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Sécurité des constructions.
Sicherheit der Bauwerke.

The Safety of Structures.

R. Lévi,
Ingénieur en Chef Adjoint au Service de la Voie et des
Batiments des Chemins de fer de 1'Etat, Paris.

Généralités

I — La nécessité s’est imposée, depuis quelques années, de faire état, dans
la résistance des charpentes, des propriétés inélastiques de la matiére.

L.a résistance des matériaux avait été fondée en premier lieu sur I'hypotheése
que, lorsque les forces auxquelles est soumis un systéme s’accroissent, les
déformations et les taux de travaill augmentent partout d’'une maniére linéaire.

Or, la propriété purement élastique admise ainsi n’est exacte, pour tous
les matériaux, qu'en premiére approximation. Cette hypothése doit étre aban-
donnée chaque fois que les circonstances se rapprochent de celles qui produisent
la rupture des piéces ou simplement des déformations de grande amplitude.

L’effet des propriétés inélastiques des matériaux est, suivant les cas, favorable
ou contraire a la stabilité.
 Contraire a la stabilité quand il s'agit de la tendance au flambement d'une
barre comprimée longitudinalement, 'effet est généralement considéré comme
de nature a augmenter la stabilité des systémes hyperstatiques.

I — Nous nous proposons de discuter cette assertion. Nous notons, dans
ce but que, pour connaitre le degré de sécurité d'une construction, il faut
envisager la maniére dont elle se comporte vis-a-vis des charges croissantes
jusqu'a ce qu'une rupture ou une déformation d’importance vitale se produise.

Il devient alors nécessaire de faire intervenir, au lieu du coefficient d’élasticité
E de la période élastique, des coefficients d’élasticité instantanés H’, correspon-:
dant & de trés petits efforts supplémentaires. Ces coefficients d'élasticité H’
seront variables d'un point & un autre et seront méme différents suivant que
I'effort supplémentaire considéré augmente ou diminue la tension préexistante.

Il n’est pas inutile de rappeler que cette considération de coefficients
d’élasticité instantanés éclaire les résultats des expériences sur le flambement
poursuivies a I'Ecole Polytechnique de Zurich, sous la direction de M. Ros.

Sous l'effet d'une force transversale, par exemple, la flexion qui se manifeste
dans une piéce comprimée en bout (fig. 1) augmente I'état de compression du
cOté concave, en la diminuant du coté convexe, et les points figuratifs de la
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82 . R. Lévi

déformation linéaire, dans le sens paralléle a 1'axe, décrivent des courbes qui ne
sont pas dans le prolongement I'une de I'autre (fig. 2).

Le coefficient d’élasticité moyen, a faire intervenir dans la formule d’'LEuler,
est toujours inférieur au coefficient d’élasticité habituel, de telle sorte que la
limite peut étre atteinte lorsque la compression est inférieure a la limite fixée
par le calcul habituel.

De méme, dans un systéme hyperstatique, les déformations peuvent s’accuser
rapidement a partir du moment ou les charges ont fait dépasser la lLimite
élastique des matériaux et il y a danger a se contenter d’hypothéses trop simples
pour apprécier le degré de sécurité.

|P
Fig. 1.
 III — La remarque suivante permet de diriger la discussion:

La relation qui existe entre les déformations d'une piéce et les sollicitations
traduit une propriété de la matiére. C'est une loi intrinséque qui relie ces
variables (fig. 3). '

Mais, dans une construction, aucune de ces variables ne peut étre considérée
en général comme une donnée et il n’est pas plus logique de dire que la défor-
mation est fonction de l'effort que de prétendre que I'effort est fonction de la
déformation.

En réalité, dans une piéce A B d'une construction déterminée, 1'équilibre entre
les déformations et les sollicitations se fait dans des conditions qui mettent en
jeu, non seulement l'élasticité de la matiére a I'intérieur de la piéce A B, mais
aussi I'élasticité du systéme a l'extérieur de A B.

Par exemple, si 'on tire sur une éprouvette au moyen d'un vérin a vis avec
un ressort comme intermédiaire (fig. 4) la traction a pour effet de déformer
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a la fois I'éprouvette et le ressort et il faut connaitre I'élasticité de ce dernier
pour juger de ce qui se passe dans I'éprouvette. Pour chaque position de la vis,
ce point figuratif du diagramme déformations /forces doit étre recherché a la
rencontre de la courbe intrinséque et d’'une courbe exprimant la loi extrinséque
qui lie la distance des machoires a l'effort qu’elles transmettent.
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De méme, st I'on applique & un systéme hyperstatique des charges croissantes,
le point figuratif correspondant i la barre qui travaille au taux le plus élevé se
trouve successivement a la rencontre de la courbe intrinséque déformations/
forces et d'une série de courbes extrinséques (fig. 5). Ces courbes sont inclinées,
car dans chaque cas l'effort appliqué a la barre considérée diminue quand
sa déformation s’accroit.
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Comparons la situation de deux barres du méme métal appartenant respective-
ment & un systéme isostatique et a un systéme hyperstatique et qui, pour cer-
taines charges faibles, travaillent au méme taux. Supposons proportionnels aux
charges les efforts qui leur seraient appliqués si elles n’étaient pas elles-mémes

déformées (fig. 6).
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Si I'on multiplie, en effet, les déformations et les forces par un certain facteur,
on substitue aux points M confondus qui figurent I'état des barres, un point P
situé sur I'horizontale du palier d’élasticité et trés prés de la courbe A B. Si I'on
multiplie la charge par un coefficient moindre, les deux barres se trouvent dans
des situations équivalentes. Mais si 'on multiplie par un coefficient supérieur,
la premiére barre aborde immédiatement la zone C D des grandes déformations
permanentes, alors que la seconde progresse tout d’abord le long du palier de
‘la limite d’élasticité. Le gain est d’autant plus grand que le rapport

pc déformation du dépassement de la limite d’élasticité

Op™ déformation élastique
est plus grand.

Il est également d’autant plus élevé que la loi extrinséque de déformation du
systéme est rapidement dégressive.

On peut appeler nombre de ductlhte le rapport n qui joue un rodle essentiel
dans la discussion.

g
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Pour T'acier de construction 42/,,, les donnés numériques usuelles sont les
suivantes:
La déformation relative apreés le palier est égale a 0.027.
Le coefficient d’élasticité est de 22103 K:mm?2.
La limite d’élasticité est de 26 K:m2.
D’ou
26
L 0027 — 92000 — 99
26
22000

IV — Les considérations qui précédent peuvent étre appliquées, non seulement
aux systémes hyperstatiques, ou la répartition des efforts n’est déterminée qu’en
ayant égard aux déformations, mais aux éléments fléchis des systémes iso-
statiques. La ductilité intervient alors dans la répartition des efforts dans une
section. '

En définitive, lorsque les efforts s’accroissent dans une construction hyper-
statique ou dans une piéce fléchie, les zones qui travaillant au taux le plus élevé
subissent des déformations inélastiques a partir du moment ou la limite élastique
y est atteinte. Les conditions de charge de la construction peuvent alors
s'aggraver sans que le taux de travail augmente dans les zones les plus chargées.

Cette propriété est ce que 'on nomme la ductilité.

La déformation inélastique survenant a la limite d’élasticité représente le
produit par un coefficient n dépendant de la nature du métal, de la déformation
élastique correspondant a la limite d’élasticité. Le coefficient n est, en général,
voisin de 22.

L’écart entre la charge pour laquelle la limite d’élasticité est atteinte et celle
pour laquelle elle est dépassée est relativement d’autant plus grand que le
nombre n est élevé. Il est également d'autant plus grand que la piéce ou
I'élément de piéce soumis a étirement est astreint a un effort plus rapidement
décroissant avec la déformation.

Cas d’une charge constante

I — Considérons plusieurs barres B paralléles, solidarisées par leurs abouts
de telle sorte que les allongements soient égaux et appliquons a Il'ensemble
une charge F croissant une fois pour toutes. Le point figuratif des déformations

et du taux de travail —Sl— décrit, pour une barre déterminée B;, une portion de

s . . . , f
la courbe caractéristique du métal. Si H est la fonction qui représente ~en

fonction de l'allongement relatif, la loi intrinséque dont il est question plus
haut s’écrit:
df; dl
S __ g oo (1
S 1 1 ( )
Quant a la loi extrinséque, elle s’obtient en sommant les lois intrinséques
des autres barres.
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Plus simplement, si I'on fait la somme (membre 4 membre), des équations (1)
écrites pour toutes les barres, on a

dF = d1x SJI{- )

Pour la barre considérée, le quantum de I'effort supplémentaire absorbé par
elle s’exprime donc par le rapport:

df, sH,
dF = SsiF (3)

Ce quantum est évidemment constant si les points figuratifs de toutes les
barres coincident; mais il n’en est ainsi que si toutes ont été fixées dans leurs
extrémités sans aucun effort interne.

Il en est autrement:

a) s'il existe des différences entre les longueurs des diverses barres mesurées
a I'état neutre ou entre les distances de leurs fixations;

b) si certaines barres ont été mises sous tension avant que n’ait eu lieu la
solidarisation des autres barres,

ou lorsque ces deux facteurs interviennent.

Les points figuratifs décrivent alors la méme courbe sans étre confondus.
Mais d’aprés ce qui a été dit plus haut, les différences de longueur, c’est-d-dire
aussl les différences des abcisses, se conservent.

Le quantum d’effort supplémentaire donné par (3) pour la barre la plus
déformée décroit lorsque cette barre approche de la limite d’élasticité. 11 en est
ainsi ensuite des autres barres, jusqu’a ce que, la limite d’élasticité étant
atteintc partout, les efforts supplémentaires soient repris par les barres les
plus déformées.

Dans les conditions de la pratique, comme le nombre n est trés élevé, 1'égali-
sation se produit en fait, c’est-a-dire que les barres les moins chargées atteignent
la limite d’élasticité avant que ne reprenne la croissance des efforts dans les
barres les plus chargées.

Si 'on compare ce résultat a celui que donne la théorie de I'élasticité, on voit
immédiatement que I'étirement du métal apporte une simplification dans le
processus de la déformation. Il égalise les tensions et rend la condition de dé-
passement de la limite d’élasticité indépendante des conditions initiales ou s’est
trouvé le systéme.

Quant & l'exception indiquée plus haut, elle n’aurait lieu que si la barre la
plus chargée dépassait la limite d’élasticité N avant que la barre la moins chargée
ne I'atteigne. Cect signifierait que les différences entre les allongements relatifs
dépasseraient la longueur du palier B G, c’est-a-dire environ n fois I'allongement

élastique g la limite d’élasticité. Pareille circonstance peut étre considérée

comme exceptionnelle et inadmissible.

IT — Ce qui précéde s’applique sans restriction au cas des piéces effectivement
associées «en paralléle» comme les semelles d’'une poutre. Les errcurs de montage
n‘ont pas de répercussion sur leur capacité de résistance a la limite d’élasticité.
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De méme pour les barres de treillis disposées dans le méme sens ou en sens
contraire.

De méme encore dans le cas ou un treillis est renforcé par des barres posées
sans tension.

III — Un cas plus général est celui ot des barres associées se déforment in-
également, mais suivant des rapports constants. On a alors
dl dl
L= 2 o c.o.=da (4)

L L

o étant un parameétre variable et les B des constantes.

La construction géométrique de la fig. 7 montre comment les taux de travail
des différentes piéces se déduisent les uns des autres.
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Le quantum d’effort suppiémentaire pris par la barre B, est:

S B, H',
df, o (5)

La barre la moins déformée atteint la limite d’élasticité avant qu’elle ne soit
dépassée par la barre la plus déformée si le rapport de leurs allongements est
inférieur a (n + 1).

Le fait que le nombre de ductilité est trés grand a donc encore pour consé-
quence que l'égalisation des tensions se produit d’une maniére trés générale
sur le palier de la limite d’élasticité.

La fig. 8 montre alors la maniére dont varie la moyenne pondérée des défor-
mations en fonction de la moyenne pondérée des taux de travail. La courbe ainsi
obtenue posséde des angles plus adoucis que la courbe actuelle de déformation.
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Désignons par k le rapport de l'allongement moyen a l'allongement de la
barte la plus chargée. La condition pour que les taux de travail s’égalisent a la
limite d’élasticité s’exprime aussi par la relation approchée suivante

1
2k —1

IV — 1l résulte de cet examen qu’en attribuant le méme taux de travail a
chaque piéce, on commet une approximation qui n'est pas légitime, en général,
mais le devient a la limite d’élasticité. Ce calcul revenant a supposer a chaque
piéce un effort limite bien déterminé, on justifie ainsi une maniére de voir, souvent
considérée comme trop simpliste, d’aprés laquelle chaque piéce ou organe posséde -
sa papacité de résistance, la capacité de 'ensemble étant la somme des capacités
individuelles.

Cette méthode, appliquée notamment dans le calculs d’assemblage, se justifie
donc dans une certaine mesure, lorsque les divers éléments travaillent dans des
conditions pas trop dissemblables.

<n+1. (6)

V — 1l est bon de vérifier, dés a présent, si la prise en considération de la
plasticité dans les calculs n’amoindrit pas la sécurité.

Par sécurité, on entend, soit la garantie contre le risque de ruine de la con-
struction, soit la garantie contre le risque de grandes déformations rendant I'ou-
vrage impropre a son usage. Le flambement entre dans l'une ou l'autre de ces
considérations.

Dans tous les cas, on caractérise la sécurité par un coefficient, et on ne peut
mieux faire, pour définir ce coefficient que de le prendre égal au facteur par
lequel il faut multiplier les charges pour atteindre une situation dangereuse.

De ce qui précéde, il résulte que si II est le maximum que l'on s'est fixé
pour le taux de travail moyen, le coefficient de sécurité vis-a-vis du dépassement
de la limite d’élasticité N, est N/IL

VI — En écartant le cas ou le flambement se produit au-dessous de la limite
d’élasticité, il y a lieu de considérer deux cas:

a) limite de flambement ®, peu supérieure a la limite d’élasticité N.

Dans ce cas, il y a lieu de remarquer qu’aussitot que les charges ont dépassé
les taux qui correspondent au niveau de la limite élastique, les excédents de
charge se reportent exclusivement sur 1, puis 2, etc . . . barres.

I’augmentation qu’il faut apporter aux charges appliquées pour que la barre
la plus chargée atteigne la limite du flambement @ peut ainsi étre extrémement
faible, comme le montre la construction (fig. 9) du taux de travail moven
qui correspond a cette éventualité. Il semble donc qu'il y ait lieu de se montrer
particuliérement prudent, et d’admettre pour le taux de travail moyen une
limite calculée comme si la limite de flambement était égale a la limite
d’élasticité.

b) Cas ou les barres sont toutes tendues ou dont la limite de flambement est
voisine de la limite de rupture.

Il peut alors se produire que, lorsque le pomt figuratif M; de la barre la
plus chargée atteint sa limite dangereuse ®,, les autres pomts figuratifs sont
tous sur la courbe C®,. Ceci se produit en général quand le rapport de I'allon-
gement maximum de ductilité a I'allongement dangereux est inférieur a 2k —1.
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Alors le centre de gravit¢ M des points figuratifs est trés voisin de la courbe
C®; elle-méme (fig. 10). On peut donc définir approximativement la valeur
dangereuse du taux de travail moyen comme étant celle qui correspond sur
la courbe de déformation, au produit par k de I'allongement dangereux.
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Cec1 étant, les coefficients de sécurité d’'une association de barres travaillant
concurremment peuvent étre définis comme suit: «Les conditions de résistance de
la barre la plus chargée sont sensiblement les mémes que celles d’une barre
fictive chargée au taux moyen, mais dont la limite de flambement ou de rupture
serait amoindrie.

Si la limite de flambement réelle n’est pas trés supérieure a la limite d’élasti-
cité, la limite de résistance de la barre fictive doit étre prise encore plus proche
de celle-ci.

Si la himite de flambement est élevée, ou si les barres sont toutes tendues, il
faut multiplier 'allongement dangereux par k pour trouver, sur la courbe de
déformation, le taux de travail dangereux.

Dans tous les cas, le coefficient de sécurité, vis-a-vis du flambement ou de la
rupture, doit étre pris égal au rapport de la limite ainsi déterminée au taux
de travail moyen.»

De ceci, on peut déduire que si un systéme hyperstatique est semblable a ceux
que nous venons d’examiner et si de grandes déformations ont commencé a se
produire, la marge de sécurité qui subsiste alors est inférieure a celle que présen-
terait, s’il en était de méme, une construction isostatique.

VII — On peut appliquer ces principes au cas d'une tole percée de trous de
rivets en l'assimilant & un faisceau de fibres associées.

On peut considérer comme démontré le fait que, dans le voisinage des trous
de rivets, les déformations sont localement augmentées dans le rapport de 1 a 3.
Le rapport k est donc égal a 1/;.

Par conséquent, la limite de rupture est atteinte aux abords des trous, c’est-
a-dire qu’il s’y manifeste des fissurations pour une valeur critique du taux de
travail moyen, qui s'obtient en multipliant par k = 1/; I'allongement corres-
pondant a la limite de rupture. Avec les aciers de construction courante, on
trouve ainsi un taux de travail égal sensiblement aux 4/, de la limite de rupture.

VIIT — Nous examinerons maintenant, par quelques exemples, le cas des
poutres droites, réticulées et hyperstatiques:
a) Poutre & membrures constantes, a treillis & 45°, a deux appuis, encastrée
sur 'un d'eux (fig. 11).
Lorsque les charges croissent, c’est normalement la barre A’C qui atteint la
premiére la limite élastique. Le reste de la charpente se comporte alors comme
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une poutre isostatique A G D B soumise a une force sN dirigée suivant C A’.
Le moment sur appui est

M,=sNh (7)
Dans la poutre, le moment M est égal a

] — x

M=p—sNh— (8)

p élant le moment de la poutre a deux appuis simples.

Les charges continuant a croitre, les déformations se poursuivent pour attein-
dre, d'une part, dans la travée, la limite d’élasticité, d’autre part, dans la barre
A’ G, la limite supérieure de ductilité. En général, celle-ci est atteinte en dernier
lieu, et dans ce cas, la limite d’élasticité est atteinte en travée si le maximum
de (8) est égal et de signe contraire au moment sur appui (7).

Si la poutre est uniformément chargée ou chargée par un poids P variable,
on trouve que le moment maximum auquel a a résister la section la plus chargée

. 4 . : , .
de la poutre est la fraction 583 soit environ 2/; du moment maximum de la
3 Qe
méme poutre, supposée a deux appuis simples (fig.12).
Z.c D
Fig. 11. N/\/\/\/\/\
M e — l‘h ______________________ a8 N x ¢ Fig. 12
A o0 ~—""

Mais il faut vérifier que la déformation de la barre A’ C dans ces conditions
n'excéde pas la déformation maximum de ductilité. Elle s’obtient en calculant
la rotation ', de la fibre neutre de la poutre au voisinage de A

sNh (1 —x)? sNhl 21N 9
EJ I BEJ T “° T 3Eh 9)

©'o = w0y — dx = wy, —
©, étant la rotation de la poutre posée sur appuis simples.

Le treillis étant supposé a 15°, o’y représente aussi l'allongement relatif de
A’ C = h. On doit donc avoir

21 N N

0 — o <+ (10)

En prenant pour o, la valeur correspondant a la charge uniformément
répartie maximum, ceci s écrit

IN 21 N N
3hE 3h E~" Ty

ou

<3t (11)

Cette 1négalité, effectivement, est satisfaite avec les poutres de dimension
courante et les aciers habituels.
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b) Poutre a deux travées solidaires, constituée comme ci-dessus.

Le cas est le méme, la section sur appui médian jouant le role de section
d’encastrement.

D’autre part, si les appuis sont dénivelés, il s’ajoute & ©’, un terme correctif
qui peut augmenter la valeur du premier terme de (11), mais est généralement
trop faible pour renverser l'inégalité.

¢) Poutre encastrée a ses deux appuis ou travée solidaire de deux autres
travées; méme constitution que ci-dessus.

Dans ces deux cas, 1'égalité des moments sur appuis et en travée se fait avec
réduction de moitié sur la valeur du moment maximum dans la travée a appuis
simples. La condition (11) est remplacée par la suivante, qui est satisfaite
encore plus facilement:

F<6@+1 a2

En définitive, sauf cas anormal, si I'on calcule la poutre en supposant l'égalité
des moments maxima en travée et sur appuis doubles et en admettant IT comme
taux de travail maximum, le coefficient de sécurité par rapport au dépassement
de la limite d’élasticité N est égal a N/IL

IX — Examinons maintenant le cas d’'une poutre a 4me pleine a section con-
stanile et continue ou encastrée sur un au moins de ses appuis.

La croissance des charges porte le taux de travail a la limite d’élasticité au
voisinage des appuis doubles, puis le volume ainsi rendu plastique s’accroit.
Une déformation plastique se produit ensuite dans une région centrale de la
travée. Mais il n’est pas évident que cette apparition précéde le cas de charge
ou la premiére zone plastique dépasse la limite d’élasticité. Pour le déterminer,
il importe de rechercher 1'étendue de cette zone.

Il y a lieu de penser que dans une section droite méme atteinte partiellement
par la plasticité, la loi des déformations relatives des fibres longitudinales reste
linéaire par rapport a la distance a la fibre neutre.

Soit 0 un point de la fibre neutre. Superposons a la coupe de la poutre le
diagramme déformations / forces, porté a une échelle quelconque. Si l'on
projette dans le sens des x un point de la section transversale sur une droite
0D déterminée, puis dans le sens des y sur le diagramme, on obtient la valeur
du taux de travail correspondant (fig. 13).

P8 &

Fig. 13. - e —

Quand le moment fléchissant s’accroit, la droite tourne dans le sens des
aiguilles d’'une montre. Il varie d'une quantité M, & une quantité M; dans la
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zone plastique, tandis que le point figuratif se déplace de B (qu'on peut assimiler
au point P) a C. On a sensiblement

Nv? ., 2v?

et

M, = J'Nvdos =N S vdo (14)

v élant la distance a la fibre neutre et do I'élément de surface de la section.
La différence est égale a

v (h
M, — M°:NI2F (g—v)dc (15)

qui peut étre réduite a la valeur de l'intégrale pour I'ame seule. Soit b son
épaisseur
b h?

M, — M, =N

(16)

Entre les deux valeurs M, et M, du moment, celui-ci varie suivant une loi
parabolique en fonction de la hauteur Z de la partie non plastique.

M=M,+ 1\11_2b (h? — Z?) (17)

La variation du moment fléchissant fournit donc la forme de la frontiére
qui limite la zone plastique. Elle est parabolique si I'effort tranchant est con-
stant, et droite, si l'effort tranchant varie linéairement.

Le volume plastique est le plus grand quand il est limité, comme I'indique
la figure 14.

. On a
ot _bheN

! d
by e 12T

\18)

S Supposons que l'éppaisseur de I'dme soit calculée
RS exactement pour travailler a la limite d’élasticité pour
- £y

un effort tranchant égal a T, c’est-a-dire que 'on ait
Fig. 14. précisément bhN =T.

Il résulte de (18) que la demi-longueur de la zéne plastique atteint la valeur
a h a
d+5=1135 (19)

Nous constatons donc que la longueur de poutre fléchie plastiquement n’est
qu'une -faible fraction de la hauteur. La condition (11) doit étre remplacée par
une condition plus dure a remplir:

bh:N a 1

T T2 5mT1) (20)
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Cette condition, lorsque I'dme est calculée au plus juste, conduirait 4 ne pas
descendre, pour la hauteur de la poutre, au-dessous du 1/;®m de la portée si
I'on voulait que la limite d’élasticité ne soit pas dépassée sur appui avant d’étre
atteinte en travée.

La conclusion, si paradoxale qu’elle puisse paraitre, est que pour bénéficier
pleinement de la plasticité des poutres continues au-dessus des appuis, il faut
en renforcer I'dme, et cela d’autant plus que la poutre est plus mince. Ce ren-
forcement doit régner jusqu'au 1/g% de la portée, environ.

Dans le cas contraire, la poutre s’articule, pour ainsi dire, au droit de
I'appui seulement; en poussant a l'extréme, c’est une brisure qui tend a se
produire dans la forme de la poutre si I'dme est trop faible.

Au point de vue de la ductilité, les renforts d’ames et les montants raidisseurs
au voisinage des appuis se trouvent donc présenter un intérét particulier et

méritent d’étre traités largement au voisinage des encastrements et des appuis
doubles.

X — Il parait bon de ne pas se préoccuper seulement du risque des grandes
déformations des poutres qui se produiraient si la limite d’élasticité était dépassée
en plusieurs régions, mais aussi du risque de rupture, quitte a n’y attacher
que 'importance justifiée par la situation particuliére de la construction.

Pour cela, étudions, pour une petite augmentation des charges, la variation
correspondante ® M du moment fléchissant. La variation de courbure s’écrit

d®u oM
_ | — ™ -)
6(dx“)—H'I (1)

Le coefficient H n’est pas autre chose que le coefficient d’élasticité instantané
des membrures, s’il s’agit d’'une poutre sans ame. Dans le cas ou I'ame inter-
vient dans la flexion, H’ I est défini comme la somme des moments des
éléments d’aire de la section, multipliés par les H’ correspondants.

Prenons le cas, par exemple, d'une poutre encastrée a ses deux extrémités. La
déviation de chaque extrémité étant nulle, on a

dZu oM

Or, M est la somme du moment (— M) sur appui et du moment p qui
existerait si la poutre était posée sur appuis simples. On a donc

dx 'y
bNi°ImIJH’F; d

fap'dx
fmd"

Cette expression est a rapprocher de la formule (3) relative aux barres
associées en paralléle. Ici, les sections qui fléchissent sont associées en série, et
ceci explique que les coefficients H’ passent des numérateurs aux dénominateurs.

ou

oM, = (23)
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La formule (23) générale nous permet de reprendre la discussion:
Phase de Uélasticité: H’ est partout égal a E. On a simplement

oM, :f%dx (24)

Phase de la plasticité sur appuis: H' s’annulant sur appuis, les régions voisines
fournissent dans les intégrales des termes prépondérants qui, au numérateur,
sont multipliés par des quantités du trés faibles. Le quotient s’annule

sensiblement

oM, ~0 (25)
Phase de la plasticité en travée: H' s’annulant dans une région G ou la variation
due n'est pas nulle, le quotient des termes prépondérants des deux intégrales
de (23) devient alors

6 My = d e @)
On a donc OMy=—0My+dp.=0.
Phase des grandes déformations: Les zones plastiques s'éloignent des parties
oM

0 .. .
diminue sans

qui ont dépassé la limite d’élasticité. On peut constater que op
C

descendre a la valeur 1/, correspondant au cas de la poutre isostatique.
La figure 15 résume la variation des taux de travail en fonction des charges.
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Fig. 15.

De méme, dans le cas de poutre & un appui double, le taux de variation est
environ 1,5 fois aprés 1'égalisation ce qu'il a été en moyenne auparavant. Cest
I'inverse du rapport qui relie le moment fléchissant, qui se produit lors de
I'égalisation des moments, au moment fléchissant qui existerait alors sans
la continuité.

Autrement dit, si la plasticité atténue tout d’abord le taux de travail dans les
sections sur appuis, c’est en sens inverse qu’elle agit ensuite.
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En définitive, on voit que le taux de travail sur appui atteint la limite de

flambement ® de la membrure comprimée pour une majoration des charges
\

dans le rapport N—;_H;I) dans le cas de deux appuis doubles et aussi ﬁ%_ﬁ@

dans le cas d'un seul appui double.

Par conséquent, si on détermine la valeur maximum Il des taux de travail
dans une poutre comportant un ou plusieurs appuis doubles, en admettant
quils s’égalisent dans le plus grand nombre possible de sections, le coefficient
de sécurité vis-a-vis du dépassement de la limite d’élasticité N est effec-
tivement N/IT.

Mais en ce qui concerne le coefficient de sécurité vis-a-vis du flambement
de la membrure comprimée, 1l est intermédiaire entre le précédent et le rapport
®/I1. L’'intervalle entre ces deux coefficients de sécurité doit étre réduit dans
les mémes proportions que l'est le moment maximum en travée par rapport
au moment de la méme travée posée sur appuis simples.

XI — Le cas des arcs hyperstatiques présente des analogies avec celui des
poutres continues ou encastrées.

Cependant. examinons ce qui se passe dans la section ou le taux de travail
est maximum si la courbe des pressions passe par son centre de gravité. Lorsque
les charges s’accroissent, l'effort normal dépasse la limite d’élasticité aussitot
aprés l'avoir atteinte. L’arc ne retire alors aucun bénéfice de la ductilité si ses
sections de moindre résistance ne travaillent pas a la flexion. Cela peut d’ailleurs
se produire pour certains cas de charges, dans les arcs paraboliques, dans les
arcs encastrés amincis aux reins et dans les arcs a deux articulations amincis
a la clé.

En dehors de ce cas, la limite d’élasticité n’est pas atteinte simultanément en
tous points de la section la plus chargée. Assimilons I'arc & deux membrures.
Lorsque la section d’'une membrure est plastique, I'accroissement des charges ne
produit d’effort supplémentaire que dans I'autre membrure, c’est-a-dire que la
courbe des pressions correspondant aux charges supplémentaires passe par
celle-ci (fig. 16). -

D’une maniére générale, la ductilité a ainsi pour effet de rapprocher la courbe
des pressions globales du centre de gravité des sections plastiques (fig. 17).

Fig. 16.

Ici l'intervalle entre le moment ol une premiére zone plastique apparait et
celui ou la section entiére atteint la limite d’élasticité correspond a un accroisse-
ment de charges qui peut étre important; dans le méme intervalle, la plasticité
s’étend le long de l'arc.

Un arc est donc susceptible de se déformer largement, de part et d’'autre de
ses sections de moindre résistance, sans dépassement de la limite d’élasticité, a
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moins que la courbe des pressions ne le traverse au centre de ces sections.
Pendant cette déformation, I'arc se comporte comme s’il y était articulé.

Sauf cas anormal, la limite d’élasticité est successivement atteinte sans étre
dépassée en n points, si n est le degré d'indétermination statique pour une
certaine valeur des charges.

Pour trouver ces n sections, en méme temps que pour faire correspondre a
un cas de charge le taux de travail de sécurité IT que l'on s'est fixé, il faut
opérer par hypothéses successives:

1o — Rechercher d’abord, en admettant des déformations élastiques, les sec-
tions les plus exposées pour la répartition des charges envisagées (charge uni-
formément répartie, charge concentrée, etc.. . .).

2> — Déterminer pour quelle intensité des charges la limite de sécurité I est
atteinte dans ces sections.

3> — Evaluer l'effet, sur les autres sections, de charges supplémentaires con-
sidérées seules, en admettant que leur courbe des pressions passe dans la moitié
des sections trouvées précédemment, qui est opposée aux points les plus chargés.

4o — Déterminer pour quelle intensité des charges le total des taux de
travail définis par le 1° et le 3° atteint comme maximum la valeur IL

Les sections ou se produisent ce maximum et les sections antérieurement
trouvées sont celles qui sont censées travailler & la limite de sécurité II sous les
charges envisagées.

Le coefficient de sécurité vis-a-vis du dépassement de la limite d’élasticité N
est véritablement égal alors a N/IT puisqu'une majoration des charges dans ce
rapport a pour effet d’amener successivement a la limite d'élasticité les sections
définies en premier lieu, puis les autres.

Pour un nouvel accroissement des charges, les taux de travail s'élévent dans
I'ensemble de l'arc, sauf dans les zones atteintes, en premier lieu, par la plasticité.

Par conséquent, la limite de rupture sera atteinte pour une nouvelle majoration

e R . _
des charges inférieure a <, c'est-a-dire que le coefficient de sécurité vis-a-vis

N
. A N R
de la rupture est intermédiaire entre le rapport I est le rapport o
XII — La généralisation des résultats ci-dessus demande une grande prudence.

Il ne faut pas prendre le nombre de barres pouvant étre supprimées comme
étant le degré d’indétermination statique de 'ensemble de la construction. Tlest
ce dernier nombre seul qui doit étre pris en compte dans les applications de la
théorie de la ductilité.

Par exemple, dans le systéme cantilever de la figure 18, il ne serait pas
admissible de supposer I'égalisation des moments sur I'appui double B et dans

PAVAVAVAVAVAVAVANG ST
A 8 " ¢C D

la travée A B, méme si une diagonale surajoutée rendait la poutre A B C hyper-
statique. L’ensemble ne devient hyperstatique et la théorie de la ductilité ne
s’applique que si l'on ajoute une barre au-dessus du noeud C.

D’autre part, pour des systémes complexes, il importe absolument de procéder
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de proche en proche pour définir les sections atteintes successivement par la
plasticité.

Il faut enfin avoir soin de vérifier que les zones troublées par la plasticité
ne sont pas susceptibles d’accuser une cassure de la fibre neutre avant que la
limite d’élasticité soit atteinte dans les autres sections considérées. Il faut, en
outre, se rappeler que les taux de travail admis dans les calculs tenant compte
de la plasticité, ne peuvent servir de base de comparaison que pour la déter-
mination des coefficients de sécurité, vis-d-vis du dépassement de la limite
d’élasticité. Vis-a-vis de la rupture, les coefficients de sécurité peuvent étre a
peine supérieurs aux précédents.

Charges variables

I — Si certains états de charge se renouvellent, et si la limite d’élasticité
n'est dépassée en aucun point, nous avons tout lieu de penser que les défor-
mations et les tensions se reproduisent d'une facon cyclique. Aucune expérience
n'infirme cette maniére de voir.

Nous avons tenté de vérifier qu’il en est bien ainsi lorsqu'une piéce subit
des alternances entre deux limites caractérisées par des lois extrinséques bien
déterminées, dont la limite supérieure est suffisante pour rendre la piéce
plastique.

Pour ccla, nous avons emprisonné une éprouvette de traction entre deux
machoires, dont I'une était fixée a un vérin a vis, et I'autre & un excentrique.

L’excentrique étant tout d’abord placé dans la position qui correspond a
I'allongement maximum de I'éprouvette, nous avons exercé un effort de traction
a l'autre bout, au moyen du vérin a vis, jusqu'a entrer franchement dans la
période de ductilité de l'acier. Puis, nous avons fait tourner plusieurs fois
I'excentrique, de maniére a faire varier la longueur de I'éprouvette entre deux
limites bien définies, ce qui occasionnait le déchargement, puis le rechargement
de I'éprouvette.

Dans cette expérience, la loi extrinséque qui correspond a l'effort maximum
dans 1'éprouvette se traduit par une droite verticale sur le graphlque défor-
mations / forces et non une droite horizontale comme dans les essais classiques

de traction.

4’3 L’effort dans l'éprouvette était déterminé par la fréquence
des vibrations qu'on produisait par un choc transversal.
4 M, Le résultat de ces essais a été négatif. Il semblerait donc
que, lorsque le métal est entré dans la phase de la ductilité,
o I'effort interne soit une fonction univoque de la déformation
Fig.19. linéaire, tant que celle-ci ne dépasse pas le maximum précé-

demment atteint (fig. 19).

Il semble donc que si des charges déterminées aménent une zone a la limite
d’élasticité, la répétition de ces charges ne modifie pas la valeur des tensions
atteintes et que, par conséquent, le risque de dépassement de la limite
d’élasticité ne soit pas plus grand avec des charges renouvelées qu’avec une
charge constante. Les conclusions du chapitre précédent demeurent donc.
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II — La question est infiniment plus délicate si on veut évaluer le risque de
rupture. Il faut alors prendre garde a ce que l'expérience nous a appris
récemment concernant les ruptures par répétition des efforts.

Sans doute, les métaux utilisés dans la construction meétallique sont-ils
beaucoup plus doux que ceux dont les essais d’endurance ont montré qu’ils
étaient beaucoup plus sensibles aux efforts répétés qu'a un effort une fois donné.

Il n’en résulte par moins que pour tout métal, quel qu’il soit, la rupture
est possible lorsque les efforts répétés atteignent une valeur inférieure a celle
qui améne la rupture dans un essai de traction ordinaire. '

Par raison de prudence, le principe que nous proposons de suivre consiste,
de méme que plus haut, a trouver des régles telles qu’elles coincident, pour les
ouvrages isostatiques, avec les régles ordinaires de sécurité et qu'elles fournissent
pour des ouvrages hyperstatiques, les mémes coefficients comme rapport entre
les charges admises et les charges dangereuses.

Si l'on adopte ce point de vue, on est amené a considérer qu'une con-
struction isostatique est satisfaisante sous le rapport de la stabilité, lorsque
tout en fournissant un certain coefficient de sécurité vis-a-vis du dépassement de
la limite d’élasticité, d’'une part, de la rupture a la premiére mise en charge,
de l'autre, elle est suffisamment loin du cas-limite ou la rupture se produirait
sous l'effet de la répétition indéfinie des surcharges.

Ce que nous savons des ruptures par efforts répétés nous améne a penser que
la charge permanente joue un réle bien moindre que les surcharges. Il semble
donc utile de considérer, non plus le taux de travaill maximum, mais la somme
de deux termes:

1° — la demi-amplitude de variation du taux de travail o, et o,
. (o] (o] .
2° — Ja produit de la valeur moyenne i.;——l des taux travail extrémes

par un coefficient a, qui serait faible.

Si T'on se référe aux expériences poursuivies sous la haute direction de
M. Caquot au laboratoire aéro-technique, le coefficient a serait de I'ordre de 1/5me,

Des régles de sécurité, applicables aux constructions isostatiques, qui tien-
draient compte des risques de rupture par efforts répétés, conduiraient donc
a comparer le bindme défini plus haut a une limite 11; obtenue en divisant la
limite d’endurance par un coefficient de sécurité.

A moins de renchérir sur les régles imposées actuellement, on serait alors
amené a ne pas prendre moins, pour la limite admissible IT;, que la limite IT,
antérieurement admise pour le taux de travail total d’'une piéce supportant des
efforts alternés.

On aurait donc a vérifier I'inégalité suivante:

Oz — G, a02+0|
2 2

Si maintenant nous considérons une construction hyperstatique, nous devrons
imposer une condition analogue. Mais jusqu'a preuve du contraire, on peut
considérer que le fait que la sollicitation répétée o, est égale a N n'influe pas
plus sur le risque de rupture que sur la relation entre la déformation et les
forces.

7 F
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L’expérience, dans ce domaine, serait fort utile.

Nous admettrons donc, a défaut de précisions plus grandes, que, dans une
construction hyperstatique, on doit vérifier la condition (27), dans laquelle o,
coincide avec le taux de travail produit par la premiére mise en charge.

Plus exactement, nous comparerons a la limite d’endurance elle-méme, KII;,
I'expression (27) correspondant 4 des charges K fois plus élevées que les charges
considérées. Si nous divisons maintenant par K les deux membres, il vient

Omax — Omin +a (gl_ _ gﬂlx — Omin

5 K ) ) < TITy (28)

ou o, désigne le taux de travail correspondant, dans la théorie de la ductilité,
a la charge considérée,

Omax ©! Omin désignent les taux de travail extrémes d’aprés la loi de Hooke.

Le premier terme doit étre tiré exclusivement de la considération de 1'élasticité.
Le second s’obtient par différence entre les résultats fournis par la théorie de
Iélasticité et celle de la ductilité.

Le bénéfice procuré par la ductilité consiste en ce que ce dernier terme est
inférieur a sa valeur déduite de la loi de Hooke, en remplacant 64 par Gnax. Mais,
comme le coefficient o est faible, ce bénéfice est assez restreint, surtout si
l'amplitude de variation du taux de travail est prépondérante, c’est-a-dire si les
surcharges sont importantes par rapport a la charge propre.

Remarquons que la condition (28) peut étre remplacée par une condition plus
dure ou o4 est remplacé par sa himite IL,:

Omax — Omin Il — G.Ho
2 l1—a

(29)

En définitive, il nous semble que st I'on veut bénéficier, dans la conception
des ouvrages, des latitudes que permet la ductilité, il faudra, en principe,
s’astreindre a une double vérification.

1o — 1l est indispensable de vérifier qu’il existe un coefficient de sécurité
convenable, vis-a-vis du dépassement de la limite d’élasticité et vis-a-vis de la rup-
ture ou du flambement, pour la premiére mise en charge.

Cette premiére vérification s’effectue suivant des régles déduites de la con-
naissance de la ductilité, en ayant égard aux observations que nous avons
formulées plus haut.

2° — On devra vérifier qu’il existe un coefficient de sécurité convenable vis-
a-vis de la fatigue des piéces et, pour cela, on déduira les variations des taux
de travail de la connaissance des lois de I'élasticité. On les comparera a une
limite d’endurance déterminée. ,

Des deux inégalités a vérifier, la plus sévére sera évidemment la premiére
si la charge permanente est prédominante et l'on pourra alors se dispenser
de la seconde.

Celle-ci jouera, par contre, s'il s’agit d'une construction légére par rapport
aux surcharges, comme un longeron ou une piéce de pont.

En résumé, la ductilité a pour effet de rendre le coefficient de sécurité des
constructions insensible aux erreurs de montage, aux anomalies de la répartition
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des efforts dus aux charges propres; elle rend correcte I'’hypothése de 1'égali-
sation des taux de travail maxima quand il s’agit de charges permanentes et
quand la construction est bien construite.

Par contre, la ductilité n’ajoute aucun élément de sécurité vis-a-vis des sur-
charges répétées, lorsque la part de celles-ci dans les taux de travail est
prépondérante.

Résumé

Dans tout élément de construction auquel les efforts appliqués ne sont pas
seulement fonctions des charges s’exercant sur l'ensemble de la construction,
mais dépendent, en outre, des déformations, la limite d'élasticité n’est pas
dépassée immédiatement aprés qu’elle a été atteinte.

Il en résulte qu’il existe une marge de variation des charges s’exercant sur
un ensemble hyperstatique, telle que les efforts demeurent au taux de la limite
d'élasticité, tandis qu’ils croissent dans d’autres parties de la construction. Cette
conclusion s’applique également au cas des assemblages de piéces travaillant con-
curremment, et'méme a celui des éléments de constructions isostatiques, pour ce
qui concerne la répartition des efforts a leur intérieur.

Ainsi se justifie, dans une certaine mesure, la méthode de calcul basée sur
I'égalité des taux de travail dans les zones les plus chargées des constructions,
mais cette méthode n’est valable que si, effectivement, la zone ou la limite
d’élasticité est vraiment atteinte en premier lieu ne subit pas un nouvel accrois-
sement des taux de travail avant que I'égalisation supposée ne se produise.

Cette restriction est importante dans le cas des poutres ayant des appuis
doubles, lorsque leurs dmes sont insuffisamment raidies au voisinage de ces
appuis et, d'une maniére générale, dans les piéces mal construites. De méme,
l'application des principes de la ductilité aux arcs et systémes complexes, ne
peut étre admise qu’avec la plus grande prudence.

Sous ces réserves, on peut dire que I'hypothése de I'égalisation des taux de
travail dans les (n 4 1) sections les plus chargées, si n est le degré d'indéter-
mination, conduit & une juste appréciation du coefficient de sécurité par rapport
au dépassement de la limite d’élasticité.

Par contre, le coefficient de sécurité vis-a-vis de la rupture ou du flambement
peut n’étre que trés peu supérieur au précédent coefficient de sécurité, et enfin
la ductilité n’ajoute aucun élément de sécurité vis-a-vis des surcharges répétées,
lorsque la part de celles-ci dans les taux de travail est prépondérante.
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