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IVa 3

Coupoles massives, reservoirs cylindriques
et constructions semblables.

Massive Kuppeln, zylindrische Behälter
und ähnliche Konstruktionen.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,
Dozent an der Königlichen Technischen Hochschule, Stockholm.

Le calcul exact des contraintes de flexion dans une coupole massive est tres

complique. Un travail de doctorat1 presente ä l'Ecole polytechnique de Stockholm

fait ressortir ces difficultes et l'on peut se demander si l'ingenieur occupe
dans la pratique trouvera le temps et l'occasion de calculer les dimensions d'une
coupole sur la base de la theorie exacte. L'etablissement des equations
fondamentales est dejä complique et leur integration exacte conduit ä des series qui
sont difficiles ä mamer et qui ne convergent que lentement. Alors que la

convergence est satisfaisante pour bien des epaisseurs de paroi, une
modification de cette epaisseur peut faire disparaitre cette bonne convergence. Meme

lorsque l'ingenieur possede ä fond la theorie mathematique de ce probleme, le

calcul d'un cas de charge determine exige beaucoup trop de travail. II serait
tout-ä-fait impossible d'arriver ä une methode pratique en partant du chemin
suivi par Meissner, Bolle, Dubois, Honegger, Ekström, etc. Par exemple, pour
les coupoles spheriques, on obtient lors de Fintegration dans les cas les plus
simples, des series hypergeometriques qui ne peuvent etre pour l'ingenieur un
instrument exact ä cause de leur lente convergence.

En consideration de ces faits, il importe avant tout, pour le developpement
plus ample de la theorie des coupoles, de se diriger vers des Solutions qui
satisfassent les exigences de la pratique, meme si Fon doit introduire cerfaines

approximations. Ainsi que l'a montre Geckeier,2 il est possible de trouver par
des moyens mathematiques relativement simples, une Solution qui ne s'eloigne
que peu de la Solution exacte et qui est simple et agreable ä employer lorsque
l'epaisseur de la paroi et le rayon sont constants. La bonjie concordance entre
la theorie de Geckeier et la theorie exacte nous permet d'expliquer plus exactement

la theorie approchee, lorsque Fon est au clair sur les hypotheses que l'on

1 John Erik Ekström: „Studien über dünne Schalen von rotationssymmetrischer Form und

Belastung mit konstanter und veränderlicher Wandstärke". Stockholm 1932.
2 cf. par ex. „Handbuch für Eisenbetonbau", 6e vol., Berlin 1928.
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introduit. On s'approche encore un peu plus de la theorie exacte en employant
le procede d'integration asymptotique de Blumenthal et Steuermann, ce qui peut
se faire meme lorsque l'epaisseur de la paroi est variable. Ce procede represente
un gros progres par rapport aux methodes qui sont basees sur des Solutions
en forme de series infinies, oü l'on doit toujours supposer que l'epaisseur de la

paroi varie suivant une fonetion determinee pour obtenir une Solution.
Un examen plus approfondi des equations finales donnees par Geckeier montre

que ces equations sont exactement du meme type que celles pour une poutre
sur appuis elastiques. L'analogie physique n'est pas non plus difficile ä remarquer.

On peut considerer comme une poutre le meridien de la coupole qui est
soutenu par les cercles paralleles ou ceintures. Comme ceux-ci se laissent
comprimer ou etirer ils correspondent au point de vue statique ä des appuis
elastiques.

Cette conception nous fait voir la statique de la coupole avec une exactitude
süffisante. Pour l'etablissement des equations d'equilibre, il n'est plus necessaire
de reprendre les equations differentielles de Meissner et il est possible de poser
directement et simplement les equations necessaires ä l'aide de la theorie des*

poutres sur appuis elastiques. Ceci signifie, pour l'ingenieur qui est dans la

pratique qu'il n'a plus besoin de s'efforcer tout d'abord de comprendre la theorie
classique, assez compliquee, de la coupole; de plus il peut etablir de lui-meme les

equations necessaires.
Les travaux de Geckeier montrent qu'il n'a lui-meme pas completement saisi

la haute signification des approximations qu'il propose; c'est-ä-dire qu'il n'a

pas compris qu'en gros la coupole agit comme une serie continue de poutres
sur appuis elastiques. La maniere de voir que je propose peut naturellement
etre elendue en ce sens que l'on peut considerer le meridien non comme une
poutre mais comme un are appuye elastiquement sur les elements annulaires de
la coupole.

Par l'introduction de cette conception plus exaete, on obtient un apergu plus
juste de la statique de la coupole et les equations que l'on obtient ainsi sont les

memes que celles de Meissner.
11 est notoire que specialement dans les coupoles tres plates, oü par consequent

l'effet de voüte dans les elements de meridien est tres marque, il est necessaire
d'introduire cette derniere maniere de voir afin d'obtenir l'exactitude desiree.
Plus la tangente ä la coupole au droit de l'appui est inclinee, plus sera exacte
la conception du meridien en tant que poutre sur appuis elastiques et dans le

cas special oü la tangente ä la coupole est partout verticale, c'est-ä-dire lorsque
la coupole se transforme en un cylindre, cette maniere de voir est tout-ä-fait
exacte.

Afin de faire mieux voir la simplicite du probleme de la coupole traite de

cette fagon, j'ai calcule quelques problemes et j'ai compare les resultats ainsi
obtenus avec ceux de la theorie exacte. La concordance est partout etonnement
bonne.

Comme premier exemple, choisissons une coupole spherique de beton arme
d'epaisseur constante, b 16 cm, de rayon r 1000 cm et d'angle d'ouverture
40°. Supposons que la coupole soit chargee par un liquide ä la pression
constante p 1,0 kg/cm2 et que l'arete soit completement encastree (fig. 1).
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Si l'on calcule les contraintes dans cette coupole d'apres la theorie des mem-
p r

branes, on obtient une compression dans le meridien Tt -^- et une compres-

prsion dans les paralleles T2 ^—. Ces contraintes dans le meridien et le parallele

sont constantes sur toute la coupole et la Solution par la theorie des membranes

2500--
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exact
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10° 0*

Fig. 1.

Comparaison entre la grandeur du moment meridien calculee d'abord d'apres l'equation 5

et ensuite d'apres la methode exacte au moyen de series hypergeometriques. Les ecarts
sont insignifiants pour la pratique.

est tres simple. Sous l'effet de ces contraintes de compression T1 et T2 la cou-
T • r

pole est comprimee de teile sorte que son rayon se reduit de -rrr-, c'est-ä-dire

pr2
^ Cette reduction du rayon n'est pas grande; dans notre exemple, pour

E — 210000 kg/cm2, eile ne se monte qu'ä 0,15 cm. Mais comme la coupole
est fixee tout autour de son arete, eile ne peut pas modifier librement sa forme;
les parties situees pres de l'arete conserveront le rayon primitif mais plus on
s'eloigne de l'arete, plus la liberte de mouvement de la construction est grande
et plus les deformations pourront se produire librement. Quoique dans notre
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cas la compression soit relativement faible, il se produit cependant aux environs
des aretes certaines perturbations qui engendrent des moments d'un ordre de

grandeur tel que l'on ne peut pas les negliger.
Nous voulons rechercher maintenant quels moments sont engendres dans une

poulre sur appuis elastiques lorsque l'on admet qu'elle subit un flechissement

p r
correspondant ä la valeur que nous avons calculee ci-dessus F La relation

entre le moment et le flechissement est donnee par l'equation:

d2v
EJ--SJ -M1 (1)

et l'influence de l'appui elastique des elements de parallele est exprimee par
l'equation:

dx2 r2 5 K >

EHminons Mx de ces deux equations, on obtient

dx;

d2v

dxz + ?.y o (3a)

i i • • t r -n t i Em2 b3
ou en admettant que la rigidite E J est constante et egale a —9 7 • — on a:1 o o m* — l -12

oü k4

d* v
dx? + 4k4v °

3 (m2 — 1)
(3 b)

m2 r2 o2

L'integrale generale de l'equation 3b peut s'ecrire sous la forme connue

y e~kx (A cos kx + B sinkx) -f ekx (C cos kx + D sin kx) (4a)

c'est-ä-dire que l'on peut considerer le flechissement comme la somme de deux
oscillations sinusoidales, Fun avec amplitudes decroissantes et l'autre avec amplitudes

croissantes. On peut poser en general que les coefficients C et D sont
nuls en admettant que la poutre n'est pas trop courte et que Forigine peut etre
deplacee au point d'oü part la perturbation. Pour les coupoles fermees, on peut
par consequent ecrire l'integrale avec precision süffisante sous la forme:

y e~kx (A cos kx + B sin kx) (4b)

Ici x designe la longueur d'arc du meridien, mesuree ä partir du bord de la

coupole. Dans ce cas, il est facile de determiner les constantes arbitraires en

partant des conditions d'appui:

on obtient:

v — T„ et v o* 2Eb J

A-ß- 2E&
et le flechissement du meridien est ainsi

2EÖ
pr

y — ^r^ • e~kx (cos kx + sin kx).
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Apres introduction de cette valeur dans l'equation 1 on obtient l'expression
suivante pour le moment dans le meridien:

K3
Mt —— pr be_kx (— cos kx + sin kx) (5)

Ltd

Dans cette expression on a neglige la contraction du materiau c est-ä-dire que
l'on a pose le nombre de Poisson m oo.

A l'aide des valeurs donnees dans le tableau I pour les fonctions e_kx cos kx et
e~kx sin kx, il est facile de representer graphiquement l'equation 5. Dans la fig. 1,

on voit tres bien comment le moment dans le meridien Mx varie avec l'eloignement

du bord de la coupole. A titre de comparaison, nous avons donne les

valeurs exactes calculees d'apres la methode de Bolle avec series hypergeometri-
ques.3 Ainsi que l'on peut le voir, la concordance entre les resultats exacts et,
les valeurs approximatives est etonnement bonne c'est pourquoi il n'y a aucune
raison de faire du probleme de la coupole un travail mathematique etendu. Dans
les coupoles avec angle d'ouverture plus grand que dans notre cas, la concordance

entre les valeurs exactes et approchees est encore meilleure. Seulernent

pour les coupoles dont la pente aux appuis est tres faible, l'influence des
hypotheses que l'on a faites a une signification pratique. Bemarquons en passant que
de telles coupoles ne sont pas appropriees, ä cause des fortes perturbations qui
se produisent ä la liaison de la coupole ä la ceinture d'appui.

Pour le calcul des contraintes dans la coupole. il n'y a pas que le moment
dans le meridien qui rentre en ligne de compte mais aussi les moments dans le

parallele M2 et l'accroissement des compressions dans le meridien et le parallele
qui en resulte, car les conditions d'appui ne correspondent pas aux hypotheses
de la theorie des membranes. Ces grandeurs M2, Al^ et AT2 peuvent etre
calculees directement ä partir des relations suivantes. La concordance entre les

valeurs obtenues d'apres la methode approchee que nous donnons et celles
obtenues par la methode exacte est aussi tres bonne, ainsi que l'on peut le voir
d'apres la comparaison donnee dans le tableau II.

L'etablissement des expressions mathematiques pour les forces supplementaires
AT3 et AT2 se fait de la fagon la plus simple par application de Fanalogie, en
considerant le meridien comme une poutre sur appuis elastiques. Le Supplement
de la compression dans le meridien, ATX, peut etre considere comme l'effort de

cisaillement dans la poutre multiplie par cotg a, oü a est l'angle forme par le
meridien et le plan horizontal. On obtient

AT1 cotg a EJ • ~J. (6)

Le Supplement de compression dans le parallele AT2, est une mesure pour
l'effet d'appui elastique et AT2 est par consequent directement proportionnel au
flechissement y du meridien, donc

ATä —-y. (0

3 cf. Ekström, p. 124.
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Tableau I.

Valeurs des fonctions e-kx cos kx, e-kx sin kx, e—kx (cos kx — sin kx) et e-kx (cos kx + sin kx)

kx e—kx cos kx e—kx sin kx e—kx (cos kx — sin kx) e-kx (cos kx -f sin kx)

0 1.0000 0.0000 1.0000 1.0000
TT

0.6239 0.2584 0.3655 0.8823

TT

T 0.3225 0.3225 0.0000 0.6450

3ti
8

0.1179 0.2845 — 0.1665 0.4024

TT
0.0000 0.2079 - 0.2079 0.2079

5tt
8 - 0.0536 0.1297 — 0.1833 0.0761

3tt
4

— 0.0671 0.0671 — 0.1342 0.0000

7ti
— 0.0592 0.0245 — 0.0837 — 0.0347

TT — 0.0432 0.0000 — 0.0432 — 0.0432
9tt
8 - 0.0269 — 0.0112 — 0.0157 — 0.0381

5tt
4

— 0.0139 — 0.0139 0.0000 — 0.0279

11 n
8

— 0.0051 — 0.0123 0.0072 — 0.0174

2
0.0000 — 0.0090 0.0090 — 0.0090

13*
8

0.0023 — 0.0056 0.0079 — 0.0033

7tt
4

0.0029 — 0.0029 0.0058 0.0000

15 TT

8
2*

0.0026 — 0.0011 0.0037 0.0015

0.0019 0.0000 0.0019 0.0019
17

TT

8
0.0011 0.0005 0.0006 0.0016

9
0.0006 0.0006 0.0000 0.0012

19
0.0002 0.0005 — 0.0003 0.0007

5
T71 0.0000 0.0004 — 0.0004 0.0004

21
— 0.0001 0,0003 — 0.0004 0.0002

11
— 0.0001 0.0001 — 0.0002 0.0000

23
8-71 -0.0001 0.0001 — 0.0002 0.0000

3tt — 0.0001 0.0000 — 0.0001 — 0.0001
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Le moment dans le parallele M2 s'obtient de la fagon la plus simple en
determinant les modifications de courbure du parallele1 et l'on obtient en negligeant
l'influence de la contraction

nr A
EJ d\ /oNM2 cotg a — -£. (8)

Introduisons dans les equations G, 7 et 8 l'equation pour le flechissement du
meridien

pr2
v K=— e~kx (cos kx + sin kx)J 2Eb x

on obtient les expressions suivantes pour ATX, AT2 et M2:

pr2 b2
AT, cot a 6

k3 e_kx cos kx

A T2 — ±— e~kx (cos kx -f- sin kx)

»T x P1" O"
Mg cot a t~- kx.

(6 a)

(7 a)

(8 a)

Le tableau II contient les valeurs calculees ainsi pour les contraintes dans le
meridien et le parallele et les moments dans le parallele en comparaison avec les

valeurs exactes.
Tableau II

Comparaison entre les valeurs approchees et exactes des contraintes dans le meridien et le

parallele et les moments dans le parallele.

Pente du
meridien

a

T! +AT,
approche

kg/cm

T,+ ATt
exact
kg/cm

T2 + AT2
approche

T2+AT2
exact

M2
approche
kg cm/cm

M2
exact

40° 443 439 0 0 0 0

35° 474 481 215 193 99 113

30° 503 504 437 427 62 73

25° 506 508 517 520 12 17

20° 503 504 518 523 — 8 -10
15° 501 501 511 510 — 9 — 14

10° 499 499 501 501 — 5 - 9

5° 499 498 499 498 0 — 3

Le probleme que nous venons de calculer correspond aux conditions d'appui
les plus simples. Afin de demontrer Fapplicabilite de cette methode ä des

conditions d'appui compliquees, j'ai calcule une coupole jointe ä un cylindre suivant
la fig. 2. Afin de simplifier le probleme, dans une certaine mesure, on a admis

que la pression de l'eau est constante sur la coupole. Ce probleme fut completement

resolu par Ekström avec les memes hypotheses. Le tableau III contient

4 cf. par exemple Foppl, „Drang und Zwang", 2e vol., Berlin 1928.
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les valeurs exactes pour le moment dans le meridien, M1 et pour la contrainte
dans le parallele, T2.

Pour toutes les constantes de la coupole, nous utiliserons l'indice 1 et pour les
constantes du cylindre l'indice 2.

Le calcul de cette construction fut effectue de la maniere suivante. Si la

coupole interieure et le cylindre sont liberes l'un de l'autre et s'ils peuvent se
deformer sans entrave sous l'effet de la surcharge, on obtient d'apres la theorie
de la membrane:

pr 2 p•IO4
une reduction du rayon de la coupole de * ———• 3,12 cm

2 E öx E

pr 2
p • IO4

une augmentation du ra\on du cylindre de -*^—= ±——— • 1,72 cm.
E oä E

La paroi du cylindre forme donc un petit angle avec la verticale de -r- • 1,72

(cf. fig. 2).
Comme cette deformation n'est pas conciliable avec les conditions d'appui

reelles, il faut introduire des forces et des moments supplementaires pour tenir

^r^/7Pf-4'

St sf6cm

12Ar,

Jfi

-«—*

Fig 2

compte des conditions de continuite. Ces conditions de continuite sont les

suivantes:

Le cylindre et la coupole doivent avoir le meme flechissement et la meme
Variation d'angle au point de liaison et le point de liaison doit en outre etre en

equilibre quant aux moments et aux forces agissantes. Ceci represente quatre
conditions d'appui qui peuvent s'exprimer par quatre equations d'oü l'on peut
tirer toutes les inconnues: deformations, moments, etc.
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Afin de simplifier Fetablissement des equations nous donnons ci-dessous les

expressions generales pour le flechissement et ses derivees. On a

y e_kx [A cos kx -|- B sin kx]

y' k e-kx [(B — A) cos kx — (A + B) sin kx]

y" 2 k^ e-kx [— B cos kx + A sin kx]

y'" 2 k3 e-kx [(A + B) cos kx -f (B — A) sin kx] (9)

La premiere condition que les flechissements du cylindre et de la coupole
doivent etre egaux au bord, s'exprime par l'equation suivante:

— Ax sin 40° + A2
p ' J—

(3,12 sin 40° + 1,72).

Pour que les deformations d'angle soient egales on doit avoir:

k1(B1-A1) ks(BI-A1)-Y'1.72
et pour l'equilibre des moments on peut poser:

V EJX Bx k2* EJ2 Bä.

La derniere condition doit exprimer que la reaction horizontale, resultant de

la surcharge de la coupole interieure par l'effort de cisaillement dans le cylindre
ainsi que par l'effort de cisaillement et la contrainte du meridien dans la coupole,
doit etre supportee, c'est-ä-dire que

— 2 kx8 EJj (Ax + B,) -^1— — 2 k23 EJS (A2 + B2) p 500 • cos 40°.

Par elimination on peut tirer de ces quatre equations pour p 1 kg cm2 les

valeurs suivantes pour les constantes

104 IO4
At — 15,35 ~ B, — 7,16 ~

104 u on-
1C)4

_ B2 2,0o • -g-.A2 — 6,13 -R- B2= 2,05

Le probleme est ainsi completement resolu; on peut maintenant calculer sans
difficulte les moments, etc. pour chaque point du cylindre et de la coupole. Le
tableau III donne une comparaison entre les valeurs calculees et les valeurs
exactes pour le moment de meridien et la contrainte dans le parallele de la
coupole. La concordance est satisfaisante dans tous les points.

Ces deux exemples nous montrent que la methode proposee est pratiquement
utilisable pour resoudre le probleme et qu'elle donne facilement les resultats ä

trouver.
Ainsi que nous l'avons dejä dit, la Solution approchee donne des resultats

d'autant plus exacts que la coupole a une forte pente et que l'epaisseur est mince.
Ce dernier point surtout a une grosse importance, ainsi que l'a demontre entre
autres Steuermann5. L'equation exacte pour le flechissement du meridien ne

5 E. Steuermann: „Some Considerations on the Calculation of Elastic Shells", Congres
international de mecanique, Stockholm 1930.
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Tableau III.
Moments de meridien et compression dans le parallele de la coupole

d'apres la fig. 2.

Pente du
meridien

et

approche
kg cm/cm

M,
exact

kg cm/cm

T3 + AT2
approche

kg/cm

T2 + AT2
exact
kg/cm

40° -5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
25° 596 764 618 639
20° — 6 9 572 593
15° — 99 - 141 520 526
10° - 54 — 80 498 498

5° — 8 — 15 495 493

contient pas comme l'equation 3 b que les expressions du quatrieme ordre et de
l'ordre nul mais aussi des expressions avec derivees du premier, deuxieme et
troisieme ordre qui cependant sont toutes multipliees avec des polynomes de

cot ct. Lorsque et croit, le sens de ces expressions diminue et pour et 90°,
c'est-ä-dire pour le cylindre, ces expressions tombent completement ce qui fait
que l'equation 3b est alors tout-ä-fait exacte. La reduction de l'epaisseur de la
coupole a une influence semblable sur l'equation differentielle complete. On voit
directement d'oü cela provient. Lorsque l'epaisseur de la paroi est faible, le sens
de la compression du meridien n'est que restreint par rapport ä l'influence de
la Variation de courbure. En d'autres termes, cela signifie que le travail des

forces normales par suite de la compression du meridien peut etre negligee, dans
les coupoles minces, vis-ä-vis du travail des moments de meridien et des
contraintes du parallele.

Dans les problemes que nous avons traites jusqu'a present, nous avons toujours
admis une epaisseur constante. Lorsque l'epaisseur b est variable, on ne peut pas
partir de l'equation 3b mais il faut employer l'equation 3a. Comme la theorie
simple de la poutre sur appuis elastiques donne des resultats suffisamment
exaets dans les cas eidessus, c'est-ä-dire avec epaisseur constante, c'est une raison

pour admettre qu'il doit en etre de meme lorsque l'epaisseur est variable.

La theorie de la poutre sur appuis elastiques avec moments d'inertie variable
et appuis variables a ete etudiee jusqu'a present par differents savants,6 en
general ä l'aide des series. Les resultats obtenus sont malheuresement plus ou
moins inutilisables actuellement. Par suite de la grande parente qui existe entre
les equations 3a et 3b, il est naturellement evident que les Solutions des deux

equations ont en gros la meme construction mathematique. C'est pourquoi l'on
peut admettre que Fon peut ecrire la Solution de l'equation 3, par exemple, sous
la forme suivante:

y ue^ (Acosz -f Bsinz) (12)

6 cf. par exemple Hayashi: „Theorie des Trägers auf elastischer Unterlage", Berlin 1921.
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oü u et z sont certaines fonctions de x. Par l'emploi du procede d'integration
asymptotique de Blumenthal, il est possible de determiner les fonctions u et z de
teile sorte que l'equation 12 represente vraiment, avec une tres bonne approximation,

une integrale de l'equation 3a.
Eb3

Si comme precedemment nous introduisons la rigidite de la poutre EJ ——,

nous obtenons pour les fonctions u et z les expressions suivantes:

* i (13)

et

On obtient ce resultat de la facon suivante: Operons la derivation de l'equation

3a, nous obtenons apres simplification l'equation

fr+ Pi y"1 + p8 y" + Pa y' + p4 y o (15)

b'
oü Pi

P2

Ps

P4

0

12

r"b2

Multiplions> les

V

v'

v"

equations

f(z)
f'z'
f z" + f" z'2

v"' f z"' + 3f"z':z" + f" z' s

ylV f'z^+f"(4z'z"' + 3z''") + 6 f" Z'*z'< + frrz.4
1 p 1

oü f represente -j- et z', y-, par les facteurs Q4, Q3, Q2, Qx et 1 et additionnons

les, nous obtenons en posant egal ä 0 le membre de gauehe, premierement
l'equation:

yiv + Qi v-.- + Q2 v" + Q3 V' + Q4 v o (16)

et secondement lorsque l'on pose les facteurs f, f" et f chacun pour soi egal
ä zero

z^+Q1z'" + Q2z" + Q3z' o

(4 z' z'" + 3 z"2) + 3 z' z" Qx + z'2 Q2 o (17)

6 z'2 z" + z'3 Qx o

• De ces equations, on peut tirer Qv Q2 et Q3 tandis que la fonetion f (z) est
determinee par la condition

f"V* + Q4f=o (18)
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Si l'on choisit le facteur Q4 egal ä 4 z'4, notre equation 18 devient

d*f
dz47*

c'est-ä-dire

f (z) e±z (Acosz + Bsinz) (19)

oü Z est determine par la condition:

^=1/^ (20)
dx "4

Si l'on introduit dans l'equation 15: y uv on obtient apres introduction et
division par u:

/4u'" 3u" .2u' \
+ V 1"-^-+—-Pl+-u-P2 + P3J+VPi=0

En posant egaux les coefficients pour v et v"' dans les equations 16 et 21 on
peut determiner les fonctions inconnues Q4 et u. On obtient alors Q4 pd et
par suite d'apres l'equation 20

=fh<*
12 ir- C dx nA\0Uavec p1=i^; «= ^J ^= (14)

wlition

equations 17

4u'
De la condition -j- px Qv on obtient, en employant la derniere des

4u' 3 n v— -Pi-y(logp,)
ou u =±z (13)

Si Ton resume le resultat des calculs ci-dessus on peut ecrire la Solution
de l'equation 3a en negligeant les expressions qui contiennent le facteur ef z,

sous la forme suivante:

y — e~z (A cos z + B sin z) (12 a)
/b3

oü z (est determine par la condition

Au premier aspect, l'equation 12a parait peut-etre incommode et peu appro-
prige ä un emploi pratique ä cause de la construction compliquee de la fonetion z

et du facteur supplementaire 4
Dans la pratique, le cas se pose plus

simplement. II n'est pas necessaire de donner la fonetion z autrement qu'al-
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gebriquement et c'est pourquoi eile peut etre calculee tres facilement en partant
de l'equation 14, par exemple par la regle du trapeze. La derivation de l'equation

12a donne des expressions assez compliquees lorsque l'on n'introduit
aucune approximation. Bemarquons que les derivees z", z'", u" et u'" sont petites
et par consequent peuvent etre negligees pour les dimensions qui se presentent
dans la pratique. On obtient des derivees de la forme suivante:

y =ue-z(A cos z + B sin z)

y' u z' e~z [(B — jli A) cos z — (A + ju B) sin z]

y" =2uz'2 e-z [— (fi B + v A) cos z + (u. A — v B) sin z] (9 a)

y'" 2uz/3 e~z [(A + ^ B) cos z + (B — Uj A) sin z]

ou _ u'
uz'

JLI =1 V

jUx =1 — 3 V.

Dans le cas oü l'epaisseur est constante on obtient v 0 et ju, ju' 1

et les equations ci-dessus sont exactement les memes que les equations 9.

Les equations 9 a sont construites de la meme maniere que les derivees donnees
dans les equations 9 pour une poutre avec rigidite constante. Le calcul d'une
coupole d'epaisseur variable se laisse par consequent executer de la meme
maniere et sans beaucoup plus de peine que dans le cas d'epaisseur constante.
Les exemples calcules ci-dessus (cf. fig. 1 et 2) sont aussi figuratifs pour le

cas oü b est variable et les equations d'equilibre sont ä etablir de meine en

apportant seulernent les modifications exigees par la difference entre les equations

9 et 9 a.
Dans le probleme de la coupole, nous n'avons pas considere le fait que la

poutre-meridien s'amincissait vers le haut et avait une largeur nulle ä la cie de
la coupole, nous avons plutöt admis une largeur constante. Ceci correspond ä la
realite lorsque la coupole est cylindrique mais, dans les coupoles en general, il
existe dans chaque hypothese une certaine approximation. Si nous considerons ce
retrecissement, nous pouvons ecrire, pour une coupole spherique, le moment
d'inertie de la poutre-meridien ä une distance angulaire a de la cie de la facon
suivante: c q

J=&!.smcL
12 sin a0

\vec cette expression pour le moment d'inertie, nous obtenons pour les fonctions

u et z

1 1
u

n sm a

met z n[^4=-]/S4^2-dx.4rb ' sin a
Les relations ci-dessus concernent principalement le probleme de la coupole

mais il est evident que l'on peut les appliquer ä un reservoir cylindrique et ä des

constructions semblables qu'il faut considerer comme cas particuliers. Les
methodes usitees pour le calcul de tels reservoirs7 ainsi que leurs developpement

47 F
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en series peuvent etre avantageusement remplacees par la methode donnee
ci-dessus. On rencontre un cas special interessant de ce probleme dans le calcul
des barrages en are massifs. Jusqu'a present on partait, pour resoudre de tels
problemes, de l'equation 3b et Ton introduisait une valeur moyenne de l'epaisseur
de la paroi.8

En traitant l'equation 3 a d'apres la methode ci-dessus, on peut sans difficulte
tenir compte de Fanisotropie en differentes directions et ä differents points de

la construction. II peut s'agir d'une pure qualite du materiau ou d'une pure
anisotropie constructive. Par exemple, par l'introduction de differentes quantites

de fer d'armature dans differentes directions, le module apparent d'elasticite

du materiau est variable pour les differentes directions, ce qui doit etre
considere comme anisotropie du materiau; pour introduire une anisotropie
constructive dans un reservoir cylindrique ou une coupole on peut placer des poutres
de renforcement dans la direction de la generatrice ou du meridien. Dans de
telles conditions on ne peut pas ecrire l'equation 3a sous la forme de l'equation 15;
les coefficients px ä p4 ont Faspect suivant:

_ (Et J)<<

Pä_ EXJ

E2Ö
^ ~ r2 E, J

et les fonctions z et u apparaissent sous la forme suivante:

dx

_ i7 r«
et u — r e, J e88 &*

Mais comme on emploie pour u et pour z une expression mathematique,
l'introduction des equations 22 et 23 n'apporte aucune complication des calculs.

Resume.

Par la decomposition des voiles en deux faisceaux de poutres qui se croisent

on peut obtenir une representation plus claire du mode d'aetion statique de la
construction. Les moments et les contraintes qui se produisent peuvent etre
calcules comme pour la poutre sur appui continu elastique. Comme la theorie
exacte conduit ä des Solutions en forme de series infinies qui ne convergent

que lentement dans certaines conditions, la methode donnee ici presente des

avantages pratiques.

7 cf. Lorenz: „Technische Elastizitätslehre'', Berlin 1913. H. Reißner: „Beton und Eisen"
7, 150, 1908. T. Pöschl et K. Terzaghi: „Berechnung von Behältern", Berlin 1913.

8 cf. N. Royen: „Tvärödammen vid Norrfors kraftverk" (Le barrage de Tvärö ä l'usine de

Norrfors), revue Betong, cahier 2, 1926.
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