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II
Allgemeine Plastizitätstheorie, Gleitlinienfelder.

Theorie generale de la plasticite. Champs des lignes de cession.

General Theory of Plasticity, Fields of Equal Yield Lines.

Dr. Ing. A. Freudenthal,
Warschau.

Einleitung.

Trotzdem die Entwicklung der Plastizitätstheorie in den letzten Jahren
derartige Fortschritte aufweist, daß ihren Ergebnissen und Auswirkungen bei diesem

Kongresse eine besondere Arbeitssitzung eingeräumt wird, steeken in ihren
Grundlagen nach wesentliche Unklarheilen. Wenn auch durch die veränderten

Anschauungen der modernen Physik viele unserer üblichen Begriffe der
Festigkeitslehre zum Teile revidiert werden mußten (vor allem hinsichtlich struktureller
Gesichtspunkte), so reichen die Unklarheiten in den Grundbegriffen der
Plastizitätstheorie weit über diese Veränderungen und sind vornehmlich bedingt
durch unklare Beurteilungen phänomenologischer Tatsachen.

Die Mechanik der festen Körper wird zum größten Teile vom Hooke*schon
Gesetz beherrscht. Da dieses Gesetz, welches es ermöglichte, eine ziemlich
erschöpfende Theorie des elastischen Kontinuums aufzubauen, nur bis zu einer
gewissen Grenze gilt, war es seit langem das Bestreben, auch für die Mechanik

jener Zustände, welche jenseits dieser Grenze liegen, ähnliche, allgemein gültige
Gesetze aufzufinden. Leider traf man hierbei auf wesentliche Schwierigkeiten,
da zwar das elastische Verhalten zumindestens vom phänomenologischen
Standpunkte, für verschiedene Stoffe mehr oder weniger gleich ist, das Verhalten
nach Überschreiten der Elastizitätsgrenze jedoch vom Aufbau der Materie grundlegend

beeinflußt wird.
Die mathematischen Untersuchungen der Plastizitätstheorie begannen eigentlich

damit, daß man auf Grund der Ähnlichkeit der l/o/ir'schen Grenzkurven
des kohäsionslosen Erdkörpers mit denen verschiedener fester Körper, Methoden,
welche in der Theorie der Grenzgleichgewichtszustände kohäsionsloser Massen

sich als brauchbar erwiesen, zur Berechnung plastischer Zustände feste Körper
verwendete. Wegen des grundverschiedenen Aufbaues dieser Körper mußte
jedoch die Methode versagen, bzw. zu Resultaten führen, welche von der Wirklichkeit

wesentlich abweichen. Es darf nämlich nie vergessen werden, daß der
kristallin aufgebaute Körper zuerst mehr oder weniger elastische Formänderungen

erleiden muß, ehe er den plastischen Zustand erreicht, in welchem

praktisch immer elastische und plastische Gebiete nebeneinander bestehen und

längs gewisser Flächen ineinander übergehen, während die kohäsionslose Masse
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infolge Erreichen des „plastischen Zustandes" gewöhnlich Gleichgewichtsstörungen
unterliegt. — Für die Behandlung plastizitätstheoretischer Probleme ist deshalb
die von Hencky1 eingeführte Unterscheidung in „statisch bestimmte" und „statisch
unbestimmte" Gleichgewichtsfälle wesentlich. Unter einem statisch bestimmten
Fall versteht nämlich Hencky jenen, bei dem Gleichgewichtsbedingungen und
Plastizitätsbedingung zusammen hinreichen, um die Spannungen in jedem Punkte
festzulegen, während die Lösung eines „statisch unbestimmten" Falles ein
Eingehen auf die Deformationen notwendig macht. Bei der Untersuchung bildsamer
Zustände der Baustoffe wird man es fast ausschließlich mit „statisch
unbestimmten" Fällen zu tun haben, da gewöhnlich in den betrachteten
Grenzzuständen kleine plastische Gebiete neben großen elastischen bestehen, so daß
beide Zustände miteinander in den Übergangsgebieten verträglich sein müssen
und nur in Abhängigkeit voneinander betrachtet werden können. Eine
mathematische Behandlung solcher Zustände wird durch diesen Zusammenhang
außerordentlich erschwert. Jedoch dürfen trotzdem der Vereinfachung der Rechnung
zuliebe keine Annahmen getroffen werden, welche mit dem tatsächlichen
Verhalten der Stoffe in Widerspruch stehen, nur um zu einer mathematischen
Lösung zu gelangen.

Die wichtigste derartige Vereinfachung, welche fast die gesamte mathematische
Plastizitätstheorie beherrscht, ist die Annahme, daß die elastischen
Formänderungen wegen ihrer verhältnismäßigen Kleinheit gegenüber den plastischen
vernachlässigt werden können. Diese Annahme, die nichts anderes ist, als ein

Analogieschluß, der vom Verhalten des Erdkörpers auf das der kristallinen
Stoffe schließt, ist für Gleichgewichtszustände, bei denen elastische und plastische
Gebiete nebeneinander bestehen, unzulässig. Schon in der bekannten Arbeit von
Haar und Kärmän2 findet sich der Beweis, daß im halbplastischen Gebiet,
d.h. im Gebiet, in welchem (ö1 — ö2)2=4k2 (2 k Fließgrenze), während
(ö2—ö3)2<4k2, (ö3 — ö1)2<4k2, die plastischen Formänderungen von der

Größenordnung der elastischen sind und es deshalb nicht angängig ist, dort, wo
beide Arten der Verformung auftreten, die letzteren gegenüber den ersteren
zu vernachlässigen.

Alle bisherigen Versuche, plastische Gleichgewichtsprobleme kristalliner Körper
mathematisch zu lösen, sind jedoch mehr oder weniger von dieser Annahme

ausgegangen. Die Ausnahmen sind sehr wenig zahlreich, die prinzipiell wichtigste
Arbeit, welche diese Voraussetzung aufgibt, ist eine Arbeit von Hencky,3 welche

jedoch bereits für den einfachsten Fall zu derartig schwierigen mathematischen
Untersuchungen führt, daß die Behandlung weniger einfacher Fälle mit den

heutigen mathematischen Hilfsmitteln unmöglich wird.
Mit Rücksicht auf die in den Grundbegriffen der Plastizitätstheorie herrschenden

Unklarheiten soll im folgenden unternommen werden, die grundlegenden
Begriffe kurz zu analysieren, sowie die Bedeutung der Erscheinungen der

plastischen Verformung kristalliner Körper gegeneinander abzuwägen, wobei vor
allem jene Erscheinungen zu behandeln sind, welche die Literatur als
„Fließfiguren" bezeichnet. — Betrachtet werden, wie in der Plastizitätstheorie allgemein

üblich, so langsame Vorgänge, daß sie als eine Folge von Gleichgewichtszuständen

betrachtet werden können, so daß sich ein Eingehen auf die

Deformationsgeschwindigkeiten im allgemeinen erübrigt.
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1. Plasiizitätsbedingung.

Die erste Frage der Plastizitätstheorie ist die Frage, unter welchen Bedingungen
die Fließgrenze eines Materiales überschritten wird. Bevor eine kurze Übersicht
über die bestehenden Fließhypothesen gegeben wird, sei ein Satz von Ros

zitiert, der sowohl für die Beurteilung der Bruch- als der Fließhypothesen sehr

wichtig ist: „Eine allgemeine Theorie der Bruchgefahr, welche keine Rücksicht
auf den Gefügeaufbau eines Stoffes nimmt, ist wegen des oft grundsätzlich
verschiedenen Verhaltens der ganz verschieden aufgebauten Stoffe nicht möglich.
Jeder Stoff hat seine eigene Theorie der Bruchgefahr, welche eine Folge seines

inneren Aufbaues und seines Formänderungsmechanismus ist." Der Umstand,
daß dieser Satz so präzis vorher nie ausgesprochen wurde und man daher geneigt
war, die Versuchsergebnisse, die bei der Prüfung eines bestimmten Stoffes
erhalten worden waren, zu verallgemeinern, macht das Bestehen so vieler Hypothesen

verständlich.
Bei den Werk- und Baustoffen der Technik handelt es sich im allgemeinen

um kristalline Stoffe, weiche zwar aus Einzelkristallen zusammengesetzt sind,
sich jedoch infolge der regellosen Orientierung dieser quasiisotrop verhalten. —
Hinsichtlich des Aufbaues der Einzelkristalle hat man es bei den technischen
Metallen fast ausschließlich mit dem kubischen Gitter zu tun, von welchem
es drei Arten gibt:

1. das einfache, welches durch Angabe des Abstandes der Massenpunkte
(Identitätsabstand) eindeutig bestimmt ist,

2. das flächenzentrierte, mit zusätzlichen Massenpunkten in den Würfel¬
flächen, und

3. das raumzentrierte Gitter, mit einem Massenpunkt in Raummitte.

a-, ß-, b- Eisen kristallisieren im raumzentrierten, y- Eisen, Nickel- und Manganstahl,

sowie Kupfer, Aluminium usw. im flächenzentrierten Gitter.
Die Art des Gitters ist auch vom technischen Standpunkte sehr wichtig, da

die Art des Überganges in den plastischen Zustand und die charakteristischen
Phänomene dieses Zustandes vom Kristallgitter entscheidend beeinflußt werden
(vgl. Seite 7).

Von den bestehenden Fließhypothesen seien hier als die wesentlichsten die

folgenden genannt:
1. Die Schubspannungshypothese von Gaest-Mohr,* in der Form

Tmax f (Öx + Öy) •

entwickelt aus der alten Coulomb'sehen Theorie der inneren Reibung.J)
Die Funktion f (öx 4- öy) kann den Versuchsergebnissen angepaßt werden.

2. Die Bellrami'sche Hypothese der konstanten Formänderungsarbeit, welche
als Kriterium des Erreichens der Fließgrenze eine bestimmte Größe der

aufgespeicherten Formänderungsarbeit ansieht, jedoch mit den Versuchen
nicht übereinstimmte und von Huber,6 sowie unabhängig davon von

Mises und Hencky1 in einer verbesserten Form als
3. Hypothese der konstanten Gestaltsänderungsarbeit

(«1- Ö2)2 + (Ö2 - ß3)2 + (Ö3 - Öl)2 8 k ^

aufgestellt wurde.
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4. Die Schleicher sehe Verbesserung dieser Hypothese,8 welche wohl die
allgemeinste Form darstellt, lautet

(Öl—ÖL>)2+ (Ö2— Ö3)2+ (ö3— ö1)2 öc(p) WObei p=.-(öl + C52+ö3).

Die vielen Versuche, welche zur Überprüfung der Richtigkeit aller dieser
Hypothesen, sowie verschiedener anderer, welche heute gänzlich verlassen wurden,
durchgeführt worden sind,9 zeigten, daß für bildsam verformbare Metalle mit oder
ohne ausgeprägter Fließgrenze die Huber-Hencky-Misessehe Hypothese den

Übergang ins Fließgebiet und das Verhalten darin charakterisiert, während für
spröde Stoffe und Spannungszustände an der Fließgrenze die Mohr'sche Hypothese

die besten Mittelwerte liefert.
Man muß sich bei der Beurteilung dieser Feststellungen immer daran erinnern,

daß es sich um vorläufige Ergebnisse handelt, welche von der weiteren Forschung
noch verändert werden können.

2. Fließgrenze.
Die Fließhypothese ist die Bedingung, welche die Hauptspannungen erfüllen

müssen, damit der Fließzustand in einem Punkte erreicht wird. Diese Bedingung
gilt, und das ist wesentlich, für den Zustand unmittelbar nach dem
Überschreiten der Fließgrenze, sagt jedoch nichts aus über die Art, wie dieser Übergang

erfolgt. Es bestehen Unterschiede im Verformungsvorgang nicht nur bei
verschiedenen Metallen (Stahl und Kupfer), sondern auch bei verschiedenen
Arten eines Metalles, ja sogar bei vollkommen gleichen Arten mit verschiedener
Vorgeschichte.

Der wesentlichste Unterschied besteht zwischen Metallen mit und ohne
ausgeprägter Fließgrenze. Bei den letzteren erfolgt der Übergang aus dem elastischen
in den plastischen Zustand ziemlich stetig, da schon geringe Belastungen zu
plastischen Verformungen führen. Dagegen sind bei den ersteren die
Formänderungen bis zu einer gewissen Grenze vollständig reversibel; plötzlich jedoch
bricht der bisher so widerstandsfähige Stoff zusammen, die plastischen
Formänderungen setzen unvermittelt, sprunghaft, ein, wobei die Last sehr häufig
nicht konstant bleibt, sondern beträchtlich abfällt, so daß es scheinbar eine
„obere" und eine „untere" Fließgrenze gibt.

Bereits Bach10 fand eine starke Abhängigkeit dieser oberen Fließgrenze von
der Form des Probestabes und erkannte das Wesen dieser Grenze als das einer
typischen Labilitätserscheinung (Umkippen der Belastung). Die moderne
Forschung geht noch um einen Schritt weiter und erklärt auch die „untere"
Fließgrenze als eine Erscheinung, die den von anderen Zweigen der Physik bekannten
Verzugserscheinungen (Siedeverzug, Unterkühlung) gleichwertig ist, welche
dadurch gekennzeichnet sind, daß eine gesetzmäßig zu erwartende Zustands-
änderung sich ziemlich stark verzögert, um dann plötzlich, sprunghaft, einzusetzen.
Das geradlinige Ansteigen der Spannungs-Verformungslinie wird nun z. B. von
Moser11 als eine derartige Verzugserscheinung aufgefaßt, nämlich als der
Ausdruck eines durch innere Gleitwiderstände bewirkten Verzuges der bleibenden

Formänderungen. Das stoßweise Einsetzen der plastischen Formänderung an der
Fheßgrenze ist dann als Auslösung des Verzuges anzusehen. Diese Auffassung
wird auch durch die Erfahrungstatsache unterstützt, daß für Stahl mit gleicher
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Körnung und gleicher Vorbehandlung die Proportionalitätsgrenze umso näher
der Fließgrenze liegt, je homogener das Material ist, und je störungsfreier der
Spannungszustand in ihm erzeugt werden kann.

Die richtige Auffassung vom Wesen der Fließgrenze ist für die Plastizitätstheorie

insofern sehr wesentlich, als es nur auf Grund dieser Auffassung möglich

ist, die prinzipielle Bedeutung der einzelnen plastischen Phänomene im
Übergangszustand richtig zu beurteilen.

3. Fließfiguren.

Auf blank polierten Versuchskörpern aus weichem Eisen zeigen sich bei Beginn
der bleibenden Formänderungen einige mehr oder weniger feine Reliefzeichnungen,

die sich mit steigender Belastung verdichten. Diese matten Linien, welche
Schnitte stärker verformter Schichten mit der blanken Oberfläche darstellen,
haben entweder dachförmiges (Druckversuch) oder grabenförmiges (Zugversuch)
Profil, oder bilden auch einseitige Böschungsflächen. Diese Linien, nach ihren
ersten Beobachtern Lüders'sche oder Hartmann sehe Linien genannt, heute in der
Plastizitätstheorie allgemein als Gleitlinien bezeichnet sind die am stärksten ins
Auge springenden Fließfiguren. Ihre wichtigste Eigenschaft ist ihr Zusammentreffen

mit den Schubspannungstrajektorien. Auf Grund dieser Eigenschaft
werden diese Linien als äußerst wertvolles Hilfsmittel zur Erforschung der
Spannungszustände fester Körper im plastischen Gebiete angesehen.

Die Gleitlinienfelder sind tatsächlich mathematisch durch eine Anzahl wichtiger
Eigenschaften ausgezeichnet, welche es ermöglichen, aus der Kenntnis der Gleitlinien

Spannungszustände im plastischen Bereich vollkommen zu lösen.12 Die
wichtigste dieser Eigenschaften ist die Identität der Gleitlinien mit den Charakteristiken

der Plastizitätsbedingung. Der Nachweis dieser Identität ist erstmalig
von Massau, in seiner allgemeinen Form jedoch von Reißner1^ gegeben worden.
Auf Grund dieser Eigenschaft ist es möglich, verschiedene Integrale längs Gleitlinien

unanalytisch zusammenzusetzen, was die Anpassungen der Lösungen an
die tatsächlichen Verhältnisse sehr erleichtert. Die wenigen bestehenden Lösungen
der mathematischen Plastizitätstheorie sind fast durchwegs auf dieser
Gleitlinieneigenschaft aufgebaut.

Bei der Beurteilung der Verwendbarkeit der obigen Methode zur tatsächlichen
Lösung von Aufgaben der technischen Plastizitätstheorie muß jedoch berücksichtigt

werden, daß mathematisch einwandfreie Grenzübergänge über ihre
physikalische Zulässigkeit a priori kein Urteil erlauben. Wenn wir nämlich von einer
mathematisch gefaßten physikalischen Bedingung ausgehen und bestimmten
Größen darin bestimmte Grenzwerte zuweisen, so ist dieses Vorgehen
mathematisch zweifellos zulässig. Physikalisch ist es jedoch möglich, daß durch diese

Grenzwerte das physikalische Verhalten wesentlich geändert wird, und die

Gesichtspunkte, die zur Aufstellung der Bedingung führten, ihre Gültigkeit
verlieren oder stark einbüßen. Dies ist für die Plastizitätsbedingung der Fall.

Die Plastizitätsbedingung des allgemein plastischen Körpers im ebenen

Spannungszustand lautet:

n1 / /öx -h Öv\ '
i

<>
i

• Öx + Öv n
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wobei p der Reibungswinkel, C ein von der Kohäsion abhängiger Wert ist. Für
die kohäsionslose Masse, von der die Gleitlinienuntersuchungen ihren Ausgang
nahmen, ist C O. Das Auftreten einer Gleitlinie hat primär Gleichgewichtsstörungen

zur Folge; die der Erreichung der Störung vorangehenden reversiblen
Formänderungen sind im Vergleich zu den „plastischen" verschwindend klein. —
Bei Metallen dagegen ist C konst. und p 0. Infolge der großen Kohäsion
bedeutet das Auftreten von Gleitlinien nur eine lokale und vorübergehende
Gleichgewichtsstörung, der dem Beginn der Fließerscheinungen vorangehende elastische
Spannungs- und Verformungszustand ist für die Art des Fließens von wesentlicher

Bedeutung, und die Größenordnung der plastischen Verformungen ist
von jener der elastischen.

Aus dem obigen wird deutlich, daß den Ergebnissen der sogenannten
mathematischen Plastizitätstheorie in der technischen Plastizitätstheorie der kristallinen
Stoffe, vor allem der Metalle, keine Bedeutung zukommen kann. Deren
Voraussetzungen sind nämlich nicht erfüllt. Damit sinkt auch die Bedeutung der Gleitlinien

für die Untersuchung plastischer Zustände der Metalle, welche technisch
von Belang sind. Sie sind erst dann von einiger Wichtigkeit, wenn die
Verformung soweit vorgeschritten ist, daß im ganzen Feld keine elastischen Gebiete
mehr vorhanden sind. Diese Fälle treten nicht häufig auf und sind vor allem
auf Probleme der Bearbeitungstechnik beschränkt.

Löst man sich von der allgemein üblichen Ansicht von der großen Bedeutung
der Gleitlinien in der "Plastizitätstheorie, und wertet man die zahlreichen Ergebnisse

der vorhandenen Versuche vorurteilslos aus, so findet man, daß das

Phänomen der Gleitlinien nicht mit der plastischen Verformung an sich, sondern

nur mit der Art des Überganges vom elastischen in den plastischen Zustand
zusammenhängt. Sie sind, ebenso wie die ausgeprägte Fließgrenze, typische Labili-
täts- (Unstetigkeits-) Erscheinungen. Den Beweis dafür liefern eine Reihe von
Beobachtungen, wie jene von Ludwik14:, daß die Fließlinien besonders dann
auftreten, wenn die Körper unter abfallender Last zu fließen beginnen, d. h. wenn
die Gleitlinienbildung auf den abfallenden Teil der Spitzen im
Spannungs-Verformungsdiagramm beschränkt ist, eine Beobachtung, die auch Nadai bestätigt15
und auf welche von Kärmän vielfach hinwies. Hierher gehört auch die
Beobachtung Nadais, daß das Gleitliniennetz bei sehr rasch durchgeführten
Druckversuchen viel dichter war, als bei langsamen Versuchen, was ein weiterer Beweis
dafür ist, daß Unstetigkeiten im allgemeinen, sei es solche der Belastung, sei e3

solche des Aufbaues, die Gleitlinienbildung begünstigen. Es liegt daher auf der
Hand, daß die Gleitlinienbildung auch durch Bohrungen und Kerben begünstigt
werden muß.

In diesem Zusammenhange sei auf die außerordentlich interessanten

Härtemessungen auf Fließfiguren von Moser16 hingewiesen, welche auf Grund der

Beobachtungen, daß Metalle im geflossenen Gebiet eine Härtezunahme zeigen,
gute Einblicke in das Wesen und den Ablauf der plastischen Verformungen
gewähren. Es wurde von Moser beobachtet, daß die bleibende Verformung
anfänglich nur zonenweise erfolgt (Gleitlinien), wobei in jeder Zone nur ein
bestimmter Härtegrad erreicht wird. Eine weitere allgemeine Härtesteigerung setzt
erst dann ein, wenn sich der ganze Stab (Zugversuch) mit einem Netz von Gleitlinien

überzogen hat. Der Grund für diese Erscheinung liegt in einer Art
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„Blockierung" der Gleitflächen, bei deren Erreichen in einer Zone sich die weitere

Erhöhung der Belastung durch das „Abgleiten" in einer anderen, bisher nicht
deformierten Zone auswirkt. Hierbei steigt jedesmal, ehe der Gleitwiderstand
dieser nächsten Zone überwunden wird, die Belastung etwas an, um beim
Ausbilden der Gleitlinien wieder abzufallen; jeder Zacke des ö—e Diagrammes
entspricht daher eine lokale obere Streckgrenze, bei deren Erreichen sich eine Gleitlinie

unter Lastabfall ausbildet. Im Gegensatz zu den Erscheinungen bei Stahl
zeigte ein Kupferstab eine gleichmäßige Zunahme der Härte von Anfang der
Belastung an, wobei abgegrenzte Fließlinien nicht auftraten, nur ein allgemeines
Mattwerden beobachtet werden konnte.

Die obigen Versuche sind eine anschauliche Bekräftigung der Auffassung der
Streckgrenze des Stahles als „Verzug" des FließVorganges und der Erklärung der
Gleitlinien als einer damit zusammenhängenden nur für Stähle mit unstetiger
Fließgrenze ^charakteristischen Erscheinung.

Diese Auffassung wird auch noch direkt bestätigt durch die Ergebnisse der
Versuche von Ititaro Takaba und Katumi Okuda11, welche zeigen, daß

1. das Auftreten der Gleitlinien und der plötzliche Knick in der
Spannungsdehnungslinie Ergebnisse ein und desselben Vorganges sind, nämlich der
gruppenweisen Verschiebung großer Mengen von Kristallkörnern,

2. alle Metalle, bei denen Gleitlinien auftreten können, der Kristallstruktur
des raumzentrierten Würfelgitters angehören. Es wird gezeigt, daß auf
Stählen mit Austenitgefüge, welche der Struktur des flächenzentrierten
Würfelgitters angehören, keine Gleitlinienbildung zu beobachten war.

Es läßt sich daher behaupten, daß für die Untersuchung elastisch-plastischer
Zustände kristalliner Stoffe, vor allem Metalle, die Beobachtung der Gleitlinienfelder

keine geeignete Methode ist, sondern daß im Gegenteil durch die Gleitlinien

die grundsätzlichen Vorgänge, auf die es im wesentlichen ankommt, oft
verschleiert werden. Dies gilt in erster Linie von der Ausbildung der wahren
Grenze zwischen elastischem und plastischem Bereich.

4. Grenzlinien des plastischen Bereiches.

Benützt man eine der bekannten Methoden zur Sichtbarmachung des plastisch
verformten Gebietes in Metallen, am besten die der Rekristallisation,18 so lassen
sich die Grenzen zwischen elastischem und plastischem Gebiet deutlich feststellen
(Fig. 1). Die Form dieser Grenzlinien hat, wie sämtliche Beobachtungen einwandfrei

erweisen,19 nichts mit den Gleitlinien zu tun, sondern wird von jenen
Linien gebildet, welche sowohl dem plastischen, als auch dem elastischen
Spannungszustand entsprechen. Die einzige Linienschar, die dieser Anforderung
genügt, sind die Linien xmax const. des elastischen Zustandes. Diese Art der
Grenzlinien, welche unabhängig sind von der Art des Überganges aus dem
elastischen in den plastischen Bereich, sind in allen elastisch plastischen Zuständen
zu beobachten und bilden deren wesentlichste Erscheinung. Nur solche Lösungen
des plastischen Spannungsfeldes werden der Wirklichkeit entsprechen, welche
sich längs jeder Linie xmax const. an das entsprechende elastische
Spannungsfeld stetig anschließen lassen. Jeder Lösung der plastischen Aufgabe
muß daher die der elastischen vorangehen, wobei zu beachten ist, daß die
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Grenze zwischen elastischem und plastischem Bereich keine feste, sondern eine
mit wechselnder Belastung wechselnde ist, welche jedoch immer den Linien
Tmav const. des elastischen Feldes entsprechen muß.

Die mathematische Behandlung elastisch-plastischer Probleme unter den obigen
Voraussetzungen ist nicht leicht und ist bisher nur in ganz wenigen einfachen
Fällen gelungen. Eine gewisse Erleichterung könnte jedoch darin liegen, daß
durch die sogenannte optische Spannungsuntersuchung an Modellen dadurcb,
daß hierbei die Linien konstanter Hauptspannungsdifferenz als Isochromen
primär erscheinen, es ermöglicht wird, die Grenze des plastischen Bereiches
dem Modellversuch a priori zu entnehmen.

¦*,\&tib?#
<&$&•¦

*&h._mW$Si<
«*#«£

C •• i

Fig. 1.

5. Die Eindringungsfestigkeit.

Als Beispiel der Lösung eines technischen Problems auf die oben angegebene
Art sei das Problem der Eindringungsfestigkeit als ebenes Problem behandelt.
Der Fall ist deshalb von besonderem Interesse, weil er das bekannteste Beispiel
einer plastischen Lösung mit Hilfe des Gleitlinienfeldes darstellt und weil seine

Veröffentlichung seinerzeit den eigentlichen Anstoß zur Entwicklung der
modernen mathematischen Plastizitälstheoric gab.20

Es gehl darum, jene gleichförmig verteilte Last p zu finden, welche (Fig. 2)
längs AB wirkend, innerhalb des betrachteten Gebietes Fließen hervorruft.

Fig. 2. tt-V-rf
fr

»N

Fig. 3.

Diese Last, welche als Eindringungsfestigkeit bezeichnet wird, sei als Funktion
der Fließgrenze und des Neigungswinkels der seitlichen Begrenzung
darzustellen. Da der ebene Verzerrungszustand (e„ 0) betrachtet wird, lautet die

Huber-Hencky-Mises'sehe Fließbedingung

wobei die Fließgrenze ap 2 k.
Da die Lösung der stumpfen Schneide (stumpfer Keil) weder als elastisches

noch als plastisches Problem in geschlossener Form möglich ist. kann man sieb
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dadurch helfen, daß man nur die Ecke A betrachtet und die Tatsache
berücksichtigt, daß in dieser Ecke die* Linien xmax const. des in Fig. 3 dargestellten
Problems Tangenten an die Linien xmax const. des stumpfen Keiles sind.
Zwecks Bestimmung der kritischen Belastung ist es unwesentlich, ob wir die
Linien Tmax const. selbst oder deren Tangenten ermitteln.

Aus der elastischen Lösung der Ecke mittels der Airy'sehen Spannungsfunktion

F ar2 -f- br2cp -f- er2 sin 2 cp + dr2 cos 2 cp (1)

wobei die 4 Konstanten a, b, c, d aus den vier Randbedingungen

für cp 0 : öi — p, t 0 (ohne Reibung)

„ cp a : öt=0; t 0

bestimmt werden können, ergeben sich die Spannungen

ör p (Q-1) — 2 P • p • cp — p • P • sin 2 cp + p • Q cos 2 cp

öt p(Q-x) — 2 P • p • cp + p • P • sin 2 cp — p • Q cos 2 cp (2)

t p • P — p • P cos 2 cp — p • Q sin 2 cp

wobei

p -„, \ w Q
2 (a — tga)' 2(a ctga — 1/

Mit der Abkürzung
w*-p2-Q2X

4p2.p2

ergibt sich die Gleichung der Linien xmax const. nach kurzer Zwischenrechnung

in der Form

y - afrlt) [*ga±Vtg*a-"4x2]. (3)

Dies ist die Gleichung eines Geradenpaarees durch A, welches solange reell ist,
als tg2a >4x2.

Die Hauptschubspannung wird auf jenen Linien ein Maximum, für welche

O T max ^
b Cp

Dies ist erfüllt für cp —. Die Bildung der zweiten Ableitung ergibt weiter,

TT O TT Ct
daß nur für — < a — längs des Strahles cp —- ein Maximalwert entsteht,

jl IL
während für—— < a< —dort ein Minimum erscheint. Die letzteren Werte

L. 4L

von a sind jedoch technisch ohne Interesse. Für cp =—- erhält man die Größe

der Hauptschubspannung

Tm«2 p2 [Q2 - 2 P - Q • sin a + 2 P2 (1 - cos a)]. (4)
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Durch Einführung der Fließbedingung erhalten wir für die kritische Last

P öf
sin {> + cos $

(5)
1 + sin {>

Dies ist der Zusammenhang zwischen Eindringungsfestigkeit, Keilwinkel und
Fließgrenze.21

Sachs22 hat das Problem der Eindringungsfestigkeit bei Metallen sehr
eingehend studiert, wobei er ebenfalls durch Rekristallisation die plastisch ver-
formten Bereiche als durch Linien xmax const. des elastischen Spannungsfeldes

begrenzt feststellte. In Fig. 4 sind die von Sachs ermittelten Eindringungs-
festigkeiten bei Stahl für verschiedene Keilwinkel mit den aus Gleichung 5
errechneten Werten verglichen. Die Übereinstimmung ist zufriedenstellend.

Die Lösung desselben Problems mittels Gleitlinienfeldern durch Prandtl führte
zur Gleichung

p oF (1 + &) (6)

als Abhängigkeit der Eindringungsfestigkeit vom Schneidenwinkel und der
Fließgrenze. Diese Gleichung wurde vergleichsweise ebenfalls in Fig. 4 eingetragen
und es zeigt sich, daß eine Übereinstimmung höchstens für ganz kleine
Keilwinkel besteht, der prinzipielle Verlauf jedoch ein ganz anderer ist.

p
g

kg/mm2

ss*i

&?!>p
£

Versuchswerte
Resultatsdessa/
Test results

0 —*\>

Fi«. 4.

30° 90°

Das angeführte Beispiel zeigt, daß die Behandlung plastischer Probleme
kristalliner Stoffe immer von den Begrenzungskurven des plastischen Bereiches
ausgehen muß. Die Annahme von Gleitlinien als eine solche Begrenzung und
die Aufstellung von Lösungen aus den Eigenschaften der Gleitlinien wird immer
zu Resultaten führen, welche der Wirklichkeit nicht entsprechen.

Zusammenfassung.
Die Grundlagen der allgemeinen Plastizitätstheorie enthalten noch wesentliche

Unklarheiten, welche darauf zurückzuführen sind, daß die Beurteilung und
Wertung der Phänomene des Fließens kristalliner Körper nicht einheitlich
und klar ist.
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Die wesentlichsten Begriffe der Plastizitätstheorie: Fließbedingung, Fließgrenze
und Gleitlinien werden daher einer kurzen Analyse unterworfen, deren wichtigstes
Ergebnis darin besteht, daß sowohl die Fließgrenze als die Gleitlinien als vom
inneren Aufbau des Stoffes wesentlich abhängige Unstetigkeitserscheinungen
erkannt werden, welche zwar die Art des Überganges aus dem elastischen ins
plastische Bereich spezifisch beeinflussen, jedoch für die allgemeine plastische
Verformung von geringerer Bedeutung sind als allgemein angenommen wird.
Und dies umsomehr, als beide Erscheinungen nur bei einer ganz bestimmten
Kristallstruktur, und zwar bei der des raumzentrierten kubischen Gitters zu
beobachten sind, während sich bei anders aufgebauten Stoffen der Übergang
aus dem elastischen ins plastische Bereich stetig vollzieht.

Unabhängig von der Art dieses Überganges wird die Grenze des plastischen
Bereiches durch Linien xmax const. des elastischen Spannungsfeldes gebildet.

Das Beispiel der Eindringungsfestigkeit zeigt die Unterschiede in der Behandlung

eines plastischen Problems einerseits vom oben präzisierten Standpunkte,
andererseits vom Standpunkte der mathematischen Plastizitätstheorie, welche im
Grunde genommen eine Theorie der Gleitlinienfelder ist, und beweist, daß bei
Metallen die Ergebnisse der mathematischen Plastizitätstheorie mit der Wirklichkeit

nicht übereinstimmen.
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