Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht
Band: 2 (1936)
Artikel: Allgemeine Plastizitatstheorie, Gleitlinienfelder
Autor: Freudenthal, A.
DOl: https://doi.org/10.5169/seals-2671

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-2671
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

I1
Allgemeine Plastizititstheorie, Gleitlinienfelder.
Théorie générale de la plasticité. Champs des lignes de cession.

General Theory of Plasticity, Fields of Equal Yield Lines.

Dr. Ing. A. Freudenthal,
Warschau.

Einleitung.

Trotzdem die Entwicklung der Plastizititstheorie in den letzten Jahren der-
artige Fortschritte aufweist, da3 ihren Ergebnissen und Auswirkungen bei diesem
Kongresse eine besondere Arbeitssitzung eingerdumt wird, stecken in ihren
Grundlagen noch wesentliche Unklarheiten. Wenn auch durch die verinderten
Anschauungen der modernen Physik viele unserer tiblichen Begriffe der Festig-
keitslehre zum Teile revidiert werden mufdten (vor allem hinsichtlich struktureller
Gesichtspunkie), so reichen die Uunklarheiten in  den Grundbegriffen der
Plastizititstheorie weit iiber diese Veridnderungen und sind vornehmlich bedingt
durch unklare Beurteilungen phénomenologischer Tatsachen.

Die Mechanik der festen Korper wird zum grofiten Teile vom Hoole’schen
Gesetz beherrscht. Da dieses Gesetz, welches es ermoglichte, eine ziemlich er-
schopfende Theorie des elastischen Kontinuums aufzubauen, nur bis zu einer
gewissen Grenze gilt, war es seit langem das Bestreben, auch fiir die Mechanik
jener Zustinde, welche jenseits dieser Grenze liegen, dhnliche, allgemein giiltige
Gesetze aufzufinden. Leider traf man hierbei auf wesentliche Schwierigkeiten,
da zwar das elastische Verhalten zumindestens vom phidnomenologischen Stand-
punkte, fir verschiedene Stoffe mehr oder weniger gleich ist, das Verhalten
nach Uberschreiten der Elastizititsgrenze jedoch vom Aufbau der Materie grund-
legend beeinfluf3t wird.

Die mathematischen Untersuchungen der Plastizititstheorie begannen elgcnt—
lich damit, daf3 man auf Grund der Ahnlichkeit der Mohr’ schen Grenzkurven
des kohisionslosen Erdkorpers mit denen verschiedener fester Kérper, Methoden.
welche in der Theorie der Grenzgleichgewichtszustinde kohisionsloser Massen
sich als brauchbar erwiesen, zur Berechnung plastischer Zustinde feste Korper
verwendete. Wegen des grundverschiedenen Aufbaues dieser Korper mufite je-
doch die Methode versagen, bzw. zu Resultaten fithren, welche von der Wirklich-
keit wesentlich abweichen. Es darf ndmlich nie vergessen werden, dafy der
kristallin aufgebaute Korper zuerst mehr oder weniger elastische Forminde-
rungen erleiden muf3, ehe er den .plastischen Zustand erreicht, in welchem
praktisch immer elastische und plastische Gebiete nebeneinander bestehen und
lings gewisser Flichen ineinander tibergehen, wihrend die kohisionslose Masse
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4 A. Freudenthal

infolge Erreichen des ,,plastischen Zustandes® gewdhnlich Gleichgewichtsstérungen
unterliegt. — Fir die Behandlung plastizititstheoretischer Probleme ist deshalb
die von Hencky?! eingefiihrte Unterscheidung in ,,statisch bestimmte** und ,,statisch
unbestimmte” Gleichgewichtsfille wesentlich. Unter einem statisch bestimmten
‘Fall versteht nidmlich Hencky jenen, bei dem Gleichgewichtsbedingungen und
Plastizititsbedingung zusammen hinreichen, um die Spannungen in jedem Punkte
festzulegen, wihrend die Losung eines ,statisch unbestimmten* Falles ein Ein-
gehen auf die Deformationen notwendig macht. Bei der Untersuchung bildsamer
Zustinde der Baustoffe wird man es fast ausschlieflich mit ,statisch unbe-
stimmten Fillen zu tun haben, da gewdhnlich in den betrachteten Grenz-
zustinden kleine plastische Gebiete neben grofien elastischen bestehen, so daf3
beide Zustinde miteinander in den Ubergangsgebieten vertriiglich sein miissen
und nur in Abhéngigkeit voneinander betrachtet werden konnen. Eine mathe-
matische Behandlung solcher Zustinde wird durch diesen Zusammenhang aufer-
ordentlich erschwert. Jedoch diirfen trotzdem der Vereinfachung der Rechnung
zuliebe keine Annahmen getroffen werden, welche mit dem tatsichlichen Ver-
halten der Stoffe in Widerspruch stehen, nur um zu einer mathematischen
Losung zu gelangen.

Die wichtigste derartige Vereinfachung, welche fast die gesamte mathematische
Plastizititstheorie beherrscht, ist die Annahme, daf3 die elastischen Form-
dnderungen wegen ihrer verhiltnisméifligen Kleinheit gegeniiber den plastischen
vernachlissigt werden konnen. Diese Annahme, die nichts anderes ist, als ein
Analogieschluf3, der vom Verhalten des Erdkérpers auf das der kristallinen
Stoffe schlief3t, ist fiir Gleichgewichtszustinde, bei denen elastische und plastische
Gebiete nebeneinander bestehen, unzuldssig. Schon in der bekannten Arbeit von
Haar und Kdrmdn? findet sich der Beweis, daf3 im halbplastischen Gebiet,
d. h. im Gebiet, in welchem (o, —0,)2=4k2 (2 k = Fliefigrenze), wihrend
(0g—o05)2 < 4 k2, (o5—o0;)2< 4k dic plastischen Forminderungen von der
Groflenordnung der elastischen sind und es deshalb nicht angéngig ist, dort, wo
beide Arten der Verformung auftreten, die letzteren gegeniiber den ersteren
zu vernachléssigen.

Alle bisherigen Versuche, plastische Gleichgewichtsprobleme kristalliner Korper
mathematisch zu losen, sind jedoch mehr oder weniger von dieser Annahme
ausgegangen. Die Ausnahmen sind sehr wenig zahlreich, die prinzipiell wichtigste
Arbeit, welche diese Voraussetzung aufgibt, ist eine Arbeit von Hencky,? welche
jedoch bereits fiir den einfachsten Fall zu derartig schwierigen mathematischen
Untersuchungen fiihrt, daf3 die Behandlung weniger einfacher Fille mit den
heutigen mathematischen Hilfsmitteln unmoglich wird.

Mit Riicksicht auf die in den Grundbegriffen der Plastizititstheorie herrschen-
den Unklarheiten soll im folgenden unternommen werden, die grundlegenden
Begriffe kurz zu analysieren, sowie die Bedeutung der Erscheinungen der
plastischen Verformung kristalliner Kérper gegeneinander abzuwégen, wobei vor
allem jene Erscheinungen zu behandeln sind, welche die Literatur als ,Flief3-
figuren® bezeichnet. — Betrachtet werden, wie in der Plastizititstheorie allge-
mein tblich, so langsame Vorginge, daf sie als eine Folge von Gleichgewichts-
zustinden betrachtet werden konnen, so daf3 sich ein Eingehen auf die Defor-
mationsgeschwindigkeiten im allgemeinen eriibrigt.
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1. Plastizitdtsbedingung.

Die erste Frage der Plastizititstheorie ist die Frage, unter welchen Bedingungen
die Fliefigrenze eines Materiales iiberschritten wird. Bevor eine kurze Ubersicht
tiber die bestehenden FlieShypothesen gegeben wird, sei ein Satz von Ros
zitiert, der sowohl fir die Beurteilung der Bruch- als der FlieBhypothesen sehr
wichtig ist: ,,Eine allgemeine Theorie der Bruchgefahr, welche keine Riicksicht
auf den Gefiigeaufbau eines Stoffes nimmt, ist wegen des oft grundsitzlich ver-
schiedenen Verhaltens der ganz verschieden aufgebauten Stoffe nicht méglich.
Jeder Stoff hat seine eigene Theorie der Bruchgefahr, welche eine Folge scines
inneren Aufbaues und seines Forminderungsmechanismus ist.” Der Umstand,
daf} dieser Satz so prézis vorher nie ausgesprochen wurde und man daher geneigt
war, die Versuchsergebnisse, die bei der Priifung eines bestimmten Stoffes cr-
halten worden waren, zu verallgemeinern, macht das Bestehen so vieler Hypo-
thesen verstindlich.

Bei den Werk- und Baustoffen der Technik handelt es sich im allgemeinen
um kristalline Stoffe, welche zwar aus Einzelkristallen zusammengesetzt sind,
sich jedoch infolge der regellosen Orientierung dieser quasiisotrop verhalten. —
Hinsichtlich des Aufbaues der Einzelkristalle hat man es bei den technischen
Metallen fast ausschlieBlich mit dem kubischen Gitter zu tun, von welchem
es drei Arten gibt:

1. das einfache, welches durch Angabe des Abstandes der Massenpunkte
(Identititsabstand) eindeutig bestimmt ist,

2. das flichenzentrierte, mit zusitzlichen Massenpunkten in den Wiirfel-
flichen, und

3. das raumzentrierte Gitter, mit einem Massenpunkt in Raummitte.

a-, B-, 8-Eisen kristallisieren im raumzentrierten, y - Eisen, Nickel- und Mangan-
stahl, sowie Kupfer, Aluminium usw. im flachenzentrierten - Gitter.

Die Art des Gitters ist auch vom technischen Standpunkte sehr wichtig, da
die Art des Uberganges in den plastischen Zustand und die charakteristischen
Phinomene dieses Zuslandes vom Kristallgitter entscheidend beeinflufst werden
(vgl. Seite 7).

Von den bestehenden Fhe[?)h\pothesen seien hier als die wesentlichsten die
folgenden genannt:

1. Die Schubspannungshypothese von Guest-Mohr,* in der Form
Tmax = f (Ox + Gy) ’

entwickelt aus der alten Coulomb’schen Theorie der inneren Reibung.?
Die Funktion f (o, + o,) kann den Versuchsergebnissen angepaf3t werden.

2. Die Beltrami’sche Hypothese der konstanten Forménderungsarbeit, welche
als Kriterium des Erreichens der Flie3grenze eine bestimmte Grofie der
aufgespeicherten Forménderungsarbeit ansieht, jedoch mit den Versuchen
nicht tbereinstimmte und von Huber,$ sowie unabhingig davon von
Mises und Hencky? in einer verbesserten Form als

3. Hypothese der konstanten Gestaltsanderungsarbeit

(61— 065)2 4 (63— 03)% - (65— 0,)? = 8 k?

aufgestellt wurde.



6 ' A. Freudenthal

4. Die Schleicher’'sche Verbesserung dieser Hypothese,8 welche wohl die
allgemeinste Form darstellt, lautet

. 1
(61— 063)2 + (63— 63)% 4- (03— 64)2 = 0 (p) wobei p = §(°1 + 65+ 03).

Dic vielen Versuche, welche zur Uberpriifung der Richtigkeit aller dieser
Hypothesen, sowie verschiedener anderer, welche heute génzlich verlassen wurden,
durchgefiihrt worden sind,? zeigten, daf3 fiir bildsam verformbare Metalle mit oder
ohne ausgeprigter Flief3grenze die Huber-Hencky-Mises’sche Hypothese den
Ubergang ins Fliefigebiet und das Verhalten darin charakterisiert, wihrend fiir
sprode Stoffe und Spannungszustinde an der FlieBgrenze die Mohr’sche Hypo-
these die besten Mittelwerte liefert.

Man muf$ sich bei der Beurteilung dieser Feststellungen immer daran erinnern,
dafy es sich um vorlaufige Ergebnisse handelt, welche von der weiteren Forschung
noch verindert werden konnen.

2. Fliefigrenze.

Die FlieShypothese ist die Bedingung, welche die Hauptspannungen erfiillen
missen, damit der Flief3zustand in einem Punkte erreicht wird. Diese B:dingung
gilt, und das ist wesentlich, fiir den Zustand unmittelbar nach dem Uber-
schreiten der Flief3grenze, sagt jedoch nichts aus iiber die Art, wie dieser Uber-
gang erfolgt. Es bestehen Unterschiede im Verformungsvorgang nicht nur bei
verschiedenen Metallen (Stahl und Kupfer), sondern auch bei verschiedenen
Arten eines Metalles, ja sogar bei vollkommen gleichen Arten mit verschiedener
Vorgeschichte.

Der wesentlichste Unterschied besteht zwischen Metallen mit und ohne aus-
geprigter Flie3grenze. Bei den letzteren erfolgt der Ubergang aus dem elastischen
in den plastischen Zustand ziemlich stetig, da schon geringe Belastungen zu
plastischen Verformungen fiihren. Dagegen sind bei den ersteren die Form-
inderungen bis zu einer gewissen Grenze vollstindig reversibel; plotzlich jedoch
bricht der bisher so widerstandsfihige Stoff zusammen, die plastischen Form-
dnderungen setzen unvermittelt, sprunghaft, ein, wobei die Last sehr hiufig
nicht konstant bleibt, sondern betrichtlich abfillt, so dal} es scheinbar eine
,;obere” und eine ,untere” FlieBgrenze gibt.

Bereits Bach10 fand eine starke Abhingigkeit dieser oberen Fliefigrenze von
der Form des Probestabes und erkannte das Wesen dieser Grenze als das einer
typischen Labilititserscheinung (Umkippen der Belastung). Die moderne For-
schung geht noch um einen Schritt weiter und erklirt auch die ,,untere” Flie-
grenze als cine Erscheinung, die den von anderen Zweigen der Physik bekannten
Verzugserscheinungen (Siedeverzug, Unierkiihlung) gleichwertig ist, welche da-
durch gekennzeichnet sind, dal eine gesetzmidfig zu erwartende Zustands-
dnderung sich ziemlich stark verzogert, um dann plétzlich, sprunghaft, einzusetzen.
Das geradlinige Ansteigen der Spannungs-Verformungslinie wird nun z. B. von
Moser11 als eine derartige Verzugserscheinung aufgefaf3t, namlich als der Aus-
druck eines durch innere Gleitwiderstinde bewirkten Verzuges der bleibenden
Forminderungen. Das stoflweise Einsetzen der plastischen Forménderung an der
Fliefigrenze ist dann als Auslosung des Verzuges anzusehen. Diese Auffassung
wird auch durch die Erfahrungstatsache unterstiitzt, daf3 fiir Stahl mit gleicher
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Ko6rnung und gleicher Vorbehandlung die Proportionalititsgrenze umso néher
der Fliefigrenze liegt, je homogener das Material ist, und je storungsfreier der
Spannungszustand in ihm erzeugt werden kann.

Die richtige Auffassung vom Wesen der Flie3grenze ist fiir die Plastizitits-
theoric insofern sehr wesentlich, als es nur auf Grund dieser Auffassung mog-
lich ist, die prinzipielle Bedeutung der einzelnen plastischen Phidnomene im
Ubergangszustand richtig zu beurteilen.

3. FliefSfiguren.

Auf blank polierten Versuchskérpern aus weichem Eisen zeigen sich bei Beginn
der bleibenden Forminderungen einige mehr oder weniger feine Reliefzeich-
nungen, die sich mit steigender Belastung verdichten. Diese matten Linien, welche
Schnitte stirker verformter Schichten mit der blanken Oberfliche darstellen,
haben entweder dachférmiges (Druckversuch) oder grabenférmiges (Zugversuch)
Profil, oder bilden auch einseitige Boschungsflichen. Diese Linien, nach ihren
ersten Beobachtern Liiders’sche oder Hartmann’sche Linien genannt, heute in der
Plastizititstheorie allgemein als Gleitlinien bezeichnet sind die am stirksten ins
Auge springenden Flief3figuren. Ihre wichtigste Eigenschaft ist ihr Zusammen-
treffen mit den Schubspannungstrajektorien. Auf Grund dieser Eigenschaft
werden diese Linien als duflerst wertvolles Hilfsmittel zur Erforschung der
Spannungszustinde fester Korper im plastischen Gebiete angesehen.

Die Gleitlinienfelder sind tatsdchlich mathematisch durch eine Anzahl wichtiger
Eigenschaften ausgezeichnet, welche es ermoglichen, aus der Kenntms der Gleit-
linien Spannungszustinde im plastischen Bereich vollkommen zu losen.!? Die
wichtigste dieser Eigenschaften ist die Identitit der Gleitlinien mit den Charakte-
ristiken der Plastizititsbedingung. Der Nachweis dieser Identitit ist erstmalig
von Massau, in seiner allgemeinen Form jedoch von ReifSner13 gegeben worden.
Auf Grund dieser Eigenschaft ist es moglich, verschiedene Integrale lings Gleit-
linien unanalytisch zusammenzusetzen, was die Anpassungen der Lodsungen an
die tatsdchlichen Verhiltnisse sehr erleichtert. Dic wenigen bestehenden Ldsungen
der mathematischen Plastizititstheorie sind fast durchwegs auf dieser Gleit-
linieneigenschaft aufgebaut.

Bei der Beurteilung der Verwendbarkeit der obigen Methode zur tatsichlichen
Losung von Aufgaben der technischen Plastizititstheorie mufl jedoch berick-
sichtigt werden, daf3 mathematisch einwandfreie Grenziiberginge tiber ihre physi-
kalische Zulissigkeit a priori kein Urteil erlauben. Wenn wir ndmlich von einer
mathematisch gefaf3ten physikalischen Bedingung ausgehen und bestimmten
Grofien darin bestimmte Grenzwerte zuweisen, so ist dieses Vorgehen mathe-
matisch zweifellos zuldssig. Physikalisch ist es jedoch moglich, dafl durch diese
Grenzwerte das physikalische Verhalten wesentlich gedndert wird, und die
Gesichtspunkte, die zur Aufstellung der Bedingung fiihrten, ihre Giiltigkeit ver-
lieren oder stark einbiiffen. Dies ist fiir die Plastizitdtsbedingung der Fall.

Die Plastizititsbedingung des allgemein plastischen Koérpers im  cbenen
Spannungszustand lautet:

a PR T ]
l'/ (Gx—lﬁ) +esing. 2%,

2 2
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wobei p der Reibungswinkel, C ein von der Kohision abhidngiger Wert ist. Fiir
die kohisionslose Masse, von der die Gleitlinienuntersuchungen ihren Ausgang
nahmen, ist G = 0. Das Auftreten einer Gleitlinie hat primir Gleichgewichts-
storungen zur Folge; die der Erreichung der Stérung vorangehenden reversiblen
Forménderungen sind im Vergleich zu den ,,plastischen verschwindend klein. —
Bei Metallen dagegen ist C = konst. und p = O. Infolge der groflen Kohision
bedeutet das Auftreten von Gleitlinien nur eine lokale und voriibergehende Gleich-
gewichtsstorung, der dem Beginn der Fliefierscheinungen vorangehende elastische
Spannungs- und Verformungszustand ist fiir die Art des Flieens von wesent-
licher Bedeutung, und die Groéfienordnung der plastischen Verformunger ist
von jener der elastischen.

Aus dem obigen wird deutlich, daf3 den Ergebnissen der sogenannten mathe-
matischen Plastizititstheorie in der technischen Plastizititstheorie der kristallinen
Stoffe, vor allem der Metalle, keine Bedeutung zukommen kann. Deren Voraus-
setzungen sind ndmlich nicht erfiillt. Damit sinkt auch die Bedeutung der Gleit-
linien fir die Untersuchung plastischer Zustinde der Metalle, welche technisch
von Belang sind. Sie sind erst dann von einiger Wichtigkeit, wenn die Ver-
formung soweit vorgeschritten ist, dafs im ganzen Feld keine elastischen Gebiete
mehr vorhanden sind. Diese Fille treten nicht hiufig auf und sind vor allem
auf Probleme der Bearbeitungstechnik beschrinkt.

Lost man sich von der allgemein iiblichen Ansicht von der grofien Bedeutung
der Gleitlinien in der "Plastizititstheorie, und wertet man die zahlreichen Ergeb-
nisse der vorhandenen Versuche vorurteilslos aus, so findet man, daf3 das
Phénomen der Gleitlinien nicht mit der plastischen Verformung an sich, sondern
nur mit der Art des Uberganges vom elastischen in den plastischen Zustand zu-
sammenhingt. Sie sind, ebenso wie die ausgeprigte Flie3grenze, typische Labili-
tits- (Unstetigkeits-) Erscheinungen. Den Beweis dafiir liefern eine Reihe von
Beobachtungen, wie jene von Ludwik4, daf3 die FliefSlinien besonders dann auf-
treten, wenn die Korper unter abfallender Last zu flieen beginnen, d. h. wenn
die Gleitlinienbildung auf den abfallenden Teil der Spitzen im Spannungs-Ver-
formungsdiagramm beschrinkt ist, eine Beobachtung, die auch Nadai bestitigt 15
und auf welche von Kdrmdn vielfach hinwies. Hierher gehért auch die Beob-
achtung Nadais, dafl das Gleitliniennetz bei sehr rasch durchgefiihrten Druck-
versuchen viel dichter war, als bei langsamen Versuchen, was ein weiterer Beweis
dafiir ist, daf} Unstetigkeiten im allgemeinen, sei es solche der Belastung, sei ez
solche des Aufbaues, die Gleitlinienbildung begiinstigen. Es liegt daher auf der
Hand, daf3 die Gleitlinienbildung auch durch Bohrungen und Kerben begiinstigt
werden mulf3.

In diesem Zusammenhange sei auf die auf3erordentlich interessanten Harte-
messungen auf Flieffifiguren von Moser1® hingewiesen, welche auf Grund der
Beobachtungen, da3 Metalle im geflossenen Gebiet eine Hirtezunahme zeigen,
gute Einblicke in das Wesen und den Ablauf der plastischen Verformungen
gewidhren. Es wurde von Moser beobachtet, dafy die bleibende Verformung an-
fanglich nur zonenweise erfolgt (Gleitlinien), wobei in jeder Zone nur ein
bestimmter Hirtegrad erreicht wird. Eine weitere allgemeine Hirtesteigerung setzt
erst dann ein, wenn sich der ganze Stab (Zugversuch) mit einem Netz von Gleit-
linien iiberzogen hat. Der Grund fiir diese Erscheinung liegt in einer Arl
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,,Blockierung® der Gleitflichen, bei deren Erreichen in einer Zone sich die weitere
Erhohung der Belastung durch das ,,Abgleiten” in einer anderen, bisher nicht
deformierten Zone auswirkt. Hierbei steigt jedesmal, ehe der Gleitwiderstand
dieser nichsten Zone tiberwunden wird, die Belastung etwas an, um beim Aus-
bilden der Gleitlinien wieder abzufallen; jeder Zacke des o—e Diagrammes ent-
spricht daher eine lokale obere Streckgrenze, bei deren Erreichen sich eine Gleit-
linie unter Lastabfall ausbildet. Im Gegensatz zu den Erscheinungen bei Stahl
zeigte ein Kupferstab einé gleichmiflige Zunahme der Hirte von Anfang der
Belastung an, wobei abgegrenzte Flief3linien nicht auftraten, nur ein allgemeines
Mattwerden beobachtet werden konnte.

Die obigen Versuche sind eine anschauliche Bekriftigung der Auffassung der
Streckgrenze des Stahles als ,,Verzug* des Flieffvorganges und der Erklirung der
Gleitlinien als einer damit zusammenhingenden nur fiir Stihle mit unstetiger
Flief3igrenze charakteristischen Erscheinung.

Diese Auffassung wird auch noch direkt bestitigt durch die Ergebnisse der -
Versuche von Ititaro Takaba und Katumi Okudal?, welche zeigen, daf3

1. das Auftreten der Gleitlinien und der plétzliche Knick in der Spannungs-
dehnungslinie Ergebnisse ein und desselben Vorganges sind, nidmlich der
gruppenweisen Verschiebung grofler Mengen von Kristallkérnern,

2. alle Metalle, bei denen Gleitlinien auftreten konnen, der Kristallstruktur
des raumzentrierten Wiirfelgitters angehoren. Es wird gezeigt, daf3 auf
Stdhlen mit Austenitgefiige, welche der Struktur des flichenzentrierten
Wiirfelgitters angehoren, keine Gleitlinienbildung zu beobachten war.

Es laf3t sich daher behaupten, dafl fiir die Untersuchung elastisch-plastischer
Zustande kristalliner Stoffe, vor allem Metalle, die Beobachtung der Gleitlinien-
felder keine geeignete Methode ist, sondern dafs im Gegenteil durch die Gleit-
linien die grundsitzlichen Vorginge, auf die es im wesentlichen ankommt, oft
verschleiert werden. Dies gilt in erster Linie von der Ausbildung der wahren
Grenze zwischen elastischem und plastischem Bereich.

4. Gren:linien des plastischen Bereiches.

Beniitzt man eine der bekannten Methoden zur Sichtbarmachung des plastisch
verformten Gebietes in Metallen, am besten die der Rekristallisation,18 so lassen
sich die Grenzen zwischen elastischem und plastischem Gebiet deutlich feststellen
(Fig. 1). Die Form dieser Grenzlinien hat, wie simtliche Beobachtungen einwand-
frei erweisen,19 nichts mit den Gleitlinien zu tun, sondern wird von jenen
Linien gebildet, welche sowohl dem plastischen, als auch dem elastischen Span-
nungszustand entsprechen. Die einzige Linienschar, die dieser Anforderung
geniigt, sind die Linien Tn. = const. des elastischen Zustandes. Diese Art der
~Grenzlinien, welche unabhingig sind von der Art des Uberganges aus dem ela-
stischen in den plastischen Bereich, sind in allen elastisch plastischen Zustinden
zu beobachten und bilden deren wesentlichste Erscheinung. Nur solche Losungen
des plastischen Spannungsfeldes werden der Wirklichkeit entsprechen, welche
sich lings jeder Linie Tn.x = const. an das entsprechende elastische Span-
nungsfeld stetig anschlieBen lassen. Jeder Losung der plastischen Aufgabe
muf} daher die der elastischen vorangehen, wobei zu beachten ist, daf3 die
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Grenze zwischen elastischem und plastischem Bereich keine feste, sondern eine
mit wechselnder Belastung wechselnde ist, welche jedoch immer den Linien
Tmax == consl, des elastischen Feldes entsprechen muls.

Die mathematische Behandlung elastisch-plastischer Probleme unter den obigen
Voraussetzungen ist nicht leicht und ist bisher nur in ganz wenigen einfachen
Fillen gelungen. Eme gewisse Erleichterung kénnte jedoch darin liegen, dals
durch die sogenannte optische Spannungsuntersuchung an Modellen dadurch,
dal3 hierber die Linien konstanter Hauptspannungsdifferenz als Isochromen
primir erscheinen, es ermoglicht wird, die Grenze des plastischen Bereiches
dem Modellversuch a priori zu entnehmen.

5. Die Eindringungsfestigkeil.

Als Beispiel der Losung eines technischen Problems auf die oben angegebene
Art sei das Problem der Eindringungsfestigkeit als ebenes Problem behandelt.
Der Fall ist deshalb von besonderem Interesse, weil er das bekannteste Beispiel
einer plastischen Losung mit Hilfe des Gleithinienfeldes darstellt und weil seine
Veroffentlichung seinerzeit den eigentlichen Anstofs zur Entwicklung der mo-
dernen mathematischen Plastizitilstheorie gab.20

Es geht darum, jene gleichformig verteilte Last p zu finden, welche (Fig. 2)
lings A B wirkend, inerhalb des betrachteten Gebietes Fliefsen hervorruft.

Fig. 3.

R &~

Diese Last, welche als Eindringungsfestigkeit bezeichnet wird. sei als Funktion
der Flielsgrenze und des Neigungswinkels der seitlichen Begrenzung darzu-
stellen. Da der ebene Verzerrungszustand (e, = 0) betrachtet wird, lautet die
Huber-Hencly-Mises’sche FlielSbedingung
<0x— Gy)‘-) -+ 4 12 = E k*
3

wobei dic Fliefsgrenze op — 2 k.

Da die Losung der stumpfen Schneide (stumpfer Keil) weder als elastisches
noch als plastisches Problem in geschlossener Form mdglich ist, kann man sich
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dadurch helfen, daf3 man nur die Ecke A betrachtet und die Tatsache beriick-
sichtigt, daf3 in dieser Ecke di® Linien t,.. = const. des in Fig. 3 dargestellten
Problems Tangenten an die Linien tm.. = const. des stumpfen Keiles sind.
Zwecks Bestimmung der kritischen Belastung ist es unwesentlich, ob wir die
Linien t,.. = const. selbst oder deren Tangenten ermitteln.

Aus der elastischen Losung der Ecke mittels der Airy’schen Spannungsfunktion
F =ar? 4 br2ep 4 cr2sin2¢ + dr2cos 2¢ (1)
wobel die 4 Konstanten a, b, ¢, d aus den vier Randbedingungen
fir =0 : 6,==— p, T=0 (ohne Reibung)
w @=a : 6;=0; =0
bestimmt werden konnen, ergeben sich die Spannungen
or=pQ@& DV —2P.-p.og—p:-P:sin2¢+p-Q cos 2¢
or=pQ@ DV —2P-p-o+p-P-sin2¢p —p-Qcos 2¢ (2)

t=p-P—p-Pcos 2¢0—p-Q sin 2¢
wobel
1 1
P— — - . _ — .
2(a—tga)’ Q 2(actga — 1)
Mit der Abkiirzung

2 2 2
X_Tmax_p Q

4p2 . P2
ergibt sich die Gleichung der Linien T, = const. nach kurzer Zwischen-
rechnung in der Form
y:—z(x_—l)[tgaing‘a—-4x-]. (3)

Dies ist die Gleichung eines Geradenpaarees durch A, welches solange reell ist,
als tgZa >4x2.

" Die Hauptschubspannung wird auf jenen Linien ein Maximum, fiir welche

o} 'E'_max

Dies ist erfillt fir o =%. Die Bildung der zweiten Ableitung ergibt weiter,
daf nur fir % < o 2 lings des Strahles ¢ = % ein Maximalwert entsteht,

. v by 4 X . .. . .
wihrend fiir—— < o < — dort ein Minimum erscheint. Die letzteren Werte

2 2
von o sind jedoch technisch ohne Interesse. Fiir ¢ 2% erhdlt man die Grofie

der Hauptschubspannung
Tmax. = P2 [Q*— 2P Q-sina+2P*(1 — cosa)]. (4)
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Durch Einfiihrung der Flie3bedingung erhalten wir fir die kritische Last

(&—F%)sin&—i—cos&
p=op ——— '

()

1+ sin

" Dies ist der Zusammenhang zwischen Eindringungsfestigkeit, Keilwinkel und
Fliefigrenze. 21

Sachs?2 hat das Problem der Eindringungsfestigkeit bei Metallen sehr ein-
gehend studiert, wobei er ebenfalls durch Rekristallisation die plastisch ver-
formten Bereiche als durch Linien 7. = const. des elastischen Spannungs-
feldes begrenzt feststellte. In Fig. 4 sind die von Sachs ermiittelten Eindringungs-
festigkeiten bei Stahl fiir verschiedene Keilwinkel mit den aus Gleichung 5 er-
rechneten Werten verglichen. Die Ubereinstimmung ist zufriedenstellend.

Die Losung desselben Problems mittels Gleitlinienfeldern durch Prandil fiihrte

zur Gleichung
p=ocr-(1+9) 6)

als Abhéngigkeit der Eindringungsfestigkeit vom Schneidenwinkel und der Flief3-
grenze. Diese Gleichung wurde vergleichsweise ebenfalls in Fig. 4 eingetragen
und es zeigt sich, daf3 eine Ubereinstimmung héchstens fiir ganz kleine Keil-
winkel besteht, der prinzipielle Verlauf jedoch ein ganz anderer ist.

Py kg/mm?

9 o

s <

) D |

Piaey
. Pl
e

51> 7 Fig. 4.

4 £
Versuchswerte

3 ©Résultats déssai

> Test results

7

0 -2

30° 60° 90°

Das angefiihrte Beispiel zeigt, daff die Behandlung plastischer Probleme
kristalliner Stoffe immer von den Begrenzungskurven des plastischen Bereiches
ausgehen muf}. Die Annahme von Gleitlinien als eine solche Begrenzung und
die Aufstellung von Losungen aus den Eigenschaften der Gleitlinien wird immer
zu Resultaten fiihren, welche der Wirklichkeit nicht entsprechen.

Zusammenfassung.

Die Grundlagen der allgemeinen Plastizititstheorie enthalten noch wesent-
liche Unklarheiten, welche darauf zuriickzufiihren sind, daf3 die Beurteilung und
Wertung der Phanomene des Flieflens kristalliner Korper nicht einheitlich
und klar ist.
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Die wesentlichsten Begriffe der Plastizititstheorie: FliefSbedingung, Flief3grenze
und Gleitlinien werden daher einer kurzen Analyse unterworfen, deren wichtigstes
Ergebms darin besteht, dafy sowohl die F lieigrenze als die Gleitlinien als vom
inneren Aufbau des Stoffes wesentlich abhingige Unstetigkeitserscheinungen
erkannt werden, welche zwar die Art des Uberganges aus dem elastischen ins
plastische Bereich spezifisch beeinflussen, jedoch fiir die allgemeine plastische
Verformung von geringerer Bedeutung sind als allgemein angenommen wird.
Und dies umsomehr, als beide Erscheinungen nur bei einer ganz bestimmten
Kristallstruktur, und zwar bei der des raumszentrierten kubischen Gitters zu
beobachten sind, wihrend sich bei anders aufgebauten Stoffen der Ubergang
aus dem elastischen ins plastische Bereich stetig vollzieht.

Unabhingig von der Art dieses Uberganges wird die Grenze des plastischen
Bereiches durch Linien tn.. = const. des elastischen Spannungsfeldes gebildet.

Das Beispiel der Eindringungsfestigkeit zeigt die Unterschiede in der Behand-
lung eines plastischen Problems einerseits vom oben prézisierten Standpunkte,
andererseits vom Standpunkte der mathematischen Plastizititstheorie, welche im
Grunde genommen eine Theorie der Gleitlinienfelder ist, und beweist, daf bei
Metallen die Ergebnisse der mathematischen Plastizititstheorie mit der Wirklich-
keit nicht iibereinstimmen.
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