Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht
Band: 2 (1936)
Artikel: Etude des voiles minces courbes ne subissant pas de flexion
Autor: Aimond, F.
DOl: https://doi.org/10.5169/seals-2953

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-2953
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

IVal

Etude des voiles minces courbes ne subissant pas de
flexion.

Einfithrung in die allgemeine Theorie der biegungsfreien Schalen.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. és sciences F.Aimond,
Ingénieur des Ponts et Chausée détaché au Ministére de I'Air, Paris.

1° — Rappel des équations générales en coordonnées rectilignes de léquilibre
statique des voiles minces.

Soit z=1£ (x, y) I'équation de la surface en coordonnées rectilignes quelcon-
ques non nécessairement rectangulaires. L’état des contraintes en un point m du
voile, est déterminé par la connaissance des contraintes n;, n,, ©, agissant sur
les éléments. mm; et mm, respectivement paralleles aux plans zox et zoy.
n; agit sur mm, parallélement au plan zox, n, agit sur mm, paralléelement au
plan zoy, ® agit a la fois sur mm,; parallélement a zox, et sur mm, paralléle-
ment a zoy (fig. 1). Désignons par o, O, v, et O, By, Y, les coefficients direc-
teurs des tangentes aux éléments mm,; et mm,, c’est-a-dire les projections suivant
0X, oy, oz du vecteur unité portées par chacune de ces tangentes.

Supposons le voile chargé d'une maniére quelconque, et appelons Xdxdy,
Ydxdy, Zdxdy les composantes suivant ox, oy, oz, de la charge appliquée a
I'élément mm; m’m, limité aux paralleles mm, et m,m’ au plan zox et aux
paralléeles mm, et m; m’ au plan zoy. L’étude des conditions d'équilibre des
dits éléments conduit aux équations suivantes:
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2° — Interprétation géométrique des quantités figurant dans les équations
générales d’équilibre.

La quantité T figurant au second membre de I'équation (3) n’est autre que
la projection du vecteur (X, Y, Z) sur oz, cette projection étant effectuée
parallélement au plan tangent a la surface. Pour interpréter les quantités v,, v,
et ® qui sont les inconnues des équations d’équilibre, définissons d’une maniére
générale ce que nous appellerons contrainte réduite. Par définition, la contrainte
réduite s’exercant sur un élément du voile est la projection sur le plan des xy
de la force élastique s’exercant sur cet éléments, divisée par la longueur de
la projection de I'élément. On constate facilement que la répartition des con-
traintes réduites autour d’'un point suit les mémes lois que les contraintes réelles
et en particulier la représentation de Mohr leur est applicable. Les quantités v,,
vy, ©, sont précisément les contraintes réduites relatives aux éléments qui se
projettent suivant des paralléles aux axes des x et des y. On peut remarquer
que les contraintes de cisaillement ® se conservent en projection tandis qu’il
n'en est pas de méme des autres contraintes n,, n,.

3° — Interprétation géométrique des équalions générales d’équilibre.

Les équations (1) et (2) expriment évidemment l'équilibre en projection sur
le plan. tangent. L’équation (3) exprime au contraire 1'équilibre des forces
appliquées normalement au voile. Pour l'interpréter géométriquement, prenons
l'origine o du triédre oxyz sur la surface, et orientons ox et oy suivant les
directions de deux éléments arbitraires. Nous pouvons achever de définir com-
plétement le triédre oxyz en nous donnant d’une maniére arbitraire la direction
oz. L’équation (3) définit une relation linéaire entre les contraintes s’exercant
sur les éléments arbitraires ox et oy et la projection T effectuée sur oz paralléle-
ment au plan tangent de la densité de la charge appliquée. Lorsqu'on change la
direction oz sars toucher a ox et oy, chaque terme de la relation linéaire pré-
cédente est simplement multiplié par un méme facteur.

Nous pouvons profiter de I'indétermination de la direction des éléments ox et
oy pour simplifier I'équation (3). Si on dirige en particulier ces éléments suivant
deux directions conjuguées de la surface, c’est-a-dire suivant deux directions con-
juguées par rapport a l'indicatrice, le coefficient de ® s’annule et I'équation (3)
se réduit 4 une relation linéaire entre les contraintes longitudinales v, et v,.
On peut se demander s'il n’est pas possible d’orienter les éléments ox et oy de
maniére qu'il ne reste plus dans I'équation (3) qu'une seule contrainte. On voit
immédiatement que cela n’est pas possible si la surface est convexe, c’est-a-dire
si les rayons de courbure principaux sont de méme sens et qu'au contraire cela
est possible si la surface n’est pas convexe.

Plagons-nous dans cette derniére hypothése et distinguons deux cas, suivant que
la contrainte qui reste dans l'équation (3) est une contrainte longitudinale ou
le cisaillement ©. Le premier cas n’est possible que si la surface est déve-
loppable, c’est-a-dire si on peut la considérer comme l'enveloppe d'une famille
de plans tangents dépendant d'un paramétre. Si I'on prend 1'élément ox suivant
la direction de la génératrice rectiligne qui passe en o, I'équation (3) se réduit a

4) vy =2¢
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Le deuxiéme cas correspond aux surfaces a courbures opposées. Si 'on prend
ox et oy suivant les directions des asymptotiques, 1'équation (3) se réduit a

(3) 2s®@ =7

L’interprétation des équations (4) et (5) est immeédiate. Interprétons d’abord
Péquation (4). Il est visible que les seules contraintes agissant sur un élément
infiniment petit de la surface admettant une composante non située dans le plan
tangent a la surface, sont les contraintes projetées suivant v,, et I'équation (4)
exprime simplement l'identité entre les projections des contraintes n, sur oz
effectuées parallelement au plan tangent et la projection effectuée dans les
mémes conditions de la charge appliquée.

Interprétons maintenant 1'équation (5). Il suffit pour cela de considérer un
quadrilatére élémentaire dont deux cotés consécutifs sont constitués par des
arcs d'asymptotiques se croisant en o. Les contraintes longitudinales n; et n,
appliquées a ce quadrilatére ont une résultante dans le plan tangent puisque
cette résultante est la somme géométrique de la résultante des contraintes n,
et de la résultante des contraintes n., et que chacune de ces deux dermeres
résultantes est nécessairement dans le plan osculateur d'un arc d'asvmptotique,
plan osculateur qui coincide avec le plan tangent en vertu de la définition méme
des asymptotiques. Donc, la composante T des charges appliquées a la surface
en dehors du plan tangent ne dépend que du cisaillement ®. Il lui est d'ailleurs
proportionell. Le coefficient de proportionnalité dont la valeur est 2s a une sig-
nification géométrique excessivement simple. C’est le quotient du double de la
distance du sommet opposé a o dans le quadrilatére au plan tangent en o, cette
distance étant comptée parallélement a la direction oz, par le produit des lon-
gueurs d’arcs d’asymptotiques formant les cotés du quadrilatére.

4o — Classification des voiles minces au point de vue de leurs propriétés
mécaniques.

Les considérations précédentes conduisent a classer les voiles minces en trois
groupes. Le premier groupe comprend les surfaces développables comme les
cylindres et les cones, le deuxiéme groupe comprend les surfaces convexes
comme la sphére, le paraboloide elliptique, I'ellipsoide, I'hyperboloide a deux
nappes, et, d'une maniére générale, toutes les surfaces a double courbure engen-
drées par une courbe dont la concavité est dirigée vers le bas et qui s’appuie
sur unc directrice courbe dont la concavité est également dirigée vers le bas.
Le troisiéme groupe comprend les surfaces a courbures opposées comme le
paraboloide hyperbolique, 'hyperboloide a une nappe, les conoides, toutes les
surfaces réglées non développables, et d'une maniére générale, toutes les sur-
faces qui peuvent étre engendrées par une courbe dont la concavité est tournée
vers le haut et qui s’appuie sur une directrice dont la concavité est tournée vers
le bas.

Cette classification nous est suggérée par linterprétation géométrique de
I'équation (3). Les voiles du premier groupe sont ceux pour lesquels 1'équation
(3) peut étre mise sous la forme (4), les voiles du second groupe sont ceux
pour lesquels I'équation (3) peut étre mise sous la forme

(6) rvy +tvo = T
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.

T et t élant de méme signe, les voiles du troisiéme groupe sont ceux pour les-
quels I'équation (3) peut se mettre sous la forme (5).

Observons que pour les voiles du troisiétme groupe I'équation (3) peut égale-
ment se mettresous la forme (6), mais r et t sont alors de signes contraires.
Observons également que pour les voiles du deuxiéme groupe, l'équation (3)
peut aussi étre mise sous la forme (5), ot © représente encore le cisaillement
sur les asymptotiques, mais 1'équation (5) n’est plus alors une équation & termes
réels, s et t sont deux expressions purement imaginaires.

Les voiles du premier groupe sont caractérisés par la propriété que la com-
posante normale de la contrainte s’exercant sur les génératrices rectilignes, est
en chaque point proportionnelle a Ja composante normale de la densité de la
charge appliquée. Les voiles du second groupe sont caractérisés par la propriété
que la contrainte de cisaillement purement imaginaire s’exercant sur les éléments
imaginaires d’asymptotiques, est proportionnelle en chaque point a la com-
posante normale de la densité de la charge appliquée. Les voiles du troisiéme
groupe sont caractérisés par la propriété que la contrainte de cisaillement s’exer-
cant sur les éléments d’asymptotiques est proportionnelle en chaque point a la
composante normale de la densité de la charge appliquée.

On peut encore faire observer la différence suivante entre les voiles du
deuxiéme et du troisitme groupe. Si I'on considére en un point les contraintes
longitudinales s’exercant sur deux éléments conjugués, la composante normale
de la charge appliquée, que I'on peut considérer comme la poussée au vide
produite par ces contraintes longitudinales, est une forme linéaire de ces con-
traintes. Cette forme est a coefficients de méme signe pour les voiles du
deuxiéme groupe et a coefficients de signes contraires pour les voiles du troisiéme
groupe. Il en résulte que la portance d'un voile du deuxiéme groupe peut étre
considérée comme produite par des contraintes longitudinales de méme sens
s’exercant sur deux éléments conjugués, et que la portance d'un voile du troisiéme
groupe peut, d'une maniére analogue, étre considérée comme produite par des
contraintes longitudinales de sens contraires, s’exercant sur deux éléments
conjugués.

Lorsqu’il s’agit d’'un voile du second groupe, on peut toujours choisir les
éléments conjugués de maniére qu’ils forment un réseau orthogonal et isotherme
sur la surface associée ayant pour carré de 1’élément linéaire la forme quadratique

rdx? + 2sdxdy + tdy2

Les coefficients des contraintes longitudinales correspondantes, dans la forme
linéaire représentant la composante normale de la densité de la charge appliquée,
sont alors égaux. On peut donc dire que dans les voiles du second groupe la
composante normale de la densité de la charge a appliquer est proportionnelle a
la somme des contraintes longitudinales s’exercant suivant les éléments d’'un
systéme orthogonal et isotherme pour la surface associée.

Les différences de propriétés qui, nous venons de le voir, distinguent les
voiles des trois groupes, ont une importance primordiale sur la nature des
appuis que l'on peut se donner au pourtour des voiles pour parfaire leur
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équilibre, et sur le mode de calcul effectif des contraintes dans les voiles en
fonction des conditions au contour.

5> — Etude des voiles du premier groupe.

‘étude des voiles du premier groupe est une généralisation de l'étude des
cylindres. L’équation (4) fait connaitre, en chaque point du voile, la com-
posante normale a la génératrice rectiligne passant en ce point, de la con-
trainte agissant sur un élément de cette génératrice. Par conséquent, si nous
tragons sur la surface une famille de géodésiques coupant les différentes géné-
ratrices rectilignes sous un angle constant, nous connaitrons la contrainte
longitudinale agissant parallélement a ces géodésiques sur les éléments de
génératrices rectilignes. L’équation (2) nous fera alors connaitre par une inté-
gration immédiate la valeur du cisaillement sur les génératrices et les géodésiques,
et la formule (1) par une nouvelle intégration, les contraintes longitudinales
s'exercant sur les élémeuts des géodésiques parallélement aux génératrices.

La détermination des contraintes effectuée de cette maniére n’est compléte que
si I'on se donne sur une courbe déterminée rencontrant une fois seulement
chaque génératrice, les valeurs des contraintes s’exercant sur les éléments de la
dite courbe. On peut d’ailleurs aussi bien se donner sur deux courbes rencontrant
chacune chaque génératrice une fois et une seule, une relation entre les com-
posantes de la contrainte s’exercant sur tout élément des deux courbes.

6° — Etude des voiles du second groupe.

Considérons un voile mince du second groupe. Nous avons vu que la com-
posante normale de la densité de la charge appliquée était proportionnelle en
chaque point & la somme des contraintes longitudinales s’exercant sur des
éléments d'un systéme orthogonal et isotherme pour la surface associée. Supposons
que ces contraintes longitudinales soient égales. Leur valeur est alors bien
déterminée en chaque point par la valeur de la composante normale de la
densité de la charge. Nous avons ainsi satisfait a I'équation (3). Les équations (1)
et (2) qui expriment l'équilibre dans le plan tangent ne seront alors satisfaites
que si la composante tangentielle de la densité de la charge a une valeur
déterminée, que l'on obtient en écrivant précisément les conditions d'équilibre
parallélement au plan tangent. Nous appellerons systéme fondamental de charges
tout systéme de charges correspondant aux conditions précédentes, c'est-a-dire
tel que les contraintes longitudinales s’exercant sur des éléments d’'un systéme
orthogonal et isotherme pour la surface associée soient égales. Il est alors bien
évident qu'un systéme quelconque de charges peut étre considéré comme la
somme d'un systtme fondamental et d'un systéme composé uniquement de
charges tangentielles et que nous appellerons systéme complémentaire du systéme
fondamental de charges.

Nous sommes ramenés ainsi a I'étude des systémes complémentaires, c’est-a-dire
des systémes ou la charge appliquée est tangente a la surface. Dans de tels
systémes, les contraintes longitudinales sur des éléments d’un systéme orthogonal
et isotherme pour la surface associée, sont égales, et par suite la contrainte
sur un élément quelconque ne dépend plus que de deux paramétres, par exemple
les composantes de la contrainte s’exercant sur un des éléments conjugués

.
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précédents. Il est bien évident que l'on peut choisir arbitrairement ces deux
paramétres. On voit facilement que I'on peut déterminer deux fonctions imagi-
naires conjuguées ¢ et b de maniére qu'en prenant pour paramétres deux
quantités que nous désignerons par S, et S, les forces élastiques agissant sur
un élément quelconque de la surface soient une forme linéaire des expressions
différentielles S, db et S, dp. Les équations d’équilibre dans le plan tangent
montrent alors que la dérivée partielle de S, par rapport a ¢ et la dérivée
partielle de S, par rapport a ¥ sont des fonctions linéaires de S, et S,. En
éliminant I'un des deux paramétres, S,, par exemple, entre ces deux relations, on
obtient une équation aux dérivées partielles linéaire du second ordre a carac-
téristiques imaginaires, & laquelle doit satisfaire le paramétre conservé S,.

Pour déterminer une solution de cette équation, on peut se donner la valeur
de S, et d'une de ses dérivées sur une courbe arbitraire de la surface, & condition
toutefois, étant donné que l'équation est a caractéristiques imaginaires, que cer-
taines conditions d’analycité soient remplies. Si I'on remarque que se donner S,
et une de ses décrivées sur une courbe revient a se donner S, et S, sur cette
courbe, et par suite la contrainte s’exercant sur un élément quelconque de la
courbe, on voit que, sous certaines réserves d’analycité, on peut déterminer les
contraintes dans le voile, & condition de connaitre les contraintes s’exercant
sur les éléments d'une courbe.

Les réserves relatives a l'analycité dont nous avons parlé ne sont pas des
réserves de pure forme. Elles correspondent a une réalité physique qui est la
suivante. On sait en effet que dans tous les problémes ou une fonction vérifiant
une équation a caractéristiques imaginaires est déterminée par les valeurs qu’elle
prend, ainsi qu'une de ses dérivées, sur une courbe donnée, la solution n’est pas
une fonction continue des données c’est-a-dire qu’en faisant varier trés peu les
données, on peut obtenir des valeurs de la fonction aussi différentes que 1'on veut
en des points arbitrairement choisis. Il résulte de la que les états d’équilibre d'un
voile convexe correspondant a des valeurs données des contraintes s’exercant sur
une courbe ne sont pas stables par rapport aux valeurs des contraintes sur
cette courbe.

Pour obtenir des solations stables, il faut envisager des conditionst aux limites
différentes de celles que nous avons envisagées. Au lieu de nous donner les
valeurs des contraintes sur une courbe, donnons-nous sur une courbe fermée une
relation entre les composantes des contraintes s’exercant sur les éléments de la
ocourbe. Si cette relation est convenablement choisie le probléme pourra se trouver
déterminé tout au moins & une ou plusieurs constantes prés, la solution étant
une fonction continue des données. L’équilibre correspondant sera un équilibre
stable. Supposons par exemple que nous voulions que la contrainte le long de la
courbe donnée ait une composante donnée normalement & une direction donnée,
direction variable avec chaque point de la courbe. L’indétermination relative des.
paramétres S, et Sy permet de les déterminer de maniére que S, représente
le long de la courbe donnée la valeur de la composante normale & une direction
donnée de la contrainte s’exercant sur les éléments de la courbe. La théorie des.
équations intégrales permet alors de déterminer la fonction S, par une méthode
analogue a celle qu ‘ont employée Fredholm et ses successeurs pour résoudre les.
problémes du méme type relatifs aux equations caractéristiques imaginaires..

L]
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> — FEtude des voiles du troisiéme groupe.

Considérons un voile mince du troisitme groupe. La valeur de la composante
normale de la densité de la charge détermine tout d’abord en chaque point du
voile les contraintes de cisaillement sur les éléments d’asymptotiques. Supposons
que les contraintes dans le voile se réduisent a ces cisaillements. Il faut et il
suffit pour cela, que la composante tangentielle de la charge appliquée a un
quadrilatére élémentaire d’arcs d’asymptotiques fasse équilibre a la projection sur
le plan tangent de la résultante des efforts tangentiels appliqués aux éléments
du quadrilatére. Nous appellerons systéme fondamental de charges, tout systéme
de charges correspondant aux conditions précédentes, c’est-a-dire tel que les con-
traintes s’exercant sur les éléments d'asymptotiques se réduisent a des cisaille-
ments. Il est bien évident qu'un systéme quelconque de charges peut étre con-
sidéré comme la superposition d’'un syst¢éme fondamental de charge et d'un
systtme que nous appellerons encore systéme complémentaire et composé
uniquement de charges tangentielles.

Nous sommes ainsi ramenés a l'étude de l'action des systémes complémen-
taires. Pour cela nous remarquons encore que la force élastique s’exercant sur
un élément du voile peut encore se mettre sous la forme d'une forme linéaire
d’expressions différentielles telles que S, db et S, dp, ¢ et ¥ étant maintenant
deux fonctions réelles, S, et S,, deux paramétres réels. Les équations d'équilibre
suivant le plan tangent permettent alors d’exprimer les dérivées partielles de S,
par rapport & @ et de S, par rapport & ¥ en fonction linéaire de S, et S,.
L’élimination de S, entre ces équations conduit & une équation en S, linéaire
aux dérivées partielles du second ordre a caractéristiques réelles. Les cara-
téristiques de cette équation aux dérivées partielles sont précisément les lignes
asymptotiques.

Pour déterminer une solution de I'équation précédente valable dans un domaine
D limité par un contour C décomposons ce contour en deux suites d’arcs T
et I'” tels que de tout point de D soient issues deux asymptotiques rencontrant I'
une fois et une seule, puis décompbsons I' en deux suites d’arcs I'; et
I, tels que toute ligne brisée d’arcs d’asymptotiques joignant tout point de I,
a un point de I ait ses sommets intermédiaires sur I', ou I, et qu’il n’existe
aucune ligne brisée d’arcs d’asymptotiques ayant ses extrémités sur I', et ses
sommets intermédiaires sur I'y. On obtiendra une solution unique valable dans D,
en se donnant sur I'; la valeur de la contrainte s’exercant sur les éléments de I",
et en se donnant sur I'y une relation entre les composantes de la contrainte
s’exercant sur les éléments de I',. La valeur de la solution sera donnée par la
formule de Riemann appliquée successivement a différents sous-domaines du
domaine D. Aucune condition d’analycité n’est ici requise et la solution obtenue
est toujours une fonction continue des données. Par contre il n'existe pas en
général de solution correspondant a une relation entre les composantes des con-
traintes s’exercant sur les différents éléments de la courbe fermée C.

Lorsque le voile mince considéré est une surface réglée, 1'équation aux dérivées
partielles du second ordre peut se ramener a une équation linéaire aux dérivées
partielles du premier ordre ne contenant qu'une dérivée, équation dont l'inté-
gration est immédiate étant donné qu'on peut la considérer comme une équation

45 F
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différentielle linéaire. Dans le cas ou le voile mince est une quadrique réglée,
la détermination des paramétres S, et S, se réduit a deux quadratures.

8° — Choiz du systéme d’appuis dans les voiles minces des trois groupes.

Le choix du systtme d’appuis dans un voile mince dépend essentiellement du
groupe auquel il appartient. Nous distinguerons deux catégories d’appuis, les
appuis simples pour lesquels les réactions dépendent d'un seul paramétre, et
les appuis doubles pour lesquels les réactions dépendent de deux paramétres. Les
composantes des contraintes que le voile transmet a un appui simple satisfont
par conséquent a une relation connue a priori, tandis que les composantes des
contraintes que le voile transmet 4 un appui double peuvent prendre des valeurs
indépendantes. Par ailleurs, certaines parties du voile sur son contour peuvent
ne comporter aucun appui, le bord est dit libre.

Nous nous proposons de rechercher comment il faut répartir les bords libres,
les appuis simples et les appuis doubles au contour d’'un voile mince pour que
celui-ci soit soumis 4 un équilibre unique et stable.

Placons-nous tout d'abord dans le cas d'un voile du premier groupe. On
pourra se donner un bord libre sur toute partie du contour ne comprenant pas
de génératrice rectiligne, et rencontré une fois au plus par toute génératrice.
Si le bord libre rencontre toutes les génératrices, la répartition des contraintes
dans le voile est déterminée, et par suite, les autres bords devront comporter
des appuis doubles. Le systéme d’équilibre correspondant est stable. Donnons-
nous au contraire deux bords rencontrant chacun une seule fois toutes les
génératrices et aménagés en appuis simples. On obtiendra encore un état d’équi-
libre stable du voile, a condition d’aménager le reste du contour, composé ex-
clusivement de génératrices, en appuis doubles.

Considérons maintenant un voile du second groupe. Ce voile ne peut admettre
de bords libres, car l'équilibre correspondant n’est pas stable. Mais on peut
aménager l'ensemble du pourtour du voile en appuis simples, I'équilibre cor-
respondant est bien déterminé et stable. -

Considérons enfin un voile du troisiéme groupe et décomposons le contour en
trois catégories d'arcs I';, T'y, IV définis comme il a été indiqué au 7°. On
pourra se¢ donner un bord libre suivant I';, des appuis simples suivant T',, et
des appuis doubles suivant I”. L’équilibre correspondant est bien déterminé et
c’est un équilibre stable.

9° — Propriétés géométriques et calculs géométriques des voiles du troisiéme
groupe.

Les voiles du troisiéme groupe présentent des propriétés géométriques remar-
quables qui permettent d’en faire un calcul graphique précis.

_ Interprétons tout d’'abord géométriquement les paramétres S, et S, et les
fonctions ¢ et ¥ introduits au 7°. S, et S, sont les contraintes longitudinales
s’exercant sur les asymptotiques pour un systéme complémentaire de charges.
¢ et ¥ sont des coordonnées curvilignes de la surface pour lesquelles les lignes
de coordonnées sont les lignes asymptotiques.
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Remplacons les voiles minces par un systéme réticulaire gauche dont les
mailles sont des quadrilatéres rectilignes gauches formés par des cordes de lignes
asymptotiques. Le systéme obtenu travaille comme la surface donnée, et l'assi-
milation des deux systémes est légitime si les mailles sont suffisamment petites.
Les charges appliquées au systéme réticulaire doivent étre appliquées aux
sommets du systéme réticulaire suivant le plan tangent a la surface.

Appliquons une force unique I en un sommet quelconque du systéme réti-
culaire. Cette force peut se décomposer suivant deux des barres passant en ce
point et correspondant i deux lignes asymptotiques différentes. On transporte
ainsi la force F a deux autres noeuds de la surface ou on opére de méme, et
ainsi de suite. Si I'on suppose le contour de la surface divisé en trois catégories
d’arcs I'y, T', et IV dans les conditions indiquées précédemment, et si I'on choisit
convenablement les deux barres initiales suivant lesquelles on décompose la force
donnée F, la transmission de la force F se fera par le processus indiqué sans
qu’on rencontre jamais un bord libre. Si I'on rencontre un bord de I', supposé
aménagé en appui simple, on pourra encore faire la décomposition entre la
seconde barre aboutissant au sommet considéré sur I', et la direction de la
réaction de l'appui simple. L'opération qu'on effectue ainsi est ce qu'on appelle
une réflexion sur 'appui simple. En la continuant ainsi, on transmettra finale-
ment la force I' a toute une zone d’appuis doubles. On aura ainsi obtenu un
équilibre du systéme compatible avec les réactions d’appuis, et cet équilibre sera
stable. En opérant de la méme maniére pour chaque noeud chargé du systéme
réticulaire, on aura déterminé l'état d’équilibre relatif au systéme complémen-
taire de charges en ne faisant intervenir que des décompositions de forces suivant
la régle du parallélogramme. L’épure correspondante peut se faire facilement
en projection sur un plan arbitraire.

La détermination géométrique des efforts dont nous venons de parler permet
d’envisager 1'équilibre d’'un voile du troisitme groupe comme résultant d'une
propagation d’efforts s’effectuant suivant les arcs d’asymptotiques en partant
des bords libres pour aboutir aux appuis doubles en se réfléchissant sur les
appuis simples. Cette propriété est analogue a la propagation par ondes des
phénomeénes régis par des équations linéaires aux dérivées partielles du second
ordre a caractéristiques réelles et comme elle, est due essentiellement a la nature
réelle des caractéristiques des équations régissant I'équilibre des contraintes dans
le voile considéré.

10° — Exemples simples de voiles du troisiéme groupe.

L’exemple le plus simple de voile du troisiéme groupe est fourni par le para-
boloide hyperbolique. Ce voile est caractérisé par da propriété que le cisaillement
suivant les génératrices rectilignes est, & un facteur prés, constant sur toute la
surface, égal & la composante suivant I'axe du paraboloide de la charge appliquée
rapportée a 1'unité de surface en projection sur un plan quelconque non paralléle
a l'axe. D’autre part, les efforts dus au systéme complémentaire de charges se
propagent suivant chaque génératrice sans qu'il se produise d'interférences entre
les génératrices, de telle sorte qu'un effort tangentiel appliqué a un petit élément
du voile ne fait sentir son effet que sur les bandes engendrées par les génératrices
rencontrées. Aprés le paraboloide hyperbolique, le voile du troisiéme groupe le
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plus simple est I'hyperboloide a une nappe. Ce voile posséde en commun avec
le paraboloide la propriété que les efforts dus au systeme complémentaire se
propagent suivant chaque génératrice sans interférence avec les autres généra-
trices. Il ne différe du paraboloide hyperbolique que par I'expression plus com-
pliquée du coefficient de proportionnalité entre le cisaillement et la densité de
la charge appliquée.

Viennent ensuite les surfaces réglées non développables et en premier lieu
les conoides. Pour ces surfaces, le coefficient de proportionnalité entre le

Fig.1.

cisaillement sur les asymptotiques et la densité de la charge appliquée, a une
expression beaucoup plus compliquée que pour les premiéres surfaces envisagées,
mais ce qui les distingue surtout de ces surfaces, c’est que les efforts dus au
systéme . complémentaire se propagent en s'épanouissant sur la surface, les
asymptotiques non rectilignes s’arc-boutant sur les génératrices rectilignes de
la surface, de telle sorte qu'une force tangentielle appliquée a un petit élément
intéresse toute une zone en éventail de la surface, comme dans les surfaces les
plus générales du troisiéme groupe.

Les figures 2 et 3 montrent la différence entre les quadriques réglées et
les autres surfaces du troisiéme groupe au dernier point de vue qui vient d’étre
signalé.
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Fig. 2. Fig. 3.
Mode de propagation des efforts tangentiels Mode de propagation des efforts tangentiels dans

tans une quadrique réglée. une surface quelconque du 3e groupe.



Etude des voiles minces courbes ne subissant pas de flexion 709

11 — Concl;zsion.

Si T'on excepte les voiles réglés développables comme les cylindres et les cones
qui forment une classe trés particuliére de voiles, I'ensemble des voiles a double
courbure se divise en deux grandes familles suivant le signe de la courbure
totale. Dans les deux familles de voiles, ce sont les lignes asymptotiques qui
jouent le role essentiel dans la transmission des efforts tangentiels, et par suite
dans la détermination de la nature des réactions d’appuis correspondant a des
équilibres bien déterminés et stables. Lorsque les asymptotiques sont imaginaires,
le voile ne peut admettre de bords libres, mais peut étre limité a des bords
aménagés tous en appuis simples. L’exemple courant d’appuis de cette sorte
est constitué par un tympan plan a grande raideur dans son plan et sans raideur
appréciable perpendiculairement a ce plan. Lorsque les asymptotiques sont réelles,
on doit décomposer les bords du voile en bords libres, en bords avec appuis
simples, et en bords avec appuis doubles suivant les régles déterminées que nous
avons indiquées. Comme les appuis doubles peuvent constituer une difficulté
au point de vue constructif, il y a avantage a chercher a en diminuer I'impor-
tance le plus possible, ce qui peut se faire de différentes maniéres en choisissant
convenablement le tracé de la surface.

Si I'on se place strictement au point de vue de la facilité de calcul, les con-
sidérations qui précédent laissent entrevoir que, parmi les voiles & double cour-
bure, ceux donnant lieu a des calculs vraiment élémentaires sont les quadriques
réglées.

Résumé.

Dans la construction des voiles minces en béton armé il s’agit d’abord de
problémes statiquement déterminés, indépendants de la théorie de la plasticité.
La totalité de ces questions est traitée en liaison avec d’autres problémes qui
se présentent lors de l'exécution des voiles minces et avant tout en liaison avec
les problémes de la compatibilité des déformations conditionnées par I'état de
tension calculé d’une maniére isostatique.

I’auteur utilise 'hypothése d'une répartition uniforme des tensions sur toute
I'épaisseur de la section de telle facon que 'on peut admettre le voile concentré
en sa surface moyenne.
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