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VIII 3

Druckverteilung unter einem gleichmäßig belasteten,
elastischen Plattenstreifen, welcher auf der Oberfläche

des elastisch^isotropen Halbraumes liegt.

Repartition des pressions sous une semelle elastique chargee
uniformement et placee sur un sol elastique isotrope.

The Distribution of Pressure Under a Uniformly Loaded
Elastic Strip Resting on Elastic^Isotropic Ground.

H. Borowicka,
Assistent an der Technischen Hochschule, Wien.

Bei der rechnerischen Behandlung der Druckverteilung unter elastischen
Platten sind wir gezwungen, sowohl über die Platte, als auch über den die Platte
tragenden Untergrund Annahmen zu machen. Die einfachste Annahme ist die,
daß die Senkung proportional der Bodenpressung gesetzt wird (Winklersehe
Hypothese). Damit konnte man alle mathematischen Fragen verhältnismäßig
einfach erledigen. Diese Hypothese wurde jedoch besonders von den
Bodenphysikern abgelehnt, weil bei dieser Theorie die Senkung von der Lastflächengröße

unabhängig ist und eine Last nur unter der Lastfläche Senkungen
hervorruft. Es hat sich deshalb die Notwendigkeit ergeben, die Druckverteilung unter
elastischen Platten zu untersuchen, wenn diese auf der Oberfläche des

elastischisotropen Halbraumes gelagert wird. Wenn auch der Boussinesq sehe Halbraum

die Eigenschaften der natürlichen Böden nur unvollkommen beschreibt,
so liefert er doch physikalisch und qualitativ einwandfreie Ergebnisse. Die
Behandlung des Problems mittels geschlossener Funktion führt zu äußerst
verwickelten Kernproblemen, welche nur in den allereinfachsten Fällen gelöst
werden können. Man muß deshalb zu Reihenentwicklungen Zuflucht nehmen.

In dieser Arbeit soll nun die Druckverteilung unter einem gleichmäßig
belasteten, elastischen Plattenstreifen ermittelt werden, wenn dieser auf der
Oberfläche des elastisch-isotropen Halbraumes liegt. Dabei muß freilich vorausgesetzt
werden, daß zwischen Platte und Halbraum keine Reibungskräfte auftreten.
Die entsprechende Arbeit über die Kreisplatte wurde vom Verfasser dem Kongreß
für Erdbaumechanik in Cambridge16 vorgelegt. Es bedeutet:

EP Elastizitätsmodul der Platte,
Eb Elastizitätsmodul des elastisch-isotropen Halbraums,
mP Poisson'sche Konstante der Platte,
mß Poisson'sche Konstante des Halbraums,
a halbe Streifenbreite,
h Dicke der Platte,
N Biegesteifigkeit der Platte.
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Bezeichnet man mit co die Verformung der Oberfläche des Halbraumes in
vertikaler Richtung, so muß co im Bereiche x < a (Fig. 1) gleichzeitig die
Durchbiegung der Platte darstellen. Infolgedessen müssen an der Oberfläche des

elastisch-isotropen Halbraumes folgende Beziehungen
erfüllt sein:

«wH imv uia MIS

-Hl
P(»

Ta r~\
1r*

Fig.l

x > a öz 0 to beliebig
1

x < a öz p (x) AAco ^j- [p — p (x)]
(1)

Die Differentialgleichung AA co -^- [p — p (x)] wird

in der Platten theorie gewöhnlich als Plattengleichung
bezeichnet. Der Laplacesche Operator, zweimal auf co

d4co
angewendet ergibt im betrachteten ebenen Fall T—p

Zunächst wird die Durchbiegung der Platte betrachtet. Die Lösung der homo-
d4co

gencn Differentialgleichung -^—g 0 kann analog jener des Balkens

geschrieben werden

to^Co + C.d)' (2)

Als partikulares Integral der nichthomogenen Differentialgleichung wird eine
Potenzreihe mit unbekannten Koeffizienten angesetzt:

Oo /x\21
co2 2A21 (| (3)

1 2 \a/
Die unbekannte Funktion p (x) wird ebenfalls durch ihre Potenzreihe dargestellt

00 /x\2n
P(x)= IB2n (-)

n 0 \ d/
(4)

Die Plattengleichung vermittelt die Beziehung zwischen den Koeffizienten A2i
und B2n, Man erhält durch Koeffizientenvergleich:

A4

A2 n + 4

41 -(24 N ^ -B0)
4 2n! (5)

B2n
N (2n + 4)!

Die Durchbiegung der Platte nimmt demnach folgende Form an:

Da im Punkte x a kein Einspannmoment wirksam ist, muß (-ttt) 0

sein. Aus dieser Bedingung erhält man für C2

1r — Pa4_i_ a* -^2 — T~TvT~r4N ' 2N„to(2n + 2)(2n+l)
B2n (7)
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In Gl. (6) ist die Durchbiegung ra als Funktion von x, bzw. der unbekannten
Koeffizienten B2n dargestellt. Sie ist, wie schon erwähnt, im Bereiche x < a

gleichzeitig die elastische Verformung der Oberfläche des Halbraumes. Wenn
die Veränderlichen mit £ und £ bezeichnet werden (Fig. 2), erhält man für
die Setzung im Punkte x:

,f 1
/cx „«1*3—1

"Ü
TT

•— 3 4-—. a —-

dco:
m2BEB

d^dt

m2B EB

m*B —J
r=V(Z-x)i + Z*

dco 4? P(£) d^ f-iT ä£=

Fig. 2.

)2 + S*

:_Jjp(5)d5(ln[«+K(5-x)1,+ «t]-ln|5-x|
Geht man mit z —? oo, so erhält man für co unendlich große Werte. Es wird
deshalb die Differenz von co0 (Durchbiegung in Plattenmitte) und co gebildet.

z + VzT+^2 r
dco0 — dco -^p(£) d£<ln

z+K^~+~z*"
lim In

z+V(Z — x)* + z2

VW)

In | £ — x | — In | £ 11

1 + + 1

lim In In 1 0

Folglich erhält man:

I a x a v

<*, - co -y j/p (5) In (^ - x) d£ +J*p (Ö In (x - 5) d£ - 2j*p ® In % d$}
'x —a o

'

oo /E\2D
Die ausgeführte Integration ergibt, wenn für p (£) 2 B211I—) laut Gl. (4)

n o \a /
eingesetzt wird und die sich hiebei ergebenden logarithmischen Funktionen
durch ihre Potenzreihen ersetzt werden:

COo — co
4 co

2 B2n;":rMnto 'n2n + l (8)
f/x\2* op 1 /x\2r a? JlW— V

1 M2rj
IIa/ rSi2r — 1 Va/ r^i2r\a/ r i2n — 2r + 1 l a/ J

Gl. (8) kann noch etwas umgeformt werden, indem die Summenzeichen
vertauscht werden.

Ali f _J_ y B2n /x\2n + 2r « j^ /^\2r „ Jjj^^Mlrti2r —lnto2n + l\a/ r~i2r\a/ n o2n + l

_ y Wr B2n 1 (9)

r=iW nto(2n — 2r+l)(2n+l)J

COo CO
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Aus Gl. (6) erhält man für x 0 co0 CQ und es wird

n (x\2 pa4 /x\4 oo a4 2n! _ /x\2n + 4

,_,W°-M=-C47)-2wU+J0N(2^-f4)!B-y (10)

Nun tritt noch die Gleichgewichtsbedingung hinzu

Gleichungen (9) und (10) müssen identisch sein. Diese Bedingung ist erfüllt,

wenn die Koeffizienten jeder Potenz von (—j in Gl. (9) und (10) gleich sind.

Man erhält auf diese Weise unendlich viele Gleichungen für die unendlich
vielen Unbekannten B2n. Soll z. B. die m-te Gleichung aufgestellt werden, so

/x\2m
müssen alle Glieder der Potenz —i herausgesucht werden. In Gl. (10) muß

dann 2n + 4 2m gesetzt werden oder n m — 2. In Gl. (9) wird im
ersten Klammerausdruck 2n + 2r 2m oder r m — n. Der Koeffizient

m-1 ß
lautet dann Y — ^-rr—-— r.

n o (2n + l)(2m —2n—1)
Im zweiten und dritten Klammerausdruck von Gl. (9) ist r m zu setzen. Da-

(x\2m
1 oo ß2 p

— TT-" 2 ^ ^—^ 77— 0aut Gl. 11)
a/ 2mn 02n-hl 2m

d f ^2n
Un

n m(2n —2m + l)(2n+l)"
Somit erhält man folgende Gleichungen, wenn vorher noch bezeichnet wird

2N 1 m2B-l m2P Ep / h\«
TT _

Ma8 6 m2P — 1 m2B ilb
und für C2 aus Gl. (7) eingesetzt wird:

Ä B2n
P Zo2n+l

p:r _ & B2ll 1__7t_ o? B2n

2^8K nto(2n + l)(l — 2n) ' 4Knto(2n + 2) (2n + 1)

P p^ _ & l^n TtBq

4 48K~~n o(2n + l)(3 — 2n) 48K
(13)

X_ _ B2n jt (2m —4)1
2m _n o(2n + l)(2m—1 —2n) 2m"42K 2m!

Man überzeugt sich leicht, daß die Gleichungen (13) durch den Ansatz

2 i 3 2 n 1
B2n —— p für K co befriedigt werden. Das sind aber die

Koeffizienten der Potenzreihe der Funktion

p(,) P^. (14)
n V a2 — x*
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Für K 0 wird BG p, während alle übrigen Koeffizienten 0 werden. Es
steht dann die Gleichlast unmittelbar am elastisch-isotropen Halbraum. Die

Gleichungen 13 wurden für K j-, K —- und K — und p 1 kg/cm2 aus-
O lv/ öU

gewertet. Die Resultate sind in Fig. 3 dargestellt. Am Rande werden die Span-

s *>

SS «3

05

*-?

Kg/cm2

* 30

Fig. 3.

i

Druckverteilung unter einem elastischen Plattenstreifen,
welcher eine Gleichest von lkg/cm2 tragt
Repartition dela pression au-dessous dune plaque
elastique qui supporte une charge umforme de lkg/cm2
Distribution ofpressure under an elastic strip carrying
an uniform super load of lkg/cm2

KmtgLl!3l£p_(£y
6 mß-f m§ £ß la/

nungen für von 0 verschiedene Steifigkeiten unendlich. Die Richtigkeit dieses

Ergebnisses kann auch durch folgende Überlegung veranschaulicht werden: Bei
der unendlich starren Platte ist die Biegefläche der Platte eine Ebene. In der

pfO)

Streifen
Semelle
Strips

Kreis
Cercle

Grenzwert von
\p(0)

of)

Circle
Valeur limite de

Limiting value

Fig. 4.

Verformungslinie der Oberfläche des Halbraumes entsteht am Rande ein scharfes
Eck. Hat nun die Platte eine endliche Steifigkeit, so wird dieses Eck zwar
weniger scharf, aber doch noch vorhanden sein. Dementsprechend wird die
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Bodenpressung am Rande — wenn auch langsamer — unendlich. Ist die Platte
nicht mit 1 kg/cm2, sondern mit p kg/cm2 belastet, so sind die Ordinaten der
in Fig. 3 dargestellten Kurven mit p zu multiplizieren. Die Auswertung der
Gleichungen 13 ist ziemlich mühevoll, da eine große Anzahl von Gleichungen
aufgelöst werden muß. In Fig. 4 ist der Wert der Bodenpressung in Plattenmitte

für Streifen und Kreisplatte in Abhängigkeit von K dargestellt (16). Die
Kurven gelten wieder für 1 kg/cm2. Die Kurven für die Kreisplatte und für
den Plattenstreifen sind für eine Poissonzahl von m 4 gerechnet.

Boussinesq beweist in „Application des potentiels" (Paris 1885), daß sich die
Verteilung der Pressungen unterhalb der vollkommen starren Kreisplatte auf
folgende einfache Weise ergeben muß: Denkt man sich die auf der Platte
stehende Last über eine Halbkugel, deren Grundkreis mit dem Rand der Platte
zusammenfällt, gleichmäßig verteilt, so gibt die Projektion der so verteilten
Last auf die Oberfläche des Halbraumes die gesuchte Spannungsverteüung.
Herr 0. K. Fröhlich, der mich veranlaßte, mich mit diesen Fragen zu
beschäftigen, hat die Boussinesq'sehe Konstruktion sinngemäß auf den starren
Plattenstreifen übertragen und als Kontrolle für einen Grefczfall der Berechnung
des elastischen Plattenstreifens ehipfohlen. Wie man aus Gleichung 14 ersieht,
wird die Spannungsverteüung für den starren Plattenstreifen tatsächlich durch
das für den ebenen FaU sinngemäß angewendete Boussinesq''sehe Verfahren
bestätigt.
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