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V16
Die Stabilität rechteckiger Platten unter Schub* und

Biegebeanspruchung.

La stabilite des plaques rectangulaires soumises au cisaillement
et ä la flexion.

Stability of Rectangular Plates Under Shear
and Bending Forces.

Dr. S. Way,
East Pittsburgh, Pa., U.S.A.

1. Einleitung.

Bei der Konstruktion von Brücken, Schiffen und Luftfahrzeugen treten
Stabilitätsaufgaben rechteckiger Platten unter verschiedenen Beanspruchungsarten

an den Kanten auf.1 Wenn die Belastung einen bestimmten kritischen
Wert übersteigt, tritt ein seitliches Ausbeulen aus der Ebene des Bleches auf.
Es kann bisweilen für eine Konstruktion die kritische Belastung kleiner als die
zulässige sein, doch ist die Kenntnis der kritischen Last stets erwünscht.

In dem vorliegenden Bericht werden zwei Probleme der Ausbeulung
rechtwinkliger Platten besprochen. Das erste, Fig. 1, betrifft eine Platte mit zwei

Versteifungen. Die Belastung besteht aus gleichmäßig über die Kanten verteilten
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Schubkräften. Das zweite Problem, Fig. 2, betrifft eine Platte, welche durch
gleichmäßig verteilte über die Kanten verteilte Schubkräfte und linear verteilte
Zug- und Druckkräfte an den Enden belastet ist. Für beide Fälle sei angenommen,

daß alle vier Kanten einfach unterstützt sind.

1 Eine ausführliche Bibliographie über die Festigkeit der Bleche wurde von 0. S. Heck und
H. Ebner: Luftfahrtforschung Bd. 11, 1935, S. 211, gegeben.
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Als Verfahren wird das Energieverfahren verwendet, bei welchem die kritische
Belastung auf Grund der Bedingung errechnet wird, daß die Arbeit der an den
Kanten angreifenden Kräfte während des Ausbeulens gleich der aufgespeicherten
potentiellen Energie infolge Elastizität ist. Die Durchbiegung muß in solcher
Form erfolgen, daß die kritische Belastung ein Minimum wird.

2. Auf Schub beanspruchte Platte mit zwei Versteifungen.

Das Problem einer auf Schub beanspruchten rechtwinkligen Platte ohne
Versteifungen sowie einer Platte mit einer Versteifung ist von Timoshenko2 gelöst
worden, während Southwell und Skan^ den Fall eines unendlich langen Streifens
mit an der Kante angreifenden Schubkräften behandelt haben. Querversteifungen
dienen dazu, den Wert für die kritische Belastung einer Platte zu vergrößern. Je
größer die Steifigkeit der Versteifungen ist, um so großer ist im allgemeinen
diese Zunahme der kritischen Belastung. Es wurde jedoch festgestellt, daß über
einen bestimmten Punkt hinaus eine Vergrößerung der Steifigkeit der
Versteifungen einer Platte bei an den Kanten angreifenden Schubkräften nutzlos
ist, da die Versteifungen gerade bleiben und nur die Felder des Bleches sich
ausbeulen.

Um das Problem der in Fig. 1 dargestellten Platte zu lösen, wird ein
allgemeiner Ausdruck für die Biegungsfläche in Form der doppelten
trigonometrischen Reihe

w= 2- z vmilsm- smnrr~ v1/
m=ln=l a D

angenommen, worin jeder Ausdruck der Grenzbedingung der einfach
unterstützten Kanten genügt. Bei Verwendung dieser Formel können drei Energiegrößen

errechnet werden, nämlich die potentielle Energie infolge Elastizität des
Bleches V, die potentielle Energie infolge Elastizität der Versteifungen Vn -j- Vs2
und die von den an der Kante angreifenden Schubkräften während des Aus-
knickens geleistete Arbeit \v Die Verdrehungssteifigkeit der Versteifungen kann
vernachlässigt werden. Diese drei Energiegrößen sind als Ableitungen von w
ausgedrückt:

V -ö S /Kw« + w"')2 - 2 (1 - H) (wXx wyy - wxy2)} dx dy (2)

V.i + Vs2 | /{(wyy)'=a + (wyy)^ !.} dy (3)

a b

Vi — Thjjwxwydxdy (4)

worin h die Blechstärke, B die Biegungssteifigkeit der Versteifungen und D
die Biegungssteifigkeit des Bleches sind.

n EhS
/~vD

12(1^?)
(«>)

2 S. Timoshenko: Eisenbau, Bd. 12 (1921), S. 147.
3 R.V. Southwell und S.W.Skan: Proc. Roy. Soc. London, Series A, Bd. 105 (1924), S. 582.
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Die Bedingung für das Ausknicken ist

v + vsl + vs2 vr (6)

Gl. (6) führt zu einem Ausdruck für xcr, der kritischen Schubspannung, als
Funktion der Konstanten Amn. Der nächste Schritt besteht darin, das Minimum
für T.r durch Differentiieren nach den Konstanten zu ermitteln. Die Gleichungen
oxcl/bAmn 0 führen zu einer Reihe linearer Gleichungen für die Konstanten
Amn. Man erhält schließlich den Wert von xcr, indem man die gleich Null gesetzte
Determinante dieses Systemes auflöst. Je größer die Anzahl der in der unendlichen

Reihe der Determinante berücksichtigten Glieder ist, um so größer ist
die Genauigkeit für den für xcr errechneten Wert.

Die linearen Gleichungen, welche man erhält, indem man die Konstanten Amn

so wählt, das xcr ein Minimum wird, bestehen aus zwei Gruppen, von denen die
eine Gruppe Glieder enthält, bei denen m ~- ,n ungerade ist, während die andere
Gruppe Glieder enthält, bei denen m + n gerade ist. Es ist diejenige Gruppe
von Gleichungen zu benutzen, welche den niedrigsten Wert für xcr gibt.

Es empfiehlt sich, die kritische Belastung durch das Verhältnis xcr/ö? zu
messen, worin öe die Eulersche Knickspannung D:rr2/hb2 ist. In Tabelle I sind
die Werte von xcr/öe angegeben, welche durch Berechnung aus der Determinante
sechsten Grades für die beiden Gleichungsgruppen errechnet wurden, und zwar

für den besonderen Fall B 0.4 Das Verhältnis wird mit ß bezeichnet.

Tabelle I.

tcr /<3e - W e r t e für verschiedene ß-V\erte. B 0.

ß 1 1,2 1,5 2 2,5 3

Tor / öe

in -j n gerade
9,42 8,06 7,14 6,59 6,32 6,14

Tcr / öe
rn -f- n ungerade

11,55 8,09 6,74 6,21 6,04

Die Werte tci./öc für ß < 1 können leicht aus den obigen Werten abgeleitet
werden und sind in Tabelle II wiedergegeben. Es ist jeweils der kleinste xCI/öe-
Wert von den beiden angegeben.

Tabelle II.

W°e fürß<l.B 0.

ß 1 0,833
i

0,667 0,500 0,400 0,333

Tcr / öe 9,42 11,6 16,06 26,4 38,8 54,4

Für jede nennenswerte Versteifung führt das System bei dem m + n ungerade
ist, zu dem kleinsten Wert von xcr. Wir lösen die Determinante der Koeffizienten
der Konstanten

A-21» A-12» ^32> ^2 A41, A14

4 Die Werte, bei denen m -|- n gerade ist, stimmen mit dem von Timoshenko (Fußnote 2)

ermittelten überein. Die Ausdrücke, welche für die geraden Werte von m -]- n verwendet

A33, A13, A31, A42, und für m-f-n ungerade A21, A12, A32, A23, A41, A14.
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nach Null auf und die so erhaltene Gleichung ermöglicht es uns, xcr/öe
unmittelbar zu errechnen, wenn ß und die Steifigkeit der Versteifungen bekannt
sind. Die Steifigkeit der Versteifungen wird zweckmäßig durch das Verhältnis
y B/aD gemessen. Die Werte für xcr/öe sind in Tabelle III angegeben. Man
erkennt, daß durch Vergrößerung der Steifigkeit der Versteifungen die

Belastung erhöht wird, welche zum Ausbetilen des Bleches erforderlich ist.

Tabelle III.

t / °e "^ erte ^ ü r verschiedene ß - und y -W erte.

ß=l ß 1,2 ß 1,5 ß 2 ß 2,5 ß 3

T *cr/öe T Tcr/Öe T Tcr/Öe T Wö* T Tcr/°e T Tcr/Öe

0 11,55 20 36,7 0 8,09 0 6,74 0 6,21 0 6,04

10 32,75 25 40,1 5 19,43 2 13,07 1 10,3 0,2 7,29

20 41,6 30 43,2 10 25,2 5 18,2 2 13,1 0,4 8,32
30 48,5 15 29,5 10 23,8 3 15,1 0,6 9,21

40 54,4 0,7 9,59

Wenn die Versteifungen eine sehr große Steifigkeit besitzen, ist die errechnete
kritische Belastung des Bleches größer als die kritische Last eines jeden der drei
Felder. Die Lage ist dann so, daß die Versteifungen gerade bleiben und nur die
Felder des Bleches sich ausbeulen. Die Bedingung dafür, daß die Versteifungen
gerade bleiben, ist die, daß ihre Steifigkeit größer sein muß als diejenige Steifigkeit,

bei welcher die kritische Belastung der Platte gleich derjenigen eines Feldes
wird. Die kritische Last eines Feldes wird errechnet, indem man die Annahme
macht, daß alle Kanten einfach unterstützt sind. In Wirklichkeit wird jedes Feld
teilweise durch das anstoßende Feld unter Spannung gesetzt.

Es sei angenommen, daß y^n der Mindestwert für y ist, bei welchem die
Versteifungen gerade bleiben. Um das Berechnungsverfahren darzulegen, wollen
wir den Fall betrachten, daß ß 1,2 ist. Der ß-Wert für ein Feld dieses
Bleches ist 0,400 und das entsprechende Verhältnis für die kritische Belastung
ist 38,8, wie aus Tabelle II hervorgeht. Wenn man die für xcl/öe mit ß 1,2 in
Tabelle III erhaltenen Werte graphisch aufträgt, so findet man, daß xcr/öP 38,8
wenn y — 23. ymin ist daher gleich 23 für ß 1,2. In gleicher Weise können*
die ymin -Werte für andere ß-Werte ermittelt werden.

Es ist vorteilhaft, die Resultate in Abhängigkeit von den Abmessungen eines)

Feldes anstatt in Abhängigkeit von den Abmessungen des ganzen Bleches
anzugeben. Es sei angenommen, daß o die Entfernung zwischen den Versteifungen
ist. Wir führen dann die Symbole ß' und y' ein, welche wie folgt definiert sind.

ß'"
_B_

In Tabelle IV sind die xcr/öe- und y'mjn -Werte für verschiedene Felderverhältnisse

angegeben. Diese Werte wurden in die Kurven der Fig. 3 eingetragen.
Wir erkennen, daß die erforderliche Steifigkeit der Versteifungen für zwei
Versteifungen nicht sehr viel größer ist als die für eine Versteifung erforderliche
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Steifigkeit. Für drei oder mehr Versteifungen würden die y'min-Werte
wahrscheinlich nur sehr wenig größer sein als für zwei Versteifungen.

Tabelle IV.

Eine Versteifung Zwei Versteifungen

ß' • min Tcr / öe ß' T min Tcr / öe

0,500 30,4 26,4 0,333 120 54,4
0,625 12,5 17,9 0,400 69 38,8
0,750 5,8 13,3 0,500 34 26,4
1,000 1,66 9,42 0,667 10,8 16,06

0,833 4,2 11,61

1,000 2,0 9,42

3. Bleche, welche durch kombinierte Schub- und Biegungsbeanspruchungen
belastet sind.

Wenn, wie in Fig. 2 dargestellt, das Blech durch gleichmäßig über die Kante
verteilte Schubspannungen x und durch linear verteilte Zug- und Druckspannungen

an den Enden ö — ö0 (1—2 y/b) belastet ist, hängt die kritische
Biegungsspannung öocr von der Größe der Schubspannungen ab. Ähnlich kann
man sagen, daß die kritische Schubspannung von der Größe von <50 abhängt
Zur Vereinfachung führen wir die Parameter K und p ein, welche wie folgt
definiert sind:

K Öo< T

Öe

Um die Aufgabe zu lösen, kann der Ausdruck (1), welcher den
Grenzbedingungen für einfach unterstützte Kanten genügt, wiederum für die
Ausknickung angenommen werden. Die potentielle Energie infolge Elastizität des
Bleches nach dem Ausbeulen erhält man wie vorher durch Gl. (2). Die Arbeit Vx
der an den Kanten angreifenden Kräfte während des Ausbeulens ist in
diesem Fall

1) a ab
V, — Jdy Jöo(1 — -Jj w\ dx — rh J* J\vK wy dx dy (7)

Die Bedingung für das Ausbeulen ist V \v Hierdurch erhält man einen
Ausdruck für öocr, für welchen man dann die Konstanten Amn so wählt, daß
dieser Wert ein Minimum wird. Die Gleichungen bK/oAmn 0 wurden in
Amn ein lineares System. Die Größe von K erhält man, wenn man die
Determinante dieses Systems nach Null auflöst. Von dem Grade der verwendeten
Determinante hängt die Genauigkeit des Ergebnisses ab. Wir benutzen hier die
Determinante der Koeffizienten der acht5 Glieder An, A12, A-13» ^21» A22»

5 Stein führte die Berechnungen mit vier Gliedern durch. Beträchtlich niedrigere K.-Werte
werden erhalten, wenn man die Berechnung wie oben mit acht Gliedern ausführt. 0. Stein:
Der Stahlbau, Berlin, Bd. 7 (1934), S. 57.
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A?3, A31. A33 und die errechneten Werte von K für verschiedene Werte \on
ß und p, wie sie in Tabelle V angegeben sind.

labeile V

Werte von K und p fur verschiedene ß - VN e r t e

ß 1 ß 4/5 ß :28 ß V«

p K P K P K P K

0 25,6 0 24,5 0 23,9 0 25,6

2 24,6 4 22,8 4 23,05 4 25,4

4 22,2 8 17,7 8 20,35 8 24,3

6 18,4 10 13,25 12 15 23 12 22,55

8 12,4 11 10,01 14 11,04 16 19,94

9 6,85 12 4,61 15 8,0 20 16,13

9,42 0 12,26 0 16,09 0 24
26

26,9

10,26
5,44
0

Diese Werte wurden in die Kurven der Fig. 4 eingetragen. Wenn K =¦- 0, haben
wir die Bedingung für das Ausheulen eines Bleches bei reiner Schubbean-

spruchung, während p 0 der Bedingung für das Ausknicken eines Bleches
bei an den Kanten angreifenden Biegungskräften entspricht. Die Werte von p
für K 0 stimmen sehr genau mit den von Timoshenko für den Fall der reinen
Schubbeanspruchung ermittelten überein. Der geringe Unterschied für kleine
ß-Werte ist darauf zurückzuführen, daß von den acht in diesen Berechnungen
verwendeten Gliedern nur fünf m -' n-Werte gerade sind, während Timoshenko
sechs gerade Glieder benutzte. Für reine Schubbeanspruchung und ß 1/2

beträgt der Unterschied in den Werten von xcr/öe für die Berechnung mit fünf
und sechs Glieder nur 2 o/0# Für reine Biegungsbeanspruchung (p 0) stimmen
die K-Werte mit den von Timoshenko ermittelten, welcher drei Glieder benutzte,
überein.

4. Zahlenbeispiele.

Es sei angenommen, daß ein Blech, welches durch an den Kanten angreifende
Schubkräfte beansprucht ist, durch zwei Versteifungen verstärkt werden soll.
Es sei a 2000 mm, b 1000 mm, h 7 mm, E 21000 kg /mm2, u. 0,3.
Es soll die Belastung ermittelt werden, welche ein Ausbeulen des Bleches hervorruft,

und ferner ist die richtige Steifigkeit der Versteifungen zu ermitteln.

D:
21000 -73

660000 kg mm,12 (1 — 0,09)

660000-^ noai / *öe IöööwoTT a93kg/mm-

Für ß 2 erhalten wir ß' 0,667 und aus Tabelle IV entnehmen wir
y'min 10,8 und xcr/öe 16,06, woraus sich ergibt xcr 14,94 kg/mm2 und
B =--10,8 • 0,667 • 660000 4750 • 106 kg • mm2. Wenn nur eine Versteifung
benutzt wird, so wird die kritische Schubspannung 8,77 kg/mm2 und die erforderliche

Steifigkeit der Versteifung 1096 • 106kg • mm2.
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Als zweites Beispiel sei der Fall angenommen, daß das Ende des Steges eines
Blechträgers betrachtet werden soll. Die Höhe b desselben sei 2000 mm und die
Stärke h 8 mm. Es sei erforderlich, den richtigen Abstand zwischen den
Versteifungen für das Ende des Trägers zu ermitteln und ferner diejenige Steifigkeit

der Versteifung, bei der das Ausbeulen eintritt, wenn x 10 kg/mm2.

~ 21000-88
985000kgmm

0,3035 kg/mm2

12-0,91

Öe
985000-jt2

— 4 • 106 • 8
~~

Ter 10 kg/mm2
Ter

Öe
" 32,9.

Aus Fig. 3 erkennen wir, daß ß' 0,44, so daß der richtige Abstand zwischen
den Versteifungen sich zu

c 2000 • 0,44 880 mm
ergibt.

*-i»i

fll
^ to r SO

-Hl

tls1* l

-
- 1 (1)

Eine ifasteiFung, znei Felder

un naidisseur, deux panneaux
one stiffbner, fno panels
Zmw' Versteifungen, drei felder
deux raidisseurs, trois panneaux-

*' \

\ 12)

\
"'"v~"—""'' " r

c cb c c c b

-
(1

fi c
T

2)

- (i)^\
wN

1 I 1 i te I I

14J£: 0 2 4 G 8 SO 1

^
^ Seitenverhältnisß'

Rapporf des edlesß'
Panel ratio ß'

Fig. 3.

Erforderliche Steifigkeit der Versteifungen bei gegebenem Seitenverhältnis.

Um die Steifigkeit der Versteifungen zu ermitteln, sei angenommen, daß jede
dritte Versteifung des Trägers vollkommen starr ist. Wir benutzen dann die
Kurve für y'min in Fig. 3 für zwei Versteifungen und erhalten y'min 50. Die
erforderliche Steifigkeit der Versteifungen ist daher

B 50 • 880 • 985000 43300 - 10* kg - mm2.
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Als drittes Beispiel sei ein rechteckiges Feld betrachtet mit a 1000 mm,
b 2000 mm, h 10 mm, welches in der in Fig. 2 dargestellten Weise durch
Biegungs- und Schubkräfte belastet ist. Die Biegungsspannung <J0 sei 10 kg/mm2,

55 «P

28

24

'20

fc 16

- ^ *-i H
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- \\ \iß
- jI I

ri-ß
1 1 i \\ i

I ^ &n-N4

4 8 12 18 20f 24 28 52
Schubspannunqsverhältnls, Q

Rapporf des conInaintes de cisaillement Q

Shear stress ratiotQ

Fig. 4.

Kritische Belastungen für kombinierte Schub- und Biegebeanspruchungen.

und es sei erforderlich, die Schubspamrung zu finden, welche ein Ausbeulen
hervorruft. In diesem Fall ist ß 1/2 und

D: 21000-IO3
12 • 0,91

1923 000 jt2

4 • 106•10

1923000 kg mm

0,474 kg/mm2

K--1^--211K - 0,474 ~nX
Aus Fig. 4 erhält man den Wert von p für ß 1/2 und K 21,1 zu 14,3.

Der entsprechende Wert von x ist 14,3 • 0,474 6,78 kg/mm2.
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