
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 2 (1936)

Artikel: Etude des voiles minces courbes ne subissant pas de flexion

Autor: Aimond, F.

DOI: https://doi.org/10.5169/seals-2953

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-2953
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


IVal
Etude des voiles minces courbes ne subissant pas de

flexion.

Einführung in die allgemeine Theorie der biegungsfreien Schalen.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. es sciences F. Aimond,
Ingenieur des Ponts et Chausee detache au Ministere de l'Air, Paris.

1° — Rappel des equations generales en coordonnees rectilignes de l'equilibre
statique des voiles minces.

Soit z f (x, y) l'equation de la surface en coordonnees rectilignes quelcon-
ques non necessairement rectangulaires. L'etat des contraintes en un point m du
voile. est determine par la connaissance des contraintes nv n2, ©, agissant sur
les elements mm1 et mm2 respectivement paralleles aux plans zox et zoy.
nx agit sur mm2 parallelement au plan zox, n2 agit sur mn^ parallelement au
plan zoy, 0 agit ä la fois sur mmx parallelement ä zox, et sur mm2 parallelement

ä zoj (fig. 1). Designons par av 0, y± et 0, ß2, y2 les coefficients direc-
teurs des tangentes aux elements mmx et mm2, c'est-ä-dire les projections suivant
ox, oy, oz du vecteur unite portees par chacune de ces tangentes.

Supposons le voile charge d'une maniere quelconque, et appelons Xdxdy,
Ydxdy, Zdxdy les composantes suivant ox, oy, oz, de la charge appliquee ä

l'element mm1m'm2 limite aux paralleles mmx et m2m' au plan zox et aux
paralleles mm2 et m1 m' au plan zoy. L'etude des conditions d'equilibre des

dits elements conduit aux equations suivantes;
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2° — Interpretation geometrique des quantites figurant dans les equations
generales d'equilibre.

La quantite £ figurant au second membre de l'equation (3) n'est autre que
la projection du vecteur (X, Y, Z) sur oz, cette projection etant effectuee
parallelement au plan tangent ä la surface. Pour interpreter les quantites vlf v2
et 0 qui sont les inconnues des equations d'equilibre, definissons d'une maniere
generale ce que nous appellerons contrainte reduite. Par definition, la contrainte
reduite s'exergant sur un element du voile est la projection sur le plan des xy
de la force elastique s'exercant sur cet elements, divisee par la longueur de
la projection de l'element. On constate facilement que la repartition des
contraintes reduites autour d'un point suit les memes lois que les contraintes reelles
et en particulier la representation de Mohr leur est applicable. Les quantites vv
v2, 0, sont precisement les contraintes reduites relatives aux elements qui se

projettent suivant des paralleles aux axes des x et des y. On peut remarquer
que les contraintes de cisaillement 0 se conservent en projection tandis qu'il
n'en est pas de meme des autres contraintes n1? n2.

3° — Interpretation geometrique des equations generales d'equilibre.
Les equations (1) et (2) expriment evidemment l'equilibre en projection sur

le plan. tangent. L'equation (3) exprime au contraire l'equilibre des forces
appliquees normalement au voile. Pour l'interpreter geometriquement, prenons
l'origine o du triedre oxyz sur la surface, et orientons ox et oy suivant les

directions de deux elements arbitraires. Nous pouvons achever de definir
completement le triedre oxyz en nous donnant d'une maniere arbitraire la direction
oz. L'equation (3) definit une relation lineaire entre les contraintes s'exergant
sur les elements arbitraires ox et oy et la projection £ effectuee sur oz parallelement

au plan tangent de la densite de la charge appliquee. Lorsqu'on change la
direction oz sans toucher ä ox et oy, chaque terme de la relation lineaire
precedente est simplement multiplie par un meme facteur.

Nous pouvons profiter de l'indetermination de la direction des elements ox et

oy pour simplifier l'equation (3). Si on dirige en particulier ces elements suivant
deux directions conjuguees de la surface, c'est-ä-dire suivant deux directions con-
juguees par rapport ä l'indicatrice, le coefficient de 0 s'annule et l'equation (3)
se reduit ä une relation lineaire entre les contraintes longitudinales v1 et v2.
On peut se demander s'il n'est pas possible d'orienter les elements ox et oy de

maniere qu'il ne reste plus dans l'equation (3) qu'une seule contrainte. On voit
immediatement que cela n'est pas possible si la surface est convexe, c'est-ä-dire
si les rayons de courbure principaux sont de meme sens et qu'au contraire cela

est possible si la surface n'est pas convexe.

Plagons-nous dans cette derniere hypothese et distinguons deux cas, suivant que
la contrainte qui reste dans l'equation (3) est une contrainte longitudinale ou
le cisaillement 0. Le premier cas n'est possible que si la surface est deve-

loppable, c'est-ä-dire si on peut la considerer comme l'enveloppe d'une famille
de plans tangents dependant d'un parametre. Si l'on prend l'element ox suivant
la direction de la generatrice rectiligne qui passe en o, l'equation (3) se reduit ä

(4) rv1 r;
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Le deuxieme cas correspond aux surfaces ä courbures opposees. Si l'on prend
ox et oy suivant les directions des asymptotiques, l'equation (3) se reduit ä

(5) 2 s0 5

L'interpretation des equations (4) et (5) est immediate. Interpretons d'abord
l'equation (4). II est visible que les seules contraintes agissant sur un element
infiniment petit de la surface admettant une composante non situee dans le plan
tangent ä la surface, sont les contraintes projetees suivant vv et l'equation (4)
exprime simplement l'identite entre les projections des contraintes nx sur oz
effectuees parallelement au plan tangent et la projection effectuee dans les

memes conditions de la charge appliquee.
Interpretons maintenant l'equation (5). II suffit pour cela de considerer un

quadrilatere elementaire dont deux cötes consecutifs sont constitues par des

arcs d'asymptotiques se croisant en o. Les contraintes longitudinales n1 et n2
appliquees ä ce quadrilatere ont une resultante dans le plan tangent puisque
eette resultante est la somme geometrique de la resultante des contraintes nx
et de la resultante des contraintes n2, et que chacune de ces deux dernieres
resultantes est necessairement dans le plan osculateur d'un are d asymptotique,
plan osculateur qui coincide avec le plan tangent en vertu de la definition meine
des asymptotiques. Donc, la composante £ des charges appliquees ä la surface
en dehors du plan tangent ne depend que du cisaillement 0. II lui est d'ailleurs
proportioneil. Le coefficient de proportionnalite dont la \aleur est 2s a une
signification geometrique excessivement simple. C'est le quotient du double de la

distance du sommet oppose ä o dans le quadrilatere au plan tangent en o, cette
distance etant comptee parallelement ä la direction oz, par le produit des

longueurs d'arcs d'asymptotiques formant les cötes du quadrilatere.

4° — Classification des voiles minces au point de vue de leurs proprietes
mecaniques.

Les considerations precedentes conduisent ä classer les voiles minces en trois

groupes. Le premier groupe comprend les surfaces developpables comme les

cylindres et les cönes, le deuxieme groupe comprend les surfaces convexes
comme la sphere, le paraboloide elliptique, l'ellipsoide, l'hyperboloide ä deux

nappes, et, d'une maniere generale, toutes les surfaces ä double courbure engendrees

par une courbe dont la concavite est dirigee vers le bas et qui s'appuie
sur une directrice courbe dont la concavite est egalement dirigee vers le bas.

Le troisieme groupe comprend les surfaces ä courbures opposees comme le

paraboloide hyperbolique, l'hyperboloide ä une nappe, les conoides, toutes les

surfaces reglees non developpables, et d'une maniere generale, toutes les
surfaces qui peuvent etre engendrees par une courbe dont la concavite est tournee
vers le haut et qui s'appuie sur une directrice dont la concavite est tournee vers
le bas.

Cette Classification nous est suggeree par l'interpretation geometrique de

l'equation (3). Les voiles du premier groupe sont ceux pour lesquels l'equation
(3) peut etre mise sous la forme (4), les voiles du second groupe sont ceux

pour lesquels l'equation (3) peut etre mise sous la forme

(6) rv, + tv2 5
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x et t etant de meme signe, les voiles du troisieme groupe sont ceux pour
lesquels l'equation (3) peut se mettre sous la forme (5).

Observons que pour les voiles du troisieme groupe l'equation (3) peut egalement

se mettresous la forme (6), mais r et t sont alors de signes contraires.
Observons egalement que pour les voiles du deuxieme groupe, l'equation (3)
peut aussi etre mise sous la forme (5), ou 0 represente encore le cisaillement
sur les asymptotiques, mais l'equation (5) n'est plus alors une equation ä termes
reels, s et t sont deux expressions purement imaginaires.

Les voiles du premier groupe sont caracterises par la propriete que la
composante normale de la contrainte s'exergant sur les generatrices rectilignes, est
en chaque point proportionnelle ä Ja composante normale de la densite de la
charge appliquee. Les voiles du second groupe sont caracterises par la propriete
que la contrainte de cisaillement purement imaginaire s'exergant sur les elements
imaginaires d'asymptotiques, est proportionnelle en chaque point ä la
composante normale de la densite de la charge appliquee. Les voiles du troisieme

groupe sont caracterises par la propriete que la contrainte de cisaillement s'exergant

sur les elements d'asymptotiques est proportionnelle en chaque point ä la
composante normale de la densite de la charge appliquee.

On peut encore faire observer la difference suivante entre les voiles du
deuxieme et du troisieme groupe. Si l'on considere en un point les contraintes
longitudinales s'exergant sur deux elements conjugues, la composante normale
de la charge appliquee, que l'on peut considerer comme la poussee au vide
produite par ces contraintes longitudinales, est une forme lineaire de ces
contraintes. Cette forme est ä coefficients de meme signe pour les voiles du
deuxieme groupe et ä coefficients de signes contraires pour les voiles du troisieme

groupe. II en resulte que la portance d'un voile du deuxieme groupe peut etre
consideree comme produite par des contraintes longitudinales de meme sens
s'exergant sur deux elements conjugues, et que la portance d'un voile du troisieme

groupe peut, d'une maniere analogue, etre consideree comme produite par des

contraintes longitudinales de sens contraires, s'exergant sur deux elements
conjugues.

Lorsqu'il s'agit d'un voile du second groupe, on peut toujours choisir les
elements conjugues de maniere qu'ils forment un reseau orthogonal et isotherme
sur la surface associee ayant pour carre de Felement lineaire la forme quadratique

r dx2 -f- 2 s dxdy + t dy2.

Les coefficients des contraintes longitudinales correspondantes, dans la forme
lineaire representant la composante normale de la densite de la charge appliquee,
sont alors egaux. On peut donc dire que dans les voiles du second groupe la

composante normale de la densite de la charge ä appliquer est proportionnelle ä

la somme des contraintes longitudinales s'exergant suivant les elements d'un
Systeme orthogonal et isotherme pour la surface associee.

Les differences de proprietes qui, nous venons de le voir, distinguent les
voiles des trois groupes, ont une importance primordiale sur la nature des

appuis que l'on peut se donner au pourtour des voiles pour parfaire leur
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equilibre, et sur le mode de calcul effectif des contraintes dans les voiles en
fonetion des conditions au contour.

5" — Etude des voiles du premier groupe.
L'etude des voiles du premier groupe est une generalisation de l'etude des

cylindres. L'equation (4) fait connaitre, en chaque point du voile, la

composante normale ä la generatrice rectiligne passant en ce point, de la
contrainte agissant sur un element de cette generatrice. Par consequent, si nous
tragons sur la surface une famille de geodesiques coupant les differentes
generatrices rectilignes sous un angle constant, nous connaitrons la contrainte
longitudinale agissant parallelement ä ces geodesiques sur les elements de

generatrices rectilignes. L'equation (2) nous fera alors connaitre par une
integration immediate la valeur du cisaillement sur les generatrices et les geodesiques,
et la formule (1) par une nouvelle integration, les contraintes longitudinales
s'exergant sur les elements des geodesiques parallelement aux generatrices.

La determination des contraintes effectuee de cette maniere n'est complete que
si l'on se donne sur une courbe determinee rencontrant une fois seulernent

chaque generatrice, les valeurs des contraintes s'exergant sur les elements de la
dite courbe. On peut d'ailleurs aussi bien se donner sur deux courbes rencontrant
chacune chaque generatrice une fois et une seule, une relation entre les

composantes de la contrainte s'exergant sur tout element des deux courbes.

6° — Etude des voiles du second groupe.

Considerons un voile mince du second groupe. Nous avons vu que la

composante normale de la densite de la charge appliquee etait proportionnelle en

chaque point ä la somme des contraintes longitudinales s'exergant sur des

elements d'un Systeme orthogonal et isotherme pour la surface associee. Supposons

que ces contraintes longitudinales soient egales. Leur valeur est alors bien
determinee en chaque point par la valeur de la composante normale de la

densite de la charge. Nous avons ainsi satisfait ä l'equation (3). Les equations (1)
et (2) qui expriment l'equilibre dans le plan tangent ne seront alors satisfaites

que si la composante tangentiale de la densite de la charge a une valeur
determinee, que l'on obtient en ecrivant precisement les conditions d'equilibre
parallelement au plan tangent. Nous appellerons Systeme fondamental de charges
tout Systeme de charges correspondant aux conditions precedentes, c'est-ä-dire
tel que les contraintes longitudinales s'exergant sur des elements d'un Systeme
orthogonal et isotherme pour la surface associee soient egales. II est alors bien
evident qu'un Systeme quelconque de charges peut etre considere comme la

somme d'un Systeme fondamental et dun Systeme compose uniquement de

charges tangentielles et que nous appellerons Systeme complementaire du Systeme
fondamental de charges.

Nous sommes ramenes ainsi ä l'etude dessjstemes complementaires, c'est-ä-dire
des systemes oü la charge appliquee est tangente ä la surface. Dans de tels

systemes, les contraintes longitudinales sur des elements d'un Systeme orthogonal
et isotherme pour la surface associee, sont egales, et par suite la contrainte
sur un element quelconque ne depend plus que de deux parametres, par exemple
les composantes de la contrainte s'exergant sur un des elements conjugues
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precedents. II est bien evident que l'on peut choisir arbitrairement ces deux
parametres. On voit facilement que l'on peut determiner deux fonctions imaginaires

conjuguees cp et \\> de maniere qu'en prenant pour parametres deux
quantites que nous designerons par S9 et S^, les forces elastiques agissant sur
un element quelconque de la surface soient une forme lineaire des expressions
differentielles S9 di}> et S^ dep. Les equations d'equilibre dans le plan tangent
montrent alors que la derivee partielle de S9 par rapport ä cp et la derivee
partielle de S9 par rapport ä i}> sont des fonctions lineaires de S<j, et S^. En
eliminant Tun des deux parametres, S^ par exemple, entre ces deux relations, on
obtient une equation aux derivees partielles lineaire du second ordre ä
caracteristiques imaginaires, ä laquelle doit satisfaire le parametre conserve S9.

Pour determiner une Solution de cette equation, on peut se donner la valeur
de Sq, et d'une de ses derivees sur une courbe arbitraire de la surface, ä condition
toutefois, etant donne que l'equation est ä caracteristiques imaginaires, que
certaines conditions d'analycite soient remplies. Si l'on remarque que se donner S9
et une de ses decrivees sur une courbe revient ä se donner S<p et S^ sur cette
courbe, et par suite la contrainte s'exergant sur un element quelconque de la
courbe, on voit que, sous certaines reserves d'analycite, on peut determiner les
contraintes dans le voile, ä condition de connaitre les contraintes s'exergant
sur les elements d'une courbe.

Les reserves relatives ä Fanalycite dont nous avons parle ne sont pas des

reserves de pure forme. Elles correspondent ä une realite physique qui est la
suivante. On sait en effet que dans tous les problemes oü une fonetion verifiant
une equation ä caracteristiques imaginaires est determinee par les valeurs qu'elle
prend, ainsi qu'une de ses derivees, sur une courbe donnee, la Solution n'est pas
une fonetion continue des donnees c'est-ä-dire qu'en faisant varier tres peu les

donnees, on peut obtenir des valeurs de la fonetion aussi differentes que Fori veut
en des points arbitrairement choisis. II resulte de lä que les etats d'equilibre d'un
voile convexe correspondant ä des valeurs donnees des contraintes s'exergant sur
une courbe ne sont pas stables par rapport aux valeurs des contraintes sur
cette courbe.

Pour obtenir des Solutions stables, il faut envisager des conditions aux limites
differentes de celles que nous avons envisagees. Au lieu de nous donner les

valeurs des contraintes sur une courbe, donnons-nous sur une courbe fermee une
relation entre les composantes des contraintes s'exergant sur les elements de la
courbe. Si cette relation est convenablement choisie le probleme pourra se trouver
determine tout au moins ä une ou plusieurs constantes pres, la Solution etant
une fonetion continue des donnees. L'equilibre correspondant sera un equilibre
stable. Supposons par exemple que nous voulions que la contrainte^ le long de la
courbe donnee ait une composante donnee normalement ä une direction donnee,
direction variable avec chaque point de la courbe. L'indetermination relative des

parametres ST et S,t> permet de les determiner de maniere que S<p represente
le long de la courbe donnee la valeur de la composante normale ä une direction
donnee de la contrainte s'exergant sur les elements de la courbe. La theorie des

equations integrales permet alors de determiner la fonetion ST par une methode
analogue ä celle qu'ont employee Fredholm et ses successeurs pour resoudre les

problemes du meme type relatifs aux equations caracteristiques imaginaires.
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7° — Etude des voiles du troisieme groupe.

Considerons un voile mince du troisieme groupe. La valeur dei la composante
normale de la densite de la charge determine tout d'abord en chaque point du
voile les contraintes de cisaillement sur les elements d'asymptotiques. Supposons

que les contraintes dans le voile se reduisent ä ces cisaillements. II faut et il
suffit pour cela, que la composante tangentielle de la charge appliquee ä un
quadrilatere elementaire d'arcs d'asymptotiques fasse equilibre ä la projection sur
le plan tangent de la resultante des efforts tangentiels appliques aux elements
du quadrilatere. Nous appellerons Systeme fondamental de charges, tout Systeme
de charges correspondant aux conditions precedentes, c'est-ä-dire tel que les
contraintes s'exergant sur les elements d'asymptotiques se reduisent ä des cisaillements.

II est bien evident qu'un Systeme quelconque de charges peut etre
considere comme la superposition d'un Systeme fondamental de charge et d'un
Systeme que nous appellerons encore Systeme complementaire et compose
uniquement de charges tangentielles.

Nous sommes ainsi ramenes ä l'etude de l'action des systemes complementaires.

Pour cela nous remarquons encore que la force elastique s'exergant sur
un element du voile peut encore se mettre sous la forme d'une forme lineaire
d'expressions differentielles telles que ST dif> et S^dcp, cp et if> etant maintenant
deux fonctions reelles, S9 et S^ deux parametres reels. Les equations d'equilibre
suivant le plan tangent permettent alors d'exprimer les derivees partielles de S9

par rapport ä cp et de S^ par rapport ä if> en fonetion lineaire de S9 et S^.
L'elimination de S^ entre ces equations conduit ä une equation en S9 lineaire
aux derivees partielles du second ordre ä caracteristiques reelles. Les cara-
teristiques de cette equation aux derivees partielles sont precisement les lignes
asymptotiques.

Pour determiner une Solution de l'equation precedente valable dans un domaine
D limite par un contour C decomposons ce contour en deux suites d'arcs T
et T' tels que de tout point de D soient issues deux asymptotiques rencontrant T
une fois et une seule, puis decomposons T en deux suites d'arcs I\ et
T2 tels que toute ligne brisee d'arcs d'asymptotiques joignant tout point de 1^
ä un point de T' ait ses sommets intermediaires sur T2 ou T', et qu'il n'existe
aucune ligne brisee d'arcs d'asymptotiques ayant ses extremites sur T± et ses
sommets intermediaires sur 1%. On obtiendra une Solution unique valable dans D,
en se donnant sur T1 la valeur de la contrainte s'exergant sur les elements de I\
et en se donnant sur T2 une relation entre les composantes de la contrainte
s'exergant sur les elements de T2. La valeur de la Solution sera donnee par la
formule de Riemann appliquee successivement ä differents sous-domaines du
domaine D. Aucune condition d'analycite n'est ici requise et la Solution obtenue
est toujours une fonetion continue des donnees. Par contre il n'existe pas en

general de Solution correspondant ä une relation entre les composantes des
contraintes s'exergant sur les differents elements de la courbe fermee C.

Lorsque le voile mince considere est une surface reglee, l'equation aux derivees

partielles du second ordre peut se ramener ä une equation lineaire aux derivees

partielles du premier ordre ne contenant qu'une derivee, equation dont Finte-
gration est immediate etant donne qu'on peut la considerer comme une equation

45 F
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differentielle lineaire. Dans le cas oü le voile mince est une quadrique reglee,
la determination des parametres S9 et S^ se reduit ä deux quadratures.

8° — Choix du Systeme d'appuis dans les voiles minces des trois groupes.

Le choix du Systeme d'appuis dans un voile mince depend essentiellement du

groupe auquel il appartient. Nous distinguerons deux categories d'appuis, les

appuis simples pour lesquels les reactions dependent d'un seul parametre, et
les appuis doubles pour lesquels les reactions dependent de deux parametres. Les

composantes des contraintes que le voile transmet ä un appui simple satisfont
par consequent ä une relation connue a priori, tandis que les composantes des
contraintes que le voile transmet ä un appui double peuvent prendre des valeurs
independantes. Par ailleurs, certaines parties du voile sur son contour peuvent
ne comporter aucun appui, le bord est dit libre.

Nous nous proposons de rechercher comment il faut repartir les bords libres,
les appuis simples et les appuis doubles au contour d'un voile mince pour que
celui-ci soit soumis ä un equilibre unique et stable.

Plagons-nous tout d'abord dans le cas d'un voile du premier groupe. On

pourra se donner un bord libre sur toute partie du contour ne comprenant pas
de generatrice rectiligne, et rencontre une fois au plus par toute generatrice.
Si le bord libre rencontre toutes les generatrices, la repartition des contraintes
dans le voile est determinee, et par suite, les autres bords devront comporter
des appuis doubles. Le Systeme d'equilibre correspondant est stable. Donnons-
nous au contraire deux bords rencontrant chacun une seule fois toutes les

generatrices et amenages en appuis simples. On obtiendra encore un etat d'equilibre

stable du voile, ä condition d'amenager le reste du contour, compose
exclusivement de generatrices, en appuis doubles.

Considerons maintenant un voile du second groupe. Ce voile ne peut admettre
de bords libres, car l'equilibre correspondant n'est pas stable. Mais on peut
amenager l'ensemble du pourtour du voile en appuis simples, l'equilibre
correspondant est bien determine et stable.

Considerons enfin un voile du troisieme groupe et decomposons le contour en
trois categories d'arcs Tv T2, 17 definis comme il a ete indique au 7°. On

pourra sc donner un bord libre suivant I\, des appuis simples suivant F2, et
des appuis doubles suivant 17. L'equilibre correspondant est bien determine et
c'est un equilibre stable.

9° — Proprietes geometriques et calculs geometriques des voiles du troisieme

groupe.

Les voiles du troisieme groupe presentent des proprietes geometriques
remarquables qui permettent d'en faire un calcul graphique precis.

Interpretons tout d'abord geometriquement les parametres S9 et S^ et les
fonctions cp et ij? introduits au 7°. S9 et S^ sont les contraintes longitudinales
s'exergant sur les asymptotiques pour un Systeme complementaire de charges.
cp et tf> sont des coordonnees curvilignes de la surfaco pour lesquelles les lignes
de coordonnees sont les lignes asymptotiques.
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Remplagons les voiles minces par un Systeme reticulaire gauche dont les

mailies sont des quadrilateres rectilignes gauches formes par des cordes de lignes
asymptotiques. Le Systeme obtenu travaille comme la surface donnee, et l'assi-
milation des deux systemes est legitime si les mailles sont suffisamment petites.
Les charges appliquees au Systeme reticulaire doivent etre appliquees aux
sommets du Systeme reticulaire suivant le plan tangent ä la surface.

Appliquons une force unique F en un sommet quelconque du Systeme
reticulaire. Cette force peut se decomposer suivant deux des barres passant en ce

point et correspondant ä deux lignes asymptotiques differentes. On transporte
ainsi la force F ä deux autres noeuds de la surface oü on opere de meme, et
ainsi de suite. Si l'on suppose le contour de la surface divise en trois categories
d'arcs Tv T2 et T' dans les conditions indiquees precedemment, et si l'on choisit
convenablement les deux barres initiales suivant lesquelles on decompose la force
donnee F, la transmission de la force F se fera par le processus indique sans

qu'on rencontre jamais un bord libre. Si l'on rencontre un bord de T2 suppose
amenage en appui simple, on pourra encore faire la decomposition entre la
seconde barre aboutissant au sommet considere sur T2 et la direction de la
reaction de l'appui simple. L'operation qu'on effectue ainsi est ce qu'on appelle
une reflexion sur l'appui simple. En la continuant ainsi, on transmettra finalement

la force F ä toute une zone d'appuis doubles. On aura ainsi obtenu un
equilibre du Systeme compatible avec les reactions d'appuis, et cet equilibre sera
stable. En operant de la meme maniere pour chaque noeud charge du Systeme
reticulaire, on aura determine l'etat d'equilibre relatif au Systeme complemen-
taire de charges en ne faisant intervenir que des decompositions de forces suivant
la regle du parallelogramme. L'epure correspondante peut se faire facilement
en projection sur un plan arbitraire.

La determination geometrique des efforts dont nous venons de parier permet
d'envisager l'equilibre d'un voile du troisieme groupe comme resultant d'une
propagation d'efforts s'effectuant suivant les arcs d'asymptotiques en partant
des bords libres pour aboutir aux appuis doubles en se reflechissant sur les

appuis simples. Cette propriete est analogue ä la propagation par ondes des

phenomenes regis par des equations lineaires aux derivees partielles du second
ordre ä caracteristiques reelles et comme eile, est due essentiellement ä la nature
reelle des caracteristiques des equations regissant l'equilibre des contraintes dans
le voile considere.

10° — Exemples simples de voiles du troisieme groupe.

L'exemple le plus simple de voile du troisieme groupe est fourni par le
paraboloide hyperbolique. Ce voile est caracterise par 4a propriete que le cisaillement
suivant les generatrices rectilignes est, ä un facteur pres, constant sur toute la
surface, egal ä la composante suivant laxe du paraboloide de la charge appliquee
rapportee ä l'unite de surface en projection sur un plan quelconque non parallele
ä Faxe. D'autre part, les efforts dus au Systeme complementaire de charges se

propagent suivant chaque generatrice sans qu'il se produise d'interferences entre
les generatrices, de teile sorte qu'un effort tangentiel applique ä un petit element
du voile ne fait sentir son effet que sur les bandes engendrees par les generatrices
rencontrees. Apres le paraboloide hyperbolique, le voile du troisieme groupe le

45*
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plus simple est l'hyperboloide ä une nappe. Ce voile possede en commun avec
le paraboloide la propriete que les efforts dus au Systeme complementaire se

propagent suivant chaque generatrice sans interference avec les autres generatrices.

II ne differe du paraboloide hyperbolique que par l'expression plus com-
pliqueo du coefficient de proportionnalite entre le cisaillement et la densite de
la charge appliquee.

Viennent ensuite les surfaces reglees non developpables et en premier lieu
les conoides. Pour ces surfaces, le coefficient de proportionnalite entre le

/\ mp

Fisr.l.

cisaillement sur les asymptotiques et la densite de la charge appliquee, a une
expression beaucoup plus compliquee que pour les premieres surfaces envisagees,
mais ce qui les distingue surtout de ces surfaces, c'est que les efforts dus au
Systeme complementaire se propagent en s'epanouissant sur la surface, les

asymptotiques non rectilignes s'arc-boutant sur les generatrices rectilignes de

la surface, de teile sorte qu'une force tangentielle appliquee ä un petit element
interesse toute une zone en eventail de la surface, comme dans les surfaces les

plus generales du troisieme groupe.
Les figures 2 et 3 montrent la difference entre les quadriques reglees et

les autres surfaces du troisieme groupe au dernier point de vue qui vient d'etre
signale.

ii
Fig. 2.

Mode de propagation des efforts tangentiels
tans une quadrique reglee.

lli1I1
1

i
Fig. 3.

Mode de propagation des efforts tangentiels dans

une surface quelconque du 3e groupe.
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11° — Conclusion.

Si Ton excepte les voiles regles developpables comme les cylindres et les cönes

qui forment une classe tres particuliere de voiles, l'ensemble des voiles ä double
courbure se divise en deux grandes familles suivant le signe de la courbure
totale. Dans les deux familles de voiles, ce sont les lignes asymptotiques qui
jouent le röle essentiel dans la transmission des efforts tangentiels, et par suite
dans la determination de la nature des reactions d'appuis correspondant ä des

equilibres bien determines et stables. Lorsque les asymptotiques sont imaginaires,
le voile ne peut admettre de bords libres, mais peut etre limite ä des bords

amenages tous en appuis simples. L'exemple courant d'appuis de cette sorte
est constitue par un tympan plan ä grande raideur dans son plan et sans raideur
appreciable perpendiculairement ä ce plan. Lorsque les asymptotiques sont reelles,
on doit decomposer les bords du voile en bords libres, en bords avec appuis
simples, et en bords avec appuis doubles suivant les regles4 determinees que nous
avons indiquees. Comme les appuis doubles peuvent constituer une difficulte
au point de vue construetif, il y a avantage ä chercher ä en diminuer l'importance

le plus possible, ce qui peut se faire de differentes manieres en choisissant
convenablement le trace de la surface.

Si l'on se place strictement au point de vue de la facilite de calcul, les
considerations qui precedent laissent entrevoir que, parmi les voiles ä double courbure,

ceux donnant lieu ä des calculs vraiment elementaires sont les quadriques
reglees.

Resume.

Dans la construction des voiles minces en beton arme il s'agit d'abord de

problemes statiquement determines, independants de la theorie de la plasticite.
La totalite de ces questions est traitee en liaison avec d'autres problemes qui
se presentent lors de l'execution des voiles minces et avant tout en liaison avec
les problemes de la compatibilite des deformations conditionnees par Fetat de
tension calcule d'une maniere isostatique.

L'auteur utilise l'hypothese d'une repartition uniforme des tensions sur toute
l'epaisseur de la section de teile fagon que l'on peut admettre le voile concentre
en sa surface movenne.
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