
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 2 (1936)

Rubrik: I. Die Bedeutung der Zähigkeit des Stahles für die Berechnung und
Bemessung von Stahlbauwerken, insbesondere von statisch
unbestimmten Konstruktionen

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


I

Die Bedeutung der Zähigkeit des Stahles
für die Berechnung und

Bemessung von Stahlbauwerken, insbesondere
von statisch unbestimmten Konstruktionen.

La ductilite de l'acier. Sa definition. Maniere d'en tenir compte
dans la conception et le calcul des ouvrages, notamment des

ouvrages hyperstatiques.

Importance of the toughness of steel for calculating and
dimensioning steel structural work, especially when statically

indeterminate.
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Generalreferat.

Rapport General.

General Report.

Dr. Ing. L. Karner f,
Generalsekretär der I.V.B.H., Prof. an der Eidg. Techn. Hochschule, Zürich.

Wirtschaftliches Bauen im Stahlbau erfordert die Ausnutzung der Sicherheit.
Wenn früher bei der Berechnung der Bauwerke unter Annahme von zulässigen
Spannungen der Sicherheitsfaktor auf die Bruchfestigkeit bezogen wurde, so ergab
sich ein vollständig falsches Bild. Im letzten Jahrzehnt gewann die Fließgrenze
des Spannungsdehnungsdiagrammes aus dem Zugversuch als Materialkonstante
immer mehr Einfluß auf die Bewertung des Baustoffes und damit auf die
Bestimmung der Sicherheit.

Die Erfahrungen an ausgeführten Stahlbauwerken haben jedoch gezeigt, daß
in einzelnen Bauteilen unter Umständen ganz bedeutende Überschreitungen der
zulässigen Beanspruchungen, oft über die Fließgrenze, eintreten, ohne daß
dadurch das Bauwerk in seinem Bestände gefährdet v>ürde. Ich erinnere an
Nebenspannungen in Fachwerken, an Beanspruchungen in Nietverbindungen,
an den Einfluß von Stützensenkungen bei Durchlaufträgern usw.

Wir wissen heute, daß bei statisch unbestimmten Systemen Überschreitungen
der Fließgrenze unter gewissen Bedingungen auftreten dürfen, ohne daß die

ursprüngliche projektmäßige Sicherheit herabgesetzt würde.
Die Erkenntnisse führten zu einer grundsätzlichen Revision des Sicherheitsbegriffes

im Stahlbau; die Fließgrenze allein reicht nicht mehr aus, um den
Baustoff für den Statiker und Konstrukteur eindeutig zu definieren.

Wenn ein reiner Zugstab die Fließgrenze erreicht, so ist seine Tragfähigkeit
erschöpft, sofern er nicht etwa im Verband eines innerlich statisch unbestimmten
Fachwerkes in der Längenänderung behindert wird und in diesem System
dadurch eine Umlagerung des Kräftespiels eintritt.

Beim Biegeträger dagegen oder bei einer kombinierten Beanspruchung auf
Biegung und Normalkraft kann auch bei unbehinderter Verformung nach dem
Erreichen der Fließgrenze in den äußeren Fasern die Belastung weiter gesteigert
werden, da das Spannungsbild statisch unbestimmter Natur ist.

Wenn wir einen auf Biegung beanspruchten Rechteckbalken betrachten, so
erklärt die ältere Plastizitätshypothese den Vorgang bei der Erhöhung des
Tragmomentes mit einem allmählichen schichteweisen Fließen bis zum Eintritt der
Vollplastizität oder bis zur Bildung des plastischen Gelenkes.
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Die neue Plastizitätstheorie dagegen geht im gleichen Fall zunächst von
einem Hinaufrücken der Fließgrenze aus und folgert schließlich eine plötzliche
Plastizierung des ganzen Querschnittes bezw. plötzliche Bildung des plastischen
Gelenkes.

Für den Statiker und Konstrukteur sind beide Theorien nur als Erklärung
des Vorganges interessant. Für das Endergebnis: der Bildung des plastischen
Gelenkes und damit der Änderung der statischen Gliederung im Bauwerk, sind
diese Vorgänge weniger wichtig.

Das plastische Verhalten ist im hohen Grade von der Art des Querschnittes
und ganz besonders von der Art des etwaigen mehrachsigen Spannungszustandes
abhängig. Die Vorgänge sind auf Grund unserer heutigen Erkenntnisse sehr
schwer rechnerisch zu erfassen.

Die größte Zahl der Arbeiten und Forschungen auf dem Gebiet der Plastizitätstheorie

wurde bisher ohne Berücksichtigung des Einflusses der Zeit
vorgenommen. Es ist sehr wahrscheinlich, daß bei Betrachtung der hier auftauchenden
Probleme als richtige dynamische Aufgaben, das heißt unter Einschaltung einer
neuen Variablen „t" eine bessere Klärung der Zusammenhänge gelingen wird.

Es ist uns ja allen bekannt, daß die „Fließgrenze" des üblichen Festigkeitsversuches

nicht nur sehr stark von der Querschnittsform des Versuchsstabes
sondern auch ebenso von der Versuchsdurchführung hinsichtlich der Zeit abhängt.

Die Erkenntnis, daß die Eigenschaften der Zähigkeit des Stahles, die

Bemessung statisch unbestimmter Konstruktionen wirtschaftlicher gestalten lassen,
hat sich bereits seit Jahren in den deutschen und anderen Hochbauvorschriften
ausgewirkt, als bei der Bemessung von Durchlaufträgern ein Ausgleich der
Stützen und Feldmomente (wenn vielleicht auch nicht in voller Erfassung der
wirklichen Verhältnisse) in Rechnung gestellt wurde. In bewußter Weise haben

jedoch bereits Kazinczy - Ungarn und Kist- Holland die Bemessung statisch
unbestimmter Systeme auf Grund einer neuen Definition des Sicherheitsgrades
\orgeschlagen.

Eine schärfere Erfassung des hier in Rede stehenden Problems war aber erst
durch die außerordentlich tiefschürfenden Arbeiten von Grüning möglich
geworden. Er war der erste, der den Versuch gemacht hat, die hier in Betracht
kommenden Zusammenhänge analytisch zu erfassen.

Grüning hat sich in seinen Untersuchungen zunächst nur auf den Fall einer
un\eränderlichen Belastung des Tragwerkes beschränkt: Hans Bleich
berücksichtigte aber bereits den Wechsel verschiedener Lastanordnungen und führte
den Begriff der Selbstspannungslinien ein, die die Grundlage für die Berechnungen

nach dem sogenannten Traglastverfahren bilden.
Bei der Einteilung der Referate hat die I.V.B.H. Gewicht darauf gelegt die

von mir nur berührten Fragen von berufenen Forschern behandeln zu lassen,

um ein möglichst geschlossenes Bild von dem derzeitigen Stand des Problems

zu erhalten.
Die Arbeiten von Fritsche, Freudenthal und Rinagl behandeln die mehr

materialtechnischen Fragen.
Eine andere Gruppe von Referenten behandelt unter Voraussetzung eines

idealisierten Spannungsdehnungsdiagrammes die Probleme in theoretischer Be«

ziehung wie Melan, Kohl und Levi.
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Von besonderer Bedeutung ist bei der Abklärung aller Fragen der Plastizität
selbstverständlich das Versuchswesen. Maier-Leibnitz berichtet hierüber in seinem
Referat und nimmt durch Deutung der Versuche Stellung zu den Berechnungsmethoden.

In der eben erschienenen Nummer der Zeitschrift ,,Stahlbau" berichtet Maier-
Leibnitz über weitere Versuche zur Klärung der tatsächlichen Tragfähigkeit
kontinuierlicher Träger und kommt dabei zu sehr wertvollen vereinfachten
Deutungshypothesen.

Schließlich zeigt das Referat Bleich die praktische Berechnung von Durchlauf-
trägem und Rahmen nach der Plastizitätstheorie.

Die Frage des Einflusses der Plastizität auf die Bemessung von Stahltragwerken

erscheint von größter Wichtigkeit, da unser Bestreben dahin geht, die
Wirtschaftlichkeit der Stahlbauten, ohne ihre Sicherheit zu gefährden, in
weitgehendstem Maße zu erhöhen. Dies ist durch die Anwendung des
Traglastverfahrens bei der Bemessung statisch unbestimmter Systeme, unter gewissen
Einschränkungen, möghch. Die Einschränkungen beziehen sich darauf, daß
beispielsweise Rahmen oder kontinuierliche Träger, die auf Grund der Elastizitätstheorie

in allen Querschnitten ausgenutzt sind, bei Umlagerung des Systems
durch Einschaltung plastischer Gelenke keine oder nur unwesentliche Reserven
besitzen.

Ähnlich verhält es sich, wenigstens nach unserer vorläufigen Anschauung,
mit dem Fachwerk. Bei diesem kommt selbstverständlich auch noch die Frage
der Instabilität der auf Druck beanspruchten Teile hinzu.

Wir haben bisher stillschweigend von der Plastizität in Trägern bezw. biegungs-
steifen Konstruktionen gesprochen. Das plastische Verhalten des Baustoffes
spielt aber auch eine wichtige Rolle bei den Problemen des instabilen
Gleichgewichtes und daher ist auch von dieser Seite her eine gründliche Betrachtung
des bisher Erreichten notwendig. Die Plastizitätstheorie gestattet uns in wesentlich
vereinfachter Form die Untersuchungen der Stabilität des Stabes auch bei
Berücksichtigung der Querschnittsform und speziell auch bei Berücksichtigung
verschiedenster Lagerbedingungen. Die in Entwicklung begriffenen praktischen
Berechnungsmethoden zur Untersuchung von Stabilitätsproblemen von Stäben
und Platten dürften in allernächster Zeit auf eine wesentlich vereinfachtere Basis

gestellt werden können, um damit der Praxis eine Erleichterung in der
Beurteilung solcher Bauaufgaben zu geben.

Die Bemessungsverfahren statisch unbestimmter Systeme unter Berücksichtigung
der Plastizitätseigenschaften des Stahles nehmen bis heute im allgemeinen keine
Rücksicht auf den Ermüdungsbruch. Es ist durch Versuche und Erfahrungen
noch nicht genügend erhärtet, wie weit bei wechselnden Beanspruchungen nach

erstmaliger Überschreitung der Fließgrenze und Bildung von plastischen
Gelenken, die in der Folge rein elastischen Spannungsüberlagerungen in Bezug auf
die Ermüdung gleich behandelt werden können wie in Bauwerken ohne
Eintreten von örtlichen Momentenausgleichen.

Selbst wenn man davon absehen wollte, statisch unbestimmte Systeme nach
der Plastizitätstheorie zu bemessen, spielen die Erkenntnisse, die durch die

Klärung der hier in Betracht kommenden Fragen eine ganz außerordentliche
Rolle bei der Auswahl der Bauwerksformen. Die bisherige Angst vor der Aus-
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führung von Durchlaufträgem, schon bei geringfügiger Möglichkeit von
Stützensenkungen ist im Sinne unserer Erkenntnisse unbegründet.

Dort wo bisher wegen Nachgiebigkeit des Baugrundes oder elastischer Lagerung
zu statisch bestimmten Bauformen gegriffen wurde, können wir heute statisch
unbestimmmten Ausführungen mit wirtschaftlicherer Dimensionierung den Vorzug

geben.
Wir haben bisher den Einfluß der Nebenspannungen im Fachwerk bedeutend

überschätzt, obwohl schon Engesser vor mehr als 40 Jahren auf die Milderung
der Nebenspannungen infolge der Zähigkeit des. Stahles hingewiesen hat. Die
Beispiele könnte ich für den Stahlbau sowohl für die Festigkeit als auch für die

Stabilitätsprobleme beliebig erweitern.
Wir befinden uns heute mitten in einem Wandel unserer Anschauungen über

die kritische örtliche Beanspruchung in unseren Bauwerken. Von der
Materialprüfungstechnik verlangen wir wesentlich bessere Charakterisierung der Baustoffe
um den Konstrukteur zu befähigen, die Bauwerke unter Berücksichtigung der
erforderten Sicherheit zu dimensionieren.

Unsere wachsenden Erkenntnisse, die über manche alt hergebrachte
Auffassung hinwegschreiten, sollen uns aber nicht darüber hinwegtäuschen, daß
wir mit den neuen Berechnungsmethoden und unserem neuen konstruktiven
Erfassen der Probleme wiederum nur in Einzelheiten, in Besonderheiten eines
Bauteiles hineinleuchten können.

Das Bauwerk als solches ist eine so mannigfache Vielheit von Einzelaufgaben
die sich gegenseitig beeinflussen, daß dem schöpferischen Schaffen des Ingenieurs
nach wie vor die Hauptverantwortung für das Bauwerk überbürdet werden muß.
Es ist die Aufgabe des wirklichen Konstrukteurs, die gewonnenen neuen
Einblicke in die Eigenschaften seines Baustoffes und die durch Versuche gestützten
neuen Berechnungsmethoden über die Zähigkeitseigenschaften des Stahles in
sinnvoller und praktischer Weise in seine bisherigen Bauerfahrungen, von denen
sie nur einen kleinen Teil bilden, einzufügen um sichere und wirtschaftliche
Stahlbauwerke zu schaffen.
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Diskussion über die Plastizität.

Discussion relative ä la plasticite.

Contribution to Discussion on Theory on Plasticity.

L. Baes,
Professeur ä l'Universite de Bruxelles.

I. Über die allgemeine Theorie der Plastizität, der Rolle der Gleitlinien und
der Grenze zwischen dem elastischen und dem plastischen Bereich.

Die Referate I 1 und I 2 des Vorberichtes finden Zustimmung, geben aber
auch Anlaß zu Bemerkungen.

1. Definition der Plastizität im allgemeinen:
Um alle falschen Auslegungen zu vermeiden, sei daran erinnert, daß man von

einer plastischen Formänderung eines Teiles eines Körpers oder von einem
plastischen Zustand eines Stoffes spricht, wenn in dem betreffenden Teil die

Formänderung nicht vollkommen elastisch erfolgt und trotzdem der Zusammenhang

des Stoffes nicht aufgehoben ist, selbst wenn eine Gefügeänderung
erfolgt ist.

Diese Definition ist allgemein und es folgt aus derselben, daß folgende
Ausdrücke synonym sind:

Plastische Formänderung und bleibende Formänderung ohne Zerstörung des

Zusammenhanges (es gibt übrigens auch andere Fälle der bleibenden
Formänderung, nämlich mit Rißerscheinungen oder mit teilweiser Aufhebung des

Zusammenhanges).

2. Definition des plastischen Fließens und der Gleitlinien oder Fließfiguren für
weiches Eisen:

Das Vorhandensein einer sehr wichtigen Eigenschaft des Baustahls auf diesem
Gebiete gibt der Untersuchung der Plastizität ein ganz besonderes Interesse.
Wenn nämlich der Baustahl reinen Zug- oder Druckbeanspruchungen
ausgesetzt ist, zeigt' er ein ganz besonderes Verhalten bezüglich des plastischen
Fließens. Bei einer gegebenen Größe der Belastung steigt die Formänderung
in der Längsrichtung plötzlich sehr stark an.

Dieses Verhalten läßt sich in Form eines Sprunges im Diagramm der Zugoder

Druckspannungen wiedergeben. Es dauert zwar bei sehr starken
Formänderungen nicht an, führt jedoch vom technischen Standpunkt aus zu einer
wesentlichen plastischen Formänderung, welcher ein Zustand vorausgeht, der

sozusagen nur sehr geringe elastische Formänderungen umfaßt.
Diese Erscheinung und die daraus sich ergebenden Folgen haben in Wirk-

3
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llichkeit die modernen Untersuchungen über die Plastizität ausgelöst, und man
sucht diese Erscheinung zwecks Erzielung einer größeren Wirtschaftlichkeit
der Konstruktionen aus weichem Eisen auszunutzen. Diese Erscheinung bildet
übrigens einen sehr wertvollen Ausgleich für örtliche Spannungszunahmen.

Die genannte Erscheinung, welche man in Form des Sprunges in den Kurven
darstellt, hat zum Teil zu der Vorstellung der vollkommenen Plastizität geführt,
nämlich einer bei konstanter Belastung zunehmenden Formänderung.

Unter diesem Gesichtspunkt unterscheidet man bei der vollkommenen
plastischen Formänderung lineare, ebene und räumliche Spannungs- oder Form-
änderungszustände.

Hieraus ergibt sich die Berechtigung und die praktische Notwendigkeit, eine
Theorie über die vollkommene Plastizität zu entwickeln, welche im übrigen noch
in der Entwicklung ist.

3. Bedeutung der Gleitlinien, welche an der Oberfläche der plastisch
verformten Körper aus weichem Eisen auftreten.

Man kann sich m. E. der Ansicht von Takawa und Okuda anschließen, die
unter I 1 angeführt sind:

„Das Auftreten der Gleitlinien und der plötzlichen Abweichung in der
Formänderungskurve sind das Ergebnis des gleichen Vorganges, nämlich der gruppenweisen

Verformung bedeutender Mengen der Kristallkörper/'
Es ist also eine wirkliche Diskontinuität in der Formänderung vorhanden,

welche im übrigen zonenweise auftritt und von Einfluß auf ein ganzes Gebiet
zu sein scheint, so daß es sich nicht nur uan rein örtliche Wirkungen handelt.

Man kann sich dieser Vorstellung anschließen, welche sehr gut verdeutlicht,
daß dieses unregelmäßige Verhalten die Folge einer molekularen Unstabilität
ist, analog einer Verzögerung der Formänderung.

Diese Formänderung erfordert in diesem Augenblick eine Gefügeänderung,
welche in Form wesentlicher und nicht umkehrbarer Gleitungen vor sich geht,
d. h. plastischer Formänderungen, welche eine Verfestigung zur Folge haben,
sowie auch eine Blockierung der Gleitflächen (siehe Moser).

Aus Vorstehendem scheint hervorzugehen, daß die wahre Grenze zwischen
der im elastischen Zustand verbliebenen Zone des Körpers und der in den

plastischen Zustand übergegangenen nicht mit den Gleitlinien zusammenfallen
kann, welche an eine Verzögerung gebunden sind und sich über eine Zone
erstrecken.

Die Gleitlinien können sehr breit sein, wenn der betreffende Teil des Körpers
einer reinen Zugbeanspruchung ausgesetzt ist, während sie häufig sehr schmal
sind, wenn dies nicht der Fall war.

4. Einige Eigentümlichkeiten der Gleitlinien:

Dr. Ing. Freudenthal schreibt, daß die wichtigste Eigenschaft der Fließfiguren,
welche an der Oberfläche erscheinen, darin besteht, daß sie mit den größten
Schubspannungstrajektorien zusammenfallen.

Es ist jedoch zu bemerken, daß dies nur zutrifft, wenn die Gleitlinien ein
Netz aus zwei senkrecht zueinander stehenden Kurvenscharen bilden, während
dies nicht der Fall ist, wenn diese Linien nur eine Schar von Gleitlinien bilden.



Diskussion über die Plastizität 35

Diesen ziemlich häufigen Fall hat man anscheinend aus den Augen verloren.
Er ist jedoch klar in dem alten Aufsatz von Hartmann und von Fremont

behandelt, und ist leicht zu rekonstruieren.
In diesem Fall sind die Gleitlinien offensichtlich nicht mit den Trajektorien

der größten Schubspannungen verwechselt, sondern sind mit den Trajektorien
der einen oder beiden Hauptspannungen (isostatische Linie) verwechselt. Es ist
noch zu bemerken, daß eine Gleitlinie sowohl mitten im Stoff beginnen als auch
enden kann. Wenn die Belastung zunimmt, pflanzt sich diese Linie fort, während
gleichzeitig andere entstehen können.

Eine Gleitlinie tritt daher notwendigerweise nicht mit einemmal auf, vielmehr
ist es häufig, daß eine derartige Linie sich nach und nach während einer
Vergrößerung der Belastung fortpflanzt.

Es erscheint daher nachgewiesen, daß die Gleitlinien nicht in allgemeiner
Weise Grenzlinien zwischen dem elastischen und dem plastischen Bereich sind.

Dies ist offensichtlich, da eine Linie, welche nicht mit einemmal erscheint,
sondern sich bei zunehmender Belastung fortpflanzt, keine Grenze sein kann.
Eine Grenzlinie müßte notwendigerweise in sich geschlossen sein, oder eine
mit einem Teil des Körperumrisses geschlossene Kurve bilden.

Diese Schlußfolgerung von Dr. Ing. Freudenthal ist daher offensichtlich und
läßt sich auf Grund elementarer Überlegungen ableiten. Von diesem Ergebnis
bis zum Ableugnen jeder mathematischen Bedeutung der Gleitlinien ist jedoch
noch ein weiter Weg, und zwar besonders dann, wejim diese Gleitlinien stark
auseinandergezogen sind.

5. Die Plastizitätsbedingung.
Für die Metalle, welche einer plastischen Formänderung mit oder ohne klarer

Fließgrenze unterworfen werden können, sind folgende hauptsächliche
Hypothesen aufgestellt worden, über die Bedingungen, welchen die Spannungen an
der Grenze des elastischen und des plastischen Gebietes genügen müssen1:

Hypothese von Saint-Venant, Maurice Levy und Guest:

öi — öm Re
Tmax oder k —

Worin Re die Elastizitätsgrenze für reine Zugbeanspruchung ist.

Hypothese von Beltrami und Haigh:
Das Kriterium besteht in der Größe der spezifischen Arbeit für die elastische

Formänderung.
Die zu erfüllende Bedingung läßt sich wie folgt ausdrücken:

2
(ö2i + ö2n + ö*ni) — — (ön • öm + öm • öi + öj • ön) Re2

Dieses Kriterium führt zu einer Darstellung im Raum in Form eines

Ellipsoids und für den ebenen Spannungszustand in Form einer Ellipse.

1 L. Baes: Resistance des materiaux et elements de la theorie de l'elasticite et de la
plasticite des corps solides. Band I, Kapitel XI. — «Le probleme des criteres de la resistance
des materiaux.» Brüssel 1930 — 34.

3*
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Hypothese von v. Mises und Hencky:
Das Kriterium ist die Größe der spezifischen Arbeit der Formänderung durch

Fließen (Gleiten).
Es läßt sich wie folgt ausdrücken:

(öi - ön)2 + (öi, - öm)2 + (öm- öi)2 2 Re2 8 k2

oder als Funktion der größten Tangentialspannung:

T2L II + T2H. III + T2IH. i^yRe2 k2

Dieses Kriterium führt zu einer Darstellung durch einen Rotationszylinder
und für den ebenen Spannungszustand durch eine Ellipse.

Hypothese von v. Mises und Hencky, abgeändert von Huber:

Das Kriterium ist der
Wert für die spezifische
Formänderungsarbeit durch
Gleiten, sofern die kubische
Ausdehnung oder die mittlere

0 öi + öu + öm
Spannung

o
negativ sind.

Wenn sie positiv sind,
muß als Kriterium dasjenige
von Beltrami2 übernommen
werden.

Dieses Kriterium führt zu
einer der Fig. 1 entsprechenden

graphischen Darstellung.
Für den doppelten
Spannungszustand ergibt es eine

aus zwei Ellipsen gebildete
Figur, welche sich wenig
von derjenigen von v. Mises-

Hencky unterscheidet.
Es ist zuzugeben, daß die

bisher bekannt gewordenen
Erfahrungen, d.h. diejenigen
von Ros und Eichinger,

erTheorie von Huber bezüglich des elastischen Grenzgleich- geben haben, daß die Theorie
gewichtes. (Graphische Darstellung). VOn Huber für weiches Eisen

a) Dreiaxige Spannungszustände. oder analoge Stoffe Sehr be-

b) Zweiaxige Spannungszustände. triedlgend ist.

H"*J

5.1*
«i.

?><»

a^lK
o>^5

—<o N 5 •»

N 5**
-V-^3*+ orn

s 8 4
*. *>

* 3

\äiuc *1-iM
---/.,>
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>
"oo/ «•?
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2 Das Kriterium von Huber ist besonders eingehend hervorzuheben, da dieses nicht identisch
mit demjenigen von v. Mises und Hencky ist. Es ist bedeutend logischer als dieses, was häufig
aus den Augen verloren wird.



Diskussion über die Plastizität 37

Es ist von Wichtigkeit, besonders zwei Sonderfälle zu betrachten, welche

häufig auftreten können:

Fall des ebenen Formänderungszustandes bei vollkommener Plastizität:

Die plastische Formänderung erfolgt in diesem Fall in parallelen Ebenen.
Es sei angenommen, daß diese Ebenen mit denjenigen der Hauptspannungen

öi und öm zusammenfallen, und daß ön senkrecht darauf steht.
Für den Fall der vollkommenen Plastizität erhält man in allen Punkten:

öi + öm
Daher öu"~ 2

öi < ön < öm
Die Bedingung der Plastizität bei diesen Spannungen läßt sich dann gemäß

St. Venant und Maurice Levy wie folgt ausdrücken:

öi — öjh 2 k =• Re

Die Bedingung der Plastizität von v. Mises-Hencky lautet:

i i
4 i 2 uÖi — Öm — 77= K 77=- r\e-

Man erkennt, daß für diesen Fäll die beiden Bedingungen gleich einem Koef-
2

fizienten ¦r7= sind und einem besonderen Wert von xmax entsprechen.
Vs

Hieraus geht hervor, daß ön zwischen öi und öm liegt, sowie daß die
Flächen, auf denen die Gleitbewegungen erfolgen, senkrecht zur Ebene I.—III.
verlaufen.

Die Gleitflächen sind Zylinder, deren Erzeugende senkrecht zu dieser Ebene
stehen.

Die Gleitungen erfolgen also parallel zu dieser Ebene und rufen auf derselben
zwei einander zugeordnete Scharen von Gleitlinien hervor, welche ein Netz
senkrecht zueinander stehender Kurven bilden und die Winkel des Netzes der
isostatischen Kurven halbieren.

Entlang dieser Linien, in dem Maße wie sie sich bilden, erreicht die Tan-
gentialspannung den kritischen Wert.

Sonderfall des ebenen Spannungszustandes oder des doppelten Spannungszustandes

bei vollkommener Plastizität:

Dieser Fall ist sehr häufig. Er tritt an der Oberfläche des Stückes auf. Die
eine der Hauptspannungen ist Null, beispielsweise ön 0.

Wenn öi und öm entgegengesetzte Vorzeichen besitzen, ist der Zustand der
Plastizität von St. Venant und Maurice Levy:

_ Öi — Öm _ _ Re
Xmax — ^ — _L *¦ — _L <r>

•

Wenn. öi und öm das gleiche Vorzeichen besitzen, wird diese Bedingung zu

Öi j Öm Re

Y oder ~¥=2-
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Die Bedingung der Plastizität von v. Mises-Hencky ist dann:

öi* öi • öm + öm2 4 k2 Re2

In kartesischen Koordinaten für öi, öm ausgedrückt, entspricht dies einer
Ellipse.

Die Bedingungen von St. Venant und v. Mises unterscheiden sich daher zahlenmäßig

kaum, wenn die Hauptspannungen öi und öm verschiedene Vorzeichen

45
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Fig. 2.
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Fig. 2 —4. Verlauf des Gleitliniennetzes g oder der Gleitlinienschar r erscheinend auf den
Außenflächen in den durch ebenen Spannungszustand beanspruchten Gebieten.

Fall a: Öji 0, Öj und Öjh von verschiedenen Vorzeichen,
Fall b: Ön Öm 0»

Fall c: Öji 0, Öj und Öjh von gleichen Vorzeichen.

Stab-
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besitzen. Die beiden Bedingungen sind jedoch nicht proportional, wie für den
ebenen Formänderungszustand.

In diesem Fall bildet sich, wenn die beiden Hauptspannungen ör und öm
entgegengesetzte Vorzeichen besitzen (Fig. 2), ein Netz von Gleitlinien.

Gemäß der Hypothese von St. Venant schneidet dieses Netz das Netz der
isostatischen Kurven als Winkelhalbierende, und in jedem Punkt einer der
Linien dieses Netzes erreicht das entsprechende tmax den kritischen Wert im
Augenblick, wenn das Fließen in diesem Punkt eintritt.

Gemäß der Hypothese von v. Mises bildet sich noch ein Netz von zwei
Kurvenscharen, doch erreicht längs der Gleitlinien dieses Netzes das xmax keinen
bestimmten Wert mehr. Dies ist der kritische Zustand, welcher nicht mehr auf
einem bestimmten Wert von tmax beruht.

Fig. 5.

Prüfstab, auf Zug beansprucht. Die Gleitlinien r erscheinen allmählich. (Figur
entnommen dem Buch „Mesure de la limite elastique des metaux", von

Ch. Fremont, 1903).

Wenn die beiden Hauptspannungen öt und am das gleiche Vorzeichen besitzen

(Fig. 4), bildet sich kein Netz senkrecht aufeinander stehender Kurvenscharen

mehr.
Die Gleitflächen stehen nicht mehr senkrecht zu der freien Fläche und zwar

trifft dies auf beide Theorien zu.
Es bildet sich eine einzige Schar von Gleitlinien, welche der genieinsamen

Schnittlinie der beiden Gleitflächengruppen entsprechen (Fig. 5 und 6).
Gemäß der Hypothese von St. Venant fällt jedes Element dieser Linien im

Augenblick seiner Bildung mit dem isostatischen Element zusammen, welches
der ihrem absoluten Werte nach kleinsten Hauptspannung entspricht. In diesem

Augenblick und an dieser Stelle wird die größte Hauptspannung gleich der
doppelten kritischen Tangentialspannung.

Die alten Werte von Hartmann lassen den Unterschied zwischen den Gleit-
Knien und den Gleitliniennetzen deutlich erkennen, siehe Fig. 7. Trotzdem hat
Hartmann diesen Unterschied nicht erklärt.

Gemäß der Hypothese von v. Mises entsprechen die in einem Punkt der
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Gleitlinie im Augenblick der Bildung derselben erreichten Spannungen der
Bedingung des Kriteriums, was nicht mehr ganz einfach ist.

Dieser Umstand der Bildung der Gleitlinien scheint in Vergessenheit geraten
zu sein. Er tritt trotzdem ziemlich häufig auf und ist das Problem dann voll¬

kommen verschieden von dem Fall der Bildung
des Gleitliniennetzes. Er tritt häufig bei flachen
Stücken mit seitlichen Kerben auf (Fig. 6).

Wenn eine einzige Hauptspannung nicht
gleich Null ist, besteht theoretisch die
Möglichkeit, daß sich ein Netz von Gleitlinien g
oder eine Linienschar r bildet (Fig. 3).

Praktisch ist es wahrscheinlich, daß sich
ein Netz von Gleitlinien g bildet.

Für dieses Netz sind die beiden Spannungshypothesen

von St. Venant und v. Mises
offensichtlich identisch.

Andererseits führt in der vollen Masse die
Theorie von St. Venant zu Gleitflächen in
allen Elementen, in denen im Augenblick des
Fließens das Tmax den kritischen Wert erreicht.

Andererseits besteht gemäß der Theorie von
v. Mises kein einfacher Zusammenhang mehr
zwischen dem kritischen Zustand und der
größten Tangentialspannung.

6. Grenze zwischen der elastisch gebliebenen
und der plastischen Zone:

Fluß- Df- Ing. Freudenthal schreibt:
„Das angeführte Beispiel zeigt, daß die

Behandlung plastischer Probleme kristalliner
Stoffe immer von den Begrenzungskurven des plastischen Bereiches ausgehen
muß. Die Annahme von Gleitlinien als eine solche Begrenzung und die

Aufstellung von Lösungen aus den Eigenschaften der Gleitlinien wird immer zu
Besultaten führen, welche der Wirklichkeit nicht entsprechen."

Bezüglich des zweiten Teiles muß man Vorbehalte machen, doch ist der
erste Teil dieses Satzes in allgemeiner Weise offenbar richtig.

Es ist in der Tat unrichtig, daß allgemein die plastische Zone mit einer
Gleitfläche verwechselt wird, trotzdem offensichtlich längs dieser Gleitflächen
der plastische Zustand sowohl in der plastischen Zone als auch an der Grenze
vorhanden ist.

An der Grenze muß er jedoch in einen elastischen Zustand übergehen.
Allgemein genommen wird die Grenzfläche nicht durch eine Gleitfläche

gebildet, sondern durch Punkte verschiedener Gleitflächen.
Die Grenzfläche ist offensichtlich ihrer Definition nach eine Fläche des elastischen

Zustandes, längs deren die als Kriterium genommene Funktion konstant ist.

SB

¦HSTW*

¦

-

Fig. 6.

Gleitlinien in einem gekerbte
stahl-Stab.
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konkave Seife (oben)
face concave (dessus)

-. concave sei/ (aboive)

Für ein im ebenen Formänderungszustand belastetes ebenes Stück ist daher
die Grenze, sowohl wenn man das Kriterium von St. Venant als auch dasjenige
von v. Mises anwendet, eine isochromatische Linie gemäß der photoelastischen
Untersuchung.

Für das gleiche Stück ist sie, wenn dasselbe im ebenen Spannungszustand
belastet wird, nur für die Theorie von St. Venant eine isochromatische Kurve
und wenn die beiden

Spannungen öi und öm entgegengesetztes

Vorzeichen besitzen
oder eine derselben nicht
gleich Null ist.

Für das gleiche Stück wird,
wenn die Belastung im ebenen

Spannungszustand erfolgt,
die beiden Spannungen das

gleiche Vorzeichen besitzen
und die Theorie von St.
Venant angewandt wird, die
Grenzlinie eine Kurve, welche
einem gleichen Wert der
ihrem absoluten Werte nach

größten Hauptspannung
entspricht. Sie ist daher keine
isochromatische Kurve gemäß
der photoelastischen
Untersuchung.

Nach der Hypothese von
v. Mises ist für den ebenen

Spannungszustand die Grenzlinie

keine isochromatische
Kurve.

Man erkennt daher, daß
es sehr wichtig sein kann,
zwischen den Fällen des
ebenen Spannungszustandes
und des ebenen
Formänderungszustandes zu
unterscheiden. Dies ist sehr
wesentlich, warum ich darauf
hingewiesen habe.

Um erkennen zu lassen,
daß die Grenzlinie im all-

konvexe Seife (unten)
Face convexe (dessous)

\convex seil (.below)

\

Fig. 7.

Stahlplatte, durch eine zentrische Einzellast deformiert.
Gleitlinien g und r.

(Figur entnommen dem Buch: „Distribution des deformations
dans les metaux soumis ä des efforts" L. Hartmann, 189G).

gemeinen keine Gleitlinie ist, genügt es, zwei einfache bekannte Fälle
anzuführen :

Bei einer starken zylindrischen Hülle, welche einem stark unterschiedlichen
Druck ausgesetzt ist, ist infolge der axialen Symmetrie die Grenzfläche zwischen
der plastischen und der elastischen Zone ein zu dem Rohr konzentrischer
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Zylinder, während in jedem Querschnitt die Schnittlinien der Gleitflächen
logarithmische Spiralen sind.

Diese Formen haben nichts Gemeinsames miteinander.
Das zweite anzuführende Beispiel ist eine ebene Platte, welche am Rande

durch eine quasi Einzellast belastet ist.
Die Gleitlinien in den Schnittflächen der Platte sind logarithmische Spiralen,

während die Grenzlinie eine isochromatische Linie ist, d. h. ein Kreis, welcher
seinen Mittelpunkt auf der Relastungslinie hat und tangential zu der Grenzlinie
des Stückes verläuft.

Der Fall einer kreisförmigen Scheibe, welche durch zwei einander diametral
gegenüberliegende Lasten belastet ist, ist ebenfalls typisch.

Es ist also offensichtlich, daß die Grenzlinie des plastischen und elastischen
Gebietes im allgemeinen keine Gleitlinie ist.

Es war meiner Ansicht nach vorteilhaft, dies klarer und einfacher darzustellen
als es der Verfasser des Aufsatzes I 1 tut, da es sich um einen klassischen Fall
handelt.

Es sind noch zahlreiche und wichtige Fragen für das Gebiet der Plastizität
zu erklären, da die zur Zeit aufgestellten Theorien nur ein erstes vereinfachtes
Bild sind und wahrscheinlich noch weiter entwickelt werden müssen.

Seit der Ausarbeitung meiner Ausführungen ist übrigens noch der unter I 2

behandelte Aufsatz von Dr. techn. J. Fritsche erschienen, in dem ausgeführt ist,
daß der Zustand des plastischen Fließens nicht eine Funktion des örtlichen
Spannungszustandes ist, sondern des Spannungszustandes eines ganzen Gebietes.

Diese neue Fließbedingung ist von großem Interesse und enthält zahlreiche
neue Elemente, welche sich auf unbezweifelbare Versuchsergebnisse stützen.
Ich hatte schon selbst diese Erkenntnis anläßlich von eingehenden Versuchen,
welche ich mit einbetonierten Walzträgern durchgeführt habe.

IL Über die Anwendbarkeit der Berechnung auf Eisenkonstruktionen.

Ich stimme vollkommen mit Dr. Ing. F. Bleich überein, welcher die
Aufmerksamkeit darauf lenkt, daß diese Prinzipien nur mit großer Vorsicht auf
die Eisenkonstruktionen anzuwenden sind.

Er führt aus, daß das neue Berechnungsverfahren weder auf solche Systeme
angewandt werden darf, bei denen die Ermüdungsfestigkeit des Materials zu
berücksichtigen ist, noch auf Fachwerkträger.

Es darf daher zur Zeit nur auf solche einfache Systeme angewandt werden,
welche nur in geringem Maße statisch unbestimmt sind und aus mehreren auf
Biegung beanspruchten Elementen bestehen, deren auf Druck beanspruchte
Teile ihre Stabilität nicht verlieren. Derartige einfache Systeme treten fast nur
bei Hochbauten auf, welche nicht häufig wiederholten Beanspruchungen und
auch nicht den Schwingungen von Maschinen ausgesetzt sind.

Außerdem empfiehlt es sich, derartige Bauwerke gemäß der Theorie des

plastischen Gleichgewichtes auf derartige Spannungen zu berechnen, daß die
Fließspannung nicht erreicht wird und daß der in der Plastizität vorhandene

Ausgleichsfaktor eine wirkliche Reserve bildet.
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Biegung mit Querkraft, außerhalb des Gebietes
der rein elastischen Formänderung.

Flexion et effort tranchant en dehors de la zone
de deformation purement elastique.

Combined Bending and Shear Beyond the Range of Purely
Elastic Deformation.

A. Eichinger,
Dipl.-Ingenieur, Wissenschaftlicher Mitarbeiter der E.M.P.A. Zürich.

Ist das Spannungs-Längenänderungs-Diagramm für einfachen Zug oder Druck
bekannt, so kann unter der Annahme des linearen Dehnungsverlaufs die
Spannungsverteüung über den Querschnitt eines auf Biegung mit Querkraft
beanspruchten Balkens ermittelt werden, was an einem Beispiel gezeigt wird.

Einleitung.
Die gesamte Formänderung besteht bekannterweise aus zwei Teilen1:

a) Der elastischen Formänderung, deren Komponenten den
Elastizitätsgleichungen genügen

ft • öi — — (ö2 + ö3) ; e2 — u.s.w. und1 E

b) der plastischen Formänderung, deren Komponenten die
Plastizitätsgleichungen erfüllen

&i ^y' ö! 2" (ö2 + ö3) j; b2 usw.

E ist der Elastizitäts-, D der Plastitizitätsmodul. Die Querdehnungszahl m wird
für plastische Formänderung gleich 2.

Bisher wurden die statischen Berechnungen in der Regel unter der Annahme
ausgeführt, daß sich die Tragwerke rein elastisch verhalten. In der letzten Zeit
ist man jedoch bestrebt, die durch die plastische Formänderung bedingte
Beeinflussung :

1 M. Ros und A. Eichinger: Versuche zur Klärung der Frage der Bruchgefahr. Diskussionsberichte

der Eidg. Materialprüfungsanstalt Zürich. Nr. 14 vom Sept. 1926; Nr. 34 vom Februar
1929; Nr. 87 vom Aprü 1934.
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1. der Spannungsverteüung im Balken — bzw. Stabquerschnitt und
2. des Kräfteverlaufs im Tragwerk (statisch unbestimmte Größen M, Q und N)

mitzuberücksichtigen.

Grundlagen der Plastizitätstheorie.
Zu dem erwähnten Zweck sei daran erinnert,2 daß im Falle des gleichzeitigen

Wirkens einer Normal- und einer Schubspannung gilt (Fig. 1):

.4 ».
1 '

tt=FÄ Fig.l.
Spannungs- und
Formänderungszustand eines

Körperelements

Elastische Gestaltänderung

hingegen:

die plastische Gestaltänderung

>.=M+lKv=%-('H)
worin ag Vc? + 3 • t2 Vergleichsspannung.

Die Dehnung selber beträgt:

elastisch e
E

hingegen plastisch & yj
und die spezifische Schiebung

elastisch g ^
hingegen plastisch v=tV
Die gesamte Formänderung ist dann gleich der Summe der jeweiligen elastischen

und plastischen Formänderung, nämlich:

Gestaltänderung eg eg + bg
Dehnung e e + & und

Schiebung y g + v

2 Diskussionsbeitrag von M. Ros und A. Eichinger: Knicken von in beiden Achsen zentrisch

gedrückten, rechteckigen Platten im Gebiet oberhalb der E-Grenze. Erster Kongreß der Internat.

Vereinigung für Brücken- und Hochbau, Schlußbericht.
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Ist nun das Spannungs-Längenänderungs-Diagramm eines Materials für
gewöhnlichen Zug oder Druck bekannt, so kann die grundlegende Beziehung
zwischen der Vergleichsspannung und der von dieser allein abhängigen
Gestaltänderung (Volumenänderung ist stets elastisch) mit Hilfe der vorigen Formeln

gewonnen werden (Fig. 2).

iö & so «Elastische und plastische
¦ 6m-jb*(i+iY*7v'--7?-f"£) Gestaltsänderung in Abhän¬

gigkeit von der Vergleichsspannung.

jo-

20-

Tf
CT, - llir'* JTr (kg/mm*)

Spannungsverteüung im Balkenquerschnitt.
Bevor man die Beeinflussung des Kräfteverlaufs im Tragwerk (statisch

unbestimmte Größen M, Q und N) in Agriff nimmt, muß der Einfluß der
plastischen Formänderung auf die Spannungsverteüung im Querschnitt untersucht

werden.
Unter der Annahme des Ebenbleibens der Querschnitte bzw. genauer: des

linearen Dehnungsverlaufs, ergibt sich die Faserdehnung im Abstand y von der
neutralen Achse zu

e —e .-y-8_8r h/2

worin er die gewünschte Randfaserdehnung bedeutet (Fig. 3). Weil am Rand

<i
iilü Querkraft Linie Momentenfinie

Ligne des ffirts trenchanls hgne des Moments

Shearjbrce line

dM
Mi-Qt

W".-9>
dM

\—f

Fig. 3.

Balkenstück von der

Länge 1 unter der

Einwirkung von M,
Q und q.

die Schubspannung und damit auch die Schiebung gleich Null sein muß, kann
aus Fig. 2 die Randspannung ör ermittelt werden.

Nun wird in der Regel die Verteilung der Normalspannung über den
Querschnitt ähnlich dem Zweig des ö-8-Diagrammes von d 0 bis ö ör
angenommen, was nur im Fall, daß überall t 0 richtig ist. Ist dagegen t von
Null verschieden, so kann die Verteilung der Normalspannung im Querschnitt
von dieser Annahme stark abweichen, weil die gesamte Dehnung e durch eine
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umso niedrigere Normalspannung ö bewirkt wird, je größer die am gleichen
Körperelement wirkende Schubspannung t ist.

Statt für ein gegebenes Moment und Querkraft die ö- und t-Verteilung zu
finden, begnügen wir uns vorläufig mit der Annahme einer ö-Verteilung. Fig. 4.

(To"

Fig. 4.

Spannungsverteüung über die
obere Querschnittshälfte.

Damit ist aber auch x an jeder Stelle im Querschnitt festgelegt. Weil nämlich:

y _h/2
so folgt:

ö-[^+ ^]

D
8

Ö

1_

E'

womit der Plastizitätsmodul D für jedes y bestimmt ist. Zieht man den Strahl
1 _|_ i/2

vom Koordinaten-Nullpunkt unter dem Winkel —^\— D^s zur ö8—bg-Kurve
der Fig. 2, so wird auch die Vergleichsspannung ög gewonnen, woraus sich die
gesuchte Schubspannung ergibt gemäß:

Da aber in den Querschnittsteilen mit konstanter Breite

br
&y:

bö
bx

ist, wäre damit auch der Spannungsverlauf im benachbarten Querschnitt
festgelegt, nämlich öf und t' (Fig. 4). Daraus geht hervor, daß die Verteilung der
Normalspannung ö in einem Querschnitt nicht allein von dem Moment M in
diesem Schnitt abhängt, wie es im elastischen Bereich der Fall ist, sondern

auch durch die Querkraft Q sowie die verteilte Last q =-=— beeinflußt wird.
dx

Die Ausführungen gelten jedoch streng genommen nur im Falle einer
einmaligen Beanspruchung über die Grenze des rein elastischen Verhaltens. Sie
sind somit für die Praxis nur von beschränktem Wert.

Während nämlich die erstmalige Überschreitung der Fließgrenze von großer
plastischer Formänderung begleitet ist, bricht dasselbe Material nach wiederholtem

Lastwechsel im Betrieb — und zwar infolge der Ermüdung — oft ohne
jede wahrnehmbare bleibende Formänderung.
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Man beachte auch, daß trotz veränderter oberer Lastgrenze bzw. Spannungsgrenze

der stärkst beanspruchten Konstruktionsteile (infolge plastischer
Formänderung) die Amplitude des Lastwechsels: (B—A), worin B=obere-, A untere
Lastgrenze, selbst an diesen Stellen unverändert bleibt. Da aber die Ermüdungsfestigkeit

hauptsächlich von der Spannungswechselamplitude, hingegen von der
A + B

Grundspannunjg bei den meisten Bauarten nur wenig abhängt, so ist der

Gewinn ohnehin viel geringer, als etwa die Herabsetzung der oberen Spannungsgrenze

vortäuscht (Fig. 5).

Fig. 5.

Zug-Ermüdungsversuche
mit Stumpfschweißungen
(EMPA Zürich).

&0«*

«c

Hfynm

ll
Aus diesen Gründen sollte vorläufig die plastische Formänderung überall dort

wo Ermüdung in Frage kommt (eine Ausnahme bildet das Knicken) einzig als
Reserve für den Fall einer einmaligen unvorhergesehenen Überlastung (Havarie)
betrachtet werden. Dagegen hätte die Berechnung des Sicherheitsgrades gegen
Ermüdung auf der Grundlage des Elastizitätsgesetzes — wie bisher — zu
erfolgen. Ausnahmen sollten nur dämm gemacht werden, wenn Dauer- bzw.

Ermüdungsversuche (nicht Kurzversuche) es rechtfertigen.

y
h/2

Ö 8
e

Ö
i.,c ög T ot

oy
ö' e'

e' >• °'g x'

kg/mm2 °/oo •IO8 mm8/kg kg/mm8 kg/mm2 kg/mm8 kg/mm2 °/oo •IO3 mm2/kg kg/mm2 kg/mm2

1,0 25,0 14,58 0,584 0,534 25,0 0 0,40 29,0 23,5 0,810 0,760 29,0 0

0,8 23,2 11,66 0,503 0,453 24,2 4,0 0,35 26,7 18,8 0,705 0,655 27,1 2,7

0,6 20,8 8,75 0,421 0,371 24,0 6,9 0,29 23,7 14,1 0,595 0,545 25,1 4,8

0,4 17,0 5,84 0,343 0,293 24,0 9,8 0,28 19,8 9,4 0,475 0,425 24,1 7,9

0,2 10,5 2,92 0,278 0,228 24,0 12,5 0,20 12,5 4,7 0,376 0,326 24,0 11,8

0 0 0 — — — 13,8 0 0 0 — — — 13,8

Bemerkung: ö'- e'-Querschnitt um — vom 0- e-Querschnitt entfernt. Siehe Fig. 4.
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Betrachtungen über die Zähigkeit.

Considerations sur la ductilite.

Observations on Ductility.

Professor Dr.-Ing. W. Kuntze,
Staatliches Materialprüfungsamt Berlin-Dahlem.

Im Maschinenbau ist man heute bestrebt hochbeanspruchte Konstruktionsteile
(z. B. Kurbelwellen) aus hochzähem Edelstahl durch solche aus Gußeisen zu
ersetzen, weil das Verhalten derselben im Betrieb bei geringeren Erstehungskosten
den ersteren fast ebenbürtig ist. Dieses Gleichnis aus dem benachbarten
Konstruktionsgebiet zeigt, daß wir heute von der „Zähigkeit" der Stähle einen
anderen Begriff bekommen haben, als früher. Nicht die große Plastizität ist
ausschlaggebend, sondern die Widerstandsfähigkeit gegenüber ungleichförmigen
Spannungszuständen.

Diese Widerstandsfähigkeit wird erreicht, bei einer verhältnismäßig geringen
aber gerade ausreichenden Gefügeplastizität bei gleichzeitiger hoher Gefüge-

Fig. l.
Elastische und plastische

Verformung.

Kohäsion. Der plastische Verformungsmechanismus unterscheidet sich nach

Fig. 1 vom elastischen durch spontan auftretende Fließ- oder Umklapp-Schichten.
Diese Fließschichten sind infolge ihrer kinetischen Entstehung grundsätzlich im
statischen Sinne unempfindlich gegenüber unterschiedlichen Anspannungen.1
Ihre Hervorrufung erfordert eine summarische Kraft, die sich aus einer
Gleichgewichtsbedingung von Kräftesummen ermittelt und „Widerstandsmittel" heißt.2

1 W. Kuntze: Einfluß ungleichförmig verteilter Spannungen auf die Festigkeit von
Werkstoffen. Maschinenelemente-Tagung Aachen. Berlin, VDI.-Verlag, 1936.

2 W. Kuntze: Ermittlung des Einflusses ungleichförmiger Spannungen und Querschnitte auf
die Streckgrenze. Der Stahlbau, Bd. 6 (1933) S. 49/52.
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Mit diesem Ansatz als Grundlage hat Fritsche erfolgreiche Berechnungen von-

Biegebalken und bei sinngemäßer Erweiterung des Gedankens auch der
Tragfähigkeit außermittig gedrückter Stäbe durchgeführt.3 4

Nun verhalten sich unsere Baustähle nicht so ideal, wie es das schematische
Bild zeigt. Die Gleitschichtenbildung bedeutet zwar eine Umgehung der rein
elastischen Auswirkung und damit der Gefahr des spröden Bruches. Doch läßt
sich bei unseren Gebrauchsstählen eine innere mikroskopische Brüchigkeit nie

ganz bannen. Örtliche mikroskopische Risse sind je nach der Güte des
Werkstoffes eine Begleiterscheinung der plastischen Verformung überhaupt, besonders

Ir

Kerbsicher Kerbempfindlich

Fig. 2.

Schema der Kerbempfindlichkeit
bei Wechselbeanspruchung.
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Abhängigkeit der Wechselfestigkeit \on der

Spannungsverteüung und der mehrdimen¬
sionalen Beanspruchung.5

aber bei ungleichförmigen Spannungen. Sie verursachen entsprechend der Fig. 2
eine Abkürzung der Fließwege. Hiermit ist eine geringere Tragfähigkeit
verbunden, die in der Praxis als „Kerbempfindlichkeit" bezeichnet wird. Der
kerbunempfindliche Idealfall (linke Figur) zeigt hingegen durchlaufende
Fließschichten.1

Die Festigkeitsergebnisse von Versuchen, die man bei Anwesenheit ungleichförmiger

Spannungen erhält, sind daher meist niedriger als die auf der Grundlage

des ideal gedachten Widerstandsmittels errechnete Tragfähigkeit.
Die Neigung der Werkstoffe zur inneren Brüchigkeit schränkt daher die

Genauigkeit der Berechnung mit Hilfe des Widerstandsmittels ein. — Welche

3 J. Fritsche: Grundsätzliches zur Plastizitätstheorie. Der Stahlbau, Bd. 9 (1936) S. 65/68.
4 J. Fritsche: Der Einfluß der Querschnittsform auf die Tragfähigkeit außermittig gedrückter

Stabstützen. Der Stahlbau, Bd. 9 (1936) S. 90/96.
6 W. Kuntze: Einfluß des durch die Gestalt erzeugten Spannungszustandes auf die

Biegewechselfestigkeit. Arch. Eisenhüttenwes. 10 (1936/37) S. 369/73; Ber. Nr. 367 Werkstoffaussen.
Ver. dtsch. Eisenhüttenl.
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Fälle werden nun hiervon besonders betroffen, und welche Kräfteeinwirkungen
begünstigen das Auftreten vorzeitiger Brüchigkeit? — Eine Einordnung der
Ergebnisse von Kerbwechsel-Versuchen in Abhängigkeit von den räumlichen
Zugspannungen und der Spannungsverteilung (Fig. 3) zeigt, daß in erster Linie
nicht Spannungsspitzen die Herabsetzung der Wechselfestigkeit erzeugen, sondern
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Wechselfestigkeit
in Abhängigkeit
von der Größe.

der mehrdimensionale Zugspannungszustand. In der vorliegenden Zusammenstellung

haben sogar die Proben mit hoher Spannungsspitze bei gleicher
elastischer Querdehnung die höhere Kerbwechselfestigkeit gegenüber solchen, mit
gleichmäßiger Verteilung. Das sind wirkliche Versuchsergebnisse und lassen sich
nicht übergehen.
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Zur erniedrigenden Wirkung des mehrdimensionalen Spannungszustandes auf
die Wechselfestigkeit kommt diejenige der absoluten Größe des Konstruktionsteiles

hinzu. Figur 4 zeigt, wie bei proportional gehaltener Kerbtiefe ^— und
d '

Kenbschärfe - die zunehmende Größe des Probendurchmessers eine ständige

Abnahme der Wechselfestigkeit hervorruft
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Die Proportionalitätsgrenze unterliegt ebenfalls sehr dem Einfluß der Gefüge-
kohäsion.1 Ihr Verhalten bei ungleichförmigen Spannungen ähnelt daher
demjenigen der Wechselfestigkeit. Auf die Streckgrenze hingegen (als ausgeprägten
Gleitwiderstand) wirkt umgekehrt die mehrdimensionale Beanspruchung erhöhend,
die Spannungsspitze aber erniedrigend, besonders dann, wenn die Abmessungen
groß sind. Fig. 5.

Diese zum Teil gegenläufigen Einwirkungen mögen als Erklärung dafür
angesehen werden, daß häufig über sich widersprechende Meßergebnisse berichtet
wird.

Mehrdimensionale Spannungen entstehen in der Konstruktion
1. infolge äußerer Gestaltung,
2. infolge Schrumpfung von Schweißverbindungen.

Wann wirken sie nachteilig? — Ist z. B. durch Schrumpfung an irgend einer
Stelle ein mehrdimensionaler Zugspannungszustand vorhanden, so finden wir in
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Übersicht
*g, mehrdimensionaler

Festigkeitsprüfung.

nächster Nachbarschaft Druckspannungen, weil ein inneres Gleichgewicht im
Konstruktionskörper vorhanden sein muß. Bei Anwendung des Gesetzes vom
Widerstandsmittel, welches ja einer Durchschnittswirkung entspricht, ist zu
erwarten, daß die Streckgrenze in einem solchen Fall nicht wesentlich beeinflußt
wird. Und doch wird bei großen Abmessungen die statische Festigkeit infolge
der Spannungsspitze etwas erniedrigt und die Wechselfestigkeit infolge
mehrdimensionaler Zugspannung wesentlich herabgesetzt werden.

Die geschilderten Einflüsse sind bei verschiedenen Werkstoffen verschieden

groß. Die Entwicklung der Werkstoffprüfung muß dem Rechnung tragen. Die
klassischen Prüfungen der Druck-, Schub-, Zugfestigkeit bei zügiger und
wechselnder Beanspruchung liegen nach Fig. 6 in dem Quadranten aus größter Zug-
Hauptspannung und größter Druck-Hauptspannung. Die neuzeitlichen Prüfungen
auf Trennfestigkeit und Kerbempfindlichkeit bei statischer oder wechselnder

4*
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Beanspruchung liegen im reinen Zugquadranten.6 Mit ihrer Hilfe lassen sich
die Werkstoffe nach ihrem Verhalten unter mehrdimensionalen Zugbeanspruchungen

bei verschiedener Körpergröße beurteilen. Das Prüfungsergebnis gibt
dann einen ungefähren Maßstab, um wieviel für irgendeinen Werkstoff der
Rechnungswert auf Grund des Widerstandsmittels unterschritten sein wird. Die
Einführung des von Klöppel geforderten Proportionalitätsfaktors zwecks
Korrektur wird hiermit ermöglicht.7

Die vorgetragenen Ergebnisse neuerer Forschung sollen für die Berechnung
und Gestaltung richtungweisend sein. Sie berühren nicht die Frage, in welchem
Ausmaße sich im Brückenbau, besonders bei statisch unbestimmten Systemen
die aufgebrachten Lastveränderungen als wirkliche Dauerwechselbeanspruchungen
im Sinne der Werkstoff-Prüfung auswirken. Dies bleibt eine stets zu beachtende

Sonderaufgabe des Brückenbaues.

6 W. Kuntze: Kohäsionsfestigkeit. Berlin 1932, J. Springer. Auch Sonderheft XX der Mitt.
deutscher Materialprüfungsanstalten. (Die Methodik der Kohäsionsprüfung ist inzwischen
weiterentwickelt worden.)

7 K. Klöppel: Gemeinschaftsversuche zur Bestimmung der Schwellfestigkeit voller, gelochter
und genieteter Stäbe aus St. 37 und St. 52. Der Stahlbau, Bd. 9 (1936) S. 97/119.
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Die Zähigkeit des Stahles, die Wirkung der raschen
und der wiederholten Beanspruchungen.

La ductilite de Tarier, l'action des efforts rapides
et des efforts repetes.

The Ductility of Steel; the Effect of Rapidly Imposed
and Repeated Loading.

R. L'Hermite,
Directeur adjoint des Laboratoires du Batiment et des Travaux Publics, Paris.

Die meisten Arbeiten, die sich auf die Zähigkeit des Stahles und der
Auswirkung derselben auf die Sicherheit der Bauwerke beziehen, heben den Einfluß
des Faktors „Zeit" nicht deutlich genug hervor. Es besteht kein Zweifel, daß
dieser Faktor eine hervorragende Rolle spielt, besonders in jenen Fällen, wo dia
äußeren Kräfte rasch wirken, d. h. wenn die Belastungs- und
Dehnungsgeschwindigkeiten groß sind. Dies tritt ein für dynamische Lasten, für welche
eine Spannungsangleichung im allgemeinen nicht eintritt.

Für einen durch die Kraft F beanspruchten festen Körper ist die relative
Formänderung zwischen zwei Punkten die Summe von zwei Formänderungen:
einer elastischen, die mehr oder weniger rasch mit der Kraft F wieder
verschwindet, und einer zweiten bleibenden oder plastischen Formänderung. Damit
tritt die Frage der elastischen Nachwirkungen auf, die von Volterra in der
Physik eingeführt wurde. In diesem Sonderfall werden wir sagen, daß der
Angriff einer kleinen Kraft dF nicht unmittelbar die gesamte Deformation,
elastische und plastische, erzeugt. Bei der Belastung und bei der Entlastung
tritt eine zeitliche Verschiebung in der Verformung ein; die Folge davon ist ein
Deformationsrückstand abhängig von einer Funktion 0 der elastischen
Nachwirkung. Der Wert der Funktion O nimmt in unbestimmter Weise mit der
Zeit ab. Unter diesen Bedingungen lautet der Ausdruck der elastischen
Formänderung wie folgt:

t

x(t) jM[(t-r),F]N(F).^dr
ü

der Ausdruck der plastischen Deformation lautet:
t

x'(t) j2K[(t-r),F]$TC(F).^dr
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Der erste Ausdruck gilt für alle Fälle der Belastung und der Entlastung; der
dF

zweite Ausdruck ist nur in dem Falle gültig, wo — positiv ist. Im Falle der

wiederholten Belastung, beispielsweise, wird die plastische Formänderung bei
der ersten Belastung erreicht, sie kann in erster Annäherung durch eine
Anfangskonstante ausgedrückt werden.

Für M(t) ergibt die Rechnung in erster Annäherung M 1 — e~xt und
für N eine von der Beschaffenheit des betrachteten Körpers abhängige Funktion.
In gleicher Weise haben wir

<$fl a— ß-e-^.
Auf diesem Wege erhalten wir eine gewisse Anzahl von Ausdrücken, deren

Anwendung geläufig ist:
Plastisches Fließen unter konstanter Last

x'(t) [at + ß(l-e-^)]o(F).
(Diese Formel stimmt genau mit jener von Professor Ros auf experimentellem
Wege ermittelten Formel.)

Elastische Deformation unter einer nach bestimmtem Gesetze wachsenden Last

-V-7-U--»-**--r)^.dr
ö

Für den Fall einer linear zunehmenden Last hat man:

^ih1-^1)
das erste Glied stellt die gesamte elastische Formänderung und das zweite Glied
die Verzögerung oder elastische Hysteresis dar.

Die Formänderung unter einer mit der Zeit sinusförmig veränderlichen Kraft

v/a—P «i'n^t ME Xcosxnt + xnsinxrit
*W-E'snixnt— E

•

X2 + X*n2

Das zweite Glied stellt die Abnahme der Schwingweite der Formänderung in
Funktion der Frequenz dar. Durch den Vergleich dieses zweiten Gliedes mit
den experimentellen Ergebnissen bei wiederholter Biegung kann der Beiwert X

berechnet werden. Für einen Kohlenstoff-Stahl mit einer Bruchgrenze von
60 kg/mm2 fanden wir den Wert X gleich 5,25 • 103.

Die gesamte Formänderung unter einer wachsenden Last ist durch den
Ausdruck gegeben:

00

t

+ >
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Die genaue Betrachtung dieser Funktion zeigt, daß die plastische
Formänderung für eine bestimmte Gesamtlast mit zunehmender Belastungsgeschwindigkeit

abnimmt. Der Fall der raschen Belastungszunahme tritt für die Bauwerke
sehr häufig auf; es ist also augenscheinlich, daß für ein gleiches Bauwerk
verschiedene Anpassungsfähigkeiten und Plastizitätsgesetze vorausgesetzt werden
müssen, je nachdem es sich um einen Stoß oder um eine langsame Belastung
handelt.

Experimentelle Untersuchungen bezüglich dieser Fragen haben ferner gezeigt,
daß für den Fall einer harmonisch wiederholten Belastung der Elastizitätsmodul
mit der Zeit veränderlich ist. Wir haben überdies beobachtet, daß diese Änderung
von der Schwingweite der Belastung abhängt. Für eine kleine Belastung nimmt
der Beiwert X ab und nähert sich dem Endwert X; der Körper paßt sich
den Beanspruchungen an, denen er unterworfen ist. Im Gegensatz dazu weist
der Quozient X eine Zunahmetendenz auf, sobald die Schwingweite der Kraft
eine genau bestimmte Grenze überschreitet. Dieser Grenzwert zwischen den
beiden Erscheinungen ist ungefähr gleich der Dauerfestigkeit, die für den

gleichen Körper in unabhängiger Weise gemessen worden ist. Man findet hier
die bisher fehlende Verbindung zwischen der Verformung und dem Bruch für
den Fall der wiederholten Belastung. Dies stimmt übrigens mit den Messungen
der Fähigkeit der Milderung überein; nach diesen Messungen nehmen die
logarithmischen Dekremente der Schwingungen, hervorgerufen durch aufeinander
folgende Impulse ab, wenn man sich unterhalb der Dauerfestigkeitsgrenze, und
zu, wenn man sich oberhalb dieser Grenze befindet.

Diese Theorie gibt uns die Möglichkeit, die Frage der Fortpflanzung der
Schwingungen in festen Körpern zu studieren. Fügen wir bei, daß mit Rücksicht
auf die hohen Schwingungszahlen und die geringen Schwingungsweiten der
akustischen Schwingungen z. B., die plastischen Erscheinungen bezüglich der
Fortpflanzung eine eingeschränkte Rolle spielen. Einzig die elastische Hysteresis
kann eine gewisse Bedeutung haben. Aus unseren ersten Gleichungen folgt die
allgemeine Gleichung der Fortpflanzung einer Erschütterung:

° dt* dx*+Je dx'dr
und

d^u_ d^u E JFu__E^u_ f_1)n+1_E dn + 2u
dt2 dx*n X dx2dt X2 dx2dt2^* "" '^K } Xn dx2drn^""

Da X einen hohen Wert hat, kann obige Gleichung auf die beiden ersten Glieder
des Ausdrucks rechts beschränkt werden. Die Gleichung stimmt alsdann mit der
bereits bekannten Gleichung der Fortpflanzung in zähen Medien überein, wobei
p
— den Zähigkeitswert darstellt.
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Kritische Betrachtungen zur Plastizitätstheorie.

Considerations critiques sur la theorie de la plasticite.

Critical observations on the theory of plasticity.

Oberbaurat Dr. v. Kazinczy,
Budapest.

Im Jahre 1914 veröffentlichte ich in einer Ungarischen Zeitschrift1 als Erster
die Ansicht, daß bei der Bestimmung der wahren Tragfähigkeit statisch
unbestimmter Tragwerke auch die bleibende Formänderung des Stahles berücksichtigt
werden müsse. Da diese wahre Tragfähigkeit größer ist als diejenige, die sich
nach der Elastizitätstheorie ergibt, dürfte auch bei der praktischen Berechnung
der Bauwerke die bleibende Formänderung berücksichtigt werden. In der
Zwischenzeit wurde das Problem von verschiedenen Seiten besprochen, beleuchtet,
und durch Versuche überprüft. Im folgenden soll ein kritischer Überblick über
das ganze Gebiet gegeben werden.

Die neue Berechnungsweise wird mit verschiedenen Namen bezeichnet. LInter
Plastizitätstheorie ist eine Berechnungsweise zu verstehen, bei der auch die
bleibenden Formänderungen berücksicht werden, im Gegensatz zur Elastizitätslehre,

die nur auf die elastischen Formänderungen aufgebaut ist. Daneben wird
auch die Bezeichnung Traglastverfahren verwendet; diese Bezeichnung ist jedoch
nicht eindeutig, da unter Traglast manche z. B. Stüssi die höchste tragbare Last,
dagegen F. Bleich, Maier-Leibnitz und ich, in meinen früheren Veröffentlichungen,

eine „praktisch*' tragbare Last verstehen. Die Stellungnahme in
unserem Problem ist durch die Beurteilung einiger Hauptprinzipien bedingt. Was
ist der Zweck unserer Berechnung von Bauwerken? Es ist die Verwendbarkeit
während des Gebrauches. Mit Rücksicht auf Ungenauigkeiten der Berechnung, der
Herstellung, der Materialeigenschaften und der Belastung müssen wir unsere
Bauwerke mit einer gewissen „Sicherheit" gegen das Unbrauchbarwerden bemessen.
Ich habe am Wiener Kongreß2 ausgeführt, daß der Grad der Sicherheit eine

Frage der Wirtschaftlichkeit sei. Man soll einerseits möglichst billig bauen,
andererseits so, daß der mögliche Schaden unter Berücksichtigung der
Wahrscheinlichkeit nicht größer wird, als die durch die kleineren Abmessungen der
Bauelemente erzielten Ersparnisse. Die Sicherheit soll also umso größer sein, je
größer der Schaden sein kann. Durch diese Überlegungen erklärt sich, warum
wir uns mit einer 1,6 bis 1,8fachen Sicherheit in solchen Fällen begnügen, wo
das Unbrauchbarwerden zunächst nur in unzulässig großer Biegung in
Erscheinung tritt, und eine etwa dreifache Sicherheit dort anwenden, wo ohne
vorherige Anzeichen ein sofortiger Einsturz die Folge der Überbeanspruchung eines
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Baugliedes ist (z. B. Knicken). Bei Baugliedern, die durch starke Formänderung
unbrauchbar werden, streben wir eine genügende Sicherheit gegen unzulässig
große Formänderung an und nicht gegen Bruch. Um eine allgemeine Regel
für die Größe der zuläs-

Traglastverfahren - Proeide, de l'equilibre plastique

torsuche von Stüssi
Essai de Stüssi
Tests of Stüssi

iV
Theory ofplastic
equilibrium
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sigen Durchbiegung
aufzustellen, könnte man
vielleicht sagen, daß jene
Belastung als Grenzlast
(kritische Last, bzw. praktisch
tragbare Last) betrachtet
werden soll, bei welcher die
Durchbiegung bei gleichmäßig

anwachsender
Belastung rasch anzuwachsen

beginnt. Ich würde also
bei den Versuchen von
F. Stüssi und C. F.
Kollbrunner3 (Fig. 1) die Last
1,71 t als Grenzlast bei
den Balken auf zwei Stützen bezeichnen und nicht 2,35 t. Von diesem Standpunkt
aus betrachtet, klingen auch die Schlußfolgerungen aus diesen Versuchen etwas
anders, nämlich daß die Grenzlast (also nicht die wahre Traglast) in allen auch
den extremen Fällen, bei elastisch eingespannten Balken eine zweifache* ist. Eine
Ausnahme liegt vor bei zu großer
Nachgiebigkeit der Einspannung, weil in p

diesem Pall die elastischen
Durchbiegungen nach Erreichen der
Fließgrenze in der Mitte so schnell
anwachsen, daß der unzulässige Wert
noch vor Erreichen der Fheßgrenze
über den Innenstützen erreicht wird.
Fig. 2 zeigt wie sich die
Durchbiegungslinien bei verschiedenen
Einspann ungsgraden eines idealplastischen
Balkens unter gleichmäßig verteilter
Belastung gestalten. Man sieht daraus,
daß in Einzelfällen auch die
Formänderungen zu berücksichtigen sind.

Zur Einhaltung des gewünschten

Sicherheitsgrades bei der Bemessung

bestehen zwei Wege: Entweder
setzen wir die mit dem Sicherheitsfaktor

multiplizierte Last ein oder

vollkommen eingespannt
encastrement total
fullyfixed

JdL
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elashsch eingespannt
encastrement elastique
elastically restrained

frei aufliegend
appuis simples

freely suported

&¦
bleibende Durchbiegung

flechissement risiduel
residual deflection

Fig. 2.

Einfacher Balken auf zwei Stützen Pt' 1,71 t; Pv 2,35 t;

Durchlaufender Balken 1 160 -

Pt' Grenzlast, Pv Traglast.

- 60 • 120; Pr 3,46 t; Pv 3,82 t;

3,46
1/71
3,82
2,35

2,02.

: 1,62.
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wir lassen eine durch den Sicherheitsfaktor dividierte Grenzspannung als
zulässige Spannung zu. Der letztere Weg ist üblich. Das Verhältnis der
Grenzspannung zur zulässigen Spannung sollte also den Sicherheitsgrad darstellen. Das
wäre richtig, wenn die Spannungen bis zur Grenzlast geradlinig wachsen würden,
was aber oft und bei statisch unbestimmten Tragwerken in der Regel nicht der
Fall ist (Spannungsausgleich). Wenn wir mit dem Sicherheitsbeiwert multiplizierten

Spannungen rechnen würden, wäre der Spannungsausgleich, der ja erst
oberhalb der zulässigen Spannung eintritt und deshalb nur für die Beurteilung der
Sicherheit nicht der tatsächlichen Beanspruchung maßgebend ist, verständlicher.

Um die Grenzbelastung statisch unbestimmter Träger theoretisch zu bestimmen,
hat man wegen der mathematischen Schwierigkeiten einen Stoff mit idealen
Eigenschaften, d. h. einem idealisierten Spannungs-Dehnungsdiagramm zugrunde
gelegt. Ferner wurde angenommen, daß der Querschnitt während der
Formänderungen eben bleibe und daß sich der Fließvorgang von den Randfasern aus
ins Innere des Balkens allmählich ausbreite. Nach dieser Theorie kann sich ein
auf Biegung beanspruchter Querschnitt nur dann ohne weitern Zuwachs der
Momente weiter verformen, wenn er bis zur Nullinie plastisch geworden ist.
Zur plastischen Gelenkwirkung gehört also ein unendlich großes Biegungsmaß.
Bei Flußstahl kann dieses wegen der Verfestigung nicht erreicht werden. Aus
diesen Gründen untersuchten in neuerer Zeit einige Forscher die Entstehung
der plastischen Verformung näher, insbesondere diejenigen Fälle, wo das

Spannungsfeld nicht gleichmäßig ist, die Fließerscheinung nicht stetig fortschreitet,
sondern wo die weniger beanspruchten Teile die Formänderung der plastizierten
Elemente verzögern (Arbeiten von W. Kuntze*, W. Prager5 und J. Fritsche6:
Neuere Plastizitätstheorie). Die Beobachtung bestätigte jedoch diese Theorie

nicht. Die Verzögerung der Fließ-
Theorie u Beobachtung
Theorie et Observation
Theory and Observation

.in der praktischen Berechnung
V zu verwenden.

ä employer dans le calcul pratique.
to be used in praxis

figuren geht nicht so weit, daß
der Balken auf einmal bis zur
Nullinie fließt. Dies ist auch
aus den Bildern im Werke Nädai's
der „Bildsame Zustand der
Werkstoffe", S. 127, Fig. 230 zu
ersehen : Die Fließerscheinungen
breiten sich allmählich nach innen
aus. Dagegen kann man bei
I-Balken beobachten, daß die
Fließfiguren auf einer Flanschhälfte

auf einmal auftreten.
Rinagl1 behauptet dagegen, daß die
Verzögerung des Fließens in dieser
Auffassung ein Irrtum und auf eine
obere Fließgrenze zurückzuführen

sei, die sich bei Biegung immer auswirke, dagegen bei einer Zugprobe nur
undeutlich in Erscheinung trete. Ich teile auch die Meinung von Herrn
Prof. Rinagl nicht, da ich selbst die Verzögerung des Fließens bei
ungleichmäßigem Spannungsfeld in Fachwerkstäben beobachten konnte, worüber ich
weiter unten berichten werde. Nach allen diesen Theorien führt die Berück-

\~6,A h<*H

Fig. 3.
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sichtigung der wahren Stoffeigenschaften zu komplizierten Berechnungen. Da
aber unser Endziel die Bemessung von Tragwerken und nicht der theoretische
Nachweis von Versuchsresultaten ist, müssen wir eine einfache Rechnungsweise
finden. Dies kann geschehen, wenn wir auch bei Biegebeanspruchung einen
scharfen Übergang vom elastischen in den plastischen Zustand voraussetzen.
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Fig. 4.

Maier-Leibnitz8 hat gezeigt, wie man einfache Aufgaben mit der wahren
Momenten-Verformungslehre lösen kann; ein praktisches Verfahren jedoch
können wir nur auf die vereinfachte Deutung aufbauen (Fig. 3). Maier-Leibnitz
schlägt vor, jenes Moment als Grenzmoment zu betrachten, bei dem die bleibende

Verformungsmomentenlinie die stärkste Krümmung zeigt. Ich würde dagegen
vorschlagen, jenen Wert als Grenzmoment zu betrachten, bei welchem die
bleibende Verbiegung zwanzigmal so groß ist als die elastische. Zur weitern
Untersuchung dieser Frage habe ich einen I-Balken ung. NP 24 (W 399 cm3),
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der zur bessern Beobachtung der Fließerscheinungen mit Lack überzogen
war, über die Fließgrenze hinaus belastet. Die Biegelinie war praktisch bis
ö 2250 kg/cm2 gerade (Fig. 4). Am gezogenen Flansch erschienen die
Fließfiguren bei 2500 kg/cm2, während am Druckflansch offenbar aber auch infolge

M
einer örtlichen Unebenheit schon bei ö

M
\\ 2120 kg/cm2 zu beobachten

gewesen waren. Bei -.^ 2800 kg/cm2 war jener Grad der Verformung erreicht,

den ich als Kennzeichen des Grenzmomentes eingeführt habe. Der Balken wurde
aus der Biegemaschine genommen, genau untersucht und photographiert (Fig. 5).
Bei dem mit gleichbleibendem Höchstmoment beanspruchten Teil des Trägers

wurde ungefähr die Hälfte der
Gurtfläche durch Fließfiguren
bedeckt. Die Fließfiguren reichten

entgegen theoretischen
Überlegungen bis in die Nähe der
Nullinie. An einem nach dem
Versuch aus einem unbelasteten
Ende herausgearbeiteten Zugstab

wurde die Fließgrenze zu
2300 kg/cm2 bestimmt bei sehr
kleiner Fließlänge. Aus diesem
Versuch ist zu schließen, daß
das Grenzmoment nicht
theoretisch, sondern empirisch
bestimmt werden muß.
Wahrscheinlich ist, daß Grenzmoment

Fig. fi.

und Fließgrenze nicht in einem einfachen Zusammenhang miteinander stehen,
da Querschnitts form und Materialeigenschaften von Einfluß sind. Sind für
bestimmte Querschnitte und Stahlsorten diese Grenzmomente empirisch
festgestellt, so steht der Anwendung der neuen Betrachtungsweise nichts mehr im
Weg.* Haben wir uns entschlossen, mit der idealisierten Biegelinie (M-cp-Dia-
gramm) zu rechnen, dann ist die Berechnung der Tragwerke nach folgenden
Begeln durchzuführen.

1. Auf Biegung beanspruchte statisch bestimmte Tragwerke.
Die Grenze des Tragvermögens wird nicht dann erreicht, wenn in der

äußersten Faser die Fließgrenze erreicht wird, sondern wenn der „Balken" zum
Fließen kommt. Das Tragmoment ist nicht M W • öF sondern M T • öF,
wobei T etwa 6—20 o/o größer ist als W und vorläufig durch Versuche bestimmt
werden muß.

2. Statisch bestimmte Fachwerkträger.
Die Berechnung bleibt gleich wie bisher. Die Nebenspannungen aus der

Steifigkeit der Knotenpunkte können außer Acht gelassen werden. Bei Druck-
* Für die rechnerische Bestimmung der Grenzmomente liegen Vorschlage von v. Kazinczy^,

Kist10, Fritsche11 und Kuntze*1 vor, die jedoch sämtliche geringere Werte für das Tragmoment
ergehen haben, als meine Versuche.
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kräften ist jedoch für die Knicklänge auch in der Fachwerkebene die ganze
theoretische Stabwerklänge einzusetzen. Druckstäbe sind mit einer größeren
Sicherheit zu bemessen als Zugstäbe, da bei Überschreiten der Knicklast der
Einsturz des Tragwerkes zu befürchten ist.

3. Die Berechnung der Anschlußnieten.
Diese erfolgt wie bisher, d. h. die gesamte Stabkraft wird auf alle Anschlußnieten

gleichmäßig verteilt. Hier hat die Praxis und die Erfahrung die
Richtigkeit der Plastizitätstheorie vollkommen bestätigt. Man sollte aber die Anschlußnieten

bzw. Schweißnähte nicht aus der gerechneten, sondern aus der größt-
zulässigen Stabkraft bestimmen, damit bei evtl. Überanstrengung nicht der
Anschluß, sondern der Stab zum Fließen kommt. Wegen des Ausgleichs der
Nebenspannungen in den Stäben selbst ist eine biegungsfeste Ausbildung der
Anschlüsse wünschenswert.

4. Die Berechnung durchlaufender Balken.

Bei Balken aus einem einzigen Walzprofil (konstanter Querschnitt) bestimmt
man in jeder Öffnung die Mo-Momente wie bei einfachen Balken und legt die
Schlußlinie so ein, daß negative und positive Momente gleich groß werden. Der
Balken ist dann für das größte der so berechneten Momente zu bemessen.

Bei Balken, deren Querschnitte durch Gurtplatten dem Momentenverlauf
angepaßt sind, hat eigentlich die Berechnung nach der Plastizitätslehre nicht
mehr viel Sinn. Wenn man trotzdem mit Rücksicht auf größte Wirtschaftlichkeit

auch hier das neue Verfahren anwenden will, so ist die Schlußlinie
willkürlich so einzuziehen, daß die Herstellungskosten minimal werden. Als Regel
ist zu betrachten, daß die negativen Momente beliebig verkleinert werden können,
während ein Fließen in Balkenmitte immer mit großen Durchbiegungen
verknüpft ist.

Bei beweglicher Belastung sind die Momentengrenzwerte zunächst nach der
Elastizitätslehre zu bestimmen, worauf die Schlußlinie im Sinne des Momentenausgleichs

behebig verschoben werden kann.1213
Eines der wichtigsten Ergebnisse der Plastizitätstheorie ist das, daß bleibende

Stützensenkungen nicht mehr berücksichtigt werden müssen. Die Nachgiebigkeit
elastisch senkbarer Stützen ist dagegen weiter in ihren Auswirkungen zu verfolgen.

Walz- und Schrumpfspannungen brauchen nicht berücksichtigt werden, wohl
aber Spannungen infolge ungleichmäßiger Erwärmung während des Gebrauches.13

Rechnet man mit stärkerem Momentenausgleich, besonders wenn er durch
Fließen der Balkenmitte erfolgen soll, so ist es wünschenswert, den Druckgurt
kräftiger auszubilden, damit der Fließvorgang sich im Zuggurt abspielt.

5. Tragwerke aus biegungsfesten Stabzügen.
Mehrere Autoren haben angegeben, daß in einem n-fach statisch unbestimmten

Rahmentragwerk die Fließgrenze an n-Stellen erreicht werden könne, ohne daß
dadurch das Tragwerk unbrauchbar würde. Man kann das Problem so auffassen,
als ob an diesen Stellen Gelenke wären, an denen Momente von konstanter Größe
wirken. Ich selbst habe diese Auffassung früher geteilt14, muß sie jedoch heute
etwas ändern. Damit ein solches Tragwerk unstabil werde, müssen so viel
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Nach der flssttzitätsletire
O'apräs la ttiäone de l'elashcitä
With theory of elasticity Ausgleich durchgeführt

Apres Legalisation
Adjustment made

Gelenke eingeschaltet werden, daß eine kinematische Kette entsteht. Bei der
Bewegung drehen sich die Gelenke in einer bestimmten Richtung. Das
Fließgelenk wirkt somit nur in einer Richtung als Gelenk, während es sich in der
landern Richtung als vollkommen elastischer Trägerteil erhält. Diejenigen
Fließgelenke, die eine entgegengesetzte Drehrichtung besitzen, als es in der
kinematischen Kette sein sollte, sind daher nicht als Gelenke zu bewerten. So ist es

möglich, daß in einem n-fach statisch unbestimmten Tragwerk die

Fließgrenze an mehr als n-Steilen überschritten werden muß, bevor das Tragwerk
unstabil wird.

Ein rahmenartiges Tragwerk ist dann unter einer gewissen Belastung mit
Sicherheit tragfähig, wenn irgend eine mögliche den Gleichgewichtsbedingungen
mit den äußern Kräften entsprechende Momentenlinie an keiner Stelle den Wert
M T • özui überschreitet. Ein exakteres Verfahren kann analog zur Methode
von Prof. Gross durchgeführt werden. Man bestimmt zuerst die Momente nach
der Elastizitätslehre. An den Stellen, wo die Momente abgebaut werden sollen,

denkt man sich das Tragwerk
durchschnitten und führt hier
zum Ausgleich entlastende
Zusatzmomente ein. An Stellen, wo der
Abbau schon durchgeführt ist,
führen wir Gelenke ein, aber nur
dort, wo ein Zusatz der Momente
zu erwarten ist (Fig. 6). Der Hauptvorteil

der Plastizitätslehre besteht
darin, daß wir die Momente regeln
und dadurch gefährlichere Stellen
vor Überbeanspruchung schützen
können. Im allgemeinen ist bei
einem Rahmen die Säule der wichtigere

Tragwerksteil. Es ist also

möglich, durch Schwächung der
Balken bei der Einspannung auch
die Säule zu schonen, da der
Balken nach Erreichen des
Grenzmomentes der Einspannstelle keine

weitern Momente mehr an die Säule abgeben kann. Das gefährliche Ausbiegen
der Säule kann also durch ungefährliches Fließen der Balken an die Einspannstelle

vermieden werden.

6. Fachwerkträger.
Äußerlich statisch unbestimmte Fachwerkträger werden so bemessen wie die

Balken- und Rahmentragwerke. Die Fließerscheinungen spielen sich in einem
Teile eines Stabes ab. Für den Ausgleich sollen aber nur Zugstäbe verwendet
werden, da der Widerstand eines Druckstabes nach seinem Ausknicken sofort
auf einen kleinen Wert zurückgeht, wie ich es schon in Lüttich9 angegeben habe.

In neuerer Zeit hat E. Chwalla15 dieses Problem durchgearbeitet und auch mit
Versuchen bestätigt, daß der Druckwiderstand sehr rasch abfällt. Bei innerlich

T

\ W

Ausgleich Zusatzmomente
Egalisahon Moments additionnels
Adjustement Additionalmoments

Fig. 6.
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statisch unbestimmten Fachwerken kommt es nicht selten vor, daß es nach der
Elastizitätslehre unmöglich ist, alle Stäbe voll auszunützen. So z. B. im Fachwerk
der Fig. 7, wo nach der Elastizitätslehre das Teilsystem B nicht voll ausgenützt

P-20c

Fig

werden kann. Hier besitzt die Plastizitätslehre wirtschaftliche Vorteile, weil dann
alle Stäbe voll ausgenützt werden können. Die Berechnung solcher Tragwerke ist
normaler Weise sehr einfach. Man schaltet die überzähligen Zugstäbe aus und
führt an ihrer Stelle die bekannten Kräfte F • özui ein. Dabei sind die
höchstbeanspruchten Zugstäbe, die also zuerst zum Fließen kommen, auszuschalten,
wobei, wenn der Entscheid nicht durch eine einfache Betrachtung erfolgen kann,
die Elastizitätslehre beizuziehen ist. Die Querschnitte sind so zu regeln, daß
immer nur Zugstäbe zum Fließen gebracht werden und nie Druckstäbe zum
Ausknicken.

Bei beweglicher Belastung sind besondere Methoden, beispielsweise diejenige
von E. Melan16, zu verwenden, mit der Einwendung allerdings, daß in den
Druckstäben keine plastischen Formänderungen zuzulassen sind.
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Um die theoretischen Erwägungen über die Plastizitätslehre bei Fachwerken
nachzuprüfen, habe ich einige Versuche durchgeführt, über die kurz berichtet
werden soll. Dabei habe ich zwei Arten von innerlich statisch unbestimmten
Fachwerken untersucht, nämlich geschweißte und genietete, während G. Grüning
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Pi ~

und E. Kohl17 ihre Versuche an äußerlich statisch unbestimmten Trägern
durchgeführt haben, bei denen die höchst beanspruchten Zugstäbe als Augenstäbe
ausgebildet waren, sodaß Rückschlüsse auf die gewöhnlichen Knotenpunktverbindungen

aus diesen Versuchen nicht gezogen werden konnten. Die Form der
Versuchsfachwerke mit den Abmessungen und Resultaten ist aus Fig. 8 ersichtlich.

Das Verhalten bei idealplastischem Stoff ist in Fig. 9 dargestellte Man
kann das Fachwerk aus zwei Grundsystemen A und B zusammengesetzt auf¬

fassen. Die Widerstände der
einzelnen Systeme A und B

-A-fß sind als Ordinaten in Funk¬
tion der erzwungenen
Längenänderungen aufgetragen. PT

sei als „erste Grenzlast" und
Pn als „zweite Grenzlast"

Traggrenze) bezeichnet.
Nach der Entlastung bleiben
die einzelnen Systeme nicht
spannungslos. (Restkräfte der
Fig. 9).

Die Festigkeitsuntersuchung
des gewählten Baustoffes hat
ergeben, daß der Bandstahl
sehr weich war und mit an-

^^^y? A wachsender Spannung einen
Longitudinal deformationA sehr großen Fließbereich be¬

saß. Die Fließgrenze wurde
zuerst im lotrechten Zugstabe
erreicht (erste Grenzlast).
Bei weiterer Belastung bleiben

Spannungen in diesem
lotrechten Stab konstant und wachsen nur in den übrigen Stäben, bis auch dort
die Fließgrenze erreicht ist (zweite Grenzlast). Die in Fig. 8 auch eingetragenen
theoretischen Nebenspannungen verschwinden nach heutiger Auffassung durch
das Fließen. Bei der Entlastung verhält sich das Fachwerk vollkommen elastisch,
die zurückbleibenden Spannungen sind in Fig. 8 ersichtlich. Der lotrechte Stab
ist aber den bleibenden Spannungen von 730 kg/cm2 nicht gewachsen, da er
aus Bandstahl besteht und schon bei 530 kg/cm2 ausknicken muß.

Dieses Ausknicken konnte auch am Versuchsstück beobachtet werden. Die
ersten Fließlinien wurden in der Nähe der Mitte des lotrechten Stabes bei
P 14 t beachtet, das eigentliche Fließen begann im lotrechten Stab jedoch
erst bei 17 t. Das Probestück hat eine beträchtliche Formänderung erlitten,
trotzdem flössen nur ganz kurze Teile der Stäbe (Fig. 10). Die plastische
Längenänderung ist somit auf gewisse Stellen begrenzt, wo sie dann einen stets

gleichbleibenden prozentualen Wert erreicht. Die Längenänderung eines
Flußstahlstabes muß man sich nach Fig. 11 vorstellen, wo Ki und Kn verschiedene

erzwungene Längenänderungen sind. Die Linien e stellen elastische, die Linien p
plastische Dehnungen dar. Die Traggrenze (zweite Grenzlast) stimmt mit dem

Pm~

/
/ /j^^^^^fe^^

^4^2^^^^ Restkräfte
Forces risii
Residualforces

rtsiduelles

Fig. 9.
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theoretischen Y\ ert gut überein, was zeigt, daß die Schrumpfspannungen infolge
der Schweißung ohne Einfluß auf die Tragfähigkeit sind. Sie beeinflussen
ledigich den Beginn des Kräfteausgleichs.

Um die Höhe der Schrumpfspannungen zu bestimmen, habe ich weitere
A ersuchsstücke so herstellen lassen, daß während des Schweißens und Ab-
kühlens an verschiedenen Stellen Dehnungen beobachtet wurden, wobei ich
Schrumpfspannungen von 900 kg/cm2 feststellen konnte. Eine Verzögerung der
Fließerscheinungen, also eine obere Fließgrenze konnte nicht beobachtet werden;
bei den schiefen Stäben mit großen [Nebenspannungen ist das Fließen dann
eingetreten, wenn die durchschnittlichen Spannungen die Fließgrenze erreicht
haben. Diese Versuche scheinen also die neuere Plastizitätslehre zu unterstützen.
Bei allen durchgeführten Versuchen konnte dagegen die ältere Fließbedingimg
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nicht beobachtet werden. Auf diese Versuche werde ich in einer ausführlichen
A eröffentlichung in der Fachpresse zurückkommen.

Ein gleiches Fachwerk habe ich auch genietet herstellen lassen (Fig. 12).
Infolge der etwas höheren Streckgrenze des verwendeten Bandeisens war die
erreichte Höchstlast größer als beim geschweißten Träger (20,4 t gegen 19,1 t).
Bei einer ersten Belastung war ein Nachgeben der Nietung festzustellen. Bei
den weiteren Belastungen war das Verhalten elastisch. Trotz der Nietlöcher
konnte die Fließgrenze im vollen Querschnitte erreicht werden.

Aus diesen Versuchen können wir folgende Folgerungen ziehen: Bei
geschweißten statisch unbestimmten Fachwerken haben die Schrumpfspannungen
nur einen Einfluß auf den Beginn des Kräfteausgleichs, dagegen nicht auf die
Größe der kritischen Last. Es ist darauf zu achten, daß die Schrumpfspannungen

5
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die Grundspannungen in den Zugstäben erhöhen und in den Druckstäben
verkleinern. (Wahl des Arbeitsvorganges.)

In genieteten statisch unbestimmten Fachwerkträgern beginnt sich die
plastische Dehnung im Anschluß auszubilden, wobei die Reibung die dazu
notwendige Kraft etwas vergrößert. Von ähnlichem Einfluß könnte jedoch auch die
Überhöhung der Fließgrenze am Lochrand oder die Verfestigung des Stahles
infolge der Art der Nietung gewesen sein. Bei geringen Stablängen genügt eine
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geringe Nachgiebigkeit des Anschlusses zum Kräfteausgleich. Die Stabanschlüsse
sollen immer so stark sein, daß vor ihrer Zerstörung der volle Stab die

Fließgrenze erreicht. Die Traggrenze eines genieteten Fachwerkes ist etwa diejenige,
die die Plastizitätslehre aus den durch Nietlöcher nicht geschwächten
Querschnitten ergibt, vorausgesetzt, daß kein Druckstab zum Ausknicken kommt.
Mit Rücksicht auf die großen bleibenden Verformungen erhalten wir die
praktische Traggrenze bei Abzug der Nietlöcher, und unter Inanspruchnahme
des Kräfteausgleichs. Die Sicherheit wird dann so immer größer sein als bei

geschweißten Tragwerken, die mit vollem Querschnitt berechnet werden.
Außer den Fachwerkträgern habe ich auch genietete Blechträger untersucht.

Die Balken auf zwei Stützen wurden in den Drittelspunkten belastet. Der
Biegewinkel des durch ein konstantes Moment beanspruchten Mittelteiles wurde

gemessen. Die Versuchsresultate sind in Fig. 13 zu sehen. Bei der Bestimmung
von J wurden die Nietlöcher nicht abgezogen. Die gemessene Durchbiegung ist
etwas größer als die mit E 2100 t/cm2 berechnete, dagegen stimmt das

Biegungsmaß bei der Entlastung (Elastisches Verhalten) gut damit überein.
Nach einer zweitägigen Ruhepause erhöhte sich die Fließgrenze um 6 o/o und
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der Träger verhielt sich rein elastisch. Als kritische Last fand ich für die

empfohlene Annahme dö/de 1/20 E den Wert 14 t. Fig. 13 zeigt das
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Besultat der Vergleiche dieses Versuchswertes mit den verschiedenen

Auffassungen, wobei die kleinste Fließgrenze bei Winkeleisen mit 2500 kg/cm2
eingesetzt wurde. Dadurch ergibt sich in der äußersten Faser der Gurtplatte eine

\»

S~Q

Om»

Fig. 14.

entsprechende größte Bandspannung von 2720 kg/cm2. Zur Bestimmung des

Tragmomentes T • özui habe ich den Zustand angenommen, wo die Gurtplatte
die Fließgrenze erreicht hat. (Fig. 13.) Da bei diesem Versuch eine weitere

5*
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Unbekannte auftritt, nämlich mit welchen Werten, die Nietlöcher zu
berücksichtigen seien, habe ich Vergleichsversudie mit genieteten und geschweißten
Trägern von gleichem Profil und Werkstoff durchgeführt. Die Resultate sind
in Zahlentafel I zusammengestellt.

Zahlentafel I.

I-Träger geschweißt I-Träger genietet d 16 mm

öF kg/cm* Querschnitt
mm

Querschnitt
mm oF kg/cm3

2680 152,6 • 13 Druckgurt 152 • 12,8 2680

2620 155 • 7,7 Zuggurt 154 • 7,7 2590

2750 60 • 60 • 6,1 4 L 60 • 60 • 6,1 2780

4280 182 • 8,2 Steg 183 • 8,6 4060

1513000
Kritisches Moment kg/cm

laut Versuch 1266000

Zug
1180 000

Druck
1420 000 Wöp (öF Gurt) Zug

1170 000
Druck

1140 000

Wöp Nietloch abgezogen 965 000 1135 000

WöF Nietloch abgezogen
auch von Steg

906 000 1 087 000

1 644 000 Top Vollquerschnitt 1632 000

Töf Nietloch abgezogen 1 387 000

Töf Nietloch abgezogen
auch von Steg

1 266 400

151[3 000 Tcjf der Gurten und L.~Eisen

-f- Wöf des Steges

Mit Nietlo
1259

chabzug
000

Auch ein durchlaufender genieteter Träger auf drei Stützen wurde untersucht
(Fig. 15). Die Durchbiegungen sind größer als die berechneten, auch bei der
Entlastung. Von der Mittelstütze bis zur Laststelle erreichte der Steg die

Fließgrenze durch Schubkraft, (Fig. 14) wodurch die von Stüssi18 theoretisch gefundene

Erscheinung, daß die Schubspannungen erheblich anwachsen müssen, wenn
vom Ralkenrand das Fließen in eine gewisse Tiefe vorrückt, versuchsmäßig
erwiesen worden ist, wenn auch quantitativ in geringerem Maße. Das ist viel-
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leicht darauf zurückzuführen, daß infolge der raschen Abnahme der Momente

nur ein kurzer Trägerteil gefährdet ist, der außerdem durch die Nachbarteilo
in seiner Rewegung behindert ist. Als Endresultat fand ich, daß die Höchstlast
durch vollkommenen Momentenausgleich mit T' • öF gekennzeichnet ist.
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Die Beziehungen Mst (P) und Mp (P) beim durch*
laufenden Balken mit drei Öffnungen, belastet durch

P im Mittelfeld (siehe Vorbericht Seite 126-128).1)

Les expressions Mst (P) et MF (P) dans la poutre continue ä

trois ouvertures, soumise ä une charge P agissant dans la travee
mediane (voir la Publication Preliminaire, pages 121—126). *)

The Relations Mst (P) and Mf (P) in Girders Continuous over
Three Spans Carrying a Load P in the Central Span

(see Preliminary Report, pages 121—126). *)

Dr. Ing. H. Maier-Leibnitz,
Professor an der Technischen Hochschule, Stuttgart.

Belastet man den Träger der Fig. 1 mit einer von 0 anwachsenden Last P, so
entsteht zunächst eine nach rein elastischen Gesetzen zu berechnende Momenten-

11-0,7781 ö-tf,778l

L-2W U- 1,-210

MBr186,8

h^1%-Wcinl
Mc'293,2cmt

LI UJ
f^m^i \f,-tm
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\X-0,350l <p-2T~ 0,0255

4
Kf»-«toiM

P-tit i

M-83,9mt

Mstef-102,9 cmt

M'V80cm.l
MF =293,2 ont

Maße in cm

Fig. 1.

Verhalten des Trägers unter einer Belastung P 16 t.

1 siehe auch Zeitschrift „Der Stahlbau" 1936, H. 20, S. 153 ff.
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fläche charakterisiert durch MQ, Mst, Mf. Unter P Ps ^ 11 t) vwrd in
der äußersten Faser der Feldmitte die Streckgrenze ös erreicht.

Wenn P > Ps wird, z. B. bei P 16 t, kann Mf nicht wesentlich über
Ms W • ö8 anwachsen. Mit Hilfe des Mohrschen Satzes kann man aus der
Momentenlinie (Fig. lb) von A über B einen Ausdruck für den Winkel cp

der Durchbiegungslinie in Balkenmitte ableiten, die dort einen Knick aufweist.
Im dargestellten Fall ist

EJcp 6600 P — 280 MF.

Wird der Balken entlastet, so zeigt sich die Balkenform der Fig. 1 d mit der

Aufbiegung ü. Vor der Wiederbelastung muß zunächst ü rückgängig gemacht

30 *V 30

p
r*o

Maße in c/n

m

300 ^1

ZOO

0.010 0,030

Fig. 2.

Abhängigkeit <p (M)
des einfachen Balkens.

werden durch die beiden Kräfte X und X, denen die Stützenmomente MK

entsprechen. Bei der Wiederbelastung mit P 16 t tritt zu Mx das rein elastische
Stützenmoment Mst ei hinzu (Momentenlinie entsprechend Fig. lh).

Wie groß ist Mf und damit das Stützenmoment Mst M0 — Mf, sowie cp,

ü, X?
Beim einfachen Balken (Vergleichsbalken 1 120 cm 12) kann man rein

experimentell die Beziehung cp (M), wie Fig. 2 zeigt, bestimmen, wobei M das
Moment in Balkenmitte ist. Um das tatsächliche Verhalten des durchlaufenden
Balkens zu deuten, kann man dieses Ergebnis auf den durchlaufenden Balken
übertragen, d. h. auf die Beziehung Mf (cp), für die andererseits die oben
angegebene Beziehung

EJcp 6600 P — 280 Mf
gilt.
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Bestimmung der Mf für lt 240 cm und 12 120cm mit Hilfe von:
EJ9 6600 P — 280 Mf insbesondere für P 16 t,

MF"293,2 ml
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Fig. 4.

Beziehungen Mst (P) und Mf (P) für lt 240 cm.
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In Fig. 3 sind die beiden Beziehungen aufgetragen. Für P 16 t ergibt sich:
Mf 293,2 cmt und cp 0,0255 (verfeinerte Deutung).

Führt man diese Bestimmung auch für die anderen Lasten durch, so entsteht
das Bild der Fig. 4. M8t und Mf wachsen zunächst geradlinig; dann von
P'8 11,12 t an in Kurven. Bei P 16 t sind die oben erwähnten Werte Mx
und Mstei eingetragen (Fig. lh). Man sieht auch aus dem Bild, wie nach einer
Entlastung eine Widerbelastung vor sich geht und, daß die Werte der
verfeinerten Deutung gut mit den dünner ausgezogenen Versuchswerten
übereinstimmen.

In Fig. 3 ist bei P 16 t als Ordinate E F der Versuchswert MF 307,4 cmt
eingetragen. Die Ordinaten der Kurve cp (Mf) sind also größer als die der
Kurve cp (M) des Vergleichsbalkens mit 1 120 cm. Dies rührt davon her,
daß man eigentlich zum Vergleich kürzere Versuchsbalken mit einer Spannweite

der Entfernung der Momentennullpunkte im Mittelfeld hätte heranziehen

sollen. Nach dem Kongreß durchgeführte Versuche mit 1 950 cm
entsprechend Ps und 1 730 cm entsprechend Pt bestätigen es.

Mit dem Vorstehenden ist die Grundlage geschaffen für eine genauere als

bisher mögliche Lösung des Problems der tatsächlichen Tragfähigkeit
durchlaufender Träger aus Baustahl und eine Lücke geschlossen, auf die /. Fritsche
in der Zeitschrift „Der Stahlbau'' 9 (1936), Seite 67 aufmerksam gemacht hat.
Man braucht also künftig wie bei den bisherigen Untersuchungen nach dem
„Traglastverfahren* ' nicht mehr von der zu primitiven Voraussetzung des Momentenausgleichs

Gebrauch zu machen.
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Zur Auswertung von Versuchen über das

Traglastverfahren.

L'interpretation des essais sur la methode de l'equilibre plastique.

Interpretation of Tests of the Equilibrium Load Method.

Privatdozent Dr. F. Stüssi,
Berat. Ing., Zürich.

Herr Prof. Dr. Maier-Leibnitz hat in seinem Beitrag zum Vorbericht des

Kongresses1 die Ergebnisse der durch die Fachpresse bekannt gewordenen
Versuche über das Traglastverfahren zusammengestellt und ausgewertet. Unter diesen
Versuchen möchte ich diejenigen zu einer kurzen Ergänzung der Auswertung
nochmals herausgreifen, die Herr Prof. Maier-Leibnitz kürzlich selbst
durchgeführt hat2 und die, in Übereinstimmung mit unsern Zürcher Versuchen,3 keine
vollständige Angleichung von Feld- und Stützenmomenten ergeben haben.

Bei einem durchlaufenden Träger nach Fig. 1 müssen auch im unelastischen
Bereich die Gleichgewichts- und Elastizitätsbedingungen der Baustatik gültig

Fig. 1.

6^3-~
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Versuchsanordnung.

bleiben; insbesondere wird die Biegungslinie über einer Zwischenstütze stetig
verlaufen. Bezeichnen wir die Drehwinkelsumme eines durch eine dreieckförmige
Momentenfläche M belasteten einfachen Balkens der Spannweite 1 1 mit A, den

größeren Auflagerdrehwinkel mit B, so läßt sich diese Elastizitätsbedingung
anschreiben zu

Bx • \ Am • a — Ax • b. (1)

1 H. Maier-Leibnitz: Versuche, Ausdeutung und Anwendung der Ergebnisse. I.V.B.H., Zweiter
Kongreß Berlin 1936, Vorbericht.

2 H. Maier-Leibnitz: Versuche zur weiteren Klärung der Frage der tatsächlichen
Tragfähigkeit durchlaufender Träger aus Baustahl. Stahlbau 1936, H. 20.

3 F. Stüssi und C. F. Kollbrunner: Beitrag zum Traglastverfahren. Bautechnik 1935, H. 21.
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Wenn nun, wie im vorliegenden Fall (Fig. 2) der Momentenverlauf bei
wachsender Belastung durch Beobachtung gegeben ist, so kann aus Gl. 1 die
Unbekannte Am berechnet werden. Die Werte Ax und Bx sind zunächst im elastischen
Bereich bekannt; für höhere Belastungsstufen sind sie sukzessive aus den Werten
Am für kleinere Belastungen festgelegt. In Fig. 3 ist der so bestimmte Verlauf
der Drehwinkelsumme A dargestellt. Es zeigt sich eine deutlich ausgesprochene
Verfestigung für Biegungismomente über etwa 315 cmt, also in der Zone, die
beim Vergleichsversuch mit dem einfachen Balken nicht mehr beobachtet wurde.

Damit sind nun aus diesem einen Versuch die Hilfswerte bestimmt, die uns
die Berechnung des Momentenverlaufs mit Hilfe der Elastizitätsbedingung Gl. 1

P>*207r-/////
*Ä//
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Fig. 2.

Momentenverlauf.
Versuche von Prof. Dr. Maier-Leibnitz.

Fig. a.

Drehwinkelsumme A.

auch bei andern Verhältnissen der Spannweiten erlauben. Wenn wir daraus
einen Schluß auf den Verlauf der Tragfähigkeiten ziehen wollen, so müssen wir
noch eine Annahme treffen, nämlich die, daß in allen Fällen die Grenze der

Tragfähigkeit dann erreicht sei, wenn das größte Biegungsmoment, das hier
unter der Last auftritt, einen bestimmten Grenzwert erreicht hat. Diese Annahme
ist an sich plausibel; wäre sie unrichtig, so hätte die ganze in der Baupraxis
übliche Berechnung von Spannungen keinen Sinn mehr. Die erste Folge unserer
Annahme ist die, daß wir aus den elementaren Gleichgewichtsbedingungen des

Mittelfeldes einen Vergleich zwischen der Tragfähigkeit des durchlaufenden (P)
und derjenigen des einfachen Balkens (PQ) erhalten. Es ist nämlich

P:P„ (M + X) : M (2)
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Da aber, auch nach diesen Versuchen von Herrn Prof. Maier-Leibnitz, kein voller
Momentenausgleich eintritt, beträgt die Tragfähigkeit des durchlaufenden Balkens
nicht das Doppelte des einfachen Balkens. Ein nach dem Traglastverfahren
bemessener Durchlaufbalken besitzt somit eine geringere Sicherheit gegen Erreichen
der Belastungsgrenze als der einfache Balken.

Traglastrerfahren —Procede' de l'equilibre plastique
Z.0

Theory ofplashc equilibrium

sP°
Vd»

V&
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"•1.0 \M
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2.0
f-<X

Fig. 4.

Berechnete Tragfähigkeiten.

In Fig. 4 sind noch die berechneten Verhältnisse der Tragfähigkeiten
aufgetragen. Der Verlauf dieser Kurve stimmt grundsätzlich mit unseren früher
versuchstechnisch bestimmten Kurven überein. Abgesehen von den abnormalen
Fällen mit sehr großer Seitenöffnung liegen diese Werte noch etwas oberhalb
einer Geraden (gestrichelt), die den Unterschied zwischen Traglastverfahren und
Elastizitätslehre halbiert. Mein Vorschlag geht deshalb dahin, die durch das

Traglastverfahren angegebene Vergrößerung der Tragfähigkeit von Durchlaufbalken

aus Baustahl gegenüber der Elastizitätslehre wenn überhaupt, dann nur
zur Hälfte auszunützen und außerdem diese Ausnützung der Sicherheitsvergrößerung

vorläufig auf gewalzte Träger des Hochbaues zu beschränken.
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Beitrag zur Frage der Ausnutzbarkeit der Plastizität
bei dauerbeanspruchten Durchlaufträgern.

Sur la plasticite dans les poutres continues sollicitees
dynamiquement.

Contribution to the Question of Utilising Plasticity in
Continuous Girders Subjeet to Repeated Stresses.

Dr. Ing. K. Klöppel,
Leiter der technisch-wissenschaftlichen Abteilung des deutschen Stahlbau-Verbandes, Berlin.

Der von Dr. Hans Bleich1 unter Annahme eines idealplastischen Werkstoffes
aufgestellte Satz

„Wenn es in einem statisch unbestimmten System möglich ist, durch
passende Wahl der statisch unbestimmbaren Größen einen Selbstspannungszustand

anzugeben, derart, daß in jedem Punkt die Summe der Selbstspannung
und der nach dem Elastizitätsgesetz bestimmten Größtspannung gerade unterhalb

der Fließspannung bleibt, so ist das System auch bei unendlich oft
wiederholter Belastung tragfähig4'

muß durch Dauerversuche nachgeprüft werden können, da die Belastungsfrequenz

keine Rolle spielt.
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Fig. 1.

Versuchsanordnung.

Gewählt wurde ein ungelochter Träger (I 12) auf drei Stützen mit Einzelspann-
weiten von je 1,50 m aus Handelsbaustahl (Fig. 1). Sämtliche Lager konnten
Zug- und Druckkräfte aufnehmen, die äußeren waren auch noch
längsverschieblich. 2

i Zeitschrift „Der Bauingenieur" 1932, Heft 19/20.
2 Die Versuche wurden in der MPA. Stuttgart (Professor Graf) durchgeführt.
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Der Bleichsche Satz widerlegt die Auffassung, daß der Träger, wenn er für
je einen mehrerer Belastungsfälle im Sinne des Traglastverfahrens tragfähig
ist, dies unbedingt auch dann ist, wenn die sämtlichen Belastungsfälle beliebig
oft wechseln.

Die gewählten Belastungsfälle sind in Fig. 1 dargestellt. Mit Rücksicht auf
die maschinellen Gegebenheiten wirkte die linke Last dauernd und die rechte
Last schwellend, und zwar mit kleiner Grundlast (200 kg) und minutlich etwa
10 Lastspielen. Einen Zwischenzustand der völligen Entlastung gab es also nicht.

Die Größe der Lasten P wurde zunächst so bestimmt, daß in dem nach der
Elastizitätslehre höchstbeanspruchten Querschnitt die Fließgrenze (öF M: W)
erreicht war. Diese ergab sich zu öF 2420 und 2730 kg/cm2 für die Flansche
der beiden 12 m langen Träger, aus denen die je etwa 3 m langen Versuchskörper

hergestellt wurden.
Nach dem Bleichschen Satz hätte durch Annahme des günstigsten Selbst-

spannungszustandes (Fig. 2), der Stützen- und Feldmoment ausgleicht, die

minM

\7 tojoio

max

Fig. 2.

Fheßgrenze bei der Bestimmung von P überschritten werden dürfen, aber nur
um etwa 2,5 o/o, da für die beiden Belastungsfälle fast „natürlicher Momentenausgleich"

vorliegt.
Der Träger ertrug mit P 4210 kg 700 000 Lastspiele, ohne Anzeichen

eines bevorstehenden Dauerbruches erkennen zu lassen. Die federnden
Durchbiegungen, die bis zu 1/1oomm genau von einem Rahmen aus abgelesen
wurden, entsprachen den rechnerischen Werten, und die bleibenden
Durchbiegungen waren praktisch Null. Eine Selbstspannungswirkung schaltete also aus.

Die Lasten P wurden nun für denselben Träger soweit erhöht, daß die
Fheßgrenze um 20 o/o überschritten war. Auch bei dieser Belastung ertrug der Träger
weitere 630000 Lastspiele. Die Durchbiegungen stiegen gegenüber der ersten

Belastung nur unwesentlich schneller als die Belastung. Der Versuch wurde
abgebrochen, da wiederum kein Dauerbruch zu erwartem war. Die bleibenden

Durchbiegungen erreichten etwa nur 15 o/0 ihres rechnerisch bestimmten Wertes,
der folgendermaßen ermittelt werden kann:

Um über der mittleren Stütze das Selbstspannungsmoment von 0,01 P • 1 zu
erhalten, muß im statisch bestimmten Grundsystem, als welches der Kragträger
gewählt sei, an dessen Ende die Kraft 0,01 • P angreifen. Diese erzeugt eine

Durchbiegung des Tragrandes von

f _ 0,01 ¦ P • 2 l8

3-E-J
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Die gleiche Durchbiegung ergibt sich im statisch bestimmten Grundsystem,
wenn in Feldmitte infolge Kaltverformung die Durchbiegung f/2 beträgt. Hierfür
errechnet sich mit E 2100 t/cm2 und J 328 cm4:

f/o 0,0TP11503 nmß.pf/2 3-.-2iÖÖ-^28 a°165R

Der kaltverformte Träger wird als Balken auf drei Stützen, der Momentenfläche

des Selbstspannungszustandes entsprechend, noch federnd verbogen, so
daß sich f/2 um einen Betrag b vermindert:

0,01 -P-13
lö • UJ

: 0,0031 P.

16-EJ
0,01-P-150$
16-2100-328

Mithin sind die bleibenden Durchbiegungen in Mitte des linken Feldes für
den Selbstspannungszustand in mm

bbl (0,165 — 0,031) P 0,134 P.

Der Selbstspannungszustand kann frühestens eintreten, wenn in Feldmitte die
Fließgrenze öF erreicht ist. Somit gilt für P

p> W-oF
0,203 • 1

Durch die ausgleichende Wirkung des Selbstspannungszustandes kann P erhöht
werden auf

P'=SP ~I'025P

Hierzu gehört die bleibende Verformung

c-,,1 0,134 P'

die auch bei vielfach wiederholter Belastung nicht zunehmen darf.

Die federnden Durchbiegungen für P 1 t in der Mitte des linken Trägerfeldes

sind bei dessen alleiniger Belastung (Fall A)

bel 0,734 mm

und bei Belastung beider Felder (Fall B)

bei 0,446 mm.

Von den durchgeführten Versuchen sollen zwei kurz betrachtet werden. Die
Lasten P betrugen 5,04 t und 5,83 t. Für Fheßgrenze und Widerstandsmoment
ergaben sich öF 2420 kg/cm2 und W 53,1 cm3. Die Last, bei der die
Fheßgrenze erreicht wird, war um das 1,2 und 1,38 fache überschritten. In
beiden Fällen trat nach mehr als 500 000 Lastspielen kein Dauerbruch ein. In
der Mitte des linken Feldes wurden für die beiden Belastungsfälle A und B die
in Tafel 1 enthaltenen Durchbiegungen gemessen und rechnerisch bestimmt.
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Tafel 1,

Last Belastungsfall
bel + Kl *bi *bi

gemessen rechn. Wert gemessen rechn. Wert

5,04 t
A 3,65 mm 4,37 mm

0,18 mm 0,67 mm
B 2,49 „ 2,92 „

5,83.t
A 5,25 5,055 „

1,68 „ 0,775 „B 4,75 3,375 „

Unter P 5,04 t bleiben die gemessenen Werte hinter den rechnerischen
zurück. Die wirkliche bleibende Durchbiegung ist sehr gering, so daß, obwohl
in den Flanschen die Fließguenze um 20o/0 überschritten ist, der
Selbstspannungszustand noch gar ni,cht in Anspruch genommen war. Bei P 5,83 t
ist es umgekehrt; hier überwiegen die tatsächlichen Durchbiegungen. Die
Abweichung ist bei den bleibenden Durchbiegungen besonders groß. Offenbar ist
hier — wogegen die Einhaltung des Bleichschen Satzes sonst schützen würde —
durch Belastungsfall B ein zusätzlicher Selbstspannungszustand erzeugt; denn
im rechten Feld traten auch bleibende Durchbiegungen und keine bleibenden
Überhöhungen auf. Stütz- und Feldmoment sind ja auch fast gleich groß. Die
bleibenden Durchbiegungen wuchsen jedoch im späteren Verlauf des
Dauerversuches nicht mehr. Daraus geht hervor, daß nach dem Bleichschen Satz
bemessene biegungssteife Tragkonstruktionen auch bei Dauerbeanspruchung noch
zusätzliche Sicherheiten aufweisen. Diese Feststellung ist in dem inhomogenen
Verlauf der Biegespannungen begründet; erreichen die Randzonen des
Querschnittes die Fließgrenze, so setzen die übrigen nur federnd gespannten Zonen
bleibenden Verformungen noch Widerstand entgegen. Dadurch sind etwa 16 o/0

Festigkeitszunahme zu erwarten. Die Zahl ergibt sich, wenn W durch 2 Sx

(Sx statisches Moment des halben Trägerquerschnittes, bezogen auf die x-Achse)
ersetzt wird. Diese Wirkung wird noch dadurch gesteigert, daß die Fließgrenze
des Steges in der Regel höher liegt als diejenige des Flansches. Ferner können
auch Verfestigungserscheinungen sowie Wirkungen einer oberen Fließgrenze
den Widerstand erhöhen. Schließlich werden auch die Walzspannungen die
Ausbildung bleibender Verformungen bis zu einer gewissen oberhalb der
Fließgrenze liegenden Spannung verzögern.

Es wurde noch Belastungsfall A allein untersucht, da hier der Unterschied
zwischen Stütz- und Feldmoment groß ist. Die bleibende Durchbiegung unter
P ^= 6,2S t, entsprechend einer 1,3 fachen Überschreitung der Fließgrenze
(öp —- 27,3 kg/mm2), betrug nur 1,6 mm, während der momentenausgleichende
Selbstspannungszustand (Stützmoment 3/2 [0,203 — 0,094] P 1 0,072 P 1)

eine bleibende Durchbiegung von 5,75 mm erfordern würde. Für die federnde
Durchbiegung wurden in guter Übereinstimmung mit der Rechnung etwa
4,6 mm gemessen; sie ist also kleiner als die für den Momentenausgleich erfor-
liche bleibende Durchbiegung. Nach mehr als einer Million Lastspielen wich
der Träger seitlich aus. Ein Dauerbruch trat nicht ein.
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Die theoretisch und durch Versuche gewonnenen Erkenntnisse könnten für
eine sparsamere Bemessung durchlaufender auf Dauerfestigkeit beanspruchter
Träger nur dann verwertet werden, wenn diese, insbesondere in den Flanschen,
keine Kerben wie z. B. Löcher oder Kehlnähte aufweisen. Eine solche
Einschränkung schließt Nietkonstruktionen und Nietverbindungen weitgehend aus.
Dagegen könnten für ungelochte Walzträger mit einwandfrei stumpfgeschweißten
Stößen, deren Oberflächen kerbfrei bearbeitet sind, auch bei Dauerbeän-
spruchungen im Sinne des Traglastverfahrens höhere Beanspruchungen berechtigt

sein. Die Ausnutzung des Traglastverfahrens kann jedoch durch eine
vorzeitige Instabilität des Trägers verhindert werden. Es ist ferner auch möglich,
daß sich der günstigste Selbstspannungszustand, wenn er sehr große bleibende

Verformungen bedingt — also in den wirtschaftlich wichtigsten Fällen — unter
der ihm zugeordneten Last nicht einstellt.3 In diesen Fällen kann natürlich
nicht mit Momentenausgleich gerechnet werden.

3 Stüssi und Kollbrunner: „Bautechnik" 1935, Heft 21; Maier-Leibnitz: „Stahlbau" 1936,
Heft 20; Klöppel: „Stahlbau" 1937, Heft 14/15.
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Formelmäßige Lösung des Stabilitätsproblemes
exzentrisch gedrückter Stahlstäbe.

Les formules de la stabilite des barres excentriquement
comprimees.

Formulae for the Solution of Eccentrically Loaded Steel
Columns.

Dr. Ing. K. Jezek,
Dozent an der Technischen Hochschule Wien.

Das klassische Stabilitätsproblem des zentrisch gedrückten geraden Stabes
wurde durch die Forschungsarbeiten von Euler, Engesser und Kärmän einer
befriedigenden Lösung zugeführt.1 Diese Art der Beanspruchung stellt
allerdings einen praktisch niemals zu verwirklichenden Idealfall dar, da die geringsten
Abweichungen von den Voraussetzungen wie z. B. unvermeidliche und
verschwindend kleine Exzentrizitäten des Kraftangriffes oder Stabkrümmungen eine
zusätzliche Biegung hervorrufen und damit unter Umständen eine recht erhebliche

Herabsetzung der Tragfähigkeit bewirken. Bei einem derart auf axialen,
Druck und Biegung beanspruchten Stahlstab besteht nun ebenfalls die Gefahr
des Eintrittes eines labilen Gleichgewichtszustandes, allerdings erst dann, wenn
mit zunehmender Belastung bereits bleibende Formänderungen aufgetreten sind.
Durch diese wesentliche Bedingung unterscheidet sich daher die Aufgabe der
Bestimmung der Traglast grundsätzlich vom Knickproblem des geraden Stabes.

Dieses eigenartige Stabilitätsproblem wurde erstmalig von Kärmän im
Anschlüsse an seine bekannten Knickversuche für sehr kleine Exzentrizitäten des

Kraftangriffes theoretisch und experimentell untersucht.1 Hierbei ging Kärmän
von der Arbeitslinie einer bestimmten Stahlsorte aus und entwickelte zur Lösung
der Differentialgleichung der Biegelinie ein sinnreiches graphisches Integrationsverfahren;

dieser Teil der Kärmän'schen Arbeit blieb jedoch lange Zeit
unbeachtet. Auch das etwa 13 Jahre später von Krohn2 angegebene Näherungsverfahren

teilte infolge seines wenig durchsichtigen Rechnungsganges und wohl
in erster Linie mangels einer zahlenmäßigen Auswertung der Ergebnisse das
Schicksal der Kärmän sehen Untersuchung. Einige Jahre später entwickelten Ros
und Brunner ein zeichnerisches Näherungsverfahren und legten die Ergebnisse
in einem Diagramm nieder, welches zum ersten Male ziffernmäßig» den

1 Th. v. Karman: „Untersuchungen über Knickfestigkeit". V.D.I., H. 81, 1910.
2 R. Krohn: „Knickfestigkeit". Bautechnik 1923.
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Zusammenhang zwischen Tragkraft, Exzentrizität und Schlankheit für ein
bestimmtes Formänderungsgesetz erkennen läßt.3 Schließlich entwickelte Chwalla
in Anknüpfung an die Gedankengänge Kärmäns die strenge Lösung für Stäbe

mit beliebig großer Exzentrizität des Kraftangriffes.4
Allen diesen Untersuchungen haftet der fühlbare Mangel an, daß ihre

Ergebnisse nur nach sehr langwierigen Rechnungen erhalten werden und
ausschließlich in der Form eines Diagrammes oder einer Zahlentafel darstellbar
sind. Bedenkt man außerdem, daß eine große Anzahl derartiger nach der
Stahlsorte und Querschnittsform geordneter Diagramme erforderlich ist, so
erkennt man leicht, daß dieser Umstand für die praktische Anwendung nicht nur
beschwerlich ist, sondern geradezu ein Hindernis bildet; dies kommt am
deutlichsten darin zum Ausdruck, daß die behördlichen Vorschriften nahezu aller
Staaten — eine Ausnahme bilden meines Wissens nur die Schweizerischen

Bestimmungen — den neuen und vollkommen gesicherten Erkenntnissen
hinsichtlich der Bemessung exzentrisch gedrückter Stahlstäbe bisher — offenbar
in Ermangelung einer theoretisch begründeten und einfachen Formel — nicht
Rechnung getragen haben.

Ich möchte nun kurz den Weg schildern, der zu einer formelmäßigen Lösung
dieser für den Stahlbau bedeutungsvollen Aufgabe führt. Zunächst kann das

Formänderungsgesetz der derzeit gebräuchlichen Stähle für den vorliegenden
Zweck durch eine ideal-plastische Arbeitslinie ersetzt werden, da eine
Verfestigung nur bei extrem kurzen und praktisch nie ausgeführten Stäben mit
einer Schlankheit X < 20 eintreten könnte. Die Annahme der Gültigkeit des
Hooke'schen Gesetzes bis zur Fließgrenze ist durch die sorgfältig durchgeführten
Druckversuche des Deutschen Stahlbau-Ausschusses hinreichend begründet.5
Ersetzt man ferner die Biegelinie durch eine Sinuslinie, so gelangt man zunächst
im einfachsten Falle des Rechteckquerschnittes zu der von mir angegebenen
formelmäßigen Lösung,6 deren Ergebnisse mit den aus der genauen Biegelinie
abgeleiteten strengen Werten weitgehende Übereinstimmung (größter Fehler
3o/o) zeigt;7 die Fließgrenze ist hierbei in üblicher Weise aus einem
Druckversuch zu bestimmen. Ich habe schließlich unter den gleichen Voraussetzungen
das Tragverhalten exzentrisch gedrückter Stahlstäbe in Abhängigkeit von der
Querschnittsform untersucht,8 wobei im Hinblick auf die dünnwandigen Profile
des Stahlbaues die Stabilitätsverhältnisse sowohl in der Momentenebene als auch
senkrecht dazu einer Klärung bedürfen. Fig. 1 zeigt für den am häufigsten
verwendeten Stahl St. 37 und ein Exzentrizitätsmaß m 1 (die Axialkraft

3 Vgl. die Berichte der I. Internat. Tagung und des I. Internat. Kongresses für Brückenbau
und Hochbau, Wien 1928 und Paris 1932.

4 E. Chiualla: „Theorie des außermittig gedrückten Stabes aus Baustahl." Stahlbau 1934.

(Zusammenfassende Darstellung des strengen graphischen Verfahrens.)
5 W. Rein: „Versuche zur Ermittlung der Knickspannungen für verschiedene Baustähle."

H. 4 der Berichte des Ausschusses für Versuche im Stahlbau. J. Springer, Berlin 1930.
6 Ä\ Jezek: „Näherungsberechnung der Tragkraft exzentrisch gedrückter Stahlstäbe." Stahlbau

1935. — „Die Tragfähigkeit axial gedrückter und auf Biegung beanspruchter Stahlstäbe."
Stahlbau 1936.

7 K. Jezek: „Die Tragfähigkeit des exzentrisch beanspruchten und des querbelasteten Druckstabes

aus einem ideal plastischem Stahl." Sitzungsberichte der Akademie der Wissenschaften in
Wien, Math.-naturw. Kl., Abt. IIa, 143. Bd., 7. H., 1934.

8 K. Jezek: „Die Festigkeit von Druckstäben aus Stahl." — Julius Springer, Wien 1937.

6*
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greift im Kernpunkt an) die kritische Axialspannung ökr, oberhalb welcher
ein Gleichgewicht zwischen äußeren und inneren Kräften unmöglich ist, in
Abhängigkeit von der Schlankheit X und der Querschnittsform. Man erkennt,
daß der Einfluß der Profilform bei kurzen Stäben bedeutend ist, jedoch sowohl

mit wachsender Schlankheit als auch
mit abnehmender Exzentrizität rasch
abklingt. Am günstigsten verhalten sich
Stäbe mit Kreuzquerschnitt, am
ungünstigsten Stäbe mit I- und T-Quer-
schnitt; insbesonders liegt in den beiden
letzten Fällen die kritische Spannung nur
wenig über der Grenzspannung ön des

elastischen Bereiches. Die für m 0,01
gezeichnete Linie der kritischen Spanr
nungen (d^-Linie) ist von der
Querschnittsform nahezu unabhängig und
zeigt deuthch den bei mittelschlanken
Stäben verhängnisvollen Einfluß einer
verschwindend kleinen Exzentrizität von
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der Kernweite auf die Tragfähigkeit.

Fig. 1. Schließlich gelingt es aus einer
Betrachtung über Stäbe beliebiger

Querschnittsform die in Tafel I angegebene einheitliche und für jede Stahlsorte
anwendbare Näherungsformel abzuleiten, deren Beiwerte \i± und u.2 von der
Profilform abhängig sind. Für Stäbe mit T-Querschnitt ist unterhalb einer
bestimmten Axialspannung eine zweite ähnlich gebaute Formel zu verwenden.
Diese Berechnungsgrundlagen gelten ganz allgemein für axial gedrückte und
auf Biegung beanspruchte Stahlstäbe, wenn als Exzentrizität im erweiterten
Sinne das Verhältnis aus Biegemoment (bezogen auf die nicht verformte
Stabachse) zu Axialkraft verstanden wird; bezüglich näherer Erläuterungen
verweise ich auf meine Veröffentlichungen. Für jm^ 1 und jli2 0 erhält
man die zur Berechnung der in Fig. 1 strichliert eingezeichneten ö„-Linie
erforderlichen Formeln.

Für die praktische Bemessung von „entwurfsgemäß" zentrisch gedrückten

Stäben schlaffe ich vor mindestens eine unvermeidliche Exzentrizität von ——-6 100
der Kernweite in Rechnung zu stellen; man erhält dann mit m0 0,01 und

0^ 1, |u2 0 eine einfache „Knickformel", welche der heute wohl
unbestrittenen Tatsache, daß die Stauchgrenze ös die obere Grenze für die

Knickspannung darstellt, grundsätzlich entspricht und für sehr schlanke Stäbe praktisch
in die Euler-Formel übergeht. Es soll nicht unerwähnt bleiben, daß diese
Formeln durch die bekannt gewordenen Versuchsergebnisse gut bestätigt werden
und daher bei geringer Rechenarbeit und größter Allgemeingültigkeit eine
verläßliche Beurteilung der Tragfähigkeit gewährleisten. Hiermit dürfte dieses
Problem in einer sowohl vom theoretischen als auch praktischen Standpunkt
aus befriedigenden Form hinreichend geklärt sein.
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Der Einfluß einer Ungleichartigkeit der Fehlerhebel
auf die Tragfähigkeit einer Stahlstütze.

L'influence des erreurs de centrage sur la resistance des
colonnes metalliques.

The Effect of Unequal Eccentricities on the Carrying Capacity
of a Steel Column.

Dr. techn. J. Fritsche,
Professor an der Deutschen Techn. Hochschule, Prag.

Im wirklichen Stahlbauwerke ist die Eintragung der Kraft in den Druckstab
in den meisten Fällen recht unklar und unbestimmt und die Annahme eines

mittigen Druckes oder eines solchen mit gleichen Außermittigkeiten an den
beiden Stabenden ist lediglich als ein Mittel zu werten, um für die Tragfähigkeit
einen Vergleichsmaßstab zu schaffen und den Einfluß von Querschnittsform,
Stablänge und Größe der Außermittigkeit der Druckkraft zu erkennen. Diese
letztere Größe ist für den Druckstab des Fachwerkes oder den des Stahlskelettes
durch seine steife Verbindung mit den Nachbarstäben und durch die Einzelheiten
der konstruktiven Ausbildung dieser Verbindung bestimmt und sie kann genau
nur dann angegeben werden, wenn man die sogenannten Nebenspannungen des
FachWerkes ermittelt. Die Berechnung derselben würde in jedem Falle sehr
mühselige und zeitraubende Zahlenrechnungen erfordern, die vom entwerfenden
Ingenieur nicht verlangt werden können; außerdem ist aber auch sehr fraglich,
ob ihr Einfluß auf die Sicherheit des Tragwerkes mit Rücksicht auf das plastische
Verhalten des Werkstoffes mit dem der Grundspannungen unmittelbar
verglichen werden darf.

Die ungefähre Größe der Nebenspannungen und ihre Verteilung im Stabwerke
darf heute als bekannt gelten;1 das Ergebnis der theoretischen Untersuchungen
ist übrigens auch durch Dehnungsmessungen an fertigen Bauwerken überprüft
worden. Man weiß daher, daß die Außermittigkeiten des Lastangriffes an den
Stabenden meist verschieden sind, und daß die Stützlinie des Druckgurtes in
der Regel sogar die Stabachse schneidet. Die Lösung dieses allgemeineren
Problems macht unter der Voraussetzung unbegrenzten, elastischen Verhaltens
des Werkstoffes keine besondere Schwierigkeiten; es liegt ein gewöhnliches
Spannungsproblem vor und es könnte daher auch die Sicherheit eines derartig

1 M. Ros: Nebönspannumgen infolge vernieteter Knotenpunktverbindungen eiserner Fachwerkbrücken.

Bericht der Gruppe V der Technischen Kommission des Verbandes Schweiz. Brücken-
und Eisenhochbaufabriken, Juni 1922.
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beanspruchten Stabes bei Angabe einer zulässigen Spannung einwandfrei
festgelegt werden. Erst die Berücksichtigung der plastischen Verformungsvorgänge
macht die Aufgabe verwickelt; dann entsteht ein Problem mit kritischen Lasten
und eine Bemessung mit einer zulässigen Spannung kann eine gleiche Sicherheit
aller Stäbe nicht mehr gewährleisten.

Bei der rechnerischen Behandlung aller Plastizitätsaufgaben spielt die
Fließbedingung eine maßgebende Rolle; diese F.B. ist der analytische Ausdruck für
die Umstände, unter denen der Baustahl aus dem elastisch festen in den plastisch
verformbaren Zustand übergeht. Bei gleichmäßigen Spannungszuständen besteht
heute bereits Übereinstimmung über ihren Aufbau, es ist aber noch fraglich,
ob sie in derselben Form auch auf ungleichmäßige Spannungszustände
übertragen werden darf. Eine neuere Hypothese nimmt an, daß die Kenntnis des

örtlichen Spannungszustandes für die Vorhersage von Fließerscheinungen nicht
ausreicht und nur die Betrachtung des Spannungszustandes in einem größeren
Gebiete eine Entscheidung der Frage nach der Fließgefahr ermöglicht. Auf
Grund dieser „neueren F. B." läßt sich nun rechnungsmäßig recht weit an die
tatsächliche Tragfähigkeit eines mit verschiedenen Fehlerhebeln gedrückten Stabes

unter Berücksichtigung der wirklichen Querschnittsform herankommen.
Bei gleichen Fehlerhebeln an den Stabenden tritt das Größtmoment in der

Stabmitte auf; es fällt daher mit dem Orte von ymax zusammen. Das Tragvermögen

der Stütze ist erschöpft, wenn diese Stelle durch den plötzlich einsetzenden

Fließvorgang in ihrer Widerstandsfähigkeit so weit geschwächt wird, daß sie

bei einer Laststeigerung keinen wesentlichen Beitrag mehr zum Gleichgewicht
zwischen angreifenden Kräften und inneren Widerständen leisten kann. Die
seitlichen Ausbiegungen wachsen dann sehr rasch an und können erst beim
Einsetzen einer Werkstoffverfestigung zu einem neuerlichen Stillstande gelangen.
Bei ungleichen Fehlerhebeln wandert ymax von der Stabmitte weg gegen das
Stabende mit dem größeren Fehlerhebel zu (Fig. 1). Solange es sich innerhalb der
Stablänge 1 befindet, ist gegen früher kein wesentlicher Unterschied. Wenn aber
das Max. der elastischen Linie erst außerhalb der Stablänge auftritt und
der Stab den Größtwert seines Biegungsmomentes am Stabende mit dem Betrage
P p1 erreicht, treten ganz andere Erscheinungen auf (Fig. 2). Die Erfüllung der
F.B. am Stabende bedeutet dann noch nicht die Erschöpfung seines

Tragvermögens, denn der Stab kann unter der Last noch nicht weggehen, weder
seitlich, noch in dem Sinne, daß unzulässige Stauchungen in der Richtung der
Stabachse auftreten. Fließen am gestützten Stabende kann keine Instabilität des

Gleichgewichtes hervorbringen, denn der Stab muß dabei im wesentlichen noch
Form und Lage beibehalten, da eine Änderung dieser Größen ohne Kraftaufwand
nicht möglich ist. Der in seiner ganzen Länge ausschließlich elastisch verformte
Stab steuert noch die Verformung an der Fließstelle, die Erfüllung der F.B. kann
daher in diesem Falle nur eine Bereitschaft zu plastischer Verformung bedeuten.

Bei wachsender Belastung wird die Stütze nun unter anderen Randbedingungen
weiter verformt und es ist auf Grund des früher Gesagten einleuchtend, daß
das Tragvermögen erst dann seinen Grenzwert erreicht hat, wenn das
Größtmoment am Stabende gleichzeitig, auch durch ein Max. der elastischen Linie
gekennzeichnet ist; ihre Tangente muß dann dort gleichlaufend mit der
Kraftrichtung sein.
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Es ist naturgemäß schwierig, die sich nun abspielenden Vorgänge richtig
und zutreffend wiederzugeben und es ist verständlich, daß dies überhaupt nur
ungefähr möghch ist. Bezeichnet man mit Px die Last, bei der am Stabende die
F.B. erfüllt ist, so überlagert sich nun zu dem Spannungszustände an der
Fließstelle die Druckkraft P — Px und es ist auf Grund der allerdings mit
Verdrehen bis zum Fließen und darauf folgenden Zug durchgeführten
Versuche von Hohenemser2 und Prager3 zu schließen, daß bei der Biegung bis zum

H
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WW/M/W/W/////////////M

Fig. 1. Fig. 2.

Fließen und darauf folgenden Druck das vom Querschnitt aufnehmbare
Biegungsmoment allmählich vermindert wird. Damit könnte sich die
Laststeigerung nur mehr in einen Stab eintragen, bei dem sich am Stabende ein

Fließgelenk ausgebildet hätte. Das Fließen zentriert daher in einem gewissen
Sinne die Laststeigerung, indem durch das Versagen der Fließstelle das
Stabendmoment der Laststeigerung (P — Pj)Pi und ein ständig wachsender Teil
des schon aufgenommenen Fließmomentes P1p1 auf andere Weise vom Tragwerk

verarbeitet werden muß. Das Versagen des Biegungswiderstandes am Stabende

kann dadurch zum Ausdrucke gebracht werden, daß man zu den

bisherigen äußeren Kräften an der Fließstelle zwei Momente hinzufügt, die dort
die Krümmung der elastischen Linie den neuen Randbedingungen anzupassen
haben. Die Steigerung des Stabendmomentes beim Wachsen von P über Px hinaus
verhindert ein entgegengesetzt drehendes Moment von der Größe (P — Px) pt
und die Verminderung des Fließmomentes durch die dazutretende Längskraft
kann durch ein Moment AM bewirkt werden, das sich aus der angenommenen
Fließbedingung berechnen läßt. Aus Platzmangel ist es nicht möglich, hier die
recht umfangreichen Berechnungen anzuführen; sie sind ausführlich in meiner

2 K. Hohenemser: Neuere Versuchsergebnisse über das plastische Verhalten der Metalle.
Zeitschrift für angew. Math. u. Mech. 1931, S. 423.

3 K. Hohenemser und W. Prager: Beitrag zur Mechanik des bildsamen Verhaltens von Flußstahl.

Zeitschrift für angew. Math. u. Mech. 1932, S. 1.
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in der Zeitschrift „Der Stahlbau" erschienenen Arbeit dargestellt worden.4 Die
Fig. 3 und 4, die dieser Veröffentlichung entnommen sind und die sich auf
den Fall einseitiger und entgegengesetzt gleicher Außermittigkeit des Last-
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angriffes beziehen, zeigen die gewonnenen Ergebnisse. Es stellen sich ganz
beträchtliche Abweichungen gegenüber den bisher untersuchten Fällen des mittigen
und des außermittigen Druckes mit gleichen Fehlerhebeln ein.

4 J. Fritsche: Der Emfluß einer Ungleichartigkeit der Fehlerhebel auf die Tragfähigkeit
außermittig gedruckter Stahlstutzen Der Stahlbau 1936, Heft 23 und 24
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Wie schon bemerkt, liegen die Verhältnisse für den in ein Stabsystem
biegungssteif eingebauten Druckstab so, daß sich e P2:Pi dem Betrage — 1

nähert. Die Fälle mit e > o oder 6 1 bilden eine seltene Ausnahme; außerdem
sind in solchen Fällen die Außermittigkeiten gewöhnlich klein, so daß es nicht
gerechtfertigt ist, das Bemessungsverfahren von Druckstäben auf solche
Ausnahmefälle zu gründen. Für e — 1 kommen nun die Linien ö0kr;t#(\) recht
nahe an die Linien ök (X) heran, die die Tragfähigkeit bei mittigem Drucke zum
Ausdruck bringen und es erscheint mir daher gerechtfertigt, bei der Festlegung
einer „Knickspannungslinie" zur Berechnung gedrückter Fachwerksstäbe von
diesem Linienzuge auszugehen, wie dies z. B. bei den reichsdeutschen Be-

Fig. 3 a.
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M,
4u^

dM

P-R

Fig. 4 a.

rechnungsvorschriften nach DIN 1050 geschieht. Es würde sich dann nur noch
darum handeln, Größtwerte der vorkommenden Außermittigkeiten zu berechnen
oder auf Grund von Messungen zu schätzen und diese bei der Festlegung einer
für alle Druckstäbe gültigen Linie ökrIt(X) zu berücksichtigen, p selbst wird
dabei gewöhnlich nicht eingeführt, sondern das Verhältnis von p zur Kernweite

k des Querschnittes, das man mit m bezeichnet, m 1 liegt sicher bereits
zu hoch, man dürfte eher mit m 0,5 an die tatsächlich vorliegenden
Verhältnisse herankommen. Damit würde sich dann eine „Knickspannungslinie"
ergeben, die von der nach DIN 1050 nur wenig abweicht, nur würde es sich
empfehlen, von der Euler-Linie früher als bei 2073 kg/cm2, etwa bei 1800 kg/cm2,
abzuzweigen.

Versuche zur Überprüfung der vorliegenden Rechenergebnisse liegen meines
Wissens nicht vor; es ist auch nicht leicht, solche Versuche auszuführen, da zu
diesem Zwecke zunächst eine Lagerung des Versuchsstabes gefunden werden
muß, die ebenso die Zentrierung der Last von gewissen Belastungsgrenzen ab

ermöglicht, wie dies beim steif eingebauten Fachwerkstab eintritt. Es handelt
sich darum, die veränderlichen Randbedingungen eines Systemstabes irn
Festigkeitslaboratorium beim Einzelstab nachzuahmen. Wie weit dies überhaupt möglich

ist, entzieht sich zunächst meiner Kenntnis und es wäre sehr erwünscht,
derartige Versuchsanordnungen kennen zu lernen, da sie einen weiteren Einblick
in das tatsächliche Verhalten des Druckstabes im Bauwerk ermöglichen.
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Zur Physik des Zerreißversuchs.

La physique de l'essai de rupture par traction.

The Physics of the Tensile Breaking Test.

Dr. phil. W. Späth,
Wuppertal-Barmen.

Die Grundlage für die Werkstoffprüfung bildet auch heute noch der Zerreißversuch.

Die Aufzeichnung des Zusammenhangs zwischen aufgebrachter Last
und erzeugter Verformung des Probestücks scheint grundsätzlich so einfach zu
sein, daß die physikalische Durchdringung des Belastungsvorgangs gegenüber
Fragen technisch-praktischer Art bei der konstruktiven Gestaltung der
Prüfeinrichtungen in den Hintergrund getreten ist. Die Auswertung der von den

heutigen Prüfeinrichtungen gelieferten Schaubilder läßt dagegen eine Reihe von
Fragen offen und ein großer Anteil des Schrifttums beschäftigt sich hiermit.
So sind z. B. auch heute noch die Meinungen über den Wert oder Unwert der
Elastizitätsgrenze oder auch der oberen und unteren Streckgrenze geteilt. Ebenso

zeigen die Ergebnisse von Dauerversuchen, daß die durch Übereinkunft
festgelegten Werkstoffkennwerte des Zerreißversuchs in keinen übersichtlichen
Zusammenhang mit der entscheidend wichtigen Dauerwechselfestigkeit zu
bringen sind.

Zur Prüfung eines Werkstoffes oder auch ganzer Konstruktionsteile werden
die zu prüfenden Teile in einer Prüfeinrichtung eingespannt und auf irgend
welche Art unter allmählich wachsende Belastung gesetzt. Der Prüfkörper wird
also mit den verschiedenen Baugliedern der Prüfeinrichtung, die entweder im
wesentlichen als träge Massen oder aber als Federungen wirken, in einen gemeinsamen

Kraftfluß geschaltet. Eine nähere Betrachtung zeigt, daß die
Eigenfederung des Gestells, die Zusammendrückbarkeit der Preßflüssigkeit und auch
der Eigenhub der Kraftanzeigegeräte der heute üblichen Prüfmaschinen keineswegs

zu vernachlässigen sind, daß im Gegenteil die elastische Nachgiebigkeit
der Prüfeinrichtungen meist wesentlich größer ist, als die Verformung des

Prüfkörpers selbst.1,2
Die sich hieraus ergebende Beeinflussung des Belastungsvorgangs wird in

Fig. 1 erläutert. Die Linie OA stelle den Anstieg der Kraft mit wachsender

Verformung in einem Prüfstück dar. Auch in der Belastungsvorrichtung selbst

spielt sich hierbei ein Belastungsvorgang ab, der durch die Gerade CA dargestellt
werden kann. Im Punkt A herrscht statisches Gleichgewicht zwischen der
elastischen Kraft des Prüflings und der elastischen Gegenkraft der
Belastungsvorrichtung Der Prüfling hat sich unter der durch das Stück AB gegebenen
Belastung um das Stück OB verformt, während die entsprechende Verformung
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der Belastungsvorrichtung durch das Stück CB dargestellt wird. Die beiden
Winkel <x und ß geben die Größe der Federkonstanten des Prüfstücks bzw. der
Belastungsvorrichtung an. Tritt nun plötzlich eine plastische Dehnung des
Prüfstücks von A nach D ein, so sucht sich der Prüfkörper gemäß der Linie DO'
zu entlasten. Im Schnittpunkt E dieser Geraden mit der Belastungslinie der
Prüfeinrichtung kommt die Anordnung wieder ins Gleichgewicht, denn hier ist
die im Prüfling herrschende Kraft wiederum gerade gleich der elastischen Gegenkraft

der Belastungsvorrichtung. Durch das plastische Fließen von A nach D
kommen zwei Effekte zustande. Die ursprüngliche Spannung fällt um das Stück
AA' ab, während die außen meßbare Verformung des Prüflings sich um das
Stück A'E vergrößert hat. Man erkennt sofort, daß dieser Vorgang nicht nur
vom Prüfling, sondern sehr stark auch von den elastischen Eigenschaften der
Prüfeinrichtung abhängig ist. Je nach der Eigenfederung der Prüfeinrichtung,

<u
<J
^

1 A 0

1 A^i/ X/ X/A"> / X
/ /f ////
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Fig. 1.

& Verformung
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also im wesentlichen je nach der Neigung der Geraden Cx\ sind die Ergebnisse
ganz verschieden. Eine sehr „weiche" Maschine, die zur Erreichung der Kraft AB
eine sehr große eigene Verformung aufgezwungen erhält, zeigt innerhalb der
hier zu besprechenden sehr kleinen Verformungen des Prüfkörpers einen
angenähert horizontalen Verlauf der Linie CA. Die Verlängerung des Prüflings um
AD erfolgt deshalb unter angenähert gleichbleibender Spannung, und die außen
meßbare Verformungszunahme entspricht diesem Stück AD. Eine solche weiche
Maschine kann auch als Nachwirkungsmaschine angesprochen werden, da sie

einen einsetzenden Fließvorgamg unter gleichbleibender Last abrollen läßt. Ganz
anders hegen die Verhältnisse bei einer „harten" Maschine, deren Kennlinie im
Grenzfall unendlich großer Federkonstanten durch die Senkrechte AB gegeben
ist. Durch das Fließen des Prüfstücks sinkt jetzt die Last von A nach A", wobei
die außen meßbare Verformung des Prüflings unverändert bleibt. Eine solche
harte Maschine kann auch als Relaxationsmaschine angesprochen werden, denn
bei ihr bleibt die anfängliche Verformung aufrecht erhalten und der einsetzende

Fließvorgang hat eine entsprechende Lastabnahme zur Folge. Die heutigen
Maschinen hegen zwischen diesen beiden Grenzfällen und ihre Angaben sind ohne
Kenntnis ihrer eigenen Elastizität nicht ohne weiteres zu vergleichen.

Diese theoretischen Ableitungen wurden durch eine Reihe von Versuchen des

Verfassers erhärtet. Auch an mehreren Forschungsstellen wird nunmehr diesen

Fragen nachgegangen, die von grundsätzlicher Wichtigkeit für die Werkstoffprüfung

sind.
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Bereits in der unter 1 genannten Arbeit wurde vom Verfasser vorgeschlagen,
eine vorhandene Prüfmaschine dadurch weich zu machen, daß eine Feder in den
Kraftfluß eingeschaltet wird. Derartige Versuche wurden von G. Weiter3
durchgeführt, deren Ergebnis den Erwartungen entspricht. Eine durch Zwischenschaltung

einer Feder künstlich weich gemachte Prüfmaschine muß nach den

obigen Ableitungen einen einsetzenden Fließvorgang unter gleichbleibender Spannung

ablaufen lassen. Es kann also z. B. ein Werkstoff, der bei der üblichen
Prüfung eine obere und untere Streckgrenze zeigt, auf einer solchen Maschine
keinen Spannungsabfall zur unteren Streckgrenze zeigen, was bestätigt
gefunden wird.

Bei sehr großen Kräften ist die Zwischenschaltung einer Feder nicht möglich,
da diese sehr große Abmessungen annehmen würde. Beim Losenhausenwerk
Düsseldorf wurde daher nach einem Vorschlag von Baurat von Bohuszewicz
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Fließvorgang auf üblicher Maschine (a).

„ nach Vergrößerung des Preßwasserraums (b).

eine hydraulische 60 t-Maschine dadurch weich gemacht, daß zum Preßzylinder
ein großer Druckwasserbehälter zugeschaltet wurde. Das Ergebnis zeigt Fig. 2.

Links ist die Kurve dargestellt, die sich bei dem üblichen Gebrauch der Maschine
zeigt. Eine klare Ausbildung von oberer und unterer Streckgrenze ist erkennbar.
Wurde nun die Maschine durch Zuschaltung des Druckwasserbehälters künstlich
weich gemacht, so lieferte ein zweiter Prüfstab desselben Werkstoffs die rechte
Kurve. Man erkennt, daß der Fließvorgang infolge der großen Nachgiebigkeit
des Preßwassers nunmehr unter gleichbleibender Last verläuft. Es lassen sich
eine große Zahl von weiteren Folgerungen für die Abhängigkeit der Ausbildung
von oberer und unterer Streckgrenze von den Prüfbedingungen angeben, worauf
jedoch hier nicht eingegangen werden kann.

Von Interesse ist jedoch eine Versuchsreihe, die vom Verfasser kürzlich
beendigt wurde, und die gerade den umgekehrten Weg beschreitet. Wenn man eine
Maschine sehr hart macht, so ist zu hoffen, daß wesentlich schärfer in die
Vorgänge belasteter Werkstoffe eingedrungen werden kann.4 Bekanntlich werden an
rotierenden Dauerbiegemaschinen häufig sogenannte Kurzversuche ausgeführt,
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bei denen die Durchbiegung des rotierenden Stabes in Abhängigkeit von der
Belastung aufgetragen wird. Die bekannte Maschine von Sc/iencfc-Darmstadt, aber
auch andere Maschinen bringen die Belastung durch Gewichte auf. Hierbei wird
als Durchbiegungslinie eine Linie erhalten, die allmählich vom geradlinigen Verlauf

abweicht. Macht man jedoch eine solche Maschine künstlich hart, derart, daß
die Belastung durch eine Feder aufgebracht wird, die wesentlich härter ist als
der Prüfstab selbst, so erhält man einen Verlauf der Durchbiegungskurve, der
sehr lebhaft an Zerreißkurven mit oberer und unterer Streckgrenze erinnert. Die
Spannung fällt ganz deutlich von einer „oberen" zu einer „unteren" Laststufe
ab. Bei sehr plastischen Werkstoffen, z. B. bei Aluminium, besteht die ganze
Belastungskurve aus einer großen Anzahl von solchen Lastsprüngen. Ferner
wurde gefunden, daß die Empfindlichkeit ausreicht, selbst den wichtigen Fragen
der Kerbwirkung nachzugehen. Im Einzelnen muß auf die demnächst
erscheinende Arbeit verwiesen werden.5

Aus diesen Betrachtungen ergeben sich einige wichtige Folgerungen für die
Weiterentwicklung von Prüfmaschinen. Insbesondere wird es in Zukunft
gelingen, durch systematische Ausbildung wesentlich härtere Maschinen herzustellen.
Derartige Maschinen haben den unschätzbaren Vorteil, daß sie Werkstoffbedingte,
kritische Belastungsgrenzen sehr scharf durch einen deutlich erkennbaren
Spannungsabfall anzeigen. Die heute üblichen Prüfmaschinen dagegen verwischen
diese wichtigen Grenzübergänge infolge ihrer eigenen Nachgiebigkeit bis zur
völligen Unkenntlichkeit.

Schrifttum.
i W. Späth: Arch. Eisenhüttenwesen 9 (1935/36) S. 277.
2 W. Späth: Meßtechnik, XII (1936) S. 21.
3 G. Welter: Metallwirtschaft XIV (1935) S. 1043.
* W. Späth: Metallwirtschaft, 16 (1937) S. 193.
5 W. Späth: Z.V.D.I. erscheint demnächst.

Die Firma Schenck-Darmstadt stellt neben der üblichen Maschine mit Gewichtsbelastung nun
auch diese neuartigen, „harten" rotierenden Dauerbiegemaschinen her.
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Der Einfluß der Zähigkeit des Stahles auf die Stabilität
der Stahlkonstruktionen.

Röle de la ductilite de Tarier dans la stabilite
des constructions.

The Influence of Ductility of the Steel to the Stability
of Structures.

F. Aimond,
Docteur es sciences, Ingenieur des Ponts et Chaussees detache au Ministere de l'Air, Paris.

Die Zähigkeit ist die Eigenschaft, auf Grund welcher ein Werkstoff nach
Erreichung seiner Elastizitätsgrenze bedeutende Formänderungen erleiden kann.
Beim Baustahl ändern die bedeutenden Formänderungen, die eintreten, wenn die

Elastizitätsgrenze erreicht ist, das Gefüge des Metalls in mechanischer Hinsicht
nicht erheblich. Dieser Bereich der Formänderung im Anschluß an den
Elastizitätsbereich heißt Plastizitätsbereich.

Seit langem hat man bemerkt, daß die Stabilität der Stahlkonstruktionen auf
das Vorhandensein kleiner Zonen im Zustand der plastischen Verformung
zurückzuführen war, die sich an allen Stellen bilden, wo infolge der Größe der
elastischen Formänderungen die Elastizitätsgrenze erreicht war, so daß schließlich
die maximale Beanspruchung des Stoffes niedriger war als die mit den üblichen
Methoden der Elastizität errechnete. Die Zähigkeit des Stahls hatte also, so schien

es, die Wirkung, die Festigkeit der Konstruktionen zu erhöhen, indem sie die
Zonen der größten elastischen Formänderungen beseitigte. Diese Eigenschaft,
richtig verallgemeinert, wird heute „Anpassung" genannt.

Aber die Anpassung gilt nur für die ruhenden oder nur vereinzelt auftretenden
Lasten, da die sich ständig wiederholenden Formänderungen des Werkstoffes zu
einem baldigen Bruch führen. Die Anpassung ist nicht zu berücksichtigen, wenn
es sich um die Festigkeit gegen wechselnde Belastungen handelt. Es ist sogar
bekannt, daß gegenüber diesen Belastungen der Elastizitätsbereich noch zu groß
ist, und daß jeder Werkstoff einen wirklichen inneren Elastizitätsbereich innerhalb

des üblichen Elastizitätsbereiches aufweist, den man auch Dauerfestigkeitsbereich

nennt.
Die Zähigkeit des Stahls spielt somit keine Rolle hinsichtlich der Stabilität bei

wechselnden Beanspruchungen. Sie spielt dagegen vermöge der Anpassung eine
wesentliche Rolle bei allem, was die Stabilität bei ruhenden oder praktisch ruhenden

Belastungen anbelangt.
Die Zähigkeit des Stahls tritt auf Grund des Anpassungsgesetzes in allen jenen
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Zonen einer Konstruktion auf, wo aus verschiedenen Gründen die Elastizitätsgrenze

erreicht ist. Die Zonen der plastischen Formänderungen befinden sich
infolgedessen in der Nähe aller Punkte geometrischer oder mechanischer
Unstetigkeit, von denen es in einer Konstruktion unzählige gibt, und in den Zonen
großer elastischer Formänderungen. Diese Zonen der plastischen Formänderungen
sind aber im allgemeinen in einer gut ausgeführten Konstruktion äußerst
beschränkt. Tatsächlich ist der Anstieg der Festigkeit, den die AnpassungsVerformungen

bewirken, auf die ungleiche Verteilung der Beanspruchungen und
auf das dadurch bewirkte Vorhandensein von weniger ermüdeten Zonen
zurückzuführen. Diese Zonen sind in gut entworfenen Konstruktionen zwangsläufig von
geringer Bedeutung.

Daraus ergibt sich eine erste Folgerung: wenn die Zähigkeit des Stahls
hinsichtlich der Stabilität der Konstruktionen ein wesentlicher Faktor ist, so
verbessert sie nicht die Festigkeit gut entworfener Konstruktionen, sie korrigiert
nur etwaige Konstruktionsfehler, die Mängel an Homogenität des Stoffes und die
Wirkung der Stützensenkungen. Unseres Erachtens könnte man eine neue
Berechnungsmethode für die Konstruktionen unter Verwertung der Eigenschaften
der plastischen Verformung nicht aufbauen.

Dennoch sind die Berechnungsmethoden, die sich auf das Vorhandensein der
plastischen Formänderungen stützen, nicht zu verwerfen, und, was uns betrifft,
so wenden wir sie täglich an. Aus verschiedenen Gründen entspricht nämlich
die Form, die den einzelnen Bauteilen gegeben wird, nicht der Höchstleistungsfähigkeit

des Stoffes. Es ist daher ganz erklärlich, daß man die Zähigkeit des

Stahls ausnützt, um den auf unzweckmäßige Formgebung zurückzuführenden
mechanischen Fehler teilweise zu verbessern. Ich möchte mich näher
ausdrücken: nehmen wir z. B. einen Bogen, einen Rahmen oder einen
durchlaufenden Träger an. Das Beste wäre, diese Teile, soweit angängig, so
auszuführen, daß die Elastizitätsgrenze bei ungünstigster Belastung an allen Stellen
gleichzeitig erreicht wird. Die Zähigkeit des Werkstoffes ist dann für die
Berechnung ohne Wert. Wenn man jedoch gezwungen ist, Formen anzuwenden,
die hinsichtlich des mechanischen Wirkungsgrades ungünstig sind, so darf man
nicht den Fehler begehen, sie auf Grund der Annahme elastischer Formänderung
unter der Einwirkung der ruhenden Belastungen zu berechnen, denn dann würde
man dem ersten Fehler einen zweiten hinzufügen; man muß sie vielmehr auf
Grund der Annahme der plastischen Formänderung berechnen, um den Verlust
an Wirkungsgrad, der durch eine unrichtige Wahl der Form hervorgerufen wird,
auf ein Mindestmaß herabzusetzen.

Unseres Erachtens stellen also die Berechnungsmethoden mit der Plastizitätstheorie

äußerste Notbehelfe dar, die man für die Berechnung von mechanischen
Elementen mit schlechtem Wirkungsgrad und selbstverständlich nur für die
ruhenden Lasten anwenden sollte.

Von diesem letzten Gesichtspunkt aus ist es wünschenswert, daß die jetzt
angewandten Methoden genormt werden, und daß man zu einfachen Formeln für die

Behandlung der üblichen statisch unbestimmten Systeme, insbesondere Bögen
und Rahmen, gelangt. Es dürfte heute nicht mehr vorkommen, daß man diese

üblichen Bauelemente bei ruhenden oder wenig veränderlichen Lasten anders
berechnet als unter Anwendung des Anpassungsgesetzes.
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Unsererseits haben wir für die Berechnung jeder ruhenden oder als solche
aufzufassenden Lasten unterliegenden Konstruktion folgende Regel aufgestellt:
jedes Kräfte- und Beanspruchungssystem, das ein gegebenes mechanisches Gebilde
im Gleichgewicht hält, ist ein System, das verwirklicht werden kann, wenn man
die Anpassung berücksichtigt.

Wenn dieses System von einer gewissen Anzahl willkürlicher Parameter
abhängt, so muß man möglichst versuchen, diese Parameter so zu bestimmen, daß
das Minimum des Höchstwertes der Beanspruchungen an den verschiedenen
Punkten des Systems erreicht wird. Mit anderen Worten, wenn ein rein statisches

Gleichgewicht möglich ist, so ist die Konstruktion bei ruhenden Lasten stabil,
ohne sich fragen zu müssen, ob das System der errechneten Beanspruchungen
auch tatsächlich das wirkliche ist.

Das vorstehend genannte Prinzip hat uns bei der Projektierung aller von uns
entworfenen Bauten geleitet. Es hat sich als ein besonders wirksames Hilfsmittel
bei jenen Bauten erwiesen, wo, im Gegensatz zum üblichen Fall, nicht die

Verformungen für die Beanspruchungen bestimmend sind, da deren Wert
ausschließlich von der Lage der Lasten und der x\rt der Auflager abhängt.

Es ist dies besonders der Fall bei den zweidimensionalen mechanischen

Systemen, d. h. wo die Belastungen sich mehr oder weniger gemäß einer Fläche
ausbreiten. Die Eigenschaften dieser Systeme sind eng an die mechanischen
Eigenschaften der Flächen gebunden. Wenn man die mechanischen Vorgänge,
die durch das Gleichgewicht der Flächen hervorgerufen werden, untersucht,
so kommt man bald zu Systemen, die sich im Gleichgewicht befinden und beiderseits

derselben Kurve der Fläche Unstetigkeiten in den Beanspruchungen dei?

parallelen Elemente aufweisen, welche Unstetigkeiten zu plötzlichen Längen-
änderungen der Elemente führen. Eine genauere Untersuchung zeigt, daß infolge
der Elastizität des Stoffes ein solches Gleichgewicht ohne Bruch des Werkstoffs
nicht möglich ist. Die Erfahrung lehrt aber, daß solche Systeme durchaus stabil
sind. Die Erklärung für diesen Widerspruch wird ebenfalls durch die Zähigkeitstheorie

gegeben.
Wenn infolge plötzlicher Veränderungen der Beanspruchungen das Liuien-

element einer Fläche bedeutende Formänderungen erleidet, so kann sich die
Fläche entweder geometrisch so verändern, daß ihr Linienelement die fragliche
Änderung erleidet, oder es bilden sich bleibende Dehnungen, die einen Ausgleich
der durch die mechanische Wirkung der Beanspruchungen hervorgerufenen
Formänderungen bewirken. Unseres Erachtens spielt die Zähigkeit des Stahls
hierbei eine sehr bedeutende Rolle, obwohl sie ziemlich schwer zu bestimmen ist.

Die Unstetigkeitslinien der Beanspruchungen, die sich somit im Gleichgewicht
der Flächen zeigen, gehen gewöhnlich von den Unstetigkeitspunkten des Um-
fangs aus oder fallen mit letzterem zusammen. Es ist ein Leichtes, die durch die
Unstetigkeit am Umfang hervorgerufenen Unstetigkeitslinien zum Verschwinden
zu bringen; es genügt, die Ecken, wenigstens für die Berechnung, abzurunden. Die
Unstetigkeitslinien entlang dem Umfang selbst sind schwieriger zu beseitigen;
gerade hier spielt die Dehnbarkeit des Stoffes eine ausschlaggebende Rolle.

Unter diesen Unstetigkeitslinien der Beanspruchungen einer Fläche, spielen die

asymptotischen Linien, sofern sie vorhanden sind, die größte Rolle. Gemäß
gewissen dieser Linien führen die Gleichgewichtsbedingungen zur Auffindung von

7
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Unstetigkeiten der Beanspruchungen, woraus sich eine Unstetigkeit der Dehnung
ergibt. Wenn die Oberfläche genügend biegsam ist, um sich zu verformen, so
wird die Verformung der Fläche,p wenn diese asymptotischen Unstetigkeitshnien
am Umfang liegen, eine Veränderung der Lage dieser asymptotischen Linien
bewirken, die dann den Umfang verlassen. Man wird dadurch zurückgeführt auf den
Fall von asymptotischen Unstetigkeitslinien, die ihren Ursprung in einer Ecke des

Umfangs haben. Die Zähigkeit des Stahls in der Nähe dieser Ecke bewirkt die
Beseitigung dieser Unstetigkeit, indem der wirkliche Umfang durch einen fiktiven
Umfang ersetzt wird, in dem jede Unstetigkeit verschwunden ist.

Die Untersuchung der plastischen Formänderungen des Stahls in solchen
Systemen, wie die von uns eben untersuchten, spielt eine vielleicht noch größere
Rolle als in den gewöhnlichen Hochbauten; denn, im Gegensatz zu dem, was sich
bei diesen abspielt, wäre es unmöglich, standhafte Systeme zu bauen, ohne die
Anpassung des Werkstoffes einwirken zu lassen, welche durch die Zähigkeit des

Werkstoffs ermöglicht wird. Es ist dies ein a priori paradoxes Beispiel eines
statisch bestimmten Systems, das die Plastizitätstheorie rechtfertigt.
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