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VI 5

Elastisch eingespanntes Talsperrengewölbe.

L'arc de barrage elastiquement encastre.

Elastically Built-in Arch Dams.

Dr. sc. techn. K. Hofacker,
Zürich.

Als ,,Talsperrengewölbe" soll ein Bogen mit kreisförmig gekrümmter Axe
und mit konstanter Bogenstärke, die im Verhältnis zur Spannweite groß sem
kann, bezeichnet werden. Im Gegensatz zum „Brückengewölbe", das als Stabwerk

genau genug auf Grund der Navierschen Biegungs theorie berechnet
werden darf, muß das Talsperrengewölbe nach der mathematischen Elastizitätstheorie

untersucht werden, falls ein genaues Bild über den effektiven Spannungszustand

entworfen werden soll.

Zerlegt man den Wasserdruck, der auf eine Gewölbestaumauer wirkt, nach
bekannter Methode auf die beiden sich durchdringenden Systeme von
waagerechten Bogen und lotrechten Konsolträgem, so ergeben sich für die einzelnen
Elemente ganz beliebige Belastungsdiagramme. Die Berechnung der Spannungen
in lotrechten scheibenförmigen Trägerelementen nach der Theorie des ebenen

Spannungs- bzw. Formänderungszustandes ist schon seit längerer Zeit bekannt.
Auch sind schon diesbezügliche experimentelle Untersuchungen durchgeführt
worden. Die Berechnung der Spannungen in horizontalen scheibenförmigen
Bogenelementen ist bisher nur für den Sonderfall eines starr eingespannten
Bogens durchgeführt worden. Über genaue Messungen der Spannungen oder
Formänderungen von solchen Talsperrengewölben an Laboratoriumsmodellen ist
dem Verfasser nichts bekannt. Es war deshalb von besonderem Interesse, die
Frage des in allgemeiner Weise elastisch eingespannten Bogens, der durch
beliebigen Wasserdruck belastet wird, theoretisch und experimentell zu
untersuchen.1

Wir unterwerfen eine kreisringförmige Scheibe dem ebenen Spannungszustände,

Fig. 1.

Ein gegebenes Belastungsdiagramm kann mit Hilfe einer Fourierschen Reihe
mathematisch dargestellt werden durch:

00 GO

ö'r —A'o + 2 A'n • cos ncp + £ BV sin nep (1)

1 A. Hofacker: Das Talsperrengewölbe, 1936, Verlag Gebr. Leemann & Co., Zürich.
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Wir betrachten in Fig. 2 die Spannungen, die auf ein Element dF im
Punkte 0 wirken und schreiben die Gleichgewichtsbedingungen an. Unter
Berücksichtigung der Beziehungen zwischen den Spannungen und den Dehnungen,

(Gr+*£dr)(r*dr)dr>

dF

Ö> dr

fa'Utdr)dr

Fig.l. Fig. 2.

d. h. den bezogenen Differenzen der Verschiebungen u und v in radialer und
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tangentialer Richtung, ergeben sich die beiden Differentialgleichungen:
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Die allgemeinen Lösungen für u und v lauten:
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Tangentialverschiebung:

_ m+l a0 /in — 1
h • v — + 4 c0r • <p + I ——— • a1 + 2

in r r \ 2 in

+(uv---c1 + ^\ 2 m

ßj) cp • cos cp

x j cp • sin cp

l— v1 +~"nT"'' v * r ~~ "^^' ül + T«— '2 m

m+l ci! m + l+ r„
' ZI 77T~~' Pi ¦<P

[(e, + ^4..,)lB,+ c,+ m+l 5 in + l
¦ r + __ c -. ._._ d r2

m */ " 2 in ni

m+ 1
_Yi m +

m r2 ni
- • bj cos cp (5)
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Aus den Verschiebungen berechnen sich die Spannungen zu:
Radialspannung

Or £ + 2 b„ + c„ (2 Ip r + 1) + (a'-±i3- + 2 b, i— *-§i) cos c?

+(^ + 2dlr-^).in9
+ Jl [n (1 - n) • a„ • r- - 2 + (n - n* + 2) bn r» (6)

— n (n + 1) • an • l-"-2 — (n2 + n — 2) ßn • r""] cos nep
OC

+ £_ [n (1 -¦ n) • cn • r» -2 + (n — n2 + 2) • dn rn

— n (n + 1) • y„ ¦ r~n "2 — (n2 + n — 2) • b„ • r -n] sin n cp

Tangen tialspannung

Oi=—^ + 2b0+c0(2]gr + 3) + (6b1r+^i + |.)co89

+ I= [n (n — 1) • a„ • r"-= + (n + 1) (n + 2) • b„ • r» (7)

+ n (n + 1) • a„ • r-' ~2 + (n — 2) (n - 1) • ß„ • r"n] cos 119
00

+ 2=2 [n (n - 1) • c„ • r"-2 + (n + 1) (n + 2) • d„ • r"

+ n (n + 1) ¦ T„ • 1-1'-2 + (n — 2) (n - 1) • o„ • r "] sin n c?
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Schubspannung

^ ^ + ^bir--i^- + J7-jsincp

-(ad.r-^ + ^jcoscp

+ | [n(n —l).an-r»-a+ii(n + l).b„.r"
n 2

— n(n+ l)-an*r-n-2 — n (n— 1)- ßn • r_n]sin nep

-2 [n(n —l).cn.r"-2 + n(n +l)dn-rn

(8)

n=2
• n (n + 1) • yn • r~n "2 — n (n — 1) • bn • r~n] cos nep

Nachdem nun die allgemeinen Gesetze für die Spannungen und Verschiebungen
bekannt sind, handelt es sich um die Bestimmung der Konstanten mit Hilfe
der Randbedingungen, indem für die Kreisränder die entsprechenden Werte von
ör Gl. (6) und ö'r Gl. (1) einander gleichgesetzt, d. h. indem die Koeffizienten
entsprechender trigonometrischer Terme identifiziert werden.

Für die Radialränder kann nur über die Verschiebungen der Randpunkte eine

Bedingung formuliert werden. So muß bei starrer Einspannung des Gewölbes

gefordert werden, daß die Randpunkte keine Verschiebungen erleiden dürfen.
Bei elastischer Einspannung müssen die Verschiebungen der Randpunkle des

Bogens die gleichen Werte annehmen wie die entsprechenden Punkte des Widerlagers,

das durch Normal- und Schubspannungen im Einspannquerschnilt des

Bogens belastet wird. Diese Frage wurde in der Publikation des Verfassers
eingehender behandelt.

Zur Vereinfachung des Berechnungsverfahrens sind in Fig. 3 für die
Eckpunkte A und B des Bogens die Radial- und Tangentialverschiebungen sowie
die aus ihnen berechnete Verlängerung hv der inneren Bogensehne und die

Drehung § des Kämpferquerschnittes eingetragen.

hA u\ ' sin a + > \ • cos a

kA — v v • sin a — uA • cos a

vB — v v

^--^
' .Xf X -J

1/ X

^ \-*

k\

Fig. 3.

b —a

Die theoretischen Studien wurden alsdann durch Messungen an Celluloid-
modellen überprüft.
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Fig. 4 zeigt die Ansicht eines elastisch eingespannten Talsperrengewölbes, das

an der äußern Leibung durch radialgerichtete Pressungen belaste! wird.
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lii Fig. 5 sind die mit Hili'e von Mikroskopen gemessenen Verschiebungen
der Kreisränder dargestellt. Für die beiden Schnitte cp 36° und cp 27° sind
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Fig. 5.

die gemessenen Werte der Verschiebungen eingetragen. Berechnet man die
Scheitelsenkung des inneren Randes, indem zum Beispiel die Verschiebungen der
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Randpunkte des Schnittes cp 27° als Widerlagerverschiebungen des in diesem
Radialschnitt elastisch eingespannten Bogens betrachtet werden, so erkennt man,

o®o /
$

Fig. 6.
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daß der gemessene Wert nur um 1/3 o/0 größer ausfällt als der berechnete. I )iese

Übereinstimmung genügt zur Anerkennung der theoretischen Grundlagen des

Problems.
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Berechnet man unter Berücksichtigung der gemessenen Verschiebungen der
Eckpunkte des Kämpferquerschnittes die Scheitelsenkung des inneren Randes,
so weicht das Resultat um rd. 4 o/0 vom gemessenen Wert ab. Fig. 6 zeigt das

Modell des starr eingespannten Bogens. Setzt man für diesen Fall voraus,
daß das Spannungs- und Deformationsgesetz bis zur Einspannstelle ungestört
gelte, so ergibt die Rechnung gegenüber der Messung für die Scheitelsenkung
einen um rd. 15o/0 zu kleinen Wert. Die in Wirklichkeit in der Umgebung des

Einspannquerschnittes auftretenden größeren Deformationen sind eine Folge
der Spannungskonzen tra tion gegen die luftseitige Leibung hin. Die bisher in
dieser Richtung durchgeführten Untersuchungen2 setzen starre Entspannungen
voraus.

An Hand eines Beispieles des durch Wasserdruck beanspruchten Talsperrengewölbes

sollen die Spannungsdiagramme der genauen Theorie mit den Ergebnissen

der Navierschen Näherungslösung, die bisher zur Untersuchung von
elastisch eingespannten Gewölben ausschließlich verwendet wurde, verglichen
werden. Aus Fig. 7 erkennt man gleichzeitig den Einfluß der Poißonzahl m der
Querkontraktion auf die Spannungswerte. Die Näherungslösung ergibt für die

Zugspannungen, unter Annahme einer Poißonzahl m 5 für Beton im Scheitel,

um rd. 28 o/o zu kleine Werte.

2 M. Caquot: Ajinales des Ponts et Chaussees, 1926, IV. Juillet-Aoüt, S. 21. /?. Chambaud:
Genie Civil 1926 (Bd. 99 und 100).

44


	Elastisch eingespanntes Talsperrengewölbe

