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Etude des voiles minces courbes ne subissant pas de

flexion.

Einführung in die allgemeine Theorie der biegungsfreien Schalen.

Theory of Thin Curved Shells not Subjected to Bending.

Dr. es sciences F. Aimond,
Ingenieur des Ponts et Chausee detache au Ministere de l'Air, Paris.

1° — Rappel des equations generales en coordonnees rectilignes de l'equilibre
statique des voiles minces.

Soit z f (x, y) l'equation de la surface en coordonnees rectilignes quelcon-
ques non necessairement rectangulaires. L'etat des contraintes en un point m du
voile. est determine par la connaissance des contraintes nv n2, ©, agissant sur
les elements mm1 et mm2 respectivement paralleles aux plans zox et zoy.
nx agit sur mm2 parallelement au plan zox, n2 agit sur mn^ parallelement au
plan zoy, 0 agit ä la fois sur mmx parallelement ä zox, et sur mm2 parallelement

ä zoj (fig. 1). Designons par av 0, y± et 0, ß2, y2 les coefficients direc-
teurs des tangentes aux elements mmx et mm2, c'est-ä-dire les projections suivant
ox, oy, oz du vecteur unite portees par chacune de ces tangentes.

Supposons le voile charge d'une maniere quelconque, et appelons Xdxdy,
Ydxdy, Zdxdy les composantes suivant ox, oy, oz, de la charge appliquee ä

l'element mm1m'm2 limite aux paralleles mmx et m2m' au plan zox et aux
paralleles mm2 et m1 m' au plan zoy. L'etude des conditions d'equilibre des

dits elements conduit aux equations suivantes;
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2° — Interpretation geometrique des quantites figurant dans les equations
generales d'equilibre.

La quantite £ figurant au second membre de l'equation (3) n'est autre que
la projection du vecteur (X, Y, Z) sur oz, cette projection etant effectuee
parallelement au plan tangent ä la surface. Pour interpreter les quantites vlf v2
et 0 qui sont les inconnues des equations d'equilibre, definissons d'une maniere
generale ce que nous appellerons contrainte reduite. Par definition, la contrainte
reduite s'exergant sur un element du voile est la projection sur le plan des xy
de la force elastique s'exercant sur cet elements, divisee par la longueur de
la projection de l'element. On constate facilement que la repartition des
contraintes reduites autour d'un point suit les memes lois que les contraintes reelles
et en particulier la representation de Mohr leur est applicable. Les quantites vv
v2, 0, sont precisement les contraintes reduites relatives aux elements qui se

projettent suivant des paralleles aux axes des x et des y. On peut remarquer
que les contraintes de cisaillement 0 se conservent en projection tandis qu'il
n'en est pas de meme des autres contraintes n1? n2.

3° — Interpretation geometrique des equations generales d'equilibre.
Les equations (1) et (2) expriment evidemment l'equilibre en projection sur

le plan. tangent. L'equation (3) exprime au contraire l'equilibre des forces
appliquees normalement au voile. Pour l'interpreter geometriquement, prenons
l'origine o du triedre oxyz sur la surface, et orientons ox et oy suivant les

directions de deux elements arbitraires. Nous pouvons achever de definir
completement le triedre oxyz en nous donnant d'une maniere arbitraire la direction
oz. L'equation (3) definit une relation lineaire entre les contraintes s'exergant
sur les elements arbitraires ox et oy et la projection £ effectuee sur oz parallelement

au plan tangent de la densite de la charge appliquee. Lorsqu'on change la
direction oz sans toucher ä ox et oy, chaque terme de la relation lineaire
precedente est simplement multiplie par un meme facteur.

Nous pouvons profiter de l'indetermination de la direction des elements ox et

oy pour simplifier l'equation (3). Si on dirige en particulier ces elements suivant
deux directions conjuguees de la surface, c'est-ä-dire suivant deux directions con-
juguees par rapport ä l'indicatrice, le coefficient de 0 s'annule et l'equation (3)
se reduit ä une relation lineaire entre les contraintes longitudinales v1 et v2.
On peut se demander s'il n'est pas possible d'orienter les elements ox et oy de

maniere qu'il ne reste plus dans l'equation (3) qu'une seule contrainte. On voit
immediatement que cela n'est pas possible si la surface est convexe, c'est-ä-dire
si les rayons de courbure principaux sont de meme sens et qu'au contraire cela

est possible si la surface n'est pas convexe.

Plagons-nous dans cette derniere hypothese et distinguons deux cas, suivant que
la contrainte qui reste dans l'equation (3) est une contrainte longitudinale ou
le cisaillement 0. Le premier cas n'est possible que si la surface est deve-

loppable, c'est-ä-dire si on peut la considerer comme l'enveloppe d'une famille
de plans tangents dependant d'un parametre. Si l'on prend l'element ox suivant
la direction de la generatrice rectiligne qui passe en o, l'equation (3) se reduit ä

(4) rv1 r;
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Le deuxieme cas correspond aux surfaces ä courbures opposees. Si l'on prend
ox et oy suivant les directions des asymptotiques, l'equation (3) se reduit ä

(5) 2 s0 5

L'interpretation des equations (4) et (5) est immediate. Interpretons d'abord
l'equation (4). II est visible que les seules contraintes agissant sur un element
infiniment petit de la surface admettant une composante non situee dans le plan
tangent ä la surface, sont les contraintes projetees suivant vv et l'equation (4)
exprime simplement l'identite entre les projections des contraintes nx sur oz
effectuees parallelement au plan tangent et la projection effectuee dans les

memes conditions de la charge appliquee.
Interpretons maintenant l'equation (5). II suffit pour cela de considerer un

quadrilatere elementaire dont deux cötes consecutifs sont constitues par des

arcs d'asymptotiques se croisant en o. Les contraintes longitudinales n1 et n2
appliquees ä ce quadrilatere ont une resultante dans le plan tangent puisque
eette resultante est la somme geometrique de la resultante des contraintes nx
et de la resultante des contraintes n2, et que chacune de ces deux dernieres
resultantes est necessairement dans le plan osculateur d'un are d asymptotique,
plan osculateur qui coincide avec le plan tangent en vertu de la definition meine
des asymptotiques. Donc, la composante £ des charges appliquees ä la surface
en dehors du plan tangent ne depend que du cisaillement 0. II lui est d'ailleurs
proportioneil. Le coefficient de proportionnalite dont la \aleur est 2s a une
signification geometrique excessivement simple. C'est le quotient du double de la

distance du sommet oppose ä o dans le quadrilatere au plan tangent en o, cette
distance etant comptee parallelement ä la direction oz, par le produit des

longueurs d'arcs d'asymptotiques formant les cötes du quadrilatere.

4° — Classification des voiles minces au point de vue de leurs proprietes
mecaniques.

Les considerations precedentes conduisent ä classer les voiles minces en trois

groupes. Le premier groupe comprend les surfaces developpables comme les

cylindres et les cönes, le deuxieme groupe comprend les surfaces convexes
comme la sphere, le paraboloide elliptique, l'ellipsoide, l'hyperboloide ä deux

nappes, et, d'une maniere generale, toutes les surfaces ä double courbure engendrees

par une courbe dont la concavite est dirigee vers le bas et qui s'appuie
sur une directrice courbe dont la concavite est egalement dirigee vers le bas.

Le troisieme groupe comprend les surfaces ä courbures opposees comme le

paraboloide hyperbolique, l'hyperboloide ä une nappe, les conoides, toutes les

surfaces reglees non developpables, et d'une maniere generale, toutes les
surfaces qui peuvent etre engendrees par une courbe dont la concavite est tournee
vers le haut et qui s'appuie sur une directrice dont la concavite est tournee vers
le bas.

Cette Classification nous est suggeree par l'interpretation geometrique de

l'equation (3). Les voiles du premier groupe sont ceux pour lesquels l'equation
(3) peut etre mise sous la forme (4), les voiles du second groupe sont ceux

pour lesquels l'equation (3) peut etre mise sous la forme

(6) rv, + tv2 5
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x et t etant de meme signe, les voiles du troisieme groupe sont ceux pour
lesquels l'equation (3) peut se mettre sous la forme (5).

Observons que pour les voiles du troisieme groupe l'equation (3) peut egalement

se mettresous la forme (6), mais r et t sont alors de signes contraires.
Observons egalement que pour les voiles du deuxieme groupe, l'equation (3)
peut aussi etre mise sous la forme (5), ou 0 represente encore le cisaillement
sur les asymptotiques, mais l'equation (5) n'est plus alors une equation ä termes
reels, s et t sont deux expressions purement imaginaires.

Les voiles du premier groupe sont caracterises par la propriete que la
composante normale de la contrainte s'exergant sur les generatrices rectilignes, est
en chaque point proportionnelle ä Ja composante normale de la densite de la
charge appliquee. Les voiles du second groupe sont caracterises par la propriete
que la contrainte de cisaillement purement imaginaire s'exergant sur les elements
imaginaires d'asymptotiques, est proportionnelle en chaque point ä la
composante normale de la densite de la charge appliquee. Les voiles du troisieme

groupe sont caracterises par la propriete que la contrainte de cisaillement s'exergant

sur les elements d'asymptotiques est proportionnelle en chaque point ä la
composante normale de la densite de la charge appliquee.

On peut encore faire observer la difference suivante entre les voiles du
deuxieme et du troisieme groupe. Si l'on considere en un point les contraintes
longitudinales s'exergant sur deux elements conjugues, la composante normale
de la charge appliquee, que l'on peut considerer comme la poussee au vide
produite par ces contraintes longitudinales, est une forme lineaire de ces
contraintes. Cette forme est ä coefficients de meme signe pour les voiles du
deuxieme groupe et ä coefficients de signes contraires pour les voiles du troisieme

groupe. II en resulte que la portance d'un voile du deuxieme groupe peut etre
consideree comme produite par des contraintes longitudinales de meme sens
s'exergant sur deux elements conjugues, et que la portance d'un voile du troisieme

groupe peut, d'une maniere analogue, etre consideree comme produite par des

contraintes longitudinales de sens contraires, s'exergant sur deux elements
conjugues.

Lorsqu'il s'agit d'un voile du second groupe, on peut toujours choisir les
elements conjugues de maniere qu'ils forment un reseau orthogonal et isotherme
sur la surface associee ayant pour carre de Felement lineaire la forme quadratique

r dx2 -f- 2 s dxdy + t dy2.

Les coefficients des contraintes longitudinales correspondantes, dans la forme
lineaire representant la composante normale de la densite de la charge appliquee,
sont alors egaux. On peut donc dire que dans les voiles du second groupe la

composante normale de la densite de la charge ä appliquer est proportionnelle ä

la somme des contraintes longitudinales s'exergant suivant les elements d'un
Systeme orthogonal et isotherme pour la surface associee.

Les differences de proprietes qui, nous venons de le voir, distinguent les
voiles des trois groupes, ont une importance primordiale sur la nature des

appuis que l'on peut se donner au pourtour des voiles pour parfaire leur
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equilibre, et sur le mode de calcul effectif des contraintes dans les voiles en
fonetion des conditions au contour.

5" — Etude des voiles du premier groupe.
L'etude des voiles du premier groupe est une generalisation de l'etude des

cylindres. L'equation (4) fait connaitre, en chaque point du voile, la

composante normale ä la generatrice rectiligne passant en ce point, de la
contrainte agissant sur un element de cette generatrice. Par consequent, si nous
tragons sur la surface une famille de geodesiques coupant les differentes
generatrices rectilignes sous un angle constant, nous connaitrons la contrainte
longitudinale agissant parallelement ä ces geodesiques sur les elements de

generatrices rectilignes. L'equation (2) nous fera alors connaitre par une
integration immediate la valeur du cisaillement sur les generatrices et les geodesiques,
et la formule (1) par une nouvelle integration, les contraintes longitudinales
s'exergant sur les elements des geodesiques parallelement aux generatrices.

La determination des contraintes effectuee de cette maniere n'est complete que
si l'on se donne sur une courbe determinee rencontrant une fois seulernent

chaque generatrice, les valeurs des contraintes s'exergant sur les elements de la
dite courbe. On peut d'ailleurs aussi bien se donner sur deux courbes rencontrant
chacune chaque generatrice une fois et une seule, une relation entre les

composantes de la contrainte s'exergant sur tout element des deux courbes.

6° — Etude des voiles du second groupe.

Considerons un voile mince du second groupe. Nous avons vu que la

composante normale de la densite de la charge appliquee etait proportionnelle en

chaque point ä la somme des contraintes longitudinales s'exergant sur des

elements d'un Systeme orthogonal et isotherme pour la surface associee. Supposons

que ces contraintes longitudinales soient egales. Leur valeur est alors bien
determinee en chaque point par la valeur de la composante normale de la

densite de la charge. Nous avons ainsi satisfait ä l'equation (3). Les equations (1)
et (2) qui expriment l'equilibre dans le plan tangent ne seront alors satisfaites

que si la composante tangentiale de la densite de la charge a une valeur
determinee, que l'on obtient en ecrivant precisement les conditions d'equilibre
parallelement au plan tangent. Nous appellerons Systeme fondamental de charges
tout Systeme de charges correspondant aux conditions precedentes, c'est-ä-dire
tel que les contraintes longitudinales s'exergant sur des elements d'un Systeme
orthogonal et isotherme pour la surface associee soient egales. II est alors bien
evident qu'un Systeme quelconque de charges peut etre considere comme la

somme d'un Systeme fondamental et dun Systeme compose uniquement de

charges tangentielles et que nous appellerons Systeme complementaire du Systeme
fondamental de charges.

Nous sommes ramenes ainsi ä l'etude dessjstemes complementaires, c'est-ä-dire
des systemes oü la charge appliquee est tangente ä la surface. Dans de tels

systemes, les contraintes longitudinales sur des elements d'un Systeme orthogonal
et isotherme pour la surface associee, sont egales, et par suite la contrainte
sur un element quelconque ne depend plus que de deux parametres, par exemple
les composantes de la contrainte s'exergant sur un des elements conjugues
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precedents. II est bien evident que l'on peut choisir arbitrairement ces deux
parametres. On voit facilement que l'on peut determiner deux fonctions imaginaires

conjuguees cp et \\> de maniere qu'en prenant pour parametres deux
quantites que nous designerons par S9 et S^, les forces elastiques agissant sur
un element quelconque de la surface soient une forme lineaire des expressions
differentielles S9 di}> et S^ dep. Les equations d'equilibre dans le plan tangent
montrent alors que la derivee partielle de S9 par rapport ä cp et la derivee
partielle de S9 par rapport ä i}> sont des fonctions lineaires de S<j, et S^. En
eliminant Tun des deux parametres, S^ par exemple, entre ces deux relations, on
obtient une equation aux derivees partielles lineaire du second ordre ä
caracteristiques imaginaires, ä laquelle doit satisfaire le parametre conserve S9.

Pour determiner une Solution de cette equation, on peut se donner la valeur
de Sq, et d'une de ses derivees sur une courbe arbitraire de la surface, ä condition
toutefois, etant donne que l'equation est ä caracteristiques imaginaires, que
certaines conditions d'analycite soient remplies. Si l'on remarque que se donner S9
et une de ses decrivees sur une courbe revient ä se donner S<p et S^ sur cette
courbe, et par suite la contrainte s'exergant sur un element quelconque de la
courbe, on voit que, sous certaines reserves d'analycite, on peut determiner les
contraintes dans le voile, ä condition de connaitre les contraintes s'exergant
sur les elements d'une courbe.

Les reserves relatives ä Fanalycite dont nous avons parle ne sont pas des

reserves de pure forme. Elles correspondent ä une realite physique qui est la
suivante. On sait en effet que dans tous les problemes oü une fonetion verifiant
une equation ä caracteristiques imaginaires est determinee par les valeurs qu'elle
prend, ainsi qu'une de ses derivees, sur une courbe donnee, la Solution n'est pas
une fonetion continue des donnees c'est-ä-dire qu'en faisant varier tres peu les

donnees, on peut obtenir des valeurs de la fonetion aussi differentes que Fori veut
en des points arbitrairement choisis. II resulte de lä que les etats d'equilibre d'un
voile convexe correspondant ä des valeurs donnees des contraintes s'exergant sur
une courbe ne sont pas stables par rapport aux valeurs des contraintes sur
cette courbe.

Pour obtenir des Solutions stables, il faut envisager des conditions aux limites
differentes de celles que nous avons envisagees. Au lieu de nous donner les

valeurs des contraintes sur une courbe, donnons-nous sur une courbe fermee une
relation entre les composantes des contraintes s'exergant sur les elements de la
courbe. Si cette relation est convenablement choisie le probleme pourra se trouver
determine tout au moins ä une ou plusieurs constantes pres, la Solution etant
une fonetion continue des donnees. L'equilibre correspondant sera un equilibre
stable. Supposons par exemple que nous voulions que la contrainte^ le long de la
courbe donnee ait une composante donnee normalement ä une direction donnee,
direction variable avec chaque point de la courbe. L'indetermination relative des

parametres ST et S,t> permet de les determiner de maniere que S<p represente
le long de la courbe donnee la valeur de la composante normale ä une direction
donnee de la contrainte s'exergant sur les elements de la courbe. La theorie des

equations integrales permet alors de determiner la fonetion ST par une methode
analogue ä celle qu'ont employee Fredholm et ses successeurs pour resoudre les

problemes du meme type relatifs aux equations caracteristiques imaginaires.
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7° — Etude des voiles du troisieme groupe.

Considerons un voile mince du troisieme groupe. La valeur dei la composante
normale de la densite de la charge determine tout d'abord en chaque point du
voile les contraintes de cisaillement sur les elements d'asymptotiques. Supposons

que les contraintes dans le voile se reduisent ä ces cisaillements. II faut et il
suffit pour cela, que la composante tangentielle de la charge appliquee ä un
quadrilatere elementaire d'arcs d'asymptotiques fasse equilibre ä la projection sur
le plan tangent de la resultante des efforts tangentiels appliques aux elements
du quadrilatere. Nous appellerons Systeme fondamental de charges, tout Systeme
de charges correspondant aux conditions precedentes, c'est-ä-dire tel que les
contraintes s'exergant sur les elements d'asymptotiques se reduisent ä des cisaillements.

II est bien evident qu'un Systeme quelconque de charges peut etre
considere comme la superposition d'un Systeme fondamental de charge et d'un
Systeme que nous appellerons encore Systeme complementaire et compose
uniquement de charges tangentielles.

Nous sommes ainsi ramenes ä l'etude de l'action des systemes complementaires.

Pour cela nous remarquons encore que la force elastique s'exergant sur
un element du voile peut encore se mettre sous la forme d'une forme lineaire
d'expressions differentielles telles que ST dif> et S^dcp, cp et if> etant maintenant
deux fonctions reelles, S9 et S^ deux parametres reels. Les equations d'equilibre
suivant le plan tangent permettent alors d'exprimer les derivees partielles de S9

par rapport ä cp et de S^ par rapport ä if> en fonetion lineaire de S9 et S^.
L'elimination de S^ entre ces equations conduit ä une equation en S9 lineaire
aux derivees partielles du second ordre ä caracteristiques reelles. Les cara-
teristiques de cette equation aux derivees partielles sont precisement les lignes
asymptotiques.

Pour determiner une Solution de l'equation precedente valable dans un domaine
D limite par un contour C decomposons ce contour en deux suites d'arcs T
et T' tels que de tout point de D soient issues deux asymptotiques rencontrant T
une fois et une seule, puis decomposons T en deux suites d'arcs I\ et
T2 tels que toute ligne brisee d'arcs d'asymptotiques joignant tout point de 1^
ä un point de T' ait ses sommets intermediaires sur T2 ou T', et qu'il n'existe
aucune ligne brisee d'arcs d'asymptotiques ayant ses extremites sur T± et ses
sommets intermediaires sur 1%. On obtiendra une Solution unique valable dans D,
en se donnant sur T1 la valeur de la contrainte s'exergant sur les elements de I\
et en se donnant sur T2 une relation entre les composantes de la contrainte
s'exergant sur les elements de T2. La valeur de la Solution sera donnee par la
formule de Riemann appliquee successivement ä differents sous-domaines du
domaine D. Aucune condition d'analycite n'est ici requise et la Solution obtenue
est toujours une fonetion continue des donnees. Par contre il n'existe pas en

general de Solution correspondant ä une relation entre les composantes des
contraintes s'exergant sur les differents elements de la courbe fermee C.

Lorsque le voile mince considere est une surface reglee, l'equation aux derivees

partielles du second ordre peut se ramener ä une equation lineaire aux derivees

partielles du premier ordre ne contenant qu'une derivee, equation dont Finte-
gration est immediate etant donne qu'on peut la considerer comme une equation

45 F
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differentielle lineaire. Dans le cas oü le voile mince est une quadrique reglee,
la determination des parametres S9 et S^ se reduit ä deux quadratures.

8° — Choix du Systeme d'appuis dans les voiles minces des trois groupes.

Le choix du Systeme d'appuis dans un voile mince depend essentiellement du

groupe auquel il appartient. Nous distinguerons deux categories d'appuis, les

appuis simples pour lesquels les reactions dependent d'un seul parametre, et
les appuis doubles pour lesquels les reactions dependent de deux parametres. Les

composantes des contraintes que le voile transmet ä un appui simple satisfont
par consequent ä une relation connue a priori, tandis que les composantes des
contraintes que le voile transmet ä un appui double peuvent prendre des valeurs
independantes. Par ailleurs, certaines parties du voile sur son contour peuvent
ne comporter aucun appui, le bord est dit libre.

Nous nous proposons de rechercher comment il faut repartir les bords libres,
les appuis simples et les appuis doubles au contour d'un voile mince pour que
celui-ci soit soumis ä un equilibre unique et stable.

Plagons-nous tout d'abord dans le cas d'un voile du premier groupe. On

pourra se donner un bord libre sur toute partie du contour ne comprenant pas
de generatrice rectiligne, et rencontre une fois au plus par toute generatrice.
Si le bord libre rencontre toutes les generatrices, la repartition des contraintes
dans le voile est determinee, et par suite, les autres bords devront comporter
des appuis doubles. Le Systeme d'equilibre correspondant est stable. Donnons-
nous au contraire deux bords rencontrant chacun une seule fois toutes les

generatrices et amenages en appuis simples. On obtiendra encore un etat d'equilibre

stable du voile, ä condition d'amenager le reste du contour, compose
exclusivement de generatrices, en appuis doubles.

Considerons maintenant un voile du second groupe. Ce voile ne peut admettre
de bords libres, car l'equilibre correspondant n'est pas stable. Mais on peut
amenager l'ensemble du pourtour du voile en appuis simples, l'equilibre
correspondant est bien determine et stable.

Considerons enfin un voile du troisieme groupe et decomposons le contour en
trois categories d'arcs Tv T2, 17 definis comme il a ete indique au 7°. On

pourra sc donner un bord libre suivant I\, des appuis simples suivant F2, et
des appuis doubles suivant 17. L'equilibre correspondant est bien determine et
c'est un equilibre stable.

9° — Proprietes geometriques et calculs geometriques des voiles du troisieme

groupe.

Les voiles du troisieme groupe presentent des proprietes geometriques
remarquables qui permettent d'en faire un calcul graphique precis.

Interpretons tout d'abord geometriquement les parametres S9 et S^ et les
fonctions cp et ij? introduits au 7°. S9 et S^ sont les contraintes longitudinales
s'exergant sur les asymptotiques pour un Systeme complementaire de charges.
cp et tf> sont des coordonnees curvilignes de la surfaco pour lesquelles les lignes
de coordonnees sont les lignes asymptotiques.
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Remplagons les voiles minces par un Systeme reticulaire gauche dont les

mailies sont des quadrilateres rectilignes gauches formes par des cordes de lignes
asymptotiques. Le Systeme obtenu travaille comme la surface donnee, et l'assi-
milation des deux systemes est legitime si les mailles sont suffisamment petites.
Les charges appliquees au Systeme reticulaire doivent etre appliquees aux
sommets du Systeme reticulaire suivant le plan tangent ä la surface.

Appliquons une force unique F en un sommet quelconque du Systeme
reticulaire. Cette force peut se decomposer suivant deux des barres passant en ce

point et correspondant ä deux lignes asymptotiques differentes. On transporte
ainsi la force F ä deux autres noeuds de la surface oü on opere de meme, et
ainsi de suite. Si l'on suppose le contour de la surface divise en trois categories
d'arcs Tv T2 et T' dans les conditions indiquees precedemment, et si l'on choisit
convenablement les deux barres initiales suivant lesquelles on decompose la force
donnee F, la transmission de la force F se fera par le processus indique sans

qu'on rencontre jamais un bord libre. Si l'on rencontre un bord de T2 suppose
amenage en appui simple, on pourra encore faire la decomposition entre la
seconde barre aboutissant au sommet considere sur T2 et la direction de la
reaction de l'appui simple. L'operation qu'on effectue ainsi est ce qu'on appelle
une reflexion sur l'appui simple. En la continuant ainsi, on transmettra finalement

la force F ä toute une zone d'appuis doubles. On aura ainsi obtenu un
equilibre du Systeme compatible avec les reactions d'appuis, et cet equilibre sera
stable. En operant de la meme maniere pour chaque noeud charge du Systeme
reticulaire, on aura determine l'etat d'equilibre relatif au Systeme complemen-
taire de charges en ne faisant intervenir que des decompositions de forces suivant
la regle du parallelogramme. L'epure correspondante peut se faire facilement
en projection sur un plan arbitraire.

La determination geometrique des efforts dont nous venons de parier permet
d'envisager l'equilibre d'un voile du troisieme groupe comme resultant d'une
propagation d'efforts s'effectuant suivant les arcs d'asymptotiques en partant
des bords libres pour aboutir aux appuis doubles en se reflechissant sur les

appuis simples. Cette propriete est analogue ä la propagation par ondes des

phenomenes regis par des equations lineaires aux derivees partielles du second
ordre ä caracteristiques reelles et comme eile, est due essentiellement ä la nature
reelle des caracteristiques des equations regissant l'equilibre des contraintes dans
le voile considere.

10° — Exemples simples de voiles du troisieme groupe.

L'exemple le plus simple de voile du troisieme groupe est fourni par le
paraboloide hyperbolique. Ce voile est caracterise par 4a propriete que le cisaillement
suivant les generatrices rectilignes est, ä un facteur pres, constant sur toute la
surface, egal ä la composante suivant laxe du paraboloide de la charge appliquee
rapportee ä l'unite de surface en projection sur un plan quelconque non parallele
ä Faxe. D'autre part, les efforts dus au Systeme complementaire de charges se

propagent suivant chaque generatrice sans qu'il se produise d'interferences entre
les generatrices, de teile sorte qu'un effort tangentiel applique ä un petit element
du voile ne fait sentir son effet que sur les bandes engendrees par les generatrices
rencontrees. Apres le paraboloide hyperbolique, le voile du troisieme groupe le

45*
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plus simple est l'hyperboloide ä une nappe. Ce voile possede en commun avec
le paraboloide la propriete que les efforts dus au Systeme complementaire se

propagent suivant chaque generatrice sans interference avec les autres generatrices.

II ne differe du paraboloide hyperbolique que par l'expression plus com-
pliqueo du coefficient de proportionnalite entre le cisaillement et la densite de
la charge appliquee.

Viennent ensuite les surfaces reglees non developpables et en premier lieu
les conoides. Pour ces surfaces, le coefficient de proportionnalite entre le

/\ mp
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cisaillement sur les asymptotiques et la densite de la charge appliquee, a une
expression beaucoup plus compliquee que pour les premieres surfaces envisagees,
mais ce qui les distingue surtout de ces surfaces, c'est que les efforts dus au
Systeme complementaire se propagent en s'epanouissant sur la surface, les

asymptotiques non rectilignes s'arc-boutant sur les generatrices rectilignes de

la surface, de teile sorte qu'une force tangentielle appliquee ä un petit element
interesse toute une zone en eventail de la surface, comme dans les surfaces les

plus generales du troisieme groupe.
Les figures 2 et 3 montrent la difference entre les quadriques reglees et

les autres surfaces du troisieme groupe au dernier point de vue qui vient d'etre
signale.

ii
Fig. 2.

Mode de propagation des efforts tangentiels
tans une quadrique reglee.

lli1I1
1

i
Fig. 3.

Mode de propagation des efforts tangentiels dans

une surface quelconque du 3e groupe.
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11° — Conclusion.

Si Ton excepte les voiles regles developpables comme les cylindres et les cönes

qui forment une classe tres particuliere de voiles, l'ensemble des voiles ä double
courbure se divise en deux grandes familles suivant le signe de la courbure
totale. Dans les deux familles de voiles, ce sont les lignes asymptotiques qui
jouent le röle essentiel dans la transmission des efforts tangentiels, et par suite
dans la determination de la nature des reactions d'appuis correspondant ä des

equilibres bien determines et stables. Lorsque les asymptotiques sont imaginaires,
le voile ne peut admettre de bords libres, mais peut etre limite ä des bords

amenages tous en appuis simples. L'exemple courant d'appuis de cette sorte
est constitue par un tympan plan ä grande raideur dans son plan et sans raideur
appreciable perpendiculairement ä ce plan. Lorsque les asymptotiques sont reelles,
on doit decomposer les bords du voile en bords libres, en bords avec appuis
simples, et en bords avec appuis doubles suivant les regles4 determinees que nous
avons indiquees. Comme les appuis doubles peuvent constituer une difficulte
au point de vue construetif, il y a avantage ä chercher ä en diminuer l'importance

le plus possible, ce qui peut se faire de differentes manieres en choisissant
convenablement le trace de la surface.

Si l'on se place strictement au point de vue de la facilite de calcul, les
considerations qui precedent laissent entrevoir que, parmi les voiles ä double courbure,

ceux donnant lieu ä des calculs vraiment elementaires sont les quadriques
reglees.

Resume.

Dans la construction des voiles minces en beton arme il s'agit d'abord de

problemes statiquement determines, independants de la theorie de la plasticite.
La totalite de ces questions est traitee en liaison avec d'autres problemes qui
se presentent lors de l'execution des voiles minces et avant tout en liaison avec
les problemes de la compatibilite des deformations conditionnees par Fetat de
tension calcule d'une maniere isostatique.

L'auteur utilise l'hypothese d'une repartition uniforme des tensions sur toute
l'epaisseur de la section de teile fagon que l'on peut admettre le voile concentre
en sa surface movenne.
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Les surfaces portantes dans la construction en beton arme.

Die Flächentragwerke des Eisenbetonbaues.

Shell Construction in Reinforced Concrete.

Dr. Ing. Fr. Dischinger,
Professor an der Technischen Hochschule, Berlin.

Douze ans apres que la Societe Dyckerhoff et Widmann, en collaboration avec
la maison Zeiss de Jena, eut cree les voiles minces en coquille, constructions pour
lesquelles les charges engendrent essentiellement des efforts restant dans la
surface meme, ce genre de construction a pris un grand essor gräce aux recherches

de la theorie generale elaboree dans un temps extraordinairement court.

Avec cette theorie on a cree de nouveaux ouvrages dans le domaine des grandes
halles et cela sur un plan beaucoup plus vaste encore que ce qui a ete fait ä

l'aide des plaques et des dalles Champignons. Au moyen des coupoles et des

toitures ondulees, appelees ensemble du nom de "surfaces portantes", on peut
obtenir des portees qui jusqu'a maintenant etaient considerees comme irre-
alisables.

Depuis la decouverte de ces constructions, il s'est ä peine ecoule 10 ans. Dans

ce court laps de temps on a construit des halles de 100000 m2 et de 100 m
de portee.

Le present rapport se compose de deux parties. Dans la premiere partie nous
donnerons un resume des progres de la theorie depuis le dernier congres et
les developpements obtenus en construction. La seconde partie est consacree ä la
theorie des enveloppes cylindriques et des tuyaux.

1. Developpement de la theorie des voiles depuis le dernier
congres, 193 2.

Pour tout ce qui concerne les differentes formes des voiles dont il sera
question ici, nous renvoyons au rapport de W. Petry 11/4, presente au congres
de Paris en 1932. Dans la meme annee parut la premiere partie du traite de

U. Finsterwalder1 concernant le probleme des coupoles cylindriques (tonne) de

Zeiss-Dywidag. Cette theorie considere une voüte cylindrique limitee par deux

nervures, on a ainsi une poutre cintree que l'on peut considerer comme une
plaque creuse, dans laquelle le voile represente la plaque. A l'inverse des plaques
ordinaires, dans lesquelles, pour de grandes distances des nervures, la plaque ne
prend que fort peu des forces de compression, ici tout le voile travaille ä la
compression.
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Cela vient de ce que dans la plaque ordinaire (fig. la), la participation de la
plaque aux efforts de compression Nx se fait par l'intermediaire des efforts de
cisaillement Nxy entre les nervures et la plaque.

La partie de la plaque ainsi sollicitee est fonetion de la longueur de la poutre,
Les efforts de compression ne se repartissent pas regulierement suivant la
largeur de la plaque, parce que les elements de la plaque les plus eloignes de la
poutre (nervure) subissent des deformations de cisaillement et donc ne partici-
pent plus ä la repartition des efforts de compression.

Le mode d'aetion des plaques cintrees (fig. lb) est totalement different car,
comme on le voit dans l'equation 2 du chapitre suivant, en negligeant l'effort

Nxy

Nxu

*y

Nx

Nv

Nxv N<p

X<P.

Fig. 1 a. Fig.lb.

de cisaillement Nxy entre le voile et la nervure, il reste des efforts de

compression Nx, qui proviennent des charges elementaires et tout le voile participe
donc sur toute sa largeur ä la compression et cela d'autant plus que la courbure
du voile est plus haute par rapport ä la ligne des appuis.

Les voiles construits suivant des segments d'ellipse ont donc une capacite
portante bien plus grande, que les voiles cylindriques. De plus, dans les voiles

nervures on a de bien moindres moments de flexion dans le sens du voile parce
que les efforts de compression Nx, necessaires pour contrebalancer le moment
flechissant exterieur (provenant de la poussee des autres voiles), proviennent en

tres grandes parties des poids propres elementaires du voile et non des efforts
de cisaillement Nxv. Les valeurs des moments flechissants dans le sens de la
voüte sont donc dependantes des forces de compression Nx, qui proviennent Je
l'effet des forces de cisaillement Nxy. De ces considerations on deduit que pour
des voiles tres sureleves, les moments flechissants sont bien moindres que dans

les voile» cylindres. Je reviendrai plus tard sur ce point.
Entre le voile et la nervure on a 4 forces indeterminees, ce sont:

La force suivant le sens de la voüte N?, l'effort tranchant QT, le moment
flechissant M9, l'effort de cisaillement NX9.

Pour les deux bords de la voüte on a ainsi 8 valeurs indeterminees et le

probleme du voile demande donc une equation differentielle du 8^mc ordre ou
bien un Systeme de trois equations differentielles de cet ordre, parce que nous
avons besoin de 8 constantes correspondant aux 8 valeurs statiquement indeterminees,

pour les liaisons des deux joints entre le voile et les nervures. Pour resoudre ce

probleme, U. Finsterwalder partit de l'hypothese que pour de grandes distances

entre les deux joints, le voile n'est pas en etat de transmettre des efforts par
l'entremise des moments de flexion MX et posa donc le moment Mx =o, l'effort
tranchant correspondant Qx o et le moment de torsion o. Par suite de cette
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simplification, il reussit ä representer le probleme par une equation differentielle
du 8e ordre, en introduisant une fonetion de tension dans laquelle les forces
internes du voile sont les derivees de cette fonetion de tension, comme dans la

fonetion de tension de Airy.
Pour des distances entre joints plus petites par rapport au rayon, des voiles

cylindriques, les simplifications faites par U. Finsterwalder, soit Mx o, Qx o,
Mx? o ne sont plus admissibles. Pour cette raison l'auteur s'est efforce, dans le

cas important de construction de halles, de trouver une Solution rigoureuse du
calcul des voiles cylindriques. Parce que pour ces ouvertures de voüte, les voiles
doivent, eu egard ä la securite au flambage, etre renforces par des nervures, j'ai
etendu mon examen aussi aux formes anisotropes.2 II en resulte trois equations
differentielles lineaires simultanees, ä coefficients constants. Une Solution
particuliere de ces equations differentielles, d'apres H. Reissner,3 est obtenue en

mettant les surfaces de charges, representees par des fonctions circulaires, sous
la forme de double serie trigonometrique. L analyse montre que pour un tuyau
ferme, il y a trois possibilites de transmission des efforts. Elles sont: 1) La
transmission des efforts aux joints (fonds) par les forces d'extension (theorie
des membranes), 2) la transmission des efforts aux raidissements (nervures) par
le moment flechissant Mx dans le voile (effet de dalle), 3) une assimilation de

la partie chargee des harmoniques superieures au moment flechissant dans le

sens annulaire. Cette assimilation est seulernent possible parce que les harmoniques

superieures ne determinent sur la totalite de la section annulaire aucune
resultante verticale reelle de marge correspondante. La charge reelle est transmise

par les effets 1 et 2 aux fonds. Pour satisfaire aux conditions aux limites des

poutres de rives des voiles Zeiss-Dywidag, la Solution praticuliere citee ci-dessus
doit etre completee par la Solution d'un Systeme homogene d'equations differentielles.

Le Systeme homogene d'equations differentielles doit satisfaire en meme
temps, comme cite ci-dessous dans le probleme resolu en 1930 par K. Miesel,3
ä la donnee exponentielle em(? cos Xx. II en resulte que les trois equations
differentielles se transforment en trois equations homogenes ordinaires, qui conduisent
ä une equation du 8e degre, de la Solution de laquelle nous obtenons la longueur
d'onde et l'äffaiblissement d'une double oscillation partant des deux bords. Cette

equation du 8e degre peut etre resolue pour environ 100 cas differents. Les
nombres donnes ci-dessus, pour les longueurs d'onde et les affaiblissements, sont
portes en diagrammes qui donnent la possibilite d'avoir directement des valeurs
sans calculer chaque cas. Avec Fanalogie ci-dessus, il n'est pas seulernent possible
de determiner les huit conditions aux limites le long des generatrices, mais aussi
les conditions aux limites des fonds.

Le probleme des "limites" des tuyaux cylindriques circulaires fermes a dejä
fait, comme nous l'avons mentionne ci-dessus, l'objet d'une etude de M. K.
Miesel en 1930 sur les perturbations aux "limites". De cela, M. Miesel a aussi

pris en consideration l'elasticite des disques raidissants, probleme qui joue un
grand röle dans la construction des sous-marins. M. U. Finsterwalder s'est aussi

occupe de ce probleme, dans son travail mentionne sous 1) et a donne pour cela

une Solution, approchee de nouveau, sous la forme d'une fonetion de tension, oü
maintenant, en Opposition avec la Solution correspondante pour les voiles Zeiss-
Dywidag, ce ne sont pas les grandeurs Mx, Qx, MX(?, mais les valeurs M9, Q9,
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MX9, qui sont negligees. Cette Solution approchee donne avec un minimum de
travail essentiel, pas pour toutes les grandes valeurs des harmoniques, une tres
bonne correspondance avec la Solution rigoureuse de M. K. Miesel. Toutefois,
pour nos problemes de construction, il n' y a aucune haute valeur des harmoniques

qui soit prise en consideration.
Plus le voile sera raidi dans le sens de la voüte, contre la flexion, plus se

rapprochera, dans les voiles Zeiss-Dywidag, la loi de repartition des forces de
tension Nx de la loi de Navier, car alors le travail des moments flechissants dans
le sens de la voüte ne joue plus aucun röle vis-ä-vis de celui des forces
d'extension

Plus la voüte sera mince, plus eile aura la tendance de diminuer les moments
de flexion, ce qui entraine une mauvaise repartition des forces d'extension.

Cependant, pour obtenir une meilleure repartition des forces Nx, ces voiles
minces doivent etre combines avec des hautes poutres de rives.

J'ai dejä montre au debut de mon expose que pour des voütes tres surelevees,
comme par exemple celles constituees par des segments plats d'ellipse, on
obtenait des moments flechissants moindres et de meilleurs effets de poutre.

Plus les voiles deviendront grands, plus il sera necessaire de remplacer la
forme cylindrique (circulaire) par la forme de voile sureleve.

Pour les grandes halles du Ministere de Fair on a utilise presque exclusivement

des voütes de formes elliptiques, proposees par M. U. Finsterwalder et
calculees d'apres la theorie des voiles cylindriques, en remplagant approximativement

le segment d'ellipse par trois arcs de cercles.
Cela conduit naturellement ä des calculs tres compliques, vue que ces elements

de voiles ont 4 cötes et que les oscillations partant de ces* cötes s'influencent
mutuellement. On a donc un pressant~besoin d'une Solution exacte et complete du
calcul de la courbure elle-meme. Cela a ete trouve par un de mes assistants et
fera l'objet d'une dissertation ulterieure.

Les poutres portantes des voütes qui nous occupent sont souvent calculees
comme poutres continues sur plusieurs appuis. Comme les dites poutres ont par
rapport ä leur portee une grande hauteur, les moments sur appuis sont en

grande partie tres influences par les deformations dues au cisaillement; Flügge4
l'a dejä montre.

Pour des poutres elancees on sait que les deformations dues au cisaillement
sont habituellement negligees. Pour les supports des voiles cela n'est pas
toujours admissible. Dans le paragraphe II de mon expose, j'ai montre
completement l'influence de ces effets de cisaillement sur les moments d'appuis et

j'ai developpe une methode au moyen de l'equation des trois moments de Flügge,
qui permet de calculer les moments d'appuis, ceci pour des portees et des marges
quelconques, aussi bien dans le sens de la voüte que dans le sens de la longueur
et cela pour des supports de voiles isotropes et anisotropes. Le probleme du
flambage prend toujours plus d'importance ä mesure que les portees augmentent.

Nous avons deux cas ä considerer:
a) le flambage du voile dans le jeu de la voüte,
b) le flambage dans le sens des generatrices.
Le premier probleme avait ete traite par R. von Mises5 en 1914 dejä et le

second plus tot encore par Lorentz6 et Timoschenko.7 Ces deux problemes se
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combinent dans les coupoles de grandes dimensions avec de grands ecartements
des appuis, de teile sorte qu'en les etudiant separement, pour les deux cas de

flambage, on obtiendrait des resultats trop favorables. Ces cas de flambage
combines, si important pour les voiles, ont ete resolus par W. Flügge8, qui en a donne

une Solution tres detailiee et applicable aux cas pratiques. II en ressort que le

flambage combine agit de fagon tout-ä-fait defavorable. Les recherches de Flügge
s'etendent aussi au cas de parois cylindriques circulaires, pour lesquelles on est

clairement renseigne pour de grandes portees. Par une extrapolation, W. Flügge
montre que ces equations s'etendent aussi au cas particulier du flambement des

plaques.
Comme on suppose dans les conditions dc flambage que les deformations du

voile sont faibles par rapport aux epaisseurs, mais que d'autre part ces conditions
sont dejä tres difficiles ä realiser en pratique, puisqu'avec de grandes portees on
obtient dejä des deformations sensibles, il faut exiger qu'on adopte pour les

voiles des coefficients de securite au flambage notablement plus eleves que pour
de simples arcs. On atteint aisement une securite süffisante en renforgant le voile

au moyen de nervures. Ces mesures ont en plus l'avantage de diminuer les
deformations et de supporter aussi les moments de flexion du voile. Dans presque
tous les pays on a construit ces dernieres annees des voiles de dimensions
croissantes. On a execute de tel voiles jusquä 60 m de portee pour les poutres
et 45 m pour les arcs, soit de 2700 m2 de base. Sur ces bases on a adopte pour
les voiles ä grande portee des sections transversales elliptiques. D'autre part on a

execute un grand nombre de halles avec des arcs de 100 m de portee et un
ecartement relativement faible des poutres de rive. La fig. 2 donne la vue
exterieure d'un hangar d'aviation du type avec arcs de grandes portees et la

fig. 3 la vue interieure d'un hangar avec arcs et poutres de grandes portees, dont
la reproduction m'a ete permise par le Ministere de Fair. Les fig. 4 et 5

montrent l'application de ces voiles aux bätiments; la fig. 4 represente le hangar
des camions postaux de Ramberg et la fig. 5 des voiles cylindriques circulaires
disposees en sheds, pour une fabrique de töle de Ruenos Aires.

2) Les toits plisses.
Dans les toits plisses, le voile est remplace par un polyedre et la section de

courbure continue par un polygöne. Le probleme est essentiellement le meme
que pour les voiles cylindriques. Les equations differentielles sont remplacees
par d'autres equations differentielles du meme ordre. Aux moments de flexion
dus ä l'effet de voile viennent s'ajouter ceux dus ä l'effet de plaque, car les faces
doivent premierement transmettre leurs charges sur les aretes du toit en provo-
quant des moments de flexion; ces efforts sont reportes sur les raidissements

par des extensions dues ä l'effet de voile, respectivement de "toits plisses". Le
probleme a ete traite par E. Gruber9 et G. Grüning,10 d'abord en considerant
les moments de flexion dus ä l'effet de voile. Les deux auteurs ont neglige la
resistance ä la torsion des poutres des bords. Sur ce point, les travaux precedents
ont ete complete par R. Ohlig11 qui a tenu compte de la resistance ä la torsion
des extremites, de la meme fagon qu'on l'a toujours fait pour les voiles. A cause
de leurs grands moments flechissantes, ces types de poutres sont moins economiques

que les voiles et comme le mieux est souvent Fennemi du bien, on ne les a
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4-9^

Fig. 2.

pas executes jusquä aujourd'hui dans les grandes constructions. Cela tient
aussi au fait que les brevets pour les voiles et les "toits plisses" se trouvent dans
les memes mains, celles de la maison Dyckerhoff et Widmann A.-G.

3) Les coupoles polygonales composees de voiles cylindriques.
Comme on le sait, c'est d'apres ce Systeme qu'ont ete executees les plus grandes

coupoles massives existant actuellement, celle du marehe couvert de Leipzig
avec 76 m de portee et la coupole en are de cloitre du marehe couvert de Bäle,
de 60 m de portee. Tandis quo la theorie de ces arcs de cloitre est etablie et
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Fig. 4.

Hangar des autobus de Bamberg.

publiee12 depuis longtemps, cela n'est pas le cas pour les arcs en croix. Avec ces
arcs en croix, on construit des coupoles tres helles au point de vue architecto-
nique et irreprochables au point de vue acoustique. La fig. 6 montre une de ces
coupoles, de forme octogonale. Independamment d'une bonne acoustique, ces

coupoles donnent un eclairage excellent; des grandes fenetres menagees dans le
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Fig. 5.
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dorne, la lumiere tombe au milieu de la salle par reflexion sur voüte cylindrique.
J'ai developpe la theorie de ces coupoles ä l'occasion du concours de 1930 de
1'Academie d'architecture (Reaux Arts) et j'ai montre qu'il est possible d'eliminer

atout effort de flexion dans les aretes de raidissement. Comme la place me

manque pour la publier dans ce rapport, cette theorie sera publiee prochainement
dans une revue.

^n ra*

Fig. 6.

4) Les voiles ä double courbure.
La theorie des voiles de revolution librement appuyes sur leur pourtour est

dejä etablie depuis longtemps. Dans le developpement ulterieur des voiles ä

double courbure les types suivants sont importants:
a) Les voiles de revolution appuyes en quelques points seulernent, pour

lesquels "l'effet de coupole" est repris par un "effet de poutres" pour reporter
les efforts sur les colonnes.

b) Les coupoles de "rotation" et de "translation" avec des bases carrees ou
polygonales.

c) Les coupoles d'abside.
La theorie des diverses formes de coupoles ä double courbure fut developpee

par moi en 1930 ä l'occasion du concours dejä mentionne. La publication de

cette etude, sous la forme d'un ouvrage, avait ete prevue par FAcademie; mais

par suite de manque de ressources, cette publication n'a pas pu etre entreprise.
Ces pourquoi, ces travaux ont ete publies sous une forme raccourcie dans la

revue "Rauingenieur".13 En ce qui concerne les voiles sur appui unique dont la
forme est une surface de revolution, on doit remarquer que, les hauteurs de

poutre et par consequent les bras de levier des forces interieures pour
transmettre les charges vers les colonnes sont proportionelles aux portees des poutres
et qu'aussi les contraintes decoulant de l'effet de poutre sont independantes de

la portee. II decoule de cela que l'on peut realiser avec de telles constructions,
aussi bien qu'avec les coupoles polygonales, de tres grandes portees. Les voiles

ne sont cependant pas exempts de phenomenes de flexion. D'apres l'etude de
A. Havers,14 qui traite le probleme de la distorsion de l'anneau de base d'un voile

spherique et qui en donne la Solution au moyen d'une fonetion spherique, il
est possible des lors de determiner les moments du flexion correspondants, ce

qui est une necessite absolue. L'application numerique sur un exemple, quoique
laborieuse, serait hautement desirable pour delimiter nettement quelles portees
peuvent etre tolerees avec de telles formes de voiles et si elles sont economiques
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comparativement aux voiles du type b), pour lesquels la transmission des efforts
se fait presque exclusivement par des forces de compression et dont l'epaisseur
est par consequent fixee uniquement pour resister au flambage, car, meme pour
les grandes portees, les contraintes admissibles ne peuvent pas etre appliquees.
Le calcul des voiles de revolution dont la forme en plan est rectangulaire ou
polygonale, peut s'effectuer d'une maniere tres simple d'aj)res la methode indiquee

par l'auteur, au moyen de l'equation differentielle traduisant l'etat de
tension de la membrane elastique.

La fig. 7 montre un voile de ce type tres plat, ä base rectangulaire, qui fut
execute pour un batiment de l'ecole technique de Dantzig; pour une portee de
12.00 m ce voile n'a que 0.77 m de fleche; le surbaissement est donc de 15,6,
soit beaucoup plus que les ponts les plus eiances. Cette figure permet de
reconnaitre qu'un tel type de voile n'est pas autre chose qu'une plaque bombee

qui se distingue des plaques habituelles en ce sens qu'elle travaille en compression.

Sur la fig. 8 on voit un voile ä double courbure ä base rectangulaire,
destine ä une halle ä Klinker, ä Reocin. Cette figure nous montre l'application
de cc que l'on a designe sous le nom de (c) voiles ä absides. Comme je l'ai
demontre dans l'article de la revue "Rauingenieur",13 il se realise dans cette
demi-coupole l'etat de tension d'une membrane, si les retombees sont raidies par
un anneau. Puisque ces demi-coupoles peuvent etre considerees comme des
elements de construction formant un ensemble stable par lui-meme, leur röle
comme nouvel element construetif des halles est tres important, puisqu'elles
permettent de raecorder des coupoles cylindriques ä une base qui se rapproche
de Fovale. Ces demi-coupoles ont regu une application en grand dans la
construction des hangars pour avions de portees atteignant 40 m. Le hangar
d'avions, represente sur la fig. 3, est constitue par une longue voüte cylindrique
qui se termine ä ses extremites par une coupole ä abside. Enfin, la fig. 9 montre
une demi-coupole du meme genre destinee au pavillon de musique des bains de
Sclrwalbach.

5) Le principe de la compensation statique des masses dans
le calcul des voiles affins.

Les voiles examines precedemment pouvaient etre calculees ä l'aide de l'equation

differentielle de l'etat de tension de la membrane, parce que le voile
spherique se laisse facilement traiter mathematiquement. Le principe de la
compensation statique des masses nous permet d'une maniere tres simple de
calculer aussi des voiles affins. J'ai developpe ce principe en 1928 pour des
cas determines;15 en 1930, ä l'occasion de l'etude dejä mentionnee, j'ai expose
le probleme d'une maniere generale, au moyen de l'equation differentielle et
pour un voile de forme quelconque; cette etude a ete publiee dans la reuve
"Rauingenieur".16 II s'agit par exemple de calculer un voile ä base elliptique,
en partant d'un voile de revolution de forme fondamentale. Les nombreux
problemes qui peuvent etre traites de cette maniere sont indiques dans le memoire
cite ci-dessus; il suffit de rappeler ici que les voiles de revolution affins
peuvent se calculer d'une maniere simple.
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Pavillon ä musique des bains de Schwalbach.

6) \ oil es de forme entierement arbitraire.
Les voiles de ce type ne peuvent pas etre calcules ä l'aide de l'equation

differentielle des membranes, parce que nous ne pouvons pas integrer les 3 equations
differentielles aux derivees partielles correspondantes. Nous devons choisir un
autre chemin et resoudre ces equations par la methode des differences finies.

V ¦

-4."¦»..

i. i•'si

Fig. 10.

Maison du sport allemand. Berlin-Reichssportfeld.
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Pucher, en 1931,17 a donne une methode simple et rapide conduisant ä la
Solution de ce probleme. II est demontre que cette Solution simple est possible,

parce que les 3 equations differentielles peuvent etre ramenees ä une seule en
introduisant une fonetion nouvelle, la fonetion de tension, qui, des qu'elle est

connue, permet de trouver completement l'etat de tension cherche. Les
contraintes interieures peuvent etre determinees d'une maniere semblable ä celle

que l'on utilise dans la methode de la fonetion d'Airy. Puisque seule la repartition

de la rigidite intervient sur la forme de la surface, toutes les constructions
en voiles peuvent etre calculees si les conditions sur le pontour sont donnees et
si Fetal de tension de la membrane est ainsi ä determiner. La methode pour
differences finies est toujours applicable si, comme dejä mentionne plus haut,
une Solution au moyen de l'equation differentielle est possible. Les derniers
travaux frangais suivent la trace indiquee par Pucher. Le developpement des

methodes de construction des coupoles en France se base sur cette theorie; la
forme des coupoles appartient aux surfaces reglees non developpables. Pour le
cas special de la surface de translation, Flügge4 a donne une Solution analogue,
au moyen des equations ä differences.

Comme conclusion, je peux encore montrer une execution interessante, re-
produite dans la fig. 10. Elle se rapporte ä la coupole de la maison des Sports
allemands, erigee ä l'occasion des Olympiades. Le projet a ete etabli par
l'Architecte March et la disposition constructive par U. Finsterwalder. Le lan-
ternau superieur est place excentriquement pour obtenir un bon eclairage. Dans
cette construction, l'effet de coupole n'existe pas effectivement, parce que les

secteurs isoles qui la constituent ne reagissent pas les uns sur les autres, ä

cause de la presence des nervures de raidissement.
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Resume.

Dans la premiere partie de ce rapport l'auteur donne un apergu du developpement

de la theorie des differentes formes de voile depuis le dernier Congres de

1932 et il parle des principes des travaux les plus importants.
Dans la deuxieme partie l'auteur traite le probleme du tuyau cylindrique

renforce et du toit Zeiss-Dywidag et il montre que dans ces voiles portants on
ne doit pas negliger l'influence des deformations dues aux efforts tranchants sur
les moments d'encastrement, ce qui n'est pas le cas pour les poutres elancees
dans lesquelles ces influences que l'on sait tres petites peuvent etre negligees.
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Coupoles massives, reservoirs cylindriques
et constructions semblables.

Massive Kuppeln, zylindrische Behälter
und ähnliche Konstruktionen.

Solid Domes, Cylindrical Reservoirs and Similar Constructions.

Dr. techn. H. Granholm,
Dozent an der Königlichen Technischen Hochschule, Stockholm.

Le calcul exact des contraintes de flexion dans une coupole massive est tres

complique. Un travail de doctorat1 presente ä l'Ecole polytechnique de Stockholm

fait ressortir ces difficultes et l'on peut se demander si l'ingenieur occupe
dans la pratique trouvera le temps et l'occasion de calculer les dimensions d'une
coupole sur la base de la theorie exacte. L'etablissement des equations
fondamentales est dejä complique et leur integration exacte conduit ä des series qui
sont difficiles ä mamer et qui ne convergent que lentement. Alors que la

convergence est satisfaisante pour bien des epaisseurs de paroi, une
modification de cette epaisseur peut faire disparaitre cette bonne convergence. Meme

lorsque l'ingenieur possede ä fond la theorie mathematique de ce probleme, le

calcul d'un cas de charge determine exige beaucoup trop de travail. II serait
tout-ä-fait impossible d'arriver ä une methode pratique en partant du chemin
suivi par Meissner, Bolle, Dubois, Honegger, Ekström, etc. Par exemple, pour
les coupoles spheriques, on obtient lors de Fintegration dans les cas les plus
simples, des series hypergeometriques qui ne peuvent etre pour l'ingenieur un
instrument exact ä cause de leur lente convergence.

En consideration de ces faits, il importe avant tout, pour le developpement
plus ample de la theorie des coupoles, de se diriger vers des Solutions qui
satisfassent les exigences de la pratique, meme si Fon doit introduire cerfaines

approximations. Ainsi que l'a montre Geckeier,2 il est possible de trouver par
des moyens mathematiques relativement simples, une Solution qui ne s'eloigne
que peu de la Solution exacte et qui est simple et agreable ä employer lorsque
l'epaisseur de la paroi et le rayon sont constants. La bonjie concordance entre
la theorie de Geckeier et la theorie exacte nous permet d'expliquer plus exactement

la theorie approchee, lorsque Fon est au clair sur les hypotheses que l'on

1 John Erik Ekström: „Studien über dünne Schalen von rotationssymmetrischer Form und

Belastung mit konstanter und veränderlicher Wandstärke". Stockholm 1932.
2 cf. par ex. „Handbuch für Eisenbetonbau", 6e vol., Berlin 1928.
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introduit. On s'approche encore un peu plus de la theorie exacte en employant
le procede d'integration asymptotique de Blumenthal et Steuermann, ce qui peut
se faire meme lorsque l'epaisseur de la paroi est variable. Ce procede represente
un gros progres par rapport aux methodes qui sont basees sur des Solutions
en forme de series infinies, oü l'on doit toujours supposer que l'epaisseur de la

paroi varie suivant une fonetion determinee pour obtenir une Solution.
Un examen plus approfondi des equations finales donnees par Geckeier montre

que ces equations sont exactement du meme type que celles pour une poutre
sur appuis elastiques. L'analogie physique n'est pas non plus difficile ä remarquer.

On peut considerer comme une poutre le meridien de la coupole qui est
soutenu par les cercles paralleles ou ceintures. Comme ceux-ci se laissent
comprimer ou etirer ils correspondent au point de vue statique ä des appuis
elastiques.

Cette conception nous fait voir la statique de la coupole avec une exactitude
süffisante. Pour l'etablissement des equations d'equilibre, il n'est plus necessaire
de reprendre les equations differentielles de Meissner et il est possible de poser
directement et simplement les equations necessaires ä l'aide de la theorie des*

poutres sur appuis elastiques. Ceci signifie, pour l'ingenieur qui est dans la

pratique qu'il n'a plus besoin de s'efforcer tout d'abord de comprendre la theorie
classique, assez compliquee, de la coupole; de plus il peut etablir de lui-meme les

equations necessaires.
Les travaux de Geckeier montrent qu'il n'a lui-meme pas completement saisi

la haute signification des approximations qu'il propose; c'est-ä-dire qu'il n'a

pas compris qu'en gros la coupole agit comme une serie continue de poutres
sur appuis elastiques. La maniere de voir que je propose peut naturellement
etre elendue en ce sens que l'on peut considerer le meridien non comme une
poutre mais comme un are appuye elastiquement sur les elements annulaires de
la coupole.

Par l'introduction de cette conception plus exaete, on obtient un apergu plus
juste de la statique de la coupole et les equations que l'on obtient ainsi sont les

memes que celles de Meissner.
11 est notoire que specialement dans les coupoles tres plates, oü par consequent

l'effet de voüte dans les elements de meridien est tres marque, il est necessaire
d'introduire cette derniere maniere de voir afin d'obtenir l'exactitude desiree.
Plus la tangente ä la coupole au droit de l'appui est inclinee, plus sera exacte
la conception du meridien en tant que poutre sur appuis elastiques et dans le

cas special oü la tangente ä la coupole est partout verticale, c'est-ä-dire lorsque
la coupole se transforme en un cylindre, cette maniere de voir est tout-ä-fait
exacte.

Afin de faire mieux voir la simplicite du probleme de la coupole traite de

cette fagon, j'ai calcule quelques problemes et j'ai compare les resultats ainsi
obtenus avec ceux de la theorie exacte. La concordance est partout etonnement
bonne.

Comme premier exemple, choisissons une coupole spherique de beton arme
d'epaisseur constante, b 16 cm, de rayon r 1000 cm et d'angle d'ouverture
40°. Supposons que la coupole soit chargee par un liquide ä la pression
constante p 1,0 kg/cm2 et que l'arete soit completement encastree (fig. 1).
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Si l'on calcule les contraintes dans cette coupole d'apres la theorie des mem-
p r

branes, on obtient une compression dans le meridien Tt -^- et une compres-

prsion dans les paralleles T2 ^—. Ces contraintes dans le meridien et le parallele

sont constantes sur toute la coupole et la Solution par la theorie des membranes

2500--

cxacr2000

16cm

1500

1000

600

40 35 30 25 20

exact
500

10° 0*

Fig. 1.

Comparaison entre la grandeur du moment meridien calculee d'abord d'apres l'equation 5

et ensuite d'apres la methode exacte au moyen de series hypergeometriques. Les ecarts
sont insignifiants pour la pratique.

est tres simple. Sous l'effet de ces contraintes de compression T1 et T2 la cou-
T • r

pole est comprimee de teile sorte que son rayon se reduit de -rrr-, c'est-ä-dire

pr2
^ Cette reduction du rayon n'est pas grande; dans notre exemple, pour

E — 210000 kg/cm2, eile ne se monte qu'ä 0,15 cm. Mais comme la coupole
est fixee tout autour de son arete, eile ne peut pas modifier librement sa forme;
les parties situees pres de l'arete conserveront le rayon primitif mais plus on
s'eloigne de l'arete, plus la liberte de mouvement de la construction est grande
et plus les deformations pourront se produire librement. Quoique dans notre
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cas la compression soit relativement faible, il se produit cependant aux environs
des aretes certaines perturbations qui engendrent des moments d'un ordre de

grandeur tel que l'on ne peut pas les negliger.
Nous voulons rechercher maintenant quels moments sont engendres dans une

poulre sur appuis elastiques lorsque l'on admet qu'elle subit un flechissement

p r
correspondant ä la valeur que nous avons calculee ci-dessus F La relation

entre le moment et le flechissement est donnee par l'equation:

d2v
EJ--SJ -M1 (1)

et l'influence de l'appui elastique des elements de parallele est exprimee par
l'equation:

dx2 r2 5 K >

EHminons Mx de ces deux equations, on obtient

dx;

d2v

dxz + ?.y o (3a)

i i • • t r -n t i Em2 b3
ou en admettant que la rigidite E J est constante et egale a —9 7 • — on a:1 o o m* — l -12

oü k4

d* v
dx? + 4k4v °

3 (m2 — 1)
(3 b)

m2 r2 o2

L'integrale generale de l'equation 3b peut s'ecrire sous la forme connue

y e~kx (A cos kx + B sinkx) -f ekx (C cos kx + D sin kx) (4a)

c'est-ä-dire que l'on peut considerer le flechissement comme la somme de deux
oscillations sinusoidales, Fun avec amplitudes decroissantes et l'autre avec amplitudes

croissantes. On peut poser en general que les coefficients C et D sont
nuls en admettant que la poutre n'est pas trop courte et que Forigine peut etre
deplacee au point d'oü part la perturbation. Pour les coupoles fermees, on peut
par consequent ecrire l'integrale avec precision süffisante sous la forme:

y e~kx (A cos kx + B sin kx) (4b)

Ici x designe la longueur d'arc du meridien, mesuree ä partir du bord de la

coupole. Dans ce cas, il est facile de determiner les constantes arbitraires en

partant des conditions d'appui:

on obtient:

v — T„ et v o* 2Eb J

A-ß- 2E&
et le flechissement du meridien est ainsi

2EÖ
pr

y — ^r^ • e~kx (cos kx + sin kx).
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Apres introduction de cette valeur dans l'equation 1 on obtient l'expression
suivante pour le moment dans le meridien:

K3
Mt —— pr be_kx (— cos kx + sin kx) (5)

Ltd

Dans cette expression on a neglige la contraction du materiau c est-ä-dire que
l'on a pose le nombre de Poisson m oo.

A l'aide des valeurs donnees dans le tableau I pour les fonctions e_kx cos kx et
e~kx sin kx, il est facile de representer graphiquement l'equation 5. Dans la fig. 1,

on voit tres bien comment le moment dans le meridien Mx varie avec l'eloignement

du bord de la coupole. A titre de comparaison, nous avons donne les

valeurs exactes calculees d'apres la methode de Bolle avec series hypergeometri-
ques.3 Ainsi que l'on peut le voir, la concordance entre les resultats exacts et,
les valeurs approximatives est etonnement bonne c'est pourquoi il n'y a aucune
raison de faire du probleme de la coupole un travail mathematique etendu. Dans
les coupoles avec angle d'ouverture plus grand que dans notre cas, la concordance

entre les valeurs exactes et approchees est encore meilleure. Seulernent

pour les coupoles dont la pente aux appuis est tres faible, l'influence des
hypotheses que l'on a faites a une signification pratique. Bemarquons en passant que
de telles coupoles ne sont pas appropriees, ä cause des fortes perturbations qui
se produisent ä la liaison de la coupole ä la ceinture d'appui.

Pour le calcul des contraintes dans la coupole. il n'y a pas que le moment
dans le meridien qui rentre en ligne de compte mais aussi les moments dans le

parallele M2 et l'accroissement des compressions dans le meridien et le parallele
qui en resulte, car les conditions d'appui ne correspondent pas aux hypotheses
de la theorie des membranes. Ces grandeurs M2, Al^ et AT2 peuvent etre
calculees directement ä partir des relations suivantes. La concordance entre les

valeurs obtenues d'apres la methode approchee que nous donnons et celles
obtenues par la methode exacte est aussi tres bonne, ainsi que l'on peut le voir
d'apres la comparaison donnee dans le tableau II.

L'etablissement des expressions mathematiques pour les forces supplementaires
AT3 et AT2 se fait de la fagon la plus simple par application de Fanalogie, en
considerant le meridien comme une poutre sur appuis elastiques. Le Supplement
de la compression dans le meridien, ATX, peut etre considere comme l'effort de

cisaillement dans la poutre multiplie par cotg a, oü a est l'angle forme par le
meridien et le plan horizontal. On obtient

AT1 cotg a EJ • ~J. (6)

Le Supplement de compression dans le parallele AT2, est une mesure pour
l'effet d'appui elastique et AT2 est par consequent directement proportionnel au
flechissement y du meridien, donc

ATä —-y. (0

3 cf. Ekström, p. 124.
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Tableau I.

Valeurs des fonctions e-kx cos kx, e-kx sin kx, e—kx (cos kx — sin kx) et e-kx (cos kx + sin kx)

kx e—kx cos kx e—kx sin kx e—kx (cos kx — sin kx) e-kx (cos kx -f sin kx)

0 1.0000 0.0000 1.0000 1.0000
TT

0.6239 0.2584 0.3655 0.8823

TT

T 0.3225 0.3225 0.0000 0.6450

3ti
8

0.1179 0.2845 — 0.1665 0.4024

TT
0.0000 0.2079 - 0.2079 0.2079

5tt
8 - 0.0536 0.1297 — 0.1833 0.0761

3tt
4

— 0.0671 0.0671 — 0.1342 0.0000

7ti
— 0.0592 0.0245 — 0.0837 — 0.0347

TT — 0.0432 0.0000 — 0.0432 — 0.0432
9tt
8 - 0.0269 — 0.0112 — 0.0157 — 0.0381

5tt
4

— 0.0139 — 0.0139 0.0000 — 0.0279

11 n
8

— 0.0051 — 0.0123 0.0072 — 0.0174

2
0.0000 — 0.0090 0.0090 — 0.0090

13*
8

0.0023 — 0.0056 0.0079 — 0.0033

7tt
4

0.0029 — 0.0029 0.0058 0.0000

15 TT

8
2*

0.0026 — 0.0011 0.0037 0.0015

0.0019 0.0000 0.0019 0.0019
17

TT

8
0.0011 0.0005 0.0006 0.0016

9
0.0006 0.0006 0.0000 0.0012

19
0.0002 0.0005 — 0.0003 0.0007

5
T71 0.0000 0.0004 — 0.0004 0.0004

21
— 0.0001 0,0003 — 0.0004 0.0002

11
— 0.0001 0.0001 — 0.0002 0.0000

23
8-71 -0.0001 0.0001 — 0.0002 0.0000

3tt — 0.0001 0.0000 — 0.0001 — 0.0001
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Le moment dans le parallele M2 s'obtient de la fagon la plus simple en
determinant les modifications de courbure du parallele1 et l'on obtient en negligeant
l'influence de la contraction

nr A
EJ d\ /oNM2 cotg a — -£. (8)

Introduisons dans les equations G, 7 et 8 l'equation pour le flechissement du
meridien

pr2
v K=— e~kx (cos kx + sin kx)J 2Eb x

on obtient les expressions suivantes pour ATX, AT2 et M2:

pr2 b2
AT, cot a 6

k3 e_kx cos kx

A T2 — ±— e~kx (cos kx -f- sin kx)

»T x P1" O"
Mg cot a t~- kx.

(6 a)

(7 a)

(8 a)

Le tableau II contient les valeurs calculees ainsi pour les contraintes dans le
meridien et le parallele et les moments dans le parallele en comparaison avec les

valeurs exactes.
Tableau II

Comparaison entre les valeurs approchees et exactes des contraintes dans le meridien et le

parallele et les moments dans le parallele.

Pente du
meridien

a

T! +AT,
approche

kg/cm

T,+ ATt
exact
kg/cm

T2 + AT2
approche

T2+AT2
exact

M2
approche
kg cm/cm

M2
exact

40° 443 439 0 0 0 0

35° 474 481 215 193 99 113

30° 503 504 437 427 62 73

25° 506 508 517 520 12 17

20° 503 504 518 523 — 8 -10
15° 501 501 511 510 — 9 — 14

10° 499 499 501 501 — 5 - 9

5° 499 498 499 498 0 — 3

Le probleme que nous venons de calculer correspond aux conditions d'appui
les plus simples. Afin de demontrer Fapplicabilite de cette methode ä des

conditions d'appui compliquees, j'ai calcule une coupole jointe ä un cylindre suivant
la fig. 2. Afin de simplifier le probleme, dans une certaine mesure, on a admis

que la pression de l'eau est constante sur la coupole. Ce probleme fut completement

resolu par Ekström avec les memes hypotheses. Le tableau III contient

4 cf. par exemple Foppl, „Drang und Zwang", 2e vol., Berlin 1928.
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les valeurs exactes pour le moment dans le meridien, M1 et pour la contrainte
dans le parallele, T2.

Pour toutes les constantes de la coupole, nous utiliserons l'indice 1 et pour les
constantes du cylindre l'indice 2.

Le calcul de cette construction fut effectue de la maniere suivante. Si la

coupole interieure et le cylindre sont liberes l'un de l'autre et s'ils peuvent se
deformer sans entrave sous l'effet de la surcharge, on obtient d'apres la theorie
de la membrane:

pr 2 p•IO4
une reduction du rayon de la coupole de * ———• 3,12 cm

2 E öx E

pr 2
p • IO4

une augmentation du ra\on du cylindre de -*^—= ±——— • 1,72 cm.
E oä E

La paroi du cylindre forme donc un petit angle avec la verticale de -r- • 1,72

(cf. fig. 2).
Comme cette deformation n'est pas conciliable avec les conditions d'appui

reelles, il faut introduire des forces et des moments supplementaires pour tenir

^r^/7Pf-4'

St sf6cm

12Ar,

Jfi

-«—*

Fig 2

compte des conditions de continuite. Ces conditions de continuite sont les

suivantes:

Le cylindre et la coupole doivent avoir le meme flechissement et la meme
Variation d'angle au point de liaison et le point de liaison doit en outre etre en

equilibre quant aux moments et aux forces agissantes. Ceci represente quatre
conditions d'appui qui peuvent s'exprimer par quatre equations d'oü l'on peut
tirer toutes les inconnues: deformations, moments, etc.
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Afin de simplifier Fetablissement des equations nous donnons ci-dessous les

expressions generales pour le flechissement et ses derivees. On a

y e_kx [A cos kx -|- B sin kx]

y' k e-kx [(B — A) cos kx — (A + B) sin kx]

y" 2 k^ e-kx [— B cos kx + A sin kx]

y'" 2 k3 e-kx [(A + B) cos kx -f (B — A) sin kx] (9)

La premiere condition que les flechissements du cylindre et de la coupole
doivent etre egaux au bord, s'exprime par l'equation suivante:

— Ax sin 40° + A2
p ' J—

(3,12 sin 40° + 1,72).

Pour que les deformations d'angle soient egales on doit avoir:

k1(B1-A1) ks(BI-A1)-Y'1.72
et pour l'equilibre des moments on peut poser:

V EJX Bx k2* EJ2 Bä.

La derniere condition doit exprimer que la reaction horizontale, resultant de

la surcharge de la coupole interieure par l'effort de cisaillement dans le cylindre
ainsi que par l'effort de cisaillement et la contrainte du meridien dans la coupole,
doit etre supportee, c'est-ä-dire que

— 2 kx8 EJj (Ax + B,) -^1— — 2 k23 EJS (A2 + B2) p 500 • cos 40°.

Par elimination on peut tirer de ces quatre equations pour p 1 kg cm2 les

valeurs suivantes pour les constantes

104 IO4
At — 15,35 ~ B, — 7,16 ~

104 u on-
1C)4

_ B2 2,0o • -g-.A2 — 6,13 -R- B2= 2,05

Le probleme est ainsi completement resolu; on peut maintenant calculer sans
difficulte les moments, etc. pour chaque point du cylindre et de la coupole. Le
tableau III donne une comparaison entre les valeurs calculees et les valeurs
exactes pour le moment de meridien et la contrainte dans le parallele de la
coupole. La concordance est satisfaisante dans tous les points.

Ces deux exemples nous montrent que la methode proposee est pratiquement
utilisable pour resoudre le probleme et qu'elle donne facilement les resultats ä

trouver.
Ainsi que nous l'avons dejä dit, la Solution approchee donne des resultats

d'autant plus exacts que la coupole a une forte pente et que l'epaisseur est mince.
Ce dernier point surtout a une grosse importance, ainsi que l'a demontre entre
autres Steuermann5. L'equation exacte pour le flechissement du meridien ne

5 E. Steuermann: „Some Considerations on the Calculation of Elastic Shells", Congres
international de mecanique, Stockholm 1930.
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Tableau III.
Moments de meridien et compression dans le parallele de la coupole

d'apres la fig. 2.

Pente du
meridien

et

approche
kg cm/cm

M,
exact

kg cm/cm

T3 + AT2
approche

kg/cm

T2 + AT2
exact
kg/cm

40° -5280 — 5560 — 1950 — 1930
35° 1450 2250 — 800 — 540
30° 1980 2200 401 613
25° 596 764 618 639
20° — 6 9 572 593
15° — 99 - 141 520 526
10° - 54 — 80 498 498

5° — 8 — 15 495 493

contient pas comme l'equation 3 b que les expressions du quatrieme ordre et de
l'ordre nul mais aussi des expressions avec derivees du premier, deuxieme et
troisieme ordre qui cependant sont toutes multipliees avec des polynomes de

cot ct. Lorsque et croit, le sens de ces expressions diminue et pour et 90°,
c'est-ä-dire pour le cylindre, ces expressions tombent completement ce qui fait
que l'equation 3b est alors tout-ä-fait exacte. La reduction de l'epaisseur de la
coupole a une influence semblable sur l'equation differentielle complete. On voit
directement d'oü cela provient. Lorsque l'epaisseur de la paroi est faible, le sens
de la compression du meridien n'est que restreint par rapport ä l'influence de
la Variation de courbure. En d'autres termes, cela signifie que le travail des

forces normales par suite de la compression du meridien peut etre negligee, dans
les coupoles minces, vis-ä-vis du travail des moments de meridien et des
contraintes du parallele.

Dans les problemes que nous avons traites jusqu'a present, nous avons toujours
admis une epaisseur constante. Lorsque l'epaisseur b est variable, on ne peut pas
partir de l'equation 3b mais il faut employer l'equation 3a. Comme la theorie
simple de la poutre sur appuis elastiques donne des resultats suffisamment
exaets dans les cas eidessus, c'est-ä-dire avec epaisseur constante, c'est une raison

pour admettre qu'il doit en etre de meme lorsque l'epaisseur est variable.

La theorie de la poutre sur appuis elastiques avec moments d'inertie variable
et appuis variables a ete etudiee jusqu'a present par differents savants,6 en
general ä l'aide des series. Les resultats obtenus sont malheuresement plus ou
moins inutilisables actuellement. Par suite de la grande parente qui existe entre
les equations 3a et 3b, il est naturellement evident que les Solutions des deux

equations ont en gros la meme construction mathematique. C'est pourquoi l'on
peut admettre que Fon peut ecrire la Solution de l'equation 3, par exemple, sous
la forme suivante:

y ue^ (Acosz -f Bsinz) (12)

6 cf. par exemple Hayashi: „Theorie des Trägers auf elastischer Unterlage", Berlin 1921.
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oü u et z sont certaines fonctions de x. Par l'emploi du procede d'integration
asymptotique de Blumenthal, il est possible de determiner les fonctions u et z de
teile sorte que l'equation 12 represente vraiment, avec une tres bonne approximation,

une integrale de l'equation 3a.
Eb3

Si comme precedemment nous introduisons la rigidite de la poutre EJ ——,

nous obtenons pour les fonctions u et z les expressions suivantes:

* i (13)

et

On obtient ce resultat de la facon suivante: Operons la derivation de l'equation

3a, nous obtenons apres simplification l'equation

fr+ Pi y"1 + p8 y" + Pa y' + p4 y o (15)

b'
oü Pi

P2

Ps

P4

0

12

r"b2

Multiplions> les

V

v'

v"

equations

f(z)
f'z'
f z" + f" z'2

v"' f z"' + 3f"z':z" + f" z' s

ylV f'z^+f"(4z'z"' + 3z''") + 6 f" Z'*z'< + frrz.4
1 p 1

oü f represente -j- et z', y-, par les facteurs Q4, Q3, Q2, Qx et 1 et additionnons

les, nous obtenons en posant egal ä 0 le membre de gauehe, premierement
l'equation:

yiv + Qi v-.- + Q2 v" + Q3 V' + Q4 v o (16)

et secondement lorsque l'on pose les facteurs f, f" et f chacun pour soi egal
ä zero

z^+Q1z'" + Q2z" + Q3z' o

(4 z' z'" + 3 z"2) + 3 z' z" Qx + z'2 Q2 o (17)

6 z'2 z" + z'3 Qx o

• De ces equations, on peut tirer Qv Q2 et Q3 tandis que la fonetion f (z) est
determinee par la condition

f"V* + Q4f=o (18)
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Si l'on choisit le facteur Q4 egal ä 4 z'4, notre equation 18 devient

d*f
dz47*

c'est-ä-dire

f (z) e±z (Acosz + Bsinz) (19)

oü Z est determine par la condition:

^=1/^ (20)
dx "4

Si l'on introduit dans l'equation 15: y uv on obtient apres introduction et
division par u:

/4u'" 3u" .2u' \
+ V 1"-^-+—-Pl+-u-P2 + P3J+VPi=0

En posant egaux les coefficients pour v et v"' dans les equations 16 et 21 on
peut determiner les fonctions inconnues Q4 et u. On obtient alors Q4 pd et
par suite d'apres l'equation 20

=fh<*
12 ir- C dx nA\0Uavec p1=i^; «= ^J ^= (14)

wlition

equations 17

4u'
De la condition -j- px Qv on obtient, en employant la derniere des

4u' 3 n v— -Pi-y(logp,)
ou u =±z (13)

Si Ton resume le resultat des calculs ci-dessus on peut ecrire la Solution
de l'equation 3a en negligeant les expressions qui contiennent le facteur ef z,

sous la forme suivante:

y — e~z (A cos z + B sin z) (12 a)
/b3

oü z (est determine par la condition

Au premier aspect, l'equation 12a parait peut-etre incommode et peu appro-
prige ä un emploi pratique ä cause de la construction compliquee de la fonetion z

et du facteur supplementaire 4
Dans la pratique, le cas se pose plus

simplement. II n'est pas necessaire de donner la fonetion z autrement qu'al-
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gebriquement et c'est pourquoi eile peut etre calculee tres facilement en partant
de l'equation 14, par exemple par la regle du trapeze. La derivation de l'equation

12a donne des expressions assez compliquees lorsque l'on n'introduit
aucune approximation. Bemarquons que les derivees z", z'", u" et u'" sont petites
et par consequent peuvent etre negligees pour les dimensions qui se presentent
dans la pratique. On obtient des derivees de la forme suivante:

y =ue-z(A cos z + B sin z)

y' u z' e~z [(B — jli A) cos z — (A + ju B) sin z]

y" =2uz'2 e-z [— (fi B + v A) cos z + (u. A — v B) sin z] (9 a)

y'" 2uz/3 e~z [(A + ^ B) cos z + (B — Uj A) sin z]

ou _ u'
uz'

JLI =1 V

jUx =1 — 3 V.

Dans le cas oü l'epaisseur est constante on obtient v 0 et ju, ju' 1

et les equations ci-dessus sont exactement les memes que les equations 9.

Les equations 9 a sont construites de la meme maniere que les derivees donnees
dans les equations 9 pour une poutre avec rigidite constante. Le calcul d'une
coupole d'epaisseur variable se laisse par consequent executer de la meme
maniere et sans beaucoup plus de peine que dans le cas d'epaisseur constante.
Les exemples calcules ci-dessus (cf. fig. 1 et 2) sont aussi figuratifs pour le

cas oü b est variable et les equations d'equilibre sont ä etablir de meine en

apportant seulernent les modifications exigees par la difference entre les equations

9 et 9 a.
Dans le probleme de la coupole, nous n'avons pas considere le fait que la

poutre-meridien s'amincissait vers le haut et avait une largeur nulle ä la cie de
la coupole, nous avons plutöt admis une largeur constante. Ceci correspond ä la
realite lorsque la coupole est cylindrique mais, dans les coupoles en general, il
existe dans chaque hypothese une certaine approximation. Si nous considerons ce
retrecissement, nous pouvons ecrire, pour une coupole spherique, le moment
d'inertie de la poutre-meridien ä une distance angulaire a de la cie de la facon
suivante: c q

J=&!.smcL
12 sin a0

\vec cette expression pour le moment d'inertie, nous obtenons pour les fonctions

u et z

1 1
u

n sm a

met z n[^4=-]/S4^2-dx.4rb ' sin a
Les relations ci-dessus concernent principalement le probleme de la coupole

mais il est evident que l'on peut les appliquer ä un reservoir cylindrique et ä des

constructions semblables qu'il faut considerer comme cas particuliers. Les
methodes usitees pour le calcul de tels reservoirs7 ainsi que leurs developpement

47 F
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en series peuvent etre avantageusement remplacees par la methode donnee
ci-dessus. On rencontre un cas special interessant de ce probleme dans le calcul
des barrages en are massifs. Jusqu'a present on partait, pour resoudre de tels
problemes, de l'equation 3b et Ton introduisait une valeur moyenne de l'epaisseur
de la paroi.8

En traitant l'equation 3 a d'apres la methode ci-dessus, on peut sans difficulte
tenir compte de Fanisotropie en differentes directions et ä differents points de

la construction. II peut s'agir d'une pure qualite du materiau ou d'une pure
anisotropie constructive. Par exemple, par l'introduction de differentes quantites

de fer d'armature dans differentes directions, le module apparent d'elasticite

du materiau est variable pour les differentes directions, ce qui doit etre
considere comme anisotropie du materiau; pour introduire une anisotropie
constructive dans un reservoir cylindrique ou une coupole on peut placer des poutres
de renforcement dans la direction de la generatrice ou du meridien. Dans de
telles conditions on ne peut pas ecrire l'equation 3a sous la forme de l'equation 15;
les coefficients px ä p4 ont Faspect suivant:

_ (Et J)<<

Pä_ EXJ

E2Ö
^ ~ r2 E, J

et les fonctions z et u apparaissent sous la forme suivante:

dx

_ i7 r«
et u — r e, J e88 &*

Mais comme on emploie pour u et pour z une expression mathematique,
l'introduction des equations 22 et 23 n'apporte aucune complication des calculs.

Resume.

Par la decomposition des voiles en deux faisceaux de poutres qui se croisent

on peut obtenir une representation plus claire du mode d'aetion statique de la
construction. Les moments et les contraintes qui se produisent peuvent etre
calcules comme pour la poutre sur appui continu elastique. Comme la theorie
exacte conduit ä des Solutions en forme de series infinies qui ne convergent

que lentement dans certaines conditions, la methode donnee ici presente des

avantages pratiques.

7 cf. Lorenz: „Technische Elastizitätslehre'', Berlin 1913. H. Reißner: „Beton und Eisen"
7, 150, 1908. T. Pöschl et K. Terzaghi: „Berechnung von Behältern", Berlin 1913.

8 cf. N. Royen: „Tvärödammen vid Norrfors kraftverk" (Le barrage de Tvärö ä l'usine de

Norrfors), revue Betong, cahier 2, 1926.
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Ouvrages ä parois minces renforcees ou non par
des raidisseurs.

Versteifte und unversteifte Flächentragwerke.

Shell Structures with or without Stiffeners.

R. Vallette,
Ingenieur aux Chemins de fer de l'Eta', Paris.

La question des ouvrages ä parois minces ayant ete traitee au Congres de

Paris, c'est la tendance qui s'est manifestee depuis cette epoque que nous
examinerons.

On peut distinguer deux sortes d'ouvrages ä parois minces: ceux oü la rigidite
de la paroi a ete prise en compte dans la resistance de Systeme, et ceux oü cette
resistance a ete completement negligee, la paroi etant alors consideree comme
apte ä resister aux seuls efforts diriges tangentiellement ä la surface du voile,
qu'elle constitue, et qui travaille alors comme une simple membrane.

On envisagera donc:
1° — Les parois minces rigides,
2° — Les membranes.

Nous examinerons ici les ouvrages ä parois minces rigides, les ouvrages ä

paroi-membrane faisant l'objet d'une etude de Mr Aimond.

I — Ouvrages ä parois minces rigides.
A — Construction.

Generalites. — Des le debut de la construction en beton arme on a fait
contribuer les parois minces constituees par le hourdis ä la resistance generale
de l'ossature. Cette utilisation du monolithisme est d'ailleurs une des

caracteristiques importantes du beton arme. Mais une utilisation plus complete de la
resistance des parois fut envisagee par la suite, ces parois devenant l'element
resistant prineipal de la construction: paroi porteuse des reservoirs, des silos,
des voütes etc.

Application aux constructions.

1° — Reservoirs. — Dans les reservoirs la paroi porteuse fut integralement
employee dans les fonds, les encorbellements, les coupoles de couverture, mais
la rigidite de la paroi n'a qu'exceptionnellement ete prise en compte.

47*
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2° — Silos. — Dans les silos l'utilisation de la paroi porteuse d'abord partielle
devint totale suivant le processus indique par M. Freyssinet au Congres de
Paris et auquel nous ne voyons rien ä ajouter, aucune nouvelle orientation ne
s'etant manifestee depuis.

3!) — Constructions voütees. —
a) Voütes courantes. —

Dans le domaine de la voüte courante en berceau, auto-portante
entre appui, les dimensions tendent ä s'accroitre notablement et l'on a

pu projeter dans un cas concret un berceau de 51,50 m X 51,50 m appuye
seulernent aux quatre angles, dont la paroi etait integralement auto-portante

et ne comportait que de petites nervures raidisseuses tout ä fait
secondaires sans qu'aucune poutre de bordure ne vienne contribuer ä la

51,50 m

N^rN

51.50 m

Sehnt/-/- durch rlxe
Coupe dans l'axe

Cross sechon thro Centre line

Fig. i.
Berceau de 51,50 m
de portee.

b)

resistance (fig. 1) — (Projet Boussiron). On peut considerer ce genre
de construction comme l'aboutissement du type de comble employe en
France depuis 1910 par divers constructeurs et utilisant une partie de

la paroi voütee comme poutre porteuse (poutre de retombee) entre les

poteaux de long pan plus ou moins espaces. A l'origine la hauteur de

voüte OA utilisee etait faible (fig. 2) et une nervure de bordure ON
contribuait ä la resistance; par la suite on augmenta la hauteur OA
interessee, on supprima la nervure active ON et on aecrut beaucoup la

portee entre poteaux; dans le stade actuel toute la voüte est utilisee avec

une portee quelconque sans poutre de bordure.

— Autres types de voütes. —
1° — Un type particulier de construction voutee est constitue par les

hangars d'Orly.1 Ils peuvent etre consideres comme l'exemple le plus
remarquable et le precurseur des systemes autoportants ä nombreuses

petites travees tels qu'ils furent utilises par la suite en Europe Centrale.
On y trouve en effet des travees de 7,50 m d'ouverture et de 90 m de

portee, la resistance des parois etant entierement interessee dans la flexion
generale (Construction Freyssinet-Limousin).

1 Voir le Genie Civil 22 septembre au 6 octobre 1923.
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2° — Une Variante du type d'Orly a ete realisee ä Cherbourg pour
Fetablissement de hangar double ä avions. La voüte est constituee uniquement

d'elements minces (fig. 3) qui, comme ä Orly, assurent seuls la
resistance du Systeme; la paroi devient en outre autoportante entre

poteaux de long pan (Projet Ste Rabut-Constructeur Subileau).
3° — Les voütes conoides (Freyssinet -Limousin) formant shed ont

ete appliquees ä de multiples ouvrages (Ateliers de Montrouge, de Caen,
de Fontenay elles ont fait l'objet d'une etude de M. Fauconnier

parue dans le 2bme volume de Memoires de notre Association ce qui
nous dispense de nous etendre ä leur sujet, elles sont auto-portantes
entre poteaux de long pan.

O. *80

6,0m

F55m

*x 3,01m

Fig. 2.

Poutre de retombee.

Schnitt
Coupe (a-b
Section)

Fig. 3.

Hangar double de Cherbourg.

4° — Autres construction. — D'autres types de combles: coupoule sur plan
carre, voütes d'aretes, are de cloitre ete ont ete envisages par divers auteurs
ä l'occasion de concours ouverts par le Service des bases aeriennes pour
l'execution de hangars ä avions mais ces types ne sont pas assez fixes pour qu'on
puisse y voir une orientation, ni en faire etat.

Une construction remarquable d'une nature toute differente a ete etablie pres
de Paris pour l'essai des avions, c'est la grande soufflerie de Chalais-Meudon.2
Elle comporte un certain nombre d'elements ä parois minces auto-portants et

principalement un tube diffuseur elliptique de dimensions imposantes (fig. 4)
qui ne comporte que 2 points d'appuis espaces de 34 m et est integralement porte
par sa paroi de 7 cm d'epaisseur simplement raidie par des nervures tous
les 3,60 m (Construction Limousin).

Tube diffuseur de la
soufflerie de Chalais-
Meudon.

5° — Conclusions. — En resume on peut discerner en France dans le
domaine de la construction ä paroi mince rigide, d'une part un effort diffus vers
la recherche de types nouveaux de comble sans orientation nette vers un type
determine et d'autre part, pour les types bien fixes, une tendance certaine
vers l'utilisation complete de la faculte portante des parois, allant jusqu'a

7cm7cm

2£0m
S^

3t.om

2 Voir le Genie Civil du 3 novembre 1931.
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interesser la section complete de la construction (grandes voütes de comble,
tube de Chalais-Meudon) quand la portee le justifie et tout en conservant le

type pur de l'ouvrage mince sans addition de «poutre de bordure» pour les

voütes, ou d'autres elements porteurs, ce que l'on peut regarder comme une
caracteristique de la construction frangaise.

B — Calcul. —

1° — Parois planes. — Nous signalerons pour le calcul des parois planes
porteuses la methode indiquee par M. L'Hermite dans le Genie Civil de 29 avril
1933.

2° — Voütes auto-portantes diverses. — L'utilisation de la paroi de voütes
comme «poutre de retombee» pour reporter sur les appuis les charges des

retombees, a suivi de pres l'apparition des premiers combles voütes en beton
arme.3 Cette poutre qui interessait une faible partie de la voüte fut consideree

par les constructeurs comme une poutre droite ordinaire, isolee et calculee

comme teile; cela conduisait ä des elements surabondants, mais pour de faibles
portees entre poteaux l'excedent de matiere engagee n'est pas pratiquement ä

considerer et il n'y a pas lieu de recourir ä des methodes de calcul plus poussees.
Dans les cas, d'ailleurs peu courants, oü la conception de l'ouvrage conduisait

ä de grandes portees entre poteaux, la hauteur de voüte ä interesser entrainait ä

un profil nettement courbe qui demandait une etude speciale. Nous savons que
certains constructeurs (notamment M. Boussiron) bien qu'ils ne Faient pas
publiee, eurent une Solution personnelle de cette question. Nous avons nous-
memes par la suite donne une methode simple4 qui, d'une part, met au point
le calcul d'une teile poutre et qui, d autre part, traite le calcul du berceau complet
de forme quelconque ne portant qua ses extremites.

Cette methode etend au profil courbe ä paroi mince la theorie de la flexion
et en tire les consequences au point de vue des efforts secondaires introduits,
eile met en evidence notamment les flexions transversales produites dans un
anneau de voüte par les actions tangentielles dirigees suivant les directrices du
berceau. Appliquee ä de grandes portees cette methode s'est montree complete
et tres sure et donne des resultats qui concordent avec les observations faites
sur des modeles, sur une voüte d'experience, et sur des ouvrages construits.

3° — Autres ouvrages. — Ce meme calcul s'applique aux ouvrages formant
un tube complet et nous avons ete amenes ä donner la methode utilisee pour
le calcul du grand diffuseur de la soufflerie de Chalais-Meudon (decrit ci-dessus)
teile qu'elle est exposee dans le compte rendu des travaux de cet ouvrage.5

Pour les coupoles, dont le type normal releve d'un calcul banal, la rigidite
de la paroi n'intervient que pour les charges isolees, leur effet est tres localise
et le plus souvent on rentre dans le cas des membranes ä cause des systemes
de meridiens et de paralleles que l'on trouve en tout point.

Pour les autres types de couverture ä paroi rigide il n'y a pas eu en France

3 Voir le Genie Civil du 27 janvier 1934.
4 Genie Civil du 27 janvier 1934.
5 Genie Civil du 3 novembre 1934.
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d'expose de methode de calcul dans les publications techniques, leur etude est

imparfaite et reste encore du domaine personnel des constructeurs.

4° — Conclusion. — Les methodes de calculs des systemes ä parois minces

rigides conservent en France les principes de simplicite qui ont ete la regle

pour l'etude des constructions en beton arme. II s'agit en effet d'un materiau
et de systemes complexes et variables, et il serait vain de vouloir rechercher
des lois exprimant tous les phenomenes qui interviennent dans leurs conditions
de travail sous une charge; il y a lieu de ne retenir que les faits principaux
qui sont des resultantes et sont traduits par des lois simples (loi de Hooke,
loi de Navier approchees mais süres.

Le but n'est d'ailleurs pas ici d'obtenir une Solution mathematique pure, il
s'agit seulernent de chiffrer suffisamment bien tous les efforts qui apparaissent
dans un Systeme defini pour qu il n'y ait ni exces de matiere ni sous-evaluation
notables. La recherche de cette Solution pratique sur les bases simples indiquees
doit cependant se faire en usant de toutes les ressources de l'art du calcul pour
aboutir ä des Solutions particulieres süres et facilement applicables, mais il est
utile de remarquer que dans Fhistoire des constructions en beton arme les

methodes de calculs definitives, epurees, n'ont ete etablies qu'apres la realisation
des types par nos grands constructeurs.

L'imagination, le sens technique, le sentiment des efforts inseparables des

creations dans l'art de bätir, avaient suffi au construeteur pour concevoir,
determiner et calculer le type cree. Une force peut toujours en effet etre
approximativement chiffree quand eile est bien mise en evidence qualitativement et c'est

ce dernier point qui demande les recherches les plus attentives dans les
nombreux elements de detail que comporte une construction en beton arme, sa

Solution exige ce bon sens technique qui fait les bons constructeurs.
Le calcul des voiles minces rigides a suivi cette evolution et il conserve la

tendance tres nette ä ne pas s'ecarter de la simplicite et de la clarte pour
evaluer tous les efforts notables qui apparaissent dans Fanalyse du type de
construction envisage.

Resume.

On etudie ici les constructions ä paroi mince dans lesquelles la rigidite reelle
de la paroi est prise en compte, et specialement les constructions voütees.

Apres quelques lignes d'historique, on indique que dans le Stade actuel on
utilise en France dans ces constructions, uniquement et integralement, la paroi
mince comme element porteur sans addition d'aucune poutre de bordure, —
que le Systeme soit ä petits voütes multiples (type hangar d'Orly), ä grande voüte

unique, ou en anneau (soufflerie de Meudon).
On indique ensuite que le calcul des systemes est d'autre part traite avec la

nettete qui a tooujours ete la regle en France pour Fetudde du beton arme, ce

qui, en conduisant ä une conception claire des efforts en jeu, permet au
construeteur d'appliquer librement et de developper les types crees.
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