un réservoir cylindrique ou une coupole on peut placer des poutres
de renforcement dans la direction de la génératrice ou du méridien. Dans de
telles conditions on ne peut pas écrire I'équation 3a sous la forme de I'équation 15;
les coefficients p, a p, ont I'aspect suivant:

_ 2 (EJ)
P = ‘—E‘l—J—
__(E )"
P =gy
1)3 = 0
E; d
Py = r? El_']

et les fonctions z et u apparaissent sous la forme suivante:
24/
E, o
= ——— . dx
’ J V4 rE,J

8 rb
t u = ‘/‘ -
© E,JE'o
Mais comme on emploie pour u et pour z une expression mathématique,
I'introduction des équations 22 et 23 n’apporte aucune complication des calculs.

Résumé.

Par la décomposition des voiles en deux faisceaux de poutres qui se croisent
on peut obtenir une représentation plus claire du mode d’action statique de la
construction. Les moments et les contraintes qui se produisent peuvent d&tre
calculés comme pour la poutre sur appui continu élastique. Comme la théorie
exacte conduit & des solutions en forme de séries infinies qui ne convergent
que lentement dans certaines conditions, la méthode donnée ici présente des
avantages pratiques.

7 ¢f. Lorenz: ,,Technische Elastizititslehre', Berlin 1913. H. Reifiner: ,Beton und Eisen”
7, 150, 1908. 7. Péschl et K. Terzaghi: ,,Berechnung von Behiltern, Berlin 1913.

8 ¢f. N. Royen: ,Tvirodammen vid Norrfors kraftverk” (Le barrage de Tviré a l'usine de
Norrfors), revue Betong, cahier 2, 1926.
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