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Etude des voiles minces courbes ne subissant pas de
flexion.

Einfithrung in die allgemeine Theorie der biegungsfreien Schalen.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. és sciences F.Aimond,
Ingénieur des Ponts et Chausée détaché au Ministére de I'Air, Paris.

1° — Rappel des équations générales en coordonnées rectilignes de léquilibre
statique des voiles minces.

Soit z=1£ (x, y) I'équation de la surface en coordonnées rectilignes quelcon-
ques non nécessairement rectangulaires. L’état des contraintes en un point m du
voile, est déterminé par la connaissance des contraintes n;, n,, ©, agissant sur
les éléments. mm; et mm, respectivement paralleles aux plans zox et zoy.
n; agit sur mm, parallélement au plan zox, n, agit sur mm, paralléelement au
plan zoy, ® agit a la fois sur mm,; parallélement a zox, et sur mm, paralléle-
ment a zoy (fig. 1). Désignons par o, O, v, et O, By, Y, les coefficients direc-
teurs des tangentes aux éléments mm,; et mm,, c’est-a-dire les projections suivant
0X, oy, oz du vecteur unité portées par chacune de ces tangentes.

Supposons le voile chargé d'une maniére quelconque, et appelons Xdxdy,
Ydxdy, Zdxdy les composantes suivant ox, oy, oz, de la charge appliquée a
I'élément mm; m’m, limité aux paralleles mm, et m,m’ au plan zox et aux
paralléeles mm, et m; m’ au plan zoy. L’étude des conditions d'équilibre des
dits éléments conduit aux équations suivantes:
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2° — Interprétation géométrique des quantités figurant dans les équations
générales d’équilibre.

La quantité T figurant au second membre de I'équation (3) n’est autre que
la projection du vecteur (X, Y, Z) sur oz, cette projection étant effectuée
parallélement au plan tangent a la surface. Pour interpréter les quantités v,, v,
et ® qui sont les inconnues des équations d’équilibre, définissons d’une maniére
générale ce que nous appellerons contrainte réduite. Par définition, la contrainte
réduite s’exercant sur un élément du voile est la projection sur le plan des xy
de la force élastique s’exercant sur cet éléments, divisée par la longueur de
la projection de I'élément. On constate facilement que la répartition des con-
traintes réduites autour d’'un point suit les mémes lois que les contraintes réelles
et en particulier la représentation de Mohr leur est applicable. Les quantités v,,
vy, ©, sont précisément les contraintes réduites relatives aux éléments qui se
projettent suivant des paralléles aux axes des x et des y. On peut remarquer
que les contraintes de cisaillement ® se conservent en projection tandis qu’il
n'en est pas de méme des autres contraintes n,, n,.

3° — Interprétation géométrique des équalions générales d’équilibre.

Les équations (1) et (2) expriment évidemment l'équilibre en projection sur
le plan. tangent. L’équation (3) exprime au contraire 1'équilibre des forces
appliquées normalement au voile. Pour l'interpréter géométriquement, prenons
l'origine o du triédre oxyz sur la surface, et orientons ox et oy suivant les
directions de deux éléments arbitraires. Nous pouvons achever de définir com-
plétement le triédre oxyz en nous donnant d’une maniére arbitraire la direction
oz. L’équation (3) définit une relation linéaire entre les contraintes s’exercant
sur les éléments arbitraires ox et oy et la projection T effectuée sur oz paralléle-
ment au plan tangent de la densité de la charge appliquée. Lorsqu'on change la
direction oz sars toucher a ox et oy, chaque terme de la relation linéaire pré-
cédente est simplement multiplié par un méme facteur.

Nous pouvons profiter de I'indétermination de la direction des éléments ox et
oy pour simplifier I'équation (3). Si on dirige en particulier ces éléments suivant
deux directions conjuguées de la surface, c’est-a-dire suivant deux directions con-
juguées par rapport a l'indicatrice, le coefficient de ® s’annule et I'équation (3)
se réduit 4 une relation linéaire entre les contraintes longitudinales v, et v,.
On peut se demander s'il n’est pas possible d’orienter les éléments ox et oy de
maniére qu'il ne reste plus dans I'équation (3) qu'une seule contrainte. On voit
immédiatement que cela n’est pas possible si la surface est convexe, c’est-a-dire
si les rayons de courbure principaux sont de méme sens et qu'au contraire cela
est possible si la surface n’est pas convexe.

Plagons-nous dans cette derniére hypothése et distinguons deux cas, suivant que
la contrainte qui reste dans l'équation (3) est une contrainte longitudinale ou
le cisaillement ©. Le premier cas n’est possible que si la surface est déve-
loppable, c’est-a-dire si on peut la considérer comme l'enveloppe d'une famille
de plans tangents dépendant d'un paramétre. Si I'on prend 1'élément ox suivant
la direction de la génératrice rectiligne qui passe en o, I'équation (3) se réduit a

4) vy =2¢
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Le deuxiéme cas correspond aux surfaces a courbures opposées. Si 'on prend
ox et oy suivant les directions des asymptotiques, 1'équation (3) se réduit a

(3) 2s®@ =7

L’interprétation des équations (4) et (5) est immeédiate. Interprétons d’abord
Péquation (4). Il est visible que les seules contraintes agissant sur un élément
infiniment petit de la surface admettant une composante non située dans le plan
tangent a la surface, sont les contraintes projetées suivant v,, et I'équation (4)
exprime simplement l'identité entre les projections des contraintes n, sur oz
effectuées parallelement au plan tangent et la projection effectuée dans les
mémes conditions de la charge appliquée.

Interprétons maintenant 1'équation (5). Il suffit pour cela de considérer un
quadrilatére élémentaire dont deux cotés consécutifs sont constitués par des
arcs d'asymptotiques se croisant en o. Les contraintes longitudinales n; et n,
appliquées a ce quadrilatére ont une résultante dans le plan tangent puisque
cette résultante est la somme géométrique de la résultante des contraintes n,
et de la résultante des contraintes n., et que chacune de ces deux dermeres
résultantes est nécessairement dans le plan osculateur d'un arc d'asvmptotique,
plan osculateur qui coincide avec le plan tangent en vertu de la définition méme
des asymptotiques. Donc, la composante T des charges appliquées a la surface
en dehors du plan tangent ne dépend que du cisaillement ®. Il lui est d'ailleurs
proportionell. Le coefficient de proportionnalité dont la valeur est 2s a une sig-
nification géométrique excessivement simple. C’est le quotient du double de la
distance du sommet opposé a o dans le quadrilatére au plan tangent en o, cette
distance étant comptée parallélement a la direction oz, par le produit des lon-
gueurs d’arcs d’asymptotiques formant les cotés du quadrilatére.

4o — Classification des voiles minces au point de vue de leurs propriétés
mécaniques.

Les considérations précédentes conduisent a classer les voiles minces en trois
groupes. Le premier groupe comprend les surfaces développables comme les
cylindres et les cones, le deuxiéme groupe comprend les surfaces convexes
comme la sphére, le paraboloide elliptique, I'ellipsoide, I'hyperboloide a deux
nappes, et, d'une maniére générale, toutes les surfaces a double courbure engen-
drées par une courbe dont la concavité est dirigée vers le bas et qui s’appuie
sur unc directrice courbe dont la concavité est également dirigée vers le bas.
Le troisiéme groupe comprend les surfaces a courbures opposées comme le
paraboloide hyperbolique, 'hyperboloide a une nappe, les conoides, toutes les
surfaces réglées non développables, et d'une maniére générale, toutes les sur-
faces qui peuvent étre engendrées par une courbe dont la concavité est tournée
vers le haut et qui s’appuie sur une directrice dont la concavité est tournée vers
le bas.

Cette classification nous est suggérée par linterprétation géométrique de
I'équation (3). Les voiles du premier groupe sont ceux pour lesquels 1'équation
(3) peut étre mise sous la forme (4), les voiles du second groupe sont ceux
pour lesquels I'équation (3) peut étre mise sous la forme

(6) rvy +tvo = T
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.

T et t élant de méme signe, les voiles du troisiéme groupe sont ceux pour les-
quels I'équation (3) peut se mettre sous la forme (5).

Observons que pour les voiles du troisiétme groupe I'équation (3) peut égale-
ment se mettresous la forme (6), mais r et t sont alors de signes contraires.
Observons également que pour les voiles du deuxiéme groupe, l'équation (3)
peut aussi étre mise sous la forme (5), ot © représente encore le cisaillement
sur les asymptotiques, mais 1'équation (5) n’est plus alors une équation & termes
réels, s et t sont deux expressions purement imaginaires.

Les voiles du premier groupe sont caractérisés par la propriété que la com-
posante normale de la contrainte s’exercant sur les génératrices rectilignes, est
en chaque point proportionnelle a Ja composante normale de la densité de la
charge appliquée. Les voiles du second groupe sont caractérisés par la propriété
que la contrainte de cisaillement purement imaginaire s’exercant sur les éléments
imaginaires d’asymptotiques, est proportionnelle en chaque point a la com-
posante normale de la densité de la charge appliquée. Les voiles du troisiéme
groupe sont caractérisés par la propriété que la contrainte de cisaillement s’exer-
cant sur les éléments d’asymptotiques est proportionnelle en chaque point a la
composante normale de la densité de la charge appliquée.

On peut encore faire observer la différence suivante entre les voiles du
deuxiéme et du troisitme groupe. Si I'on considére en un point les contraintes
longitudinales s’exercant sur deux éléments conjugués, la composante normale
de la charge appliquée, que I'on peut considérer comme la poussée au vide
produite par ces contraintes longitudinales, est une forme linéaire de ces con-
traintes. Cette forme est a coefficients de méme signe pour les voiles du
deuxiéme groupe et a coefficients de signes contraires pour les voiles du troisiéme
groupe. Il en résulte que la portance d'un voile du deuxiéme groupe peut étre
considérée comme produite par des contraintes longitudinales de méme sens
s’exercant sur deux éléments conjugués, et que la portance d'un voile du troisiéme
groupe peut, d'une maniére analogue, étre considérée comme produite par des
contraintes longitudinales de sens contraires, s’exercant sur deux éléments
conjugués.

Lorsqu’il s’agit d’'un voile du second groupe, on peut toujours choisir les
éléments conjugués de maniére qu’ils forment un réseau orthogonal et isotherme
sur la surface associée ayant pour carré de 1’élément linéaire la forme quadratique

rdx? + 2sdxdy + tdy2

Les coefficients des contraintes longitudinales correspondantes, dans la forme
linéaire représentant la composante normale de la densité de la charge appliquée,
sont alors égaux. On peut donc dire que dans les voiles du second groupe la
composante normale de la densité de la charge a appliquer est proportionnelle a
la somme des contraintes longitudinales s’exercant suivant les éléments d’'un
systéme orthogonal et isotherme pour la surface associée.

Les différences de propriétés qui, nous venons de le voir, distinguent les
voiles des trois groupes, ont une importance primordiale sur la nature des
appuis que l'on peut se donner au pourtour des voiles pour parfaire leur
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équilibre, et sur le mode de calcul effectif des contraintes dans les voiles en
fonction des conditions au contour.

5> — Etude des voiles du premier groupe.

‘étude des voiles du premier groupe est une généralisation de l'étude des
cylindres. L’équation (4) fait connaitre, en chaque point du voile, la com-
posante normale a la génératrice rectiligne passant en ce point, de la con-
trainte agissant sur un élément de cette génératrice. Par conséquent, si nous
tragons sur la surface une famille de géodésiques coupant les différentes géné-
ratrices rectilignes sous un angle constant, nous connaitrons la contrainte
longitudinale agissant parallélement a ces géodésiques sur les éléments de
génératrices rectilignes. L’équation (2) nous fera alors connaitre par une inté-
gration immédiate la valeur du cisaillement sur les génératrices et les géodésiques,
et la formule (1) par une nouvelle intégration, les contraintes longitudinales
s'exercant sur les élémeuts des géodésiques parallélement aux génératrices.

La détermination des contraintes effectuée de cette maniére n’est compléte que
si I'on se donne sur une courbe déterminée rencontrant une fois seulement
chaque génératrice, les valeurs des contraintes s’exercant sur les éléments de la
dite courbe. On peut d’ailleurs aussi bien se donner sur deux courbes rencontrant
chacune chaque génératrice une fois et une seule, une relation entre les com-
posantes de la contrainte s’exercant sur tout élément des deux courbes.

6° — Etude des voiles du second groupe.

Considérons un voile mince du second groupe. Nous avons vu que la com-
posante normale de la densité de la charge appliquée était proportionnelle en
chaque point & la somme des contraintes longitudinales s’exercant sur des
éléments d'un systéme orthogonal et isotherme pour la surface associée. Supposons
que ces contraintes longitudinales soient égales. Leur valeur est alors bien
déterminée en chaque point par la valeur de la composante normale de la
densité de la charge. Nous avons ainsi satisfait a I'équation (3). Les équations (1)
et (2) qui expriment l'équilibre dans le plan tangent ne seront alors satisfaites
que si la composante tangentielle de la densité de la charge a une valeur
déterminée, que l'on obtient en écrivant précisément les conditions d'équilibre
parallélement au plan tangent. Nous appellerons systéme fondamental de charges
tout systéme de charges correspondant aux conditions précédentes, c'est-a-dire
tel que les contraintes longitudinales s’exercant sur des éléments d’'un systéme
orthogonal et isotherme pour la surface associée soient égales. Il est alors bien
évident qu'un systéme quelconque de charges peut étre considéré comme la
somme d'un systtme fondamental et d'un systéme composé uniquement de
charges tangentielles et que nous appellerons systéme complémentaire du systéme
fondamental de charges.

Nous sommes ramenés ainsi a I'étude des systémes complémentaires, c’est-a-dire
des systémes ou la charge appliquée est tangente a la surface. Dans de tels
systémes, les contraintes longitudinales sur des éléments d’un systéme orthogonal
et isotherme pour la surface associée, sont égales, et par suite la contrainte
sur un élément quelconque ne dépend plus que de deux paramétres, par exemple
les composantes de la contrainte s’exercant sur un des éléments conjugués

.
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précédents. Il est bien évident que l'on peut choisir arbitrairement ces deux
paramétres. On voit facilement que I'on peut déterminer deux fonctions imagi-
naires conjuguées ¢ et b de maniére qu'en prenant pour paramétres deux
quantités que nous désignerons par S, et S, les forces élastiques agissant sur
un élément quelconque de la surface soient une forme linéaire des expressions
différentielles S, db et S, dp. Les équations d’équilibre dans le plan tangent
montrent alors que la dérivée partielle de S, par rapport a ¢ et la dérivée
partielle de S, par rapport a ¥ sont des fonctions linéaires de S, et S,. En
éliminant I'un des deux paramétres, S,, par exemple, entre ces deux relations, on
obtient une équation aux dérivées partielles linéaire du second ordre a carac-
téristiques imaginaires, & laquelle doit satisfaire le paramétre conservé S,.

Pour déterminer une solution de cette équation, on peut se donner la valeur
de S, et d'une de ses dérivées sur une courbe arbitraire de la surface, & condition
toutefois, étant donné que l'équation est a caractéristiques imaginaires, que cer-
taines conditions d’analycité soient remplies. Si I'on remarque que se donner S,
et une de ses décrivées sur une courbe revient a se donner S, et S, sur cette
courbe, et par suite la contrainte s’exercant sur un élément quelconque de la
courbe, on voit que, sous certaines réserves d’analycité, on peut déterminer les
contraintes dans le voile, & condition de connaitre les contraintes s’exercant
sur les éléments d'une courbe.

Les réserves relatives a l'analycité dont nous avons parlé ne sont pas des
réserves de pure forme. Elles correspondent a une réalité physique qui est la
suivante. On sait en effet que dans tous les problémes ou une fonction vérifiant
une équation a caractéristiques imaginaires est déterminée par les valeurs qu’elle
prend, ainsi qu'une de ses dérivées, sur une courbe donnée, la solution n’est pas
une fonction continue des données c’est-a-dire qu’en faisant varier trés peu les
données, on peut obtenir des valeurs de la fonction aussi différentes que 1'on veut
en des points arbitrairement choisis. Il résulte de la que les états d’équilibre d'un
voile convexe correspondant a des valeurs données des contraintes s’exercant sur
une courbe ne sont pas stables par rapport aux valeurs des contraintes sur
cette courbe.

Pour obtenir des solations stables, il faut envisager des conditionst aux limites
différentes de celles que nous avons envisagées. Au lieu de nous donner les
valeurs des contraintes sur une courbe, donnons-nous sur une courbe fermée une
relation entre les composantes des contraintes s’exercant sur les éléments de la
ocourbe. Si cette relation est convenablement choisie le probléme pourra se trouver
déterminé tout au moins & une ou plusieurs constantes prés, la solution étant
une fonction continue des données. L’équilibre correspondant sera un équilibre
stable. Supposons par exemple que nous voulions que la contrainte le long de la
courbe donnée ait une composante donnée normalement & une direction donnée,
direction variable avec chaque point de la courbe. L’indétermination relative des.
paramétres S, et Sy permet de les déterminer de maniére que S, représente
le long de la courbe donnée la valeur de la composante normale & une direction
donnée de la contrainte s’exercant sur les éléments de la courbe. La théorie des.
équations intégrales permet alors de déterminer la fonction S, par une méthode
analogue a celle qu ‘ont employée Fredholm et ses successeurs pour résoudre les.
problémes du méme type relatifs aux equations caractéristiques imaginaires..

L]
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> — FEtude des voiles du troisiéme groupe.

Considérons un voile mince du troisitme groupe. La valeur de la composante
normale de la densité de la charge détermine tout d’abord en chaque point du
voile les contraintes de cisaillement sur les éléments d’asymptotiques. Supposons
que les contraintes dans le voile se réduisent a ces cisaillements. Il faut et il
suffit pour cela, que la composante tangentielle de la charge appliquée a un
quadrilatére élémentaire d’arcs d’asymptotiques fasse équilibre a la projection sur
le plan tangent de la résultante des efforts tangentiels appliqués aux éléments
du quadrilatére. Nous appellerons systéme fondamental de charges, tout systéme
de charges correspondant aux conditions précédentes, c’est-a-dire tel que les con-
traintes s’exercant sur les éléments d'asymptotiques se réduisent a des cisaille-
ments. Il est bien évident qu'un systéme quelconque de charges peut étre con-
sidéré comme la superposition d’'un syst¢éme fondamental de charge et d'un
systtme que nous appellerons encore systéme complémentaire et composé
uniquement de charges tangentielles.

Nous sommes ainsi ramenés a l'étude de l'action des systémes complémen-
taires. Pour cela nous remarquons encore que la force élastique s’exercant sur
un élément du voile peut encore se mettre sous la forme d'une forme linéaire
d’expressions différentielles telles que S, db et S, dp, ¢ et ¥ étant maintenant
deux fonctions réelles, S, et S,, deux paramétres réels. Les équations d'équilibre
suivant le plan tangent permettent alors d’exprimer les dérivées partielles de S,
par rapport & @ et de S, par rapport & ¥ en fonction linéaire de S, et S,.
L’élimination de S, entre ces équations conduit & une équation en S, linéaire
aux dérivées partielles du second ordre a caractéristiques réelles. Les cara-
téristiques de cette équation aux dérivées partielles sont précisément les lignes
asymptotiques.

Pour déterminer une solution de I'équation précédente valable dans un domaine
D limité par un contour C décomposons ce contour en deux suites d’arcs T
et I'” tels que de tout point de D soient issues deux asymptotiques rencontrant I'
une fois et une seule, puis décompbsons I' en deux suites d’arcs I'; et
I, tels que toute ligne brisée d’arcs d’asymptotiques joignant tout point de I,
a un point de I ait ses sommets intermédiaires sur I', ou I, et qu’il n’existe
aucune ligne brisée d’arcs d’asymptotiques ayant ses extrémités sur I', et ses
sommets intermédiaires sur I'y. On obtiendra une solution unique valable dans D,
en se donnant sur I'; la valeur de la contrainte s’exercant sur les éléments de I",
et en se donnant sur I'y une relation entre les composantes de la contrainte
s’exercant sur les éléments de I',. La valeur de la solution sera donnée par la
formule de Riemann appliquée successivement a différents sous-domaines du
domaine D. Aucune condition d’analycité n’est ici requise et la solution obtenue
est toujours une fonction continue des données. Par contre il n'existe pas en
général de solution correspondant a une relation entre les composantes des con-
traintes s’exercant sur les différents éléments de la courbe fermée C.

Lorsque le voile mince considéré est une surface réglée, 1'équation aux dérivées
partielles du second ordre peut se ramener a une équation linéaire aux dérivées
partielles du premier ordre ne contenant qu'une dérivée, équation dont l'inté-
gration est immédiate étant donné qu'on peut la considérer comme une équation

45 F
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différentielle linéaire. Dans le cas ou le voile mince est une quadrique réglée,
la détermination des paramétres S, et S, se réduit a deux quadratures.

8° — Choiz du systéme d’appuis dans les voiles minces des trois groupes.

Le choix du systtme d’appuis dans un voile mince dépend essentiellement du
groupe auquel il appartient. Nous distinguerons deux catégories d’appuis, les
appuis simples pour lesquels les réactions dépendent d'un seul paramétre, et
les appuis doubles pour lesquels les réactions dépendent de deux paramétres. Les
composantes des contraintes que le voile transmet a un appui simple satisfont
par conséquent a une relation connue a priori, tandis que les composantes des
contraintes que le voile transmet 4 un appui double peuvent prendre des valeurs
indépendantes. Par ailleurs, certaines parties du voile sur son contour peuvent
ne comporter aucun appui, le bord est dit libre.

Nous nous proposons de rechercher comment il faut répartir les bords libres,
les appuis simples et les appuis doubles au contour d’'un voile mince pour que
celui-ci soit soumis 4 un équilibre unique et stable.

Placons-nous tout d'abord dans le cas d'un voile du premier groupe. On
pourra se donner un bord libre sur toute partie du contour ne comprenant pas
de génératrice rectiligne, et rencontré une fois au plus par toute génératrice.
Si le bord libre rencontre toutes les génératrices, la répartition des contraintes
dans le voile est déterminée, et par suite, les autres bords devront comporter
des appuis doubles. Le systéme d’équilibre correspondant est stable. Donnons-
nous au contraire deux bords rencontrant chacun une seule fois toutes les
génératrices et aménagés en appuis simples. On obtiendra encore un état d’équi-
libre stable du voile, a condition d’aménager le reste du contour, composé ex-
clusivement de génératrices, en appuis doubles.

Considérons maintenant un voile du second groupe. Ce voile ne peut admettre
de bords libres, car l'équilibre correspondant n’est pas stable. Mais on peut
aménager l'ensemble du pourtour du voile en appuis simples, I'équilibre cor-
respondant est bien déterminé et stable. -

Considérons enfin un voile du troisiéme groupe et décomposons le contour en
trois catégories d'arcs I';, T'y, IV définis comme il a été indiqué au 7°. On
pourra se¢ donner un bord libre suivant I';, des appuis simples suivant T',, et
des appuis doubles suivant I”. L’équilibre correspondant est bien déterminé et
c’est un équilibre stable.

9° — Propriétés géométriques et calculs géométriques des voiles du troisiéme
groupe.

Les voiles du troisiéme groupe présentent des propriétés géométriques remar-
quables qui permettent d’en faire un calcul graphique précis.

_ Interprétons tout d’'abord géométriquement les paramétres S, et S, et les
fonctions ¢ et ¥ introduits au 7°. S, et S, sont les contraintes longitudinales
s’exercant sur les asymptotiques pour un systéme complémentaire de charges.
¢ et ¥ sont des coordonnées curvilignes de la surface pour lesquelles les lignes
de coordonnées sont les lignes asymptotiques.
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Remplacons les voiles minces par un systéme réticulaire gauche dont les
mailles sont des quadrilatéres rectilignes gauches formés par des cordes de lignes
asymptotiques. Le systéme obtenu travaille comme la surface donnée, et l'assi-
milation des deux systémes est légitime si les mailles sont suffisamment petites.
Les charges appliquées au systéme réticulaire doivent étre appliquées aux
sommets du systéme réticulaire suivant le plan tangent a la surface.

Appliquons une force unique I en un sommet quelconque du systéme réti-
culaire. Cette force peut se décomposer suivant deux des barres passant en ce
point et correspondant i deux lignes asymptotiques différentes. On transporte
ainsi la force F a deux autres noeuds de la surface ou on opére de méme, et
ainsi de suite. Si I'on suppose le contour de la surface divisé en trois catégories
d’arcs I'y, T', et IV dans les conditions indiquées précédemment, et si I'on choisit
convenablement les deux barres initiales suivant lesquelles on décompose la force
donnée F, la transmission de la force F se fera par le processus indiqué sans
qu’on rencontre jamais un bord libre. Si I'on rencontre un bord de I', supposé
aménagé en appui simple, on pourra encore faire la décomposition entre la
seconde barre aboutissant au sommet considéré sur I', et la direction de la
réaction de l'appui simple. L'opération qu'on effectue ainsi est ce qu'on appelle
une réflexion sur 'appui simple. En la continuant ainsi, on transmettra finale-
ment la force I' a toute une zone d’appuis doubles. On aura ainsi obtenu un
équilibre du systéme compatible avec les réactions d’appuis, et cet équilibre sera
stable. En opérant de la méme maniére pour chaque noeud chargé du systéme
réticulaire, on aura déterminé l'état d’équilibre relatif au systéme complémen-
taire de charges en ne faisant intervenir que des décompositions de forces suivant
la régle du parallélogramme. L’épure correspondante peut se faire facilement
en projection sur un plan arbitraire.

La détermination géométrique des efforts dont nous venons de parler permet
d’envisager 1'équilibre d’'un voile du troisitme groupe comme résultant d'une
propagation d’efforts s’effectuant suivant les arcs d’asymptotiques en partant
des bords libres pour aboutir aux appuis doubles en se réfléchissant sur les
appuis simples. Cette propriété est analogue a la propagation par ondes des
phénomeénes régis par des équations linéaires aux dérivées partielles du second
ordre a caractéristiques réelles et comme elle, est due essentiellement a la nature
réelle des caractéristiques des équations régissant I'équilibre des contraintes dans
le voile considéré.

10° — Exemples simples de voiles du troisiéme groupe.

L’exemple le plus simple de voile du troisiéme groupe est fourni par le para-
boloide hyperbolique. Ce voile est caractérisé par da propriété que le cisaillement
suivant les génératrices rectilignes est, & un facteur prés, constant sur toute la
surface, égal & la composante suivant I'axe du paraboloide de la charge appliquée
rapportée a 1'unité de surface en projection sur un plan quelconque non paralléle
a l'axe. D’autre part, les efforts dus au systéme complémentaire de charges se
propagent suivant chaque génératrice sans qu'il se produise d'interférences entre
les génératrices, de telle sorte qu'un effort tangentiel appliqué a un petit élément
du voile ne fait sentir son effet que sur les bandes engendrées par les génératrices
rencontrées. Aprés le paraboloide hyperbolique, le voile du troisiéme groupe le

45%
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plus simple est I'hyperboloide a une nappe. Ce voile posséde en commun avec
le paraboloide la propriété que les efforts dus au systeme complémentaire se
propagent suivant chaque génératrice sans interférence avec les autres généra-
trices. Il ne différe du paraboloide hyperbolique que par I'expression plus com-
pliquée du coefficient de proportionnalité entre le cisaillement et la densité de
la charge appliquée.

Viennent ensuite les surfaces réglées non développables et en premier lieu
les conoides. Pour ces surfaces, le coefficient de proportionnalité entre le

Fig.1.

cisaillement sur les asymptotiques et la densité de la charge appliquée, a une
expression beaucoup plus compliquée que pour les premiéres surfaces envisagées,
mais ce qui les distingue surtout de ces surfaces, c’est que les efforts dus au
systéme . complémentaire se propagent en s'épanouissant sur la surface, les
asymptotiques non rectilignes s’arc-boutant sur les génératrices rectilignes de
la surface, de telle sorte qu'une force tangentielle appliquée a un petit élément
intéresse toute une zone en éventail de la surface, comme dans les surfaces les
plus générales du troisiéme groupe.

Les figures 2 et 3 montrent la différence entre les quadriques réglées et
les autres surfaces du troisiéme groupe au dernier point de vue qui vient d’étre
signalé.
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Fig. 2. Fig. 3.
Mode de propagation des efforts tangentiels Mode de propagation des efforts tangentiels dans

tans une quadrique réglée. une surface quelconque du 3e groupe.



Etude des voiles minces courbes ne subissant pas de flexion 709

11 — Concl;zsion.

Si T'on excepte les voiles réglés développables comme les cylindres et les cones
qui forment une classe trés particuliére de voiles, I'ensemble des voiles a double
courbure se divise en deux grandes familles suivant le signe de la courbure
totale. Dans les deux familles de voiles, ce sont les lignes asymptotiques qui
jouent le role essentiel dans la transmission des efforts tangentiels, et par suite
dans la détermination de la nature des réactions d’appuis correspondant a des
équilibres bien déterminés et stables. Lorsque les asymptotiques sont imaginaires,
le voile ne peut admettre de bords libres, mais peut étre limité a des bords
aménagés tous en appuis simples. L’exemple courant d’appuis de cette sorte
est constitué par un tympan plan a grande raideur dans son plan et sans raideur
appréciable perpendiculairement a ce plan. Lorsque les asymptotiques sont réelles,
on doit décomposer les bords du voile en bords libres, en bords avec appuis
simples, et en bords avec appuis doubles suivant les régles déterminées que nous
avons indiquées. Comme les appuis doubles peuvent constituer une difficulté
au point de vue constructif, il y a avantage a chercher a en diminuer I'impor-
tance le plus possible, ce qui peut se faire de différentes maniéres en choisissant
convenablement le tracé de la surface.

Si I'on se place strictement au point de vue de la facilité de calcul, les con-
sidérations qui précédent laissent entrevoir que, parmi les voiles & double cour-
bure, ceux donnant lieu a des calculs vraiment élémentaires sont les quadriques
réglées.

Résumé.

Dans la construction des voiles minces en béton armé il s’agit d’abord de
problémes statiquement déterminés, indépendants de la théorie de la plasticité.
La totalité de ces questions est traitée en liaison avec d’autres problémes qui
se présentent lors de l'exécution des voiles minces et avant tout en liaison avec
les problémes de la compatibilité des déformations conditionnées par I'état de
tension calculé d’une maniére isostatique.

I’auteur utilise 'hypothése d'une répartition uniforme des tensions sur toute
I'épaisseur de la section de telle facon que 'on peut admettre le voile concentré
en sa surface moyenne.
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Les surfaces portantes dans la construction en béton armé.

Die Flichentragwerke des Eisenbetonbaues.

Shell Construction in Reinforced Concrete.

Dr. Ing. Fr. Dischinger,

Professor an der Technischen Hochschule, Berlin.

Douze ans aprés que la Société Dyckerhoff et Widmann, en collaboration avec
la maison Zeiss de Jena, eut créé les voiles minces en coquille, constructions pour
lesquelles les charges engendrent essentiellement des efforts restant dans la
surface méme, ce genre de construction a pris un grand essor grace aux recher-
ches de la théorie générale élaborée dans un temps extraordinairement court.

Avec cette théorie on a créé de nouveaux ouvrages dans le domaine des grandes
halles et cela sur un plan beaucoup plus vaste encore que ce qui a été fait a
l'aide des plaques et des dalles champignons. Au moyen des coupoles et des
toitures ondulées, appelées ensemble du nom de “surfaces portantes”, on peut
obtenir des portées qui jusqu'a maintenant étaient considérées comme irré-
alisables.

Depuis la découverte de ces constructions, il s’est & peine écoulé 10 ans. Dans
ce court laps de temps on a construit des halles de 100000 m2 et de 100 m
de portée. '

Le présent rapport se compose de deux parties. Dans la premiére partie nous
donnerons un résumé des progrés de la théorie depuis le dernier congrés et
les développements obtenus en construction. La seconde partie est consacrée a la
théorie des enveloppes cylindriques et des tuyaux.

1. Développement de la théorie des voiles depuis le dernier
congreés, 1932

Pour tout ce qui concerne les différentes formes des voiles dont il sera que-
stion ici, nous renvoyons au rapport de W. Petry II/4, présenté au congrés
de Paris en 1932. Dans la méme année parut la premiére partie du traité de
U. Finsterwalder! concernant le probléme des coupoles cylindriques (tonne) de
Zeiss-Dywidag. Cette théorie considére une voute cylindrique limitée par deux
nervures, on a ainsi une poutre cintrée que l'on peut considérer comme une
plaque creuse, dans laquelle le voile représente la plaque. A l'inverse des plaques
ordinaires, dans lesquelles, pour de grandes distances des nervures, la plaque ne
prend que fort peu des forces de compression, ici tout le voile travaille a la
compression. '
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Cela vient de ce que dans la plaque ordinaire (fig. 1a), la participation de la
plaque aux efforts de compression Ny se fait par l'intermédiaire des efforts de
cisaillement Ny, entre les nervures et la plaque.

La partie de la plaque ainsi sollicitée est fonction de la longueur de la poutre.
Les efforts de compression ne se répartissent pas réguliérement suivant la
largeur de la plaque, parce que les éléments de la plaque les plus éloignés de la
poutre (nervure) subissent des déformations de cisaillement et donc ne partici-
pent plus a la répartition des efforts de compression.

Le¢ mode d’action des plaques cintrées (fig. 1b) est totalement différent car,
comme on le voit dans I'équation 2 du chapitre suivant, en négligeant 1'effort
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Fig. 1a. Fig. 1b.

de cisaillement Ny, entre le voile et la nervure, il reste des efforts de com-
pression Ny, qui proviennent des charges élémentaires et tout le voile participe
donc sur toute sa largeur a la compression et cela d’autant plus que la courbure
da voile est plus haute par rapport a la ligne des appuis.

Les voiles construits suivant des segments d’ellipse ont donc une capacité
portante bien plus grande, que les voiles cylindriques. De plus, dans les voiles
nervurés on a de bien moindres moments de flexion dans le sens du voile parce
que les efforts de compression Ny, nécessaires pour contrebalancer le moment
fléchissant extérieur (provenant de la poussée des autres voiles), proviennent en
trés grandes parties des poids propres élémentaires du voile et non des efforts
de cisaillement Ny;. Les valeurs des moments fléchissants dans le sens de la
volte sont donc dépendantes des forces de compression Ny, qui proviennent Je
I'effet des forces de cisaillement Nyy,. De ces considérations on déduit que pour
des voiles trés surélevés, les moments fléchissants sont bien moindres que dans
les voiles cylindres. Je reviendrai plus tard sur ce point.

Entre le voile et la nervure .on a 4 forces indéterminées, ce sont:

La force suivant le sens de la volute N, I'effort tranchant Q, le moment
fléchissant M, I'effort de cisaillement Ny,

Pour les deux bords de la voiite on a ainsi 8 valeurs indéterminées et le
probléme du voile demande donc une équation différentielle du 8¢ ordre ou
bien un systéme de trois équations différenticlles de cet ordre, parce que nous
avons besoin de 8 constantes correspondant aux 8 valeurs statiquement indéterminées,
pour les liaisons des deux joints entre le voile et les nervures. Pour résoudre ce
probléme, U. Finsterwalder partit de I'hypothése que pour de grandes distances
entre les deux joints, le voile n’est pas en état de transmettre des efforts par
I'entremise des moments de flexion My et posa donc le moment My —o, I'effort
tranchant correspondant Qx =o0 et le moment ‘de torsion =o. Par suite de cette
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simplification, il réussit a représenter le probléme par une équation différentielle
du 8¢ ordre, en introduisant une fonction de tension dans laquelle les forces
internes du voile sont les dérivées de cette fonction de tension, comme dans la
fonction de tension de Airy.

Pour des distances entre joints plus petites par rapport au rayon, des voiles
cylindriques, les simplifications faites par U. Finsterwalder, soit My =0, Qx =o,
M,, = o ne sont plus admissibles. Pour cette raison l'auteur s’est efforcé, dans le
cas important de construction de halles, de trouver une solution rigoureuse du
calcul des voiles cylindriques. Parce que pour ces ouvertures de voute, les voiles
doivent, eu égard a la sécurité aa flambage, étre renforcés par des nervuares, j'ai
étendu mon examen aussi aux formes anisotropes.? Il en résulte trois équations
différentielles linéaires simultanées, a coefficients constants. Une solution parti-
culiére de ces équations différentielles, d’aprés H. Reissner,3 est obtenue en
mettant les surfaces de charges, représentées par des fonctions circulaires, sous
la forme de double série trigonométrique. L’analyse montre que pour un tuyau
fermé, 1l y a trois possibilités de transmission des efforts. Elles sont: 1) La
transmission des efforts aux joints (fonds) par les forces d’extension (théorie
des membranes), 2) la transmission des efforts aux raidissements (nervures) par
le moment fléchissant My dans le voile (effet de dalle), 3) une assimilation de
la partie chargée des harmoniques supérieures au moment fléchissant dans le
sens annulaire. Cette assimilation est seulement possible parce que les harmoni-
ques supérieures ne déterminent sur la totalité de la section annulaire aucune
résultante verticale réelle de marge correspondante. La charge réelle est transmise
par les effets 1 et 2 aux fonds. Pour satisfaire aux conditions aux limites des
poutres de rives des voiles Zeiss-Dywidag, la solution praticuliére citée ci-dessus
doit étre complétée par la solution d'un systéme homogeéne d’équations différen-
tielles. Le systéme homogéne d’équations différentielles doit satisfaire en méme
temps, comme cité ci-dessous dans le probléme résolu en 1930 par K. Miesel,3
a la donnée exponentielle e®? cos \ x. Il en résulte que les trois équations diffé-
rentielles se transforment en trois équations homogeénes ordinaires, qui conduisent
a une équation du 8e degré, de la solution de laquelle nous obtenons la longueur
d’'onde et I'affaiblissement d’une double oscillation partant des deux bords. Cette
équation du 8e degré peut étre résolue pour environ 100 cas différents. Les
nombres donnés ci-dessus, pour les longueurs d’onde et les affaiblissements, sont
portés en diagrammes qui donnent la possibilit¢ d’avoir directement des valeurs
sans calculer chaque cas. Avec I'analogie ci-dessus, il n’est pas seulement possible
de déterminer les huit conditions aux limites le long des génératrices, mais aussi
les conditions aux limites des fonds.

Le probléme des “limites” des tuyaux cylindriques circulaires fermés a déja
fait, comme nous l'avons mentionné ci-dessus, l'objet d'une étude de M. K.
Miesel en 1930 sur les perturbations aux “limites”. De cela, M. Miesel a aussi
pris en considération l'élasticité des disques raidissants, probléme qui joue un
grand role dans la construction des sous-marins. M. U. Finsterwalder s’est aussi
occupé de ce probléme, dans son travail mentionné sous 1) et a donné pour cela
une solution, approchée de nouveau, sous la forme d’une fonction de tension, ou
maintenant, en opposition avec la solution correspondante pour les voiles Zeiss-
Dywidag, ce ne sont pas les grandeurs My, Qy, My, mais les valeurs M,, Q.
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Mo, qui sont négligées. Cette solution approchée donne avec un minimum de
travail essentiel, pas pour toutes les grandes valeurs des harmoniques, une trés
bonne correspondance avec la solution rigoureuse de M. K. Miesel. Toutefois,
pour nos problémes de construction, il n” y a aucune haute valeur des harmoni-
ques qui soit prise en considération.

Plus le voile sera raidi dans le sens de la volte, contre la flexion, plus se
rapprochera, dans les voiles Zeiss-Dywidag, la loi de répartition des forces de
tension N de la lo1 de Navier, car alors le travail des moments fléchissants dans
le sens de la voGte ne joue plus aucun rdle vis-a-vis de celui des forces
d’extension

Plus la voute sera mince, plus elle aura la tendance de diminuer les moments
de flexion, ce qui entraine une mauvaise répartition des forces d’extension.
~ Cependant, pour obtenir une meilleure répartition des forces N., ces voiles
minces doivent étre combinés avec des hautes poutres de rives.

J’ai déja montré au début de mon exposé que pour des voltes trés surélevées,
comme par exemple celles constituées par des segments plats d’ellipse, on
obtenait des moments fléchissants moindres et de meilleurs effets de poutre.

Plus les voiles deviendront grands, plus il sera nécessaire de remplacer la
forme cylindrique (circulaire) par la forme de voile surélevé.

Pour les grandes halles du Ministére de I'air on a utilisé presque exclusive-
ment des voutes de formes elliptiques, proposées par M. U. Finsterwalder et
calculées d’aprés la théorie des voiles cylindriques, en remplacant approximati-
vement le segment d’ellipse par trois arcs de cercles.

Cela conduit naturellement a des calculs trés compliqués, vue que ces éléments
de voiles ont 4 cotés et que les oscillations partant de ces’ cotés s'influencent
mutuellement. On a donc un pressant besoin d’une solution exacte et compléte du
calcul de la courbure elle-méme. Cela a été trouvé par un de mes assistants et
fera l'objet d’une dissertation ultérieure.

Les poutres portantes des voutes qui nous occupent sont souvent calculées
comme poutres continues sur plusieurs appuis. Comme les dites poutres ont par
rapport 4 leur portée une grande hauteur, les moments sur appuis sont en
grande partie trés influencés par les déformations dues au cisaillement; Fliigget
I'a déja montré.

Pour des poutres élancées on sait que les déformations dues au cisaillement
sont habituellement négligées. Pour les supports des voiles cela n'est pas
toujours admissible. Dans le paragraphe II de mon exposé, j'ai montré com-
plétement l'influence de ces effets de cisaillement sur les moments d’appuis et
j’ai développé une méthode au moyen de 1'équation des trois moments de Fliigge,
qui permet de calculer les moments d’appuis, ceci pour des portées et des marges
quelconques, aussi bien dans le sens de la voite que dans le sens de la longueur
et cela pour des supports de voiles isotropes et anisotropes. Le probléme du
flambage prend toujours plus d’importance a mesure que les portées augmentent.

Nous avons deux cas a considérer:

a) le flambage du voile dans le jeu de la votte,

b) le flambage dans le sens des génératrices.

Le premier probléme avait été traité par R. von Mises® en 1914 deja et le
second plus tot encore par Lorentz® et Timoschenko.” Ces deux ‘problémes se
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combinent dans les coupoles de grandes dimensions avec de grands écartements
des appuis, de telle sorte qu'en les étudiant séparément, pour les deux cas de
flambage, on obtiendrait des résultats trop favorables. Ces cas de flambage com-
binés, si important pour les voiles, ont été résolus par W. FLigge8, qui en a donné
une solution trés détaillée et applicable aux cas pratiques. Il en ressort que le
flambage combiné agit de facon tout-a-fait défavorable. Les recherches de Fliigge
s'étendent aussi au cas de parois cylindriques circulaires, pour lesquelles on est
clairement renseigné pour de grandes portées. Par une extrapolation, W. Fliigge
montre que ces équations s’étendent aussi au cas particulier du flambement des
plaques.

Comme on suppose dans les conditions de flambage que les déformations du
voile sonl faibles par rapport aux épaisseurs, mais que d’autre part ces conditions
sont déja trés difficiles a réaliser en pratique, puisqu’avec de grandes portées on
obtient déja des déformations sensibles, il faut exiger qu'on adopte pour les
voiles des coefficients de sécurité au flambage notablement plus élevés que pour
de simples arcs. On atteint aisément une sécurité suffisante en renforcant le voile
au moyen de nervures. Ces mesures ont en plus I'avantage de diminuer les défor-
mations et de supporter aussi les moments de flexion du voile. Dans presque
tous les pays on a construit ces derniéres années des voiles de dimensions
croissantes. On a exécuté de tel voiles jusqu'a 60 m de portée pour les poutres
et 45 m pour les arcs, soit de 2700 m?2 de base. Sur ces bases on a adopté pour
les voiles a grande portée des sections transversales elliptiques. D’autre part on a
exécuté un grand nombre de halles avec des arcs de 100 m de portée et un
écartement relativement faible des poutres de rive. La fig. 2 donne la vue
extérieure d'un hangar d’aviation du type avec arcs de grandes portées et la
fig. 3 la vue intérieure d’'un hangar avec arcs et poutres de grandes portées, dont
la reproduction m’a été permise par le Ministére de l'air. Les fig. 4 et 5
montrent I'application de ces voiles aux batiments; la fig. 4 représente le hangar
des camions postaux de Bamberg et la fig. 5 des voiles cylindriques circulaires
disposées en sheds, pour une fabrique de tole de Buenos Aires.

2) Les toits plissés.

Dans les toits plissés, le voile est remplacé par un polyédre et la section de
courbure continue par un polygbne. Le probléme est essentiellement Je méme
que pour les voiles cylindriques. Les équations différentielles sont remplacées
par d’autres équations différentielles du méme ordre. Aux moments de flexion
dus a l'effet de voile viennent s’ajouter ceux dus a I'effet de plaque, car les faces
doivent premiérement transmettre leurs charges sur les arétes du toit en provo-
quant des moments de flexion; ces efforts sont reportés sur les raidissements
par des extensions dues a I'effet de voile, respectivement de ‘“toits plissés”. Le
probléme a été traité par E. Gruber? et G. Griining,1° d’abord en considérant
les moments de flexion dus a I'effet de voile. Les deux auteurs ont négligé la
résistance a la torsion des poutres des bords. Sur ce point, les travaux précédents
ont été complété par R. Ohlig!t qui a tenu compte de la résistance a la torsion
des extrémités, de la méme fagon qu’on I'a toujours fait pour les voiles. A cause
de leurs grands moments fléchissantes, ces types de poutres sont moins économi-
ques que les voiles et comme le mieux est souvent I’ennemi du bien, on ne les a
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pas exécutés jusqu'a aujourd’hui dans les grandes constructions. Cela tient
aussi au fait que les brevets pour les voiles et les “toits plissés™ se trouvent dans
les mémes mains, celles de la maison Dyckerhoff et Widmann A.-G.

o

3) Les coupoles polygonales composées de voiles cylindriques.

Comme on le sait, c’est d’aprés ce systéme qu’ont été exécutées les plus gran-
des coupoles massives existant actuellement, celle du marché couvert de Leipzig
avec 76 m de portée et la coupole en arc de cloitre du marché couvert de Bile,
de 60 m de portée. Tandis que la théorie de ces arcs de cloitre est établie et
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Fig. 4.

Hangar des autobus de Bamberg.

publiée!? depuis longtemps, cela n’est pas le cas pour les arcs en croix. Avec ces
arcs en croix, on construit des coupoles trés belles au point de vue architecto-
nique et irréprochables au point de vue acoustique. La fig. 6 montre une de ces
coupoles, de forme octogonale. Indépendamment d'une bonne acoustique, ces
coupoles donnent un éclairage excellent; des grandes fenétres ménagées dans le

Fig. 5.



718 Fr. Dischinger

dome, la lumiére tombe au milieu de la salle par réflexion sur voite cylindrique.
J’ai développé la théorie de ces coupoles & l'occasion du concours de 1930 de
I’Académie d’architecture (Beaux Arts) et j’ai montré qu’il est possible d’éliminer
.tout effort de flexion dans les arétes de raidissement. Comme la place me
mangue pour la publier dans ce rapport, cette théorie sera publiée prochainement
dans une revue.

Fig. 6.

4) Les voiles a double courbure.

La théorie des voiles de révolution librement appuyés sur leur pourtour est
déja établie depuis longtemps. Dans le développement ultérieur des voiles a
double courbure les types suivants sont importants:

a) Les voiles de révolution appuyés en quelques points seulement, pour
lesquels “I'effet de coupole” est repris par un “effet de poutres” pour reporter
les efforts sur les colonnes. :

b) Les coupoles de “rotation” et de “translation” avec des bases carrées ou
polygonales.

c) Les coupoles d’abside.

La théorie des diverses formes de coupoles & double courbure fut développée
par moi en 1930 a l'occasion du concours déja mentionné. La publication de
cette étude, sous la forme d’un ouvrage, avait été prévue par 1’Académie; mais
par suite de manque de ressources, cette publication n’a pas pu étre entreprise.
Ces pourquoi, ces travaux ont été publiés sous une forme raccourcie dans la
revue ‘Bauingenieur”.13 En ce qui concerne les voiles sur appui unique dont la
forme est une surface de révolution, on doit remarquer que, “les hauteurs de
poutre et par conséquent les bras de levier des forces intérieures pour trans-
mettre les charges vers les colonnes sont proportionelles aux portées des poutres
et qu’aussi les contraintes découlant de l'effet de poutre sont indépendantes de
la portée. Il découle de cela que I'on peut réaliser avec de telles constructions,
aussi bien qu'avec les coupoles polygonales, de trés grandes portées. Les voiles
ne sont cependant pas exempts de phénomeénes de flexion. D’aprés I'étude de
A. Havers,14 qui traite le probléme de la distorsion de 'anneau de base d'un voile
sphérique et qui en donne la solution au moyen d’une fonction sphérique, il
est possible dés lors de déterminer les moments du flexion correspondants, ce
qui est une nécessité absolue. L’application numérique sur un exemple, quoique
laborieuse, serait hautement désirable pour délimiter nettement quelles portées
peuvent étre tolérées avec de telles formes de voiles et si elles sont économiques
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comparativement aux voiles du type b), pour lesquels la transmission des efforts
se fait presque exclusivement par des forces de compression et dont I'épaisseur
est par conséquent fixée uniquement pour résister au flambage, car, méme pour
les grandes portées, les contraintes admissibles ne peuvent pas étre appliquées.
Le calcul des voiles de révolution dont la forme en plan est rectangulaire ou
polygonale, peut s’effectuer d’une maniére trés simple d’aprés la méthode indi-
quée par l'auteur, au moyen de l'équation différentielle traduisant 1'état de
tension de la membrane élastique.

La fig. 7 montre un voile de ce type trés plat, & base rectangulaire, qui fut
exécuté pour un batiment de I'école technique de Dantzig; pour une portée de
12.00 m ce voile n’a que 0.77 m de fléche; le surbaissement est donc de 15,6,
soit beaucoup plus que les ponts les plus élancés. Cette figure permet de
reconnaitre qu'un tel type de voile n’est pas autre chose qu'une plaque bombée
qui se distingue des plaques habituelles en ce sens qu’elle travaille en compres-
sion. Sur la fig. 8 on voit un voile & double courbure a base rectangulaire,
destiné a une halle a Klinker, a Beocin. Cette figure nous montre I'application
de ce que l'on a désigné sous le nom de (c) voiles & absides. Comme je l'ai
démontré dans l'article de la revue “Bauingenieur”,13 il se réalise dans cette
demi-coupole I'état de tension d'une membrane, si les retombées sont raidies par
un anneau. Puisque ces demi-coupoles peuvent étre considérées comme des
éléments de construction formant un ensemble stable par lui-méme, leur role
comme nouvel élément constructif des halles est trés important, puisqu’elles
permettent de raccorder des coupoles cylindriques & une base qui se rapproche
de l'ovale. Ces demi-coupoles ont recu une application en grand dans la con-
struction des hangars pour avions de portées atteignant 40 m. Le hangar
d’avions, représenté sur la fig. 3, est constitué par une longue voite cylindrique
qui se termine a ses extrémités par une coupole & abside. Enfin, la fig. 9 montre

une demi-coupole du méme genre destinée au pavillon de musique des bains de
Schwalbach.

5) Le principe de la compensation statique des masses dans
le calcul des voiles affins.

Les voiles examinés précédemment pouvaient ¢tre calculées a I'aide de 1'équa-
tion différentielle de l'état de tension de la membrane, parce que le voile
sphérique se laisse facilement traiter mathématiquement. Le principe de la
compensation statique des masses nous permet d’une maniére trés simple de
calculer aussi des voiles affins. J'ai développé ce principe en 1928 pour des
cas déterminés;1® en 1930, a l'occasion de I'étude déja mentionnée, j'ai exposé
le probléme d’une maniére générale, au moyen de I'équation différentielle et
pour un voile de forme quelconque; cette étude a été publiée dans la reuve
“Bauingenieur” .16 Il s’agit par exemple de calculer un voile 4 base elliptique.
en partant d'un voile de révolution de forme fondamentale. Les nombreux pro-
blémes qui peuvent étre traités de cette maniére sont indiqués dans le mémoire
cité ci-dessus; il suffit de rappeler ici que les voiles de révolution affins
peuvent se calculer d’'une maniére simple.
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Fig. 9.

Pavillon a musique des bains de Schwalbach.

6) Voiles de forme entiérement arbitraire.

Les voiles de ce type ne peuvent pas étre calculés a I'aide de I'équation diffé-
rentielle des membranes, parce que nous ne pouvons pas intégrer les 3 équations
differentielles aux dérivées partielles correspondantes. Nous devons choisir un
autre chemin et résoudre ces équations par la méthode des différences finies.

Fig. 10.

Maison du sport allemand. Berlin-Reichssportfeld.
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Pucher, en 1931,17 a donné une méthode simple et rapide conduisant a la

solution de ce probléme. Il est démontré que cette solution simple est possible,
parce que les 3 équations différentielles peuvent étre ramenées a une seule en
introduisant une fonction nouvelle, la fonction de tension, qui, dés qu'elle est
connue, permet de trouver complétement 1'état de tension cherché. Les con-
traintes intérieures peuvent étre déterminées d’une maniére semblable a celle
que 'on utilise dans la méthode de la fonction d’Airy. Puisque seule la répar-
tition de la rigidité intervient sur la forme de la surface, toutes les constructions
en voiles peuvent étre calculées si les conditions sur le pontour sont données et
si I'état de tension de la membrane est ainsi & déterminer. La méthode pour
différences finies est toujours applicable si, comme déja mentionné plus haut,
une solution au moyen de l’équation différentielle est possible. Les derniers
travaux francais suivent la trace indiquée par Pucher. Le développement des
méthodes de construction des coupoles en France se base sur cette théorie; la
forme des coupoles appartient aux surfaces réglées non développables. Pour le
cas spécial de la surface de translation, Flugge4 a donné une solution analogue,
au moyen des équations a différences.
. Comme conclusion, je peux encore montrer une exécution intéressante, re-
produite dans la fig. 10. Elle se rapporte a la coupole de la maison des sports
allemands, érigée a 1l'occasion des Olympiades. Le projet a été établi par -
’Architecte March et la disposition constructive par U. Finsterwalder. Le lan-
ternau supérieur est placé excentriquement pour obtenir un bon éclairage. Dans
cette construction, l'effet de coupole n’existe pas effectivement, parce que les
secteurs isolés qui la constituent ne réagissent pas les uns sur les autres, a
cause de la présence des nervures de raidissement.
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Résumé.

Dans la premiére partie de ce rapport 'auteur donne un apercu du développe-
ment de la théorie des différentes formes de voile depuis le dernier Congrés de
1932 et il parle des principes des travaux les plus importants.

Dans la deuxiéme partie I'auteur traite le probléme du tuyau cylindrique
renforcé et du toit Zeiss-Dywidag et il montre que dans ces voiles portants on
ne doit pas négliger I'influence des déformations dues aux efforts tranchants sur
les moments d’encastrement, ce qui n'est pas le cas pour les poutres élancées
dans lesquelles ces influences que l'on sait trés petites peuvent étre négligées.
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Coupoles massives, réservoirs cylindriques
et constructions semblables.

Massive Kuppeln, zylindrische Behailter
und ihnliche Konstruktionen.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,
Dozent an der Kéniglichen Technischen Hochschule, Stockholm.

Le calcul exact des contraintes de flexion dans une coupole massive est trés
compliqué. Un travail de doctorat! présénté a 1'Ecole polytechnique de Stock-
holm fait ressortir ces difficultés et 1'on peut se demander si 1'Ingénieur occupé
dans la pratique trouvera le temps et l'occasion de calculer les dimensions d'une
coupole sur la base de la théorie exacte. L’établissement des équations fon-
damentales est déja compliqué et leur intégration exacte conduit a des séries qui
sont difficiles 4 manier et qui ne convergent que lentement. Alors que la
convergence est satisfaisante pour bien des épaisseurs de paroi, une modi-
fication de cette épaisseur peut faire disparaitre cette bonne convergence. Méme
lorsque I'Ingénieur posséde a fond la théorie mathématique de ce probléme, le
calcul d'un cas de charge déterminé exige beaucoup trop de travail. Il serait
toutl-a-fait impossible d’arriver a une méthode pratique en partant du chemin
suivi par Meissner, Bolle, Dubois, Honegger, Ekstrém, etc. Par exemple, pour
les coupoles sphériques, on obtient lors de l'intégration dans les cas les plus
simples, des séries hypergéométriques qui ne peuvent étre pour I'Ingénieur un
instrument exact a cause de leur lente convergence.

En considération de ces faits, il importe avant tout, pour le développement
plus ample de la théorie des coupoles, de se diriger vers des solutions qui
satisfassent les exigences de la pratique, méme si I'on doit introduire cerfaines
approximations. Ainsi que I'a montré Geckeler,? il est possible de trouver par
des moyens mathématiques relativement simples, une solution qui ne s’éloigne
que peu de la solution exacte et qui est simple et agréable a employer lorsque
I'épaisseur de la paroi et le rayon sont constants. La bonne concordance entre
la théorie de Geckeler et la théorie exacte nous permet d'expliquer plus exacte-
ment la théorie approchée, lorsque l'on est au clair sur les hypothéses que 1'on

1 John Erik Ekstrém: ,Studien iiber diinne Schalen von rotationssymmetrischer Form und
Belastung mit konstanter und veriinderlicher Wandstirke'. Stockholm 1932.
? cf. par ex. ,Handbuch fiir Eisenbetonbau®, 6¢ vol., Berlin 1928.
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introduit. On s’approche encore un peu plus de la théorie exacte en employant
le procédé d'intégration asymptotique de Blumenthal et Steuermann, ce qui peut
se faire méme lorsque 1'épaisseur de la paroi est variable. Ce procédé représente
un gros progrés par rapport aux méthodes qui sont basées sur des solutions
en forme de séries infinies, ou l'on doit toujours supposer que l'épaisseur de la
paroi varie suivant une fonction déterminée pour obtenir une solution.

Un examen plus approfondi des équations finales données par Geckeler montre
que ces équations sont exactement du méme type que celles pour une poutre
sur appuis élastiques. L’analogie physique n’est pas non plus difficile & remar-
quer. On peut considérer comme une poutre le méridien de la coupole qui est
soutenu par les cercles paralléles ou ceintures. Comme ceux-ci se laissent
comprimer ou étirer ils correspondent au point de vue stathue a des appuis
élastiques.

Cette conception nous fait voir la statique de la coupole avec une exactitude
suffisante. Pour I'établissement des équations d’équilibre, il n’est plus nécessaire
de reprendre les équations différentielles de Meissner et il est possible de poser
directement et simplement les équations nécessaires a l'aide de la théorie des’
poutres sur appuis élastiques. Ceci signifie, pour I'Ingénieur qui est dans la
pratique qu’il n’a plus besoin de s’efforcer tout d’abord de comprendre la théorie
classique, assez compliquée, de la coupole; de plus il peut établir de lui-méme les
équations nécessaires.

Les travaux de Geckeler montrent qu'il n’a lui-méme pas complétement saisi
la baute signification des approximations qu’il propose; c’est-a-dire qu’il n’a
pas compris quen gros la coupole agit comme une série continue de poutres
sur appuis élastiques. La maniére de voir que je propose peut naturellement
étre étendue en ce sens que l'on peut considérer le méridien non comme une
poutre mais comme un arc appuyé élastiquement sur les éléments annulaires de
la coupole.

Par l'introduction de cette conception plus exacte, on obtient un apercu plus
juste de la statique de la coupole et les équations que 1'on obtient ainsi sont les
mémes que celles de Meissner.

Il est notoire que spécialement dans les coupoles trés plates, ou par conséquent
I'effet de volte dans les éléments de méridien est trés marqué, il est nécessaire
d’introduire cette derniére maniére de voir afin d'obtenir l'exactitude désirée.
Plus la tangente a la coupole au droit de I'appui est inclinée, plus sera exacte
la conception du méridien en tant que poutre sur appuis élastiques et dans le
cas spécial ou la tangente a la coupole est partout verticale, c'est-a-dire lorsque
la coupole se transforme en un cylindre, cette maniére de voir est tout-a-fait
exacte.

Afin de faire mieux voir la simplicité du pmbléme de la coupole traité de
cette facon, j’ai calculé quelques problémes et j’ai comparé les résultats ainsi ob-
tenus avec ceux de la théorie exacte. La concordance est partout étonnement
bonne.

Comme premier exemple, choisissons une coupole sphérique de béton armé
d’épaisseur constante, & = 16 cm, de rayon r = 1000 cm et d’angle d'ouverture
400. Supposons que la coupole soit chargée par un liquide & la pression con-
stante p = 1,0 kg/cm? et que l'aréte soit complétement encastrée (fig. 1).
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Si I'on calcule les contraintes dans cette coupole d’aprés la théorie des mem-
. ) . pr .
branes, on obtient une compression dans le méridien T, = 9 et une compres-

r . (1 .
sion dans les paralléles Ty = BZ. Ces contraintes dans le méridien et le paralléle

2

sont constantes sur toute la coupole et la solution par la théorie des membranes
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Fig. 1.

Comparaison entre la grandeur du moment méridien calculée d’abord d’aprés I'équation 5
et ensuite d’aprés la méthode exacte au moyen de séries hypergéométriques. Les écarls
sont insignifiants pour la pratique.

est trés simple. Sous I'effet de ces contraintes de compression T, et T, la cou-

. Ie e . - r ’ \ .
ole est comprimée de telle sorte que son rayon se réduit de —s—, cest-a-dire
p P q Yy Eo
pr? A ,
2 E s Cette réduction du rayon n'est pas grande; dans notre exemple, pour

E = 210000 kg/cm?, elle ne se monte qu'a 0,15 cm. Mais comme la coupole
est fixée tout autour de son aréte, elle ne peut pas modifier librement sa forme;
les parties situées prés de l'aréte conserveront le rayon primitif mais plus on
s'éloigne de l'aréte, plus la liberté de mouvement de la construction est grande
et plus les déformations pourront se produire librement. Quoique dans notre
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cas la compression soit relativement faible, il se produit cependant aux environs
des arétes certaines perturbations qui engendrent des moments d'un ordre de
grandeur tel que I'on ne peut pas les négliger.

Nous voulons rechercher maintenant quels moments sont engendrés dans une
poutre sur appuis élastiques lorsque 'on admet qu’elle subit un fléchissement

9

. r- .
correspondant a la valeur que nous avons calculée ci-dessus Ep2 5 La relation
entrc le moment et le fléchissement est donnée par I'équation:

d®y

et l'influence de l'appui élastique des éléments de paralléle est exprimée par
I'équation:

d*M Ed
5 =Y (2)
Eliminons M; de ces deux équations, on obtient
d? d?y|  Ed .
i BT 50y =0 39)
S ol 5 Em? 9
ou en admettant que la rigidité EJ est constante et égale a 119 °"2
d4
dxz 4+ 4k* y=—o
2 (3b)
ol Kt — 3 (m 1) 1

me TRy
L’intégrale générale de I'équation 3b peut s’écrire sous la forme connue
y = e~ ** (A cos kx 4 B sinkx) + e** (C cos kx + D sin kx) (4a)

c’est-a-dire que l'on peut considérer le fléchissement comme la somme de deux
oscillations sinusoidales, 'un avec amplitudes décroissantes et I'autre avec ampli-
tudes croissantes. On peut poser en général que les coefficients G et D sont
nuls en admettant que la poutre n’est pas trop courte et que l'origine peut étre
déplacée au point d’ou part la perturbation. Pour les coupoles fermées, on peut
par conséquent écrire I'intégrale avec précision suffisante sous la forme:

y = e~k (A cos kx -+ B sin kx) (4b)

Ici x désigne la longueur d’arc du méridien, mesurée a partir du bord de la
coupole. Dans ce cas, il est facile de déterminer les constantes arbitraires en
partant des conditions d’appui:

2

. __Ppr .
y= 2T et yY=—o0
on obtient:
2
—B—_— P
A 25

et le fléchissement du méridien est ainsi

pr* .
e T (cos kx -+ sin kx).
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Aprés introduction de cette valeur dans l'équation 1 on obtient l'expression
suivante pour le moment dans le méridien:

M, = 11/—23 pr de—kX (— cos kx + sin kx) 5)
Dans cette expression on a négligé la contraction du matériau c'est-a-dire que
l'on a posé le nombre de Poisson m = co.

A laide des valeurs données dans le tableau I pour les fonctions e =% cos kx et
e sin kx, 1l est facile de représenter graphiquement I'équation 5. Dans la fig. 1,
on voit trés bien comment le moment dans le méridien M, varie avec 1'éloigne-
ment du bord de la coupole. A titre de comparaison, nous avons donné les
valeurs exactes calculées d’aprés la méthode de Bolle avec séries hypergéométri-
ques.® Ainsi que 'on peut le voir, la concordance entre les résultats exacls et,
les valeurs approximatives est étonnement bonne c’est pourquoi il n’y a aucune
raison de faire du probléme de la coupole un travail mathématique étendu. Dans
les coupoles avec angle d'ouverture plus grand que dans notre cas, la concor-
dance entre les valeurs exactes et approchées est encore meilleure. Seulement
pour les coupoles dont la pente aux appuis est trés faible, I'influence des hypo-
théses que 1'on a faites a une signification pratique. Remarquons en passant que
de telles coupoles ne sont pas appropriées, a cause des fortes perturbations qui
se produisent a la liaison de la coupole a la ceinture d’appui.

Pour le calcul des contraintes dans la coupole, il n'y a pas que le moment
dans le méridien qui rentre en ligne de compte mais aussi les moments dans le
paralléle M, et I'accroissement des compressions dans le méridien et le paralléle
qui en résulte, car les conditions d’appui ne ocorrespondent pas aux hypothéses
de la théorie des membranes. Ces grandeurs M,, AT, et AT, peuvent étre cal-
culées directement a partir des relations suivantes. La concordance entre les
valeurs obtenues d’aprés la méthode approchée que nous donnons et celles
obtenues par la méthode exacte est aussi trés bonne, ainsi que 'on peut le voir
d’aprés la comparaison donnée dans le tableau II.

L’établissement des expressions mathématiques pour les forces supplémentaires
AT, et AT, se fait de la facon la plus simple par application de I'analogie, en
considérant le méridien comme une poutre sur appuis élastiques. Le supplément
de la compression dans le méridien, AT,, peut étre considéré comme |'effort de
cisaillement dans la poutre multiplié par cotga, ou « est I'angle formé par le
méridien et le plan horizontal. On obtient

d®y
AT, =cotga EJ - 1. (6)
dx

Le supplément de compression dans le parallele AT,, est une mesure pour
I'effet d’appui élastique et AT, est par conséquent directement proportionnel au’
fléchissement y du méridien, donc

AT, =22y (7)

Tr

3 cf. Ekstrém, p. 124.
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Tableau I.
Valeurs des fonctions e~kxcos kx, e—kx sin kx, e—kx (cos kx — sin kx) et e—kx (cos kx - sin kx)
kx _e~kxcosks | e—kxsinkx | e—kx (coskx —sink) | e—kx (cos kx + din k)
0 1.0000 0.0000 1.0000 1.0000
% 0.6239 -0.2584 0.3655 0.8823
% 0.3225 0.3225 0.0000 0.6450
?181‘_ 0.1179 0.2845 — 0.1665 0.4024
% 0.0000 0.2079 — 0.2079 0.2079
%" — 0.0536 0.1297 —0.1833 0.0761
3T" — 0.0671 0.0671 —0.1342 0.0000
%" — 0.0592 0.0245 — 0.0837 — 0.0347
x — 0.0432 0.0000 —0.0432 —0.0432
?él — 0.0269 — 00112 —0.0157 — 0.0381
54_" — 0.0139 —0.0139 0.0000 —0.0279
‘;" — 0.0051 —0.0123 0.0072 —0.0174
3’2_" 0.0000 — 0.0090 0.0090 — 0.0090
1:; x 0.0023 — 0.0056 0.0079 — 0.0033
141 0.0029 —0.0029 0.0058 0.0000
2 00026 | —0.0011 0.0087 0.0015.
27 0.0019 0.0000 0.0019 0.0019
% x 0.0011 0.0005 0.0006 0.0016
_Z_ 0.0006 0.0006 0.0000 0.0012
% 0.0002 0.0005 — 0.0003 0.0007
% 0.0000 0.0004 — 0.0004 0.0004
28_1 . — 0.0001 0,0003 — 0.0004 0.0002
111 x — 0.0001 0.0001 — 0.0002 0.0000
%3 . — 0.0001 0.0001 — 0.0002 0.0000
3x — 0.0001 0.0000 — 0.0001 — 0.0001
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Le moment dans le paralléle M, s’obtient de la facon la plus simple en déter-
minant les modifications de courbure du parallélet et l'on obtient en négligeant
I'influence de la contraction

EJ dy
M, = cotg a - i (8)
Introduisons dans les équations 6, 7 et 8 'équation pour le fléchissement du
méridien

BT e—kx (cos kx + sin kx)

Y= 7 2Ebs
on obtient les expressions suivantes pour AT,, AT, et M,:
pr‘!. 62
AT, =—cota e k3 e—kx cos kx (6a)
ATy, =— g e—%x (cos kx + sin kx) (7a)
M, =cota pro- k e—¥x gin kx. (8 a)

12

Le tableau II contient les valeurs calculées ainsi pour les contraintes dans le
méridien et le paralléle et les moments dans le paralléle en comparaison avec les
valeurs exactes.

Tableau IL

Comparaison entre les valeurs approchées et exactes des contraintes dans le méridien et le
paralléle et les moments dans le parallele.

Pente du T+ AT T, 4+ AT M
méridien a[t;r_oché 1e_):lct ' 32 -}r_oécgg Tze;};cAtT2 appro2ché e)lcv;f:t
a kg/cm kg/cm PP kg cm/cm
40° 443 439 0 0 0 0
35° 474 481 215 193 99 115
30° 503 504 437 427 62 73
25° 506 H0o8 517 520 12 17
20° 503 504 518 523 —8 — 10
15° 501 501 511 510 —9 — 14
10° 499 499 501 501 —5 — 9
5o . 499 498 499 498 0 — 3

Le probléme que nous venons de calculer correspond aux conditions d’appui
les plus simples. Afin de démontrer I'applicabilité de cette méthode a des con-
ditions d’appui compliquées, j'ai calculé une coupole jointe a4 un cylindre suivant
la fig. 2. Afin de simplifier le probléme, dans une certaine mesure, on a admis
que la pression de l'eau est constante sur la coupole. Ce probléme fut complé-
tement résolu par Ekstrom avec les mémes hypothéses. Le tableau III contient

4 cf. par exemple Foppl, ,Drang und Zwang*, 2°¢ vol., Berlin 1928.
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les valeurs exactes pour le moment dans le méridien, M; et pour la contrainte
dans le paralléle, T,.

Pour toutes les constantes de la coupole, nous utiliserons I'indice 1 et pour les
constantes du cylindre I'indice 2.

Le calcul de cette construction fut effectué de la maniére suivante. Si la
coupole intérieure et le cylindre sont libérés 1'un de I'autre et s’ils peuvent se
déformer sans entrave sous l'effet de la surcharge, on obtient d’aprés la théorie
de la membrane:

2 . 10%
une réduction du rayon de la coupole de 2pErlbl=p ElO - 3,12 cm
. i ) r,> p-10t
une augmentation du rayon du cylindre de s =5 1,72 cm.
La paroi du cylindre forme donc un petit angle avec la verticale de T«:Q 1,72

(cf. fig. 2).

Comme cette déformation n’est pas conciliable avec les conditions d’apput
réelles, il faut introduire des forces et des moments supplémentaires pour tenir

82 =24cm

Fig. 2.

compte des- conditions de continuité. Ces conditions de continuité sont les
suivantes:

Le cylindre et la coupole doivent avoir le méme fléchissement et la méme
variation d’angle au point de liaison et le point de liaison doit en outre étre en
équilibre quant aux moments et aux forces agissantes. Ceci représente quatre
" conditions d’appui qui peuvent s’exprimer par quatre équations d’ou l'on peut
tirer toutes les inconnues: déformations, moments, etc.
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Afin de simplifier 1'établissement des équations nous donnons ci-dessous les
expressions générales pour le fléchissement et ses dérivées. On a
y = e [A cos kx 4 B sin kx] ‘
y = ke [(B—A) cos kx — (A -+ B) sin kx]
y” = 2k2e* [— B cos kx 4+ A sin kx]
y” = 2 k3 e* [(A-LB) cos kx + (B — A) sin kx] X 9)
La premiére condition que les fléchissements du cylindre et de la coupole
doivent étre égaux au bord, s’exprime par I'équation suivante:

p - 10°
E

Pour que les déformations d'angle soient égales on doit avoir:

— A;sin40° A, = (3,12 sin 40° + 1,72).

10
ky (B, —A)) =k, (B, — Ay) — T 1,72

et pour l'équilibre des moments on peut poser:
k,>EJ, B, = k,* EJ, B,.

La derniére condition doit exprimer que la réaction horizontale, résultant de
la surcharge de la coupole intérieure par l'effort de cisaillement dans le cylindre
ainst que par l'effort de cisaillement et la contrainte du méridien dans la coupole,
doit étre supportée, c’est-a-dire que

— 2K ET, (A + B Ls — 2k B (A, By) = p - 500 - cos 40"

00
Par élimination on peut tirer de ces quatre équations pour p = 1 kg/cm? les
valeurs suivantes pour les constantes
_ 10* 10*
A1=—15,35-T B1=—7’16“E—
10* . 10*
A2:_ 6,13'T B2: 2,00"’E_-

Le probléme est ainsi complétement résolu; on peut maintenant calculer sans
difficulté les moments, etc. pour chaque point du cylindre et de la coupole. Le
tableau Il donne une comparaison entre les valeurs calculées et les valeurs
exactes pour le moment de méridien et la contrainte dans le paralléle de la
coupole. La concordance est satisfaisante dans tous les points.

Ces deux exemples nous montrent que la méthode proposée est pratiquement
utilisable pour résoudre le probléme et qu'elle donne facilement les résultats a
trouver.

Ainsi que nous l'avons déja dit, la solution approchée donne des résultats
d’autant plus exacts que la coupole a une forte pente et que I'épaisseur est mince.
Ce dernier point surtout a une grosse importance, ainsi que I'a démontré entre
autres Steuermannd. L’équation exacte pour le fléchissement du méridien ne

5 E. Steuermann: ,Some Considerations on the Calculation of Elastic Shells“, Congrés
international de meécanique, Stockholm 1930.
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Tableau III.

Moments de méridien et compression dans le paralléele de la coupole
d’aprés la fig. 2.

Pente du M, M, T, + AT, T, + AT,
méridien approché exact approché exact
a kg cm/cm kg cm/cm kgicm kg/cm
40° — 5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
250 596 764 618 639
20° —_ 6 9 572 593
15° — 99 — 141 520 526
10° — b4 — 80 498 498
50 — 8 — 15 495 493
i

contient pas comme |'équation 3b que les expressions du quatriéme ordre et de
I'ordre nul mais aussi des expressions avec dérivées du premier, deuxiéme et
troisitme ordre qui cependant sont toutes multipliées avec des polynomes de
cot a. Lorsque o croit, le sens de ces expressions diminue et pour a = 909,
c’est-a-dire pour le cylindre, ces expressions tombent complétement ce qui fait
que I'équation 3b est alors tout-a-fait exacte. La réduction de 1'épaisseur de la
coupole a une influence semblable sur 1'équation différentielle compléte. On voit
directement d’'ou cela provient. Lorsque I'épaisseur de la paroi est faible, le sens
de la compression du méridien n’est que restreint par rapport a l'influence de
la variation de courbure. En d’autres termes, cela signifie que le travail des
forces normales par suite de la compression du méridien peut étre négligée, dans
les coupoles minces, vis-a-vis du travail des moments de méridien et des con-
traintes du paralléle.

Dans les problémes que nous avons traités jusqu’a présent, nous avons toujours
admis une épaisseur constante. Lorsque 1'épaisseur d est variable, on ne peut pas
partir de I'équation 3b mais il faut employer l'équation 3a. Comme la théorie
simple de la poutre sur appuis élastiques donne des résultats suffisamment
exacts dans les cas cidessus, c’est-a-dire avec épaisseur constante, c’est une raison
pour admettre qu’il doit en étre de méme lorsque 1'épaisseur est variable.

La théorie de la poutre sur appuis élastiques avec moments d'inertie variable
et appuis variables” a été étudiée jusqu'a présent par différents savants,’ en.
général & l'aide des séries. Les résultats obtenus sont malheuresement plus ou |
moins inutilisables actuellement. Par suite de la grande parenté qui existe entre
les équations 3a et 3b, il est naturellement évident que les solutions des deux
équations ont en gros la méme construction mathématique. C'est pourquoi I'on
peut admettre que I'on peut écrire la solution de I'équation 3, par exemple, sous
la forme suivante:

y = ue*z (Acosz - Bsinz) (12)

6 cf. par exemple Hayashi: ,Theorie des Triigers auf elastischer Unterlage®, Berlin 1921.

“
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ol u et z sont certaines fonctions de x. Par I'emploi du procédé d'intégration
asymptotique de Blumenthal, 1l est possible de déterminer les fonctions u et z de
telle sorte que 1'équation 12 représente vraiment, avec une trés bonne approxi-
mation, une intégrale de 1'équation 3a.

: . . oy Ed®
Si comme précedemment nous introduisons la rigidité de la poutre EJ:I—Z,
nous obtenons pour les fonctioms u et z les expressions suivantes:
1
}o?

et Z_V—erb ' (14)

On obtient ce résultat de la facon suivante: Opérons la dérivation de I'équa-
tion 3a, nous obtenons aprés simplification I'équation

Y+ pi Yy Py Py +psy=o (15)
: _ g0
ou pp==6 S
) 6‘2 b“
P’—"(bﬂL?)
ps=20
12
4—1‘262

Multiplions les équations

=1 (z)

' =12z

C=f'7" {2

" —_— f‘ z“l + 3f“ Zl " + flll '8

vV =o' 2V 4 £ (4 2 2" + 3 2"'%) + 6 £ z®z" + ¥V 24

< < < =<

ou f' représente gf ' g par les facteurs Q,, Q;, Q,, Q, et 1 et additionnons

les, nous obtenons en posant égal 4 O le membre de gauche, premiérement
I'équation:

V4 Qu v+ Qe v 4+ Qv +Quv=0 (16)
et secondement lorsque l'on pose les facteurs f, f” et f chacun pour soi égal
a zéro

274 Q2" 4+ Q2" 4+ Qgz' =0 .
4z z“‘+3z“2)—|—3z‘ z'-Q,4+z%Q,=o0 (17)
12 “+Z‘3Q1‘—“0

- De ces équations, on peut tirer Q,, Q, et Q; tandis que la fonction f (z) est
déterminée par la condition

9

774 1 Q,f = o (18)
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Si I'on choisit le facteur Q, égal & 4z’%, notre équation 18 devient

4
d f —I— 4f=o0
c’est-a-dire
f(z) = = (Acesz - Bsinz) (19)
ou Z est déterminé par la condition:
dz f/@
— = =t 20
dx 4 (20)

Si 'on introduit dans I'équation 15:y = uv on obtient aprés introduction et
division par u:

vMHWGSﬂQ+wff g+
[4u’’ 2u’ 1)
+v (= +——~pl )+vp4=o

En posant égaux les coefficients pour v et v/ dans les équations 16 et 21 on
peut déterminer les fonctions inconnues Q, et u. On obtient alors Q, = p, et
par suite d’aprés 1'équation 20

z=jvggx

= (Q,, on obtient, en employant la derniére des .

ouavec p,=

équations 17

ou u =g (13)
]/b3
Si T'on résume le résultat des calculs ci-dessus on peut écrire la solution
de I'équation 3a en négligeant les expressions qui contiennent le facteur e+,
sous la forme suivante:

y=ie—z (A cos z + B sin z) (12a)

yo?
ou z lest déterminé par la condition
*dx
Vro

Au premier aspect, I'équation 12a pardit peut-étre incommode et peu appro-
priée & un emploi pratique a cause de la construction compliquée de la fonction z

z_]/3

1 ,
et du facteur supplémentaire i/ . Dans la pratique, le cas se pose plus
63

simplement. Il n’est pas nécessaire de donner la fonction z autrement qu’al-
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gébriquement et c’est pourquoi elle peut étre calculée trés facilement en partant
de I'équation 14, par exemple par la régle du trapéze. La dérivation de I'équa-
tion 12a donne des expressions assez compliquées lorsque l'on n’introduit
aucune approximation. Remarquons que les dérivées z”, z’”, u” et u’” sont petites
et par conséquent peuvent étre négligées pour les dimensions qui se présentent
dans la pratique. On obtient des dérivées de la forme suivante:

y =—ue*(Acosz+ Bsinz)
y —=uz'e?[(B—pA)cosz— (A+ pB)sing]

Y/ =2uz?e*[—(uB+vA)cosz+ (WA —vB)sinz] (9a)
y,u — Quzde? [(A + W B) cos z + (B — A) sin Z]
Al u‘
ou y =
uz
u =1—v
“1 oy 1 _ 3 Ve
Dans le cas ou l'épaisseur est constante on obtient v =0 et p = =1

et les équations ci-dessus sont exactement les mémes que les équations 9.

Les équations 9a sont construites de la méme maniére que les dérivées données
dans les équations 9 pour une poutre avec rigidité constante. Le calcul d'une
coupole d’épaisseur variable se laisse par conséquent exécuter de la méme
maniére et sans beaucoup plus de peine que dans le cas d’épaisseur constante.
Les exemples calculés ci-dessus (cf. fig. 1 et 2) sont aussi figuratifs pour le
cas ou d est variable et les équations d’équilibre sont a établir de méme en
apportant seulement les modifications éxigées par la différence entre les équa-
tions 9 et 9a.

Dans le probléeme de la coupole, nous n’avons pas considéré le fait que la
poutre-méridien s’amincissait vers le haut et avait une largeur nulle a la clé de
la coupole, nous avons plutét admis une largeur constante. Ceci correspond a la
réalité lorsque la coupole est cylindrique mais, dans les coupoles en général, il
existe dans chaque hypothése une certaine approximation. Si nous considérons ce
retrécissement, nous pouvons écrire, pour une coupole sphérique, le moment
d'inertie de la poutre-méridien a une distance angulaire ¢ de la clé de la fagon
suivante: '

63 sin o
9
J 12 Sin Co <-1)

Avec cette expression pour le moment d'inertie, nous obtenons _pour les fonc-
tions u et z

1 1

ua = —

i/g’ %/siI:;

*/sin a,
et I o . dx.
ferb sm o

Les relations ci-dessus concernent principalement le probléme de la coupole
mais 1l est évident que I'on peut les appliquer a un réservoir cylindrique et a des
constructions semblables qu’il faut considérer comme cas particuliers. Les
méthodes usitées pour le calcul de tels réservoirs? ainsi que leurs développement

47 F
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en séries peuvent étre avantageusement remplacées par la méthode donnée
ci-dessus. On rencontre un cas spécial intéressant de ce probléme dans le calcul
des barrages en arc massifs. Jusqu'a présent on partait, pour résoudre de tels
problémes, de I'équation 3b et I'on introduisait une valeur moyenne de 1'épaisseur
de la paroi.8

En traitant I'équation 3a d’aprés la méthode ci-dessus, on peut sans difficulté
tenir compte de 'anisotropie en différentes directions et a différents points de
la construction. Il peut s’agir d’'une pure qualité du matériau ou d'une pure
anisotropie constructive. Par exemple, par l'introduction de différentes quan-
tités de fer d’armature dans différentes directions, le module apparent d’élasti-
cité du matériau est variable pour les différentes directions, ce qui doit étre
considéré comme anisotropie du matériau; pour introduire une anisotropie con-
structive dans un réservoir cylindrique ou une coupole on peut placer des poutres
de renforcement dans la direction de la génératrice ou du méridien. Dans de
telles conditions on ne peut pas écrire I'équation 3a sous la forme de I'équation 15;
les coefficients p, a p, ont I'aspect suivant:

_ 2 (EJ)
P = ‘—E‘l—J—
__(E )"
P =gy
1)3 = 0
E; d
Py = r? El_']

et les fonctions z et u apparaissent sous la forme suivante:
24/
E, o
= ——— . dx
’ J V4 rE,J

8 rb
t u = ‘/‘ -
© E,JE'o
Mais comme on emploie pour u et pour z une expression mathématique,
I'introduction des équations 22 et 23 n’apporte aucune complication des calculs.

Résumé.

Par la décomposition des voiles en deux faisceaux de poutres qui se croisent
on peut obtenir une représentation plus claire du mode d’action statique de la
construction. Les moments et les contraintes qui se produisent peuvent d&tre
calculés comme pour la poutre sur appui continu élastique. Comme la théorie
exacte conduit & des solutions en forme de séries infinies qui ne convergent
que lentement dans certaines conditions, la méthode donnée ici présente des
avantages pratiques.

7 ¢f. Lorenz: ,,Technische Elastizititslehre', Berlin 1913. H. Reifiner: ,Beton und Eisen”
7, 150, 1908. 7. Péschl et K. Terzaghi: ,,Berechnung von Behiltern, Berlin 1913.

8 ¢f. N. Royen: ,Tvirodammen vid Norrfors kraftverk” (Le barrage de Tviré a l'usine de
Norrfors), revue Betong, cahier 2, 1926.
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Ouvrages a parois minces renforcées ou non par
des raidisseurs.

Versteifte und unversteifte Flichentragwerke.

Shell Structures with or without Stiffeners.

R. Vallette,

Ingénicur aux Chemins de fer de I'Etat, Paris.

La question des ouvrages a parois minces ayant été traitée au Congres de
Paris, c’est la tendance qui s’est manifestée depuis cette époque que nous
examinerons.

On peut distinguer deux sortes d’ouvrages & parois minces: ceux ou la rigidité
de la paroi a été prise en compte dans la résistance de systéme, et ceux ou cette
résistance a été complétement négligée. la paroi étant alors considérée comme
apte a résister aux seuls efforts dirigés tangentiellement a la surface du voile,
qu’'elle constitue, et qui travaille alors comme une simple membrane.

On envisagera donc:
1o — Les parois minces rigides,
20 — Les membranes.

Nous examinerons ici les ouvrages a parois minces rigides, les ouvrages a
paroi-membrane faisant I'objet d'une étude de Mr Aimond.

I — Ouvrages a parois minces rigides.

A — Construction.

Généralites. — Dés le début de la construction en béton armé on a fait
contribuer les parois minces constituées par le hourdis a la résistance générale
de l'ossature. Cette utilisation du monolithisme est d’ailleurs une des caracté-
ristiques importantes du béton armé. Mais une utilisation plus compléte de la
résistance des parois fut envisagée par la suite, ces parois devenant 1'élément
résistant principal de la construction: paroi porteuse des réservoirs, des silos,
des voutes etc. ...

Application aux constructions.

1° — Réservoirs. — Dans les réservoirs la paroi porteuse fut intégralement
employée dans les fonds, les encorbellements, les coupoles de couverture, mais
la rigidité de la paroi n’a qu’exceptionnellement été prise en compte.

47*
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2> — Silos. — Dans les silos I'utilisation de la paroi porteuse d’abord partielle
devint totale suivant le processus indiqué par M. Freyssinet au Congrés de
Paris et auquel nous ne voyons rien a ajouter, aucune nouvelle orientation ne
s’étant manifestée depuis.

3» — Constructions volitées. —

a) Voltes courantes. —

Dans le domaine de la volte courante en berceau, auto-portante
entre appui, les dimensions tendent a s’accroitre notablement et l'on a
pu projeter dans un cas concret un berceau de 51,50 m X 51,50 m appuyé
seulement aux quatre angles, dont la paroi était intégralement auto-por-
tante et ne comportait que de petites nervures raidisseuses tout a fait
secondaires sans qu’aucune poutre de bordure ne vienne contribuer a la

. Fig. 1.
Schnitt durch Axe &
COUpe oans I'axe Berceau de 51,50 m
Cross section throCentre line  9° POT'ée:
résistance (fig. 1) — (Projet Boussiron). On peut considérer ce genre

de construction comme l'aboutissement du type de comble employé en
France depuis 1910 par divers constructeurs et utilisant une partie de
la paroi voitée comme poutre porteuse (poutre de retombée) entre les
poteaux de long pan plus ou moins espacés. A l'origine la hauteur de
voute OA utilisée était faible (fig. 2) et une nervure de bordure ON
contribuait & la résistance; par la suite on augmenta la hauteur OA
intéressée, on supprima la nervure active ON et on accrut beaucoup la
portée entre poteaux; dans le stade actuel toute la voute est utilisée avec
une portée quelconque sans poutre de bordure.

b) — Autres types de voiites. —-

1e — Un type particulier de construction voutée est constitué par les
hangars d'Orly.! Ils peuvent étre considérés comme l'exemple le plus
remarquable et le précurseur des systémes autoportants a nombreuses
petites travées tels qu'ils furent utilisés par la suite en Europe Centrale.

On y trouve en effet des travées de 7,50 m d’ouverture et de 90 m de
portée, la résistance des parois étant entiérement intéressée dans la flexion
générale (Construction Freyssinet-Limousin).

1 Voir le Génie Civil 22 septembre au 6 octobre 1923.
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2> — Une variante du type d'Orly a été réalisée & Cherbourg pour
I'établissement de hangar double a avions. La voute est constituée unique-
ment d’éléments minces (fig. 3) qui, comme a Orly, assurent seuls la
résistance du systéme; la paroi devient en outre autoportante entre
poteaux de long pan (Projet Sté Rabut-Constructeur Subileau).

3> — Les voutes conoides (Freyssinet-Limousin) formant shed ont
été appliquées a de multiples ouvrages (Ateliers de Montrouge, de Caen,
de Fontenay...) elles ont fait I'objet d'une étude de M. Fauconnier
parue dans le 2¢me volume de Mémoires de notre Association ce qui
nous dispense de nous étendre a leur sujet, elles sont auto-portantes
entre poteaux de long pan.
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Fig. 2. Fig. 3.
Poutre de retombée. Hangar double de Cherbourg.
4 — Autres construction. — D’autres types de combles: coupoule sur plan
carré, voutes d'arétes, arc de cloitre etc ... ont été envisagés par divers auteurs

a l'occasion de concours ouverts par le Service des bases aériennes pour l'exé-
cution de hangars a avions mais ces types ne sont pas assez fixés pour qu’on
puisse y voir une orientation, ni en faire état.

Une construction remarquable d'une nature toute différente a été établie pres
de Paris pour l'essai des avions, c’est la grande soufflerie de Chalais-Meudon.?
Elle comporte un certain nombre d'éléments a parois minces auto-portants et
principalement un tube diffuseur elliptique de dimensions imposantes (fig. 4)
qui ne comporte que 2 points d’appuis espacés de 34 m et est intégralement porté
par sa paroi de 7 cm d'épaisseur simplement raidie par des nervures tous
les 3,60 m (Construction Limousin).
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Fig. 4.

Tube diffuseur de la
soufflerie de Chalais-

340m Meudon.
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5 — Conclusions. — En résumé on peut discerner en France dans le do-
maine de la construction a paroi mince rigide, d'une part un effort diffus vers
la recherche de types nouveaux de comble sans orientation nette vers un type
déterminé et d'autre part, pour les types bien fixés, une tendance certaine
vers l'utilisation compléte de la faculté portante des parois, allant jusqu’a

2 Vo-ir_;Génie Civil du 3 novembre 1934.
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intéresser la section compléte de la construction (grandes vottes de comble,
tube de Chalais-Meudon) quand la portée le justifie et tout en conservant le
type pur de l'ouvrage mince sans addition de «poutre de bordure» pour les
votites, ou d’autres éléments porteurs, ce que l'on peut regarder comme une
caractéristique de la construction francaise.

B — Calcul. —

1° — Parois planes. — Nous signalerons pour le calcul des parois planes
porteuses la méthode indiquée par M. L’Hermile dans le Génie Civil de 29 avril

1933.

2° — Votutes auto-portantes diverses. — L’utilisation de la paroi de vottes
comme «poutre de retombée» pour reporter sur les appuis les charges des
retombées, a suivi de prés l'apparition des premiers combles voutés en béton
armé.3 Cette poutre qui intéressait une faible partie de la volte fut considérée
par les constructeurs comme une poutre droite ordinaire, isolée et calculée
comme telle; cela conduisait & des éléments surabondants, mais pour de faibles
portées entre poteaux l'excédent de matiére engagée n’est pas pratiquement a
considérer et i1l n’y a pas lieu de recourir a des méthodes de calcul plus poussées.

Dans les cas, d’ailleurs peu courants, o la conception de I'ouvrage conduisait
a de grandes portées entre poteaux, la hauteur de volte a intéresser entrainait a
un profil nettement courbe qui demandait une étude spéciale. Nous savons que
certains constructeurs (notamment M. Boussiron) bien qu’ils ne l'aient pas
publiée, eurent une solution personnelle de cette question. Nous avons nous-
mémes par la suite donné une méthode simple? qui, d'une part, met au point
le calcul d'une telle poutre et qui, d’autre part, traite le calcul du berceau complet
de forme quelconque ne portant qu’a ses extrémités.

Cette méthode étend au profil courbe & paroi mince la théorie de la flexion
et en tire les conséquences au point de vue des efforts secondaires introduits,
elle met en évidence notamment les flexions transversales produites dans un
anneau de voute par les actions tangentielles dirigées suivant les directrices du
berceau. Appliquée a de grandes portées cette méthode s’est montrée compléte
et trés sire et donne des résultats qui concordent avec les observations faites
sur des modéles, sur une votte d’expérience, et sur des ouvrages construits.

3> — Autres ouvrages. — Ce méme calcul s’applique aux ouvrages formant
un tube complet et nous avons été amenés a donner la méthode utilisée pour
le calcul du grand diffuseur de la soufflerie de Chalais-Meudon (décrit ci-dessus)
telle qu'elle est exposée dans le compte rendu des travaux de cet ouvrage.’

Pour les coupoles, dont le type normal reléve d'un calcul banal, la rigidité
de la paroi n’intervient que pour les charges isolées, leur effet est trés localisé
et le plus souvent on rentre dans le cas des membranes a cause des systémes
de méridiens et de paralléles que 'on trouve en tout point.

Pour les autres types de couverture a paroi rigide il n’y a pas eu en France
3 Voir le Génie Civil du 27 janvier 1934.

¢ Génie Civil du 27 janvier 1934.
5 Génie Civil du 3 novembre 1934.
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d'exposé de méthode de calcul dans les publications techniques, leur étude est
imparfaite et reste encore du domaine personnel des constructeurs.

40 — Conclusion. — Les méthodes de calculs des systémes a parois minces
rigides conservent en France les principes de simplicité qui ont été la régle
pour l'étude des constructions en béton armé. Il s’agit en effet d’'un matériau
et de systtmes complexes et variables, et il serait vain de vouloir rechercher
des lois exprimant tous les phénomeénes qui interviennent dans leurs conditions
de travail sous une charge; il y a lieu de ne retenir que les faits principaux
qui sont des résultantes et sont traduits par des lois simples (loi de Hooke,
loi de Navier . ..) approchées mais sures.

Le but n’est dailleurs pas ici d’obtenir une solution mathématique pure, il
s’agit seulement de chiffrer suffisamment bien tous les efforts qui apparaissent
dans un systéme défini pour qu’il n’y ait ni excés de matiére ni sous-évaluation
notables. La recherche de cette solution pratique sur les bases simples indiquées
doit cependant se faire en usant de toutes les ressources de I'art du calcul pour
aboutir a des solutions particuliéres stres et facilement applicables, mais 1l est
utile de remarquer que dans l'histoire des constructions en béton armé les
méthodes de calculs définitives, épurées, n'ont été établies qu’aprés la réalisation:
des types par nos grands constructeurs.

L’'imagination, le sens technique, le sentiment des efforts inséparables des
créations dans I'art de batir, avaient suffi au constructeur pour concevoir, déter-
miner et calculer le type créé. Une force peut toujours en effet étre approxi-
mativement chiffrée quand elle est bien mise en évidence qualitativement et c'est
ce dernier point qui demande les recherches les plus attentives dans les nom-
breux éléments de détail que comporte une construction en béton armé, sa
solution exige ce bon sens technique qui fait les bons constructeurs.

Le calcul des voiles minces rigides a suivi cette évolution et il conserve la
tendance trés nette a ne pas s'écarter de la simplicité et de la clarté pour
évaluer tous les efforts notables qui apparaissent dans I'analyse du type de con-
struction envisagé.

Résumé.

On étudie ici les constructions a paroi mince dans lesquelles la rigidité réelle
de la paroi est prise en compte, et spécialement les constructions votitées.

Aprés quelques lignes d’historique, on indique que dans le stade actuel on
utilise en France dans ces constructions, uniquement et intégralement, la paroi
mince comme élément porteur sans addition d’aucune poutre de bordure, —
que le systéme soit a petits voutes multiples (type hangar d'Orly), & grande voiite
unique, ou en anneau (soufflerie de Meudon).

On indique ensuite que le calcul des systémes est d’autre part traité avec la
netteté qui a tooujours été la régle en France pour 1'étudde du béton armé, ce
qui, en conduisant & une conception claire des efforts en jeu, permet au con-
structeur d’appliquer librement et de developper les types créés.
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