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VI 1

Entwicklung der Berechnung von Bogen-Staumauern.

Le developpement du calcul des barrages arques.

Development of the Analysis of Arch Dams.

Zd. Bazant,
Professor der Tschech. Techn. Hochschule, Prag.

Einleitung.
Die Staumauern wurden zuerst gerade durchgeführt und so berechnet, daß

man einen zwischen zwei lotrechten Querschnitten in der höchsten Stelle der
Staumauer liegenden Teil als einen lotrechten, unten eingespannten Freiträger
betrachtete, der durch Eigengewicht und Wasserdruck belastet ist; beide
Belastungen riefen eine kombinierte Beanspruchung auf Druck und Biegung hervor.

Diese Art der Beanspruchung hatte zur Folge, daß man die Festigkeit des

Mauerwerkes nur wenig ausnützen konnte, besonders wenn man die Zugfestigkeil

vernachlässigte. Die schädlichen Wirkungen der Temperaturschwankungen
suchte man später durch eine leichte Krümmung im Grundriß zu eliminieren;
die statische Berechnung wurde aber weiter wie für eine gerade Mauer
durchgeführt. Man setzte voraus, daß sich die gekrümmte Staumauer leicht den

durch die Temperatur verursachten Längenänderungen anpassen kann, indem die

Krümmung der Mauer geändert wird. Die Einspannung der Staumauer in die
Talhänge, auch in waagerechter Bichtung, sollte die Sicherheit auch für
Eigengewicht und Wasserdruck erhöhen. Eine gründlichere statische Analyse zeigte
aber, daß eine leichte Krümmung nicht die gewünschten guten Folgen hatte,
weil die übliche statische Berechnung große Stärken erforderte. Betrachtet man
die Staumauer als ein waagerechtes, durch Wasserdruck beanspruchtes Gewölbe,
so bekommt man bei kleinem Pfeil und großer Stärke ansehnliche rechnungsmäßige

Zugspannungen an der Wasserseite in den Kämpfern und an der Luftseite

im Scheitel; diese Zugspannungen können lotrechte Bisse zur Folge haben.1
Obwohl man also durch Verstärkung der Staumauer Zugspannungen in
waagerechten Fugen eliminieren will, so können doch Zugspannungen in lotrechten
Fugen auftreten; die Verstärkung der Mauer durch Überschuß an Mauerwerk
ist nur scheinbar, weil die Masse nicht gut verteilt ist.

Berechnung der Gewölbestaumauer als ein System von
unabhängigen waagerechten Gewölben.

Gegenüber dem Freiträger ist das Gewölbe ein viel zweckmäßigeres Kon-
slruktionselement, weil es bei guter Disposition eine viel gleichmäßigere
Beanspruchung des Mauerwerks und bessere Ausnützung seiner Festigkeit erlaubt.
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1108 Zd. Bazant

Diese Erkenntnis wurde berücksichtigt: um das Jahr 1800, bei der Staumauer Meer
Allum bei Hyderabad in Indien, welche aus 21 waagerechten, halbkreisförmigen
Gewölben zwischen lotrechten Pfeilern besteht, um 1845 bei einer Staumauer,
welche nach dem Projekt von Ing. Zola bei Aix (Provence) in Frankreich in
einem engen Tal in Form eines einzigen waagerechten Gewölbes aufgebaut
wurde.2 In weiteren Betrachtungen wird in der Begel die Wasserseite der
Staumauer lotrecht vorausgesetzt.

Die Gewölbestaumauern wurden zuerst annähernd so berechnet, daß man
waagerechte Teile in verschiedenen Höhen als selbständige Gewölbe betrachtete,
die durch den vollen radialen, gleichmäßig verteilten Wasserdruck belastet sind.
Diese Berechnung läßt die gegenseitige Verbindung in lotrechter Bichtung
unberücksichtigt, vernachlässigt also die Tangentialspannungen in waagerechten
Schnitten, welche durch verschiedene waagerechte Verschiebungen der einzelnen
Schichten verursacht werden. Bei leerem Becken wird das Eigengewicht der
oberen auf die unteren Schichten durch lotrechten Druck wie in gerader
Staumauer übertragen; bei vollem Becken betrachtet man waagerechte Schichten als

selbständige Gewölbe, deren jedes den vollen zugehörigen Wasserdruck
übernimmt. Ist die Wasserseite geneigt, so rechnet man die lotrechte Komponente
des Wasserdrucks zum Eigengewicht3. Delocre, von dem die erste
theoretische Abhandlung über Gewölbestaumauern herrührt,4 setzte annähernd voraus,

daß der Druckmittelpunkt im Scheitel und in den Kämpfern im oberen

Kernpunkt liegt. Pelletreau5 nimmt für radialen und gleichmäßigen
Wasserdruck als die Drucklinie die kreisförmige Mittellinie des waagerechten
Gewölbes (wie für dünne zylindrische Schalen), setzt also voraus, daß das
Gewölbe in allen Querschnitten gleichmäßig auf Druck beansprucht ist. Diese

Berechnungsart war dann üblich und besonders in Amerika wurde sie bei den
meisten Gewölbestaumauern (die erste war die Staumauer Bear Valley in
Kalifornien v. J. 1886) angewandt; auch die zahlreichen Gewölbestaumauern
in Australien wurden auf diese Weise berechnet. Noch H. HawgoodQ verteidigt

diese Berechnung. Die auf diese Weise berechneten Staumauern zeigten sich
als sehr sicher. Die Übertragung der äußeren Kräfte durch Bogenwirkung gibt
eine viel bessere Verteilung der Spannungen und eine sehr ansehnliche
Verminderung der Stärken im Vergleich zu den Staumauern, welche als lotrechte
Freiträger dem Wasserdruck nur durch ihr Eigengewicht widerstehen, also
sehr unvorteilhaft in Bezug auf die Verteilung der Spannungen und die
Ausnützung der Materialfestigkeit sind.

Erst R. Ruffieux1 berechnete das waagerechte Gewölbe einer Bogenstaumauer

als einen elastischen Bogen (nach J. Besal); er berücksichtigte auch die

Wirkung der Normalkraft, welche hier wichtig genug ist, und benützte die
Theorie des dünnen Bogens. Dieselbe Methode wurde später durch E. Mörsch,s
H. Ritler? C. Guidi,™ W. Com,11 R. Kelen^ und G. Ippolito^ angewandt.

Bei der Berechnung der Gewölbestaumauer als ein System von unabhängigen

waagerechten Gewölben wurde gewöhnlich wie bei dünnen zylindrischen
Schalen vorausgesetzt, daß die Normalspannungen gleichmäßig in der Bichtung
der Stärke t verteilt sind, also daß die kreisförmige Mittellinie die Seillinie zur
gleichmäßigen radialen Belastung p2 der Bückseite des Gewölbes vom Halb-
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messer r2 (Fig. 1) bildet. Das ergibt in jedem Bogenquerschnitt die Normalkraft

N0
N0 — p2 r2 oder die Spannung v0 — -^=£- P2r2

F- bf (1)

für einen Bogen von der Breite b und Querschnittsfläche F bt; die Normalkraft

N und Normalspannung V seien positiv als Zug. Anstatt des Druckes p2
auf die Bückseite kann man den radialen gleichmäßigen Druck p auf die
Mittellinie vom Halbmesser r nehmen; es ist dann

P P2
r.,

Diese Berechnung entspricht der Berechnung des Gewölbes als ein elastischer

Bogen, wenn man die Wirkung der Normalkraft vernachlässigt, denn
es ist dann die Mittellinie des Bogens zugleich Seillinie. Eine gründlichere
Erforschung zeigte aber, daß man in diesem Falle selbst bei höheren Bogen die

Wirkung der Normalkraft nicht vernachlässigen kann. Die Normalkraft
verkürzt die Mittellinie, welche bei freier Stützung in einen Kreis mit kleinerem
Halbmesser übergehen würde; weil sich aber bei festen Stützen die Spannweite
des Bogens nicht ändert, kann der Bogen nicht kreisförmig bleiben und die

4H.
^£L

Fig.l.

tf,

Fig. 2.

wirklicht Seillinie muß von der Mittellinie abweichen. Die durch die Normalkraft

N0 bei freien Stützen verformte Mittellinie kann man in die Lage bringen,
bei welcher die Stützen ihre ursprüngliche Lage annehmen, indem man in der
Schwerachse der Mittellinie die waagerechten Zusatzkräfte A H als Beaktionen
anbringt (Fig. 1), welche auswärts wirken;8 ihr Wert ist allgemein

AH:
NJcos^ds

7^4cos2 cp d s

F
bei konstanter Stärke

AH Nol Nol

¦y
1 y2 d s + 1 cos2 cp d s

/12r2 \U +1J
1

/ i \ s
' 1212r2'

st2

(3)

(3a)

wenn F Querschnittsfläche, J Trägheitsmoment und s 2 r a -= Bogenlänge
der Mittellinie.

Die in allen Punkten des Bogens gleiche Temperaturänderung b gibt einen
Bogensehüb
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oeEl
H^ — - - (4)

-p
I y2 d s + -ft I cos2 cp d i

Mt' -(b2-b,)sE-7rj7 (5)

wobei e =¦ Koeffizient der Temperaturausdehnung, E Elastizitätsmodul. Ändert
sich aber die Temperatur linear von bx auf der Luftseite zu b2 auf der W'asser-
seite (Fig. 2) gleich in allen Querschnitten, so bekommt man in den Kämpfern
nur ein Biegungsmoment

bei konstanter Stärke

Mt' -(&2—b,)eEy (5a)

Eine genaue Analyse dieses Falles, die von H. Ritter9 und später von
A. Slucky14- durchgeführt wurde, zeigte, daß auch die Querkraft eine
Wirkung hat. die bei flachen Bogen beträchtlich sein kann. Der Nenner in der
Formel (3) für A H hat allgemein den genauen Wert

/yVds Pcos2(pds E Psin2cpds

"T" + J F + l3 "G J —F-
wo ß Beduktionskoeffizient für Querkraft (für rechteckigen Querschnitt —)

G Schermodul, y' Ordinate des Antipols der Schwerachse der Mittellinie in
Bezug auf die Trägheitsellipse des Bogenelements. Für isotropes Material ist
E E

77- 2,5, also ß -^ — 3. Annähernd ist y' y für dünne Bogen und für kon-

stante Stärke hat man

au Pr t2 r al a 2 sin a\ r 2 a NA H — _*_ _ • ^i — 6 cos a + -. ; C2 cos a. (3b)
C^^ + Cgt^ V sina a / sina

//. Ritter9 berechnete Tabellen für Clt C2 zur Erleichterung der Berechnung.
Eine konstante Temperaturänderung erzeugt den Bogenschub

u oeEt3
H,=-c^Tc^ (4a)

welcher in der Schwerachse der Mittellinie wirkt. Ritter ermittelte auch die

Wirkung der Temperaturänderung für den Fall, wo sich die Temperatur stetig
nach einer Kurve von Null auf der Wasserseite zu einem Maximum auf der
Luftseite ändert. Ist (bei leerem Becken) die Temperaturänderung in dem
Querschnitt symmetrisch zur Mitte, so hat der Bogenschub den Wert Ht nach (4 a),
wo b die mittlere Temperaturänderung im Querschnitt bedeutet.

Eine sehr gründliche Berechnung des Bogens mit radialen Lasten wurde
in der Abhandlung von W. Cainli und in der nachfolgenden Besprechung
gegeben, weiter auch in der Abhandlung von F. A. Noetzli15 und in der nachfolgenden

Besprechung. W. Cain veröffentlichte in seiner Abhandlung und im
Abschluß zur Besprechung16 die Endformeln für die Berechnung des Bogens ohne
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Gelenke, der durch radialen, gleichmäßigen Druck beansprucht ist (Fig. 3) wie

folgt. Die Horizontalkraft Hc im Bogenscheitel ist durch die Formel gegeben
;2

X H, pr— • 2 -ä a sin a, (6)

WO

» (t + ^) a (a + y sin 2 aj — 2 sin2a + 2,88^a [a - — sin 2 aj; (6a)

/ t2\ E
i =^ Trägheitshalbmesser (i2 — J, der numerische Faktor 2,88 ß -p- mit

E / E \ 6
p- 2,4: für Beton (anstatt von ^r 3 für isotropes Material) und ß= — für

Bechteckquerschnitt. Das Glied mit dem Faktor 2,88 rührt von der Querkraft
her. Die Wirkung der Querkraft kann für Winkel 90°< 2a< 120° vernachlässigt
werden; für kleinere Winkel und große Verhältnisse t r kann die Wirkung der

i
~-—C

-mi

Iflr VY^m.

O

Fig. 3.

,-+-.
OUCL*

Fig. 4.

Querkraft ziemlich groß werden. Im Punkte M des Bogens, der durch den

Winkel cp mit der Symmetrieachse gegeben ist, wirkt die Normalkraft (positiv
wenn Zug)

N X cos cp — p r, (7)
die Querkraft

T ~ X sin cp (8)
und das Biegungsmoment (positiv im Sinne des Uhrzeigers für Kräfte links)

a \ /n\coscpl; (9)M--Xr /sin c

\ a
dies ist das Moment zum Punkt M einer Kraft X im Schwerpunkt E der Mittellinie

nach rechts wirkend, wenn sie die Wirkung der rechten Seite darstellt,

denn OE Die angeführten Besultate bedeuten, daß zur Normalkraft
a

N0 — ¦—pr —p2r2 in jedem Querschnitt die erwähnte, im Schwerpunkt E
wirkende Kraft X hinzutritt.
Badialc gleichmäßige Belastung erzeugt weiter im Bogenscheitel die
Durchbiegung (positiv in der Bichtung zum Mittelpunkt des Bogens)

wo
co — (1 — cos a)

p r2
(10)

(l + -^-] (a - sin a) + 2,88 -^ (a + sin aj (10a)
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Die in allen Punkten des Bogens gleiche Temperaturänderung b gibt die Hori
zontalkraft

E J 2 a sin a

welche in der Schwerachse der Mittellinie wirkt, und die Durchbiegung des

Bogenscheitels

r|t — co • b er; (12)

co ist durch Gl. (10a) gegeben. Eine gute Kontrolle der vorhergehenden Formeln
ist dadurch gegeben, daß sie für a 0 in die Formeln für beiderseits
eingespannten geraden Träger übergehen; das folgt, indem man für sin und cos
unendliche Beihen substituiert und den Grenzwert für a 0 bestimmt.

Wenn die Verbindung zwischen Bogen und Kämpfern nicht steif genug ist
(Verankerung von Armierungseisen), können an den Kämpfern Bisse und
Abweichungen des Bogens entstehen, welcher sich dann einem Bogen mit zwei
Gelenken nähert, besonders bei dünnen Bogen. Für diesen Fall (Fig. 4) bekommt
man, wenn man den Einfluß der Querkraft vernachlässigt, was für dünne
Bogen zutrifft,

x pr i2
p r — Hc -~— • 2 -tt sin a, (13)

3 i2 / 1 \y a (2 + cos 2 a) ^ sin 2 a + -^\a + — sin 2 a 1, (13a)

M Xy. (14)

Für N und T gelten auch hier die Formeln (7), (8). Die Durchbiegung des

Bogenscheitels ist

n »'-!r (15)

cos a03=1 y
i2

sin a + a (l — 2 cos a) + -y (a — sin a) (15a)

Dieselbe Temperaturänderung in allen Punkten des Bogens erzeugt in den

Kämpfern waagerechte Beaktionen
EJ 2 sina

Ht &e*-72 ^~ (16)

und eine Durchbiegung im Bogenscheitel

r|t= — co'-ber. (17)

Cam. Guidi10 wandelte die Formeln für den Bogen ohne Gelenke um,
indem er Längen anstatt trigonometrische Funktionen einführte. Zur Normalkraft
N0 — — p2r2 — pr in allen Querschnitten tritt in beiden Kämpfern eine waagerechte

Zusatzkraft (Fig. 1) hinzu, welche durch den Schwerpunkt der Mittellinie
geht und den Wert besitzt

!." i + ^-^-ü+2^(2|-¦^1,) (18«)
1 r s t* \ 1 r /
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Bei der Ableitung der Formeln wurde der Einfluß der Biegungsmomente, der
Normalkräfte und der Querkräfte mit ßEG 3 (wie für isotropes Material)
erwogen. Dieselbe Temperaturänderung b in allen Punkten des Bogens gibt

u oeEt3 (XX \^ S^ (1Ia)

in der Schwerachse der Mittellinie. Ein gleichförmiger radialer Wasserdruck

erzeugt die Durchbiegung des Bogenscheitels

Die Durchbiegung von einer konstanten Temperaturänderung ist

nt n > (12a)
p r

was mit der Formel (12) von Cain im Einklang steht. Guidi erleichterte die
Berechnungen durch zahlreiche Tabellen, welche für verschiedene Werte des

s s 1 1 i) rZentriwinkels 2a die Werte von —, —, —, —, n :
* - usw. anheben. Er be-

r 1 s 2r L
rechnete auch den Fall eines nicht gleichförmigen Wasserdruckes, wie er bei

geneigten Achsen (Oberflächengeraden) der Gewölbe in Bippenstaumauern
auftritt, weiter den Einfluß des Eigengewichtes in einem Gewölbe mit geneigter
Achse, den Bogen mit veränderlichem Querschnitt und die Pfeiler einer
gegliederten Staumauer. Ein Gewölbe von beliebiger Form und veränderlicher
Stärke berechnete schon H. Ritter9

Für eine schnelle Vorberechnung kann man vorteilhaft die einfachen
Formeln von F. A. Noetzli11 benützen. Er vernachlässigte den Einfluß der Normal-

und Querkraft, ersetzte die Mittellinie annähernd durch eine Parabel und
vernachlässigte die Differenz zwischen der Bogenlänge und Sehne, einen flachen
Bogen voraussetzend; so bekam er

AH^-0,94p,r,p. (19)

Besser wäre anstatt 0,94 der Koeffizient
h2l

kt— TT^r-. 7T^, (19a)
t: (p-^+m

dessen Werte für verschiedene Zentriwinkel und verschiedene Verhältnisse -.—h

von Noetzli in einem Diagramm angegeben sind. Der Koeffizient kt ist noch
nicht genau, aber er beachtet den Einfluß der Normal- und Schwerkraft (mit

E
der Annäherung, daß er 1 anstatt von ß - -= 3 setzt); er gibt Werte, die sehr

(jr

nahe den genauen sind, wie von W. A. Miller18 gezeigt wurde. Noetzli gibt
für Temperaturänderung die angenäherte Formel

Ht 0,94beE-^, (20)
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deren \bleitung in derselben Weise erfolgt wie diejenige der Formel (19); er

setzt annähernd die Kraft Ht in einer Entfernung -7- vom Bogenscheitel. Das
3

Schwinden des Betons hat denselben Einfluß wie eine Temperaturänderung von
— 35° F — 20° C); sie gibt gleich der Temperaturänderung in derselben
Geraden eine Kraft

H,= -0,94^.£; (21)

wo A s die Verkürzung der Mittellinie durch Schwinden bedeutet.
Die Berechnung der Normalspannungen und deren Grenzwerte erfolgt

entweder von den ermittelten Werten M, N laut der bekannten Formel

\,2- f -- J ~bt- bt2' W
wo e — ist, oder so, daß man zur primären Spannung

p, r.,
Vu""~"b"t

konstant im ganzen Bogen, die Zusatzspannungen addiert, welche in den
Bandfasern durch eine in der Schwerachse der Mittellinie wirkende Kraft A H
entstehen; diese Kraft gibt in jedem Querschnitt ein Biegungsmoment M und eine
Normalkraft N, von denen man durch Gl. (22) die Bandspannungen v1>2
berechnet.

Guidi10 bringt die Formeln für Spannungen im Scheitel und an den Kämpfern
bei einem Bogen gleicher Stärke auf eine einfache Form und gibt zur
Erleichterung der Berechnung Tabellen der Koeffizienten in den Formeln. Die
Scheitelspannung ist:
innen

v

außen
.=-pk-*)-.4i,,-^).» i(^+£).c»».>

v,= -P(j + M,) + eE(^, ^), r, ±!{-Tl-£):<m
die Kämpferspannung hat den Wert:
innen

,__P(i+„1)+.E(s^,+^^,.i:[i-^(,+,±j
ußen

,=_P(i_,>)_EE(bi,!+^.),,,=ai[i_^(1_i.)

,(24a)

(24b)

Die Formeln setzen eine linear veränderliche Temperaturänderung voraus; b2

ist die Temperaturänderung außen, bx innen und b in der Mitte (Fig. 2).
Bei Gewölbestaumauern erreicht die Stärke der unteren Schichten im

Vergleich zum Krümmungshalbmesser und zur Bogenlänge sehr beträchtliche Werte.
Das widerspricht der Grundannahme für die übliche Bogenberechnung, daß die
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Querschnittabmessungen im Verhältnis zum Krümmungshalbmesser und zur
Bogenlänge klein sein sollen. Für Bogen großer Stärke (scharf gekrümmt)
gilt die bekannte genauere Theorie, welche zur Änderung der Normalspannungen
nach einer Hyperbel führt, wie schon H. Bellet19 bemerkte; er versuchte
auch eine genauere Berechnung des Einflusses der Normal- und Querkraft, aber
kam für Normalspannungen zur Formel (von Lame) für eine dicke Zylinderwand,

weil er voraussetzte, daß sich der Winkel zweier unendlich naher
radialer Querschnitte nicht ändert, was genau nur für eine Zylinderwand mit
radialen gleichförmigen Pressungen zutrifft.

Von der Voraussetzung ausgehend, daß ebene Querschnitte eben bleiben, was
für Bogen großer Stärke zum hyperbolischen Gesetz der Normalspannungen
führt, leitete B. F. Jakobsen20 die Berechnung des Kreisbogens gleicher
Stärke ab, der durch radiale gleichförmige Kräfte belastet ist. W. Cain21 gab
in seiner Besprechung von Jakobsen's Abhandlung eine bessere Form der
Endgleichungen an. Er bekommt (Fig. 5)

X p2r2-Hc P^.2sina—2-- (25)
vo ro

0o (a + |sin2a)(i+^)~^^— + 2,88 - • ^ (« ~ 4 sin24 (*5a)
\ 2 M r02/ a r0 r0M 2 '

wo r() den Halbmesser der Neutrallinie bedeutet, welche von der Mittellinie
abweicht; die Differenz beträgt

1

(26)
log nat. 1^

r
Zum beliebigen Punkt M0 der Neutrallinie, der durch den Winkel COM0 =cp
gegeben ist, geben die äußeren Kräfte auf einer Seite des Querschnittes OM0
ein Moment

M - X r() (*^ - cos cp] (27)

was das Moment der Kraft X bedeutet, welche in der Entfernung rQ — vom
a

Mittelpunkt O wirkt, also im Schwerpunkt der Neutrallinie, und zwar nach

rechts, wenn sie die Wirkung der rechten Hälfte bedeutet. In einem durch den

Winkel cp gegebenen Querschnitt hat man außerdem laut Gl. (7) die Normalkraft

N X COS Cp — p2 Tjj

und laut Gl. (8) die Querkraft
T X sin cp.

Das bedeutet, daß zu einer gleichmäßig im Querschnitt verteilten Normalkraft
p2r2 die oben angeführte Kraft X zutritt, welche in einer zur Symmetrieachse

senkrechten Schwerachse der Neutrallinie wirkt.
Das Moment M und die Normalkraft N geben in einer Entfernung z von der

Neutrallinie die Normalspannung

v _ül2 M._I±L; (28)
(r0 + z) t J r0 + z'
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N und V sind positiv als Zug, das Moment M ist positiv im Sinne des Uhrzeigers
für die links vom Querschnitt wirkenden Kräfte, z ist positiv an der Außenseite
der Neutrallinie. Aus Gl. (28) bekommt man die Bandspannungen, indem man

außen z: + c, r0 + z : r0 + z r, einsetzt.

Der Wasserdruck erzeugt die Durchbiegung des Scheitels (positiv in der Richtung

zum Mittelpunkt 0)
(29)n — co0 •

P2 r2 r0

Et '

wo
co0 —(1 — cosa)

/ i2 \ r i2
(a - sin a) l + 21 + 2,88 — •

ä" (a + sin a) (29a)

Im Vergleich zu den Formeln für schwache Bogen geben die Gleichungen für
starke Bogen einen kleineren Zug und einen größeren Druck; die Wirkung der
starken Bogenkrümmung ist also vorteilhaft.

Eine gleiche Temperaturänderung gibt eine Horizontalkraft

H^bsEt^-^p, (HO)

welche in der Schwerachse der Neutrallinie wirkt. Die Durchbiegung des Scheitels

von der Temperaturänderung ist

nt= — t0o-bero. (31)

Zur Erleichterung der Berechnung nach den Formeln von Cain hat F. H.
Fowler22 Nomogramme für Bandspannungen in der Scheitel- und Kämpferfuge

ausgearbeitet. Die numerischen Resultate zeigen, daß man für — 0 02

bis 0,06 die Querkraft vernachlässigen kann.
Die Gleichungen für starke Bogen geben gute Ergebnisse, wenn die Stärke

des Bogens nicht zu groß ist. Für sehr große Stärken, wie sie oft in den unteren
Teilen der Gewölbestaumauern vorkommen, ist selbst diese Berechnung ungenau.
Eine richtige Berechnung muß hier von der mathematischen Elastizitätslehre
ausgehen, die in diesem Falle sehr gute Ergebnisse gibt, wie R. Chambaud23

zeigte. Er geht von den mathematischen Beziehungen der Elastizität und Festigkeit

aus und führt keine andere Voraussetzung als Hookes Gesetz ein. Chambaud

leitete die Berechnung für einen Bogen mit Bechteckquerschnitt ab; diese

kann für alle starken Bogen (Gewölbestaumauern, Tunnel usw.) wie für dicke

Zylinderwände angewandt werden. Diese Theorie führt natürlich zu verwickelten
Formeln, aber zahlreiche Nomogramme erlauben eine schnelle und einfache

Benützung. Die Ergebnisse entsprechen sehr gut allen Oberflächenbedingungen
mit Ausnahme eines kleinen Teiles an den Kämpfern. Sie können für irgendwelche

Verteilung der äußeren Kräfte auf der Außen- und Innenfläche angepaßt

werden, wie auch für jedwede Verteilung der inneren Formänderungen,
also auch für verschiedenes Schwinden an einzelnen Stellen (verursacht z. B.

durch die Methode des Bauens) oder für unregelmäßige Temperaturände-

* Hier ist ein Druckfehler in Cains Abhandlung (Transact, A. S. C. E., >ol. 90, p. 541, Formel
lu9), wie deutlich der Vergleich mit der ^ orhergehenden Formel zeigt.
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rungen. Die Berechnung ist besonders wertvoll, weil sie gewöhnlich viel
günstigere Ergebnisse als die vorher angeführte Theorie der starken Bogen gibt.
Die gewöhnliche Theorie der starken Bogen (und umsomehr die auf linearer
Verteilung der Normalspannungen in den Querschnitten gegründete Theorie der
schwachen Bogen) führt in der Regel zu namhaften Zugspannungen auf der
Innenseite des Scheitels und besonders auf der Außenseite der Kämpfer, wo
nach dieser Theorie der schwächste Punkt der Staumauer wäre. Große

Zugspannungen würden in einem Gewölbe ohne Armierung Risse zur Folge haben
und das nicht verletzte Mauerwerk würde einen neuen Bogen bilden, der
imstande wäre, den x\ußenkräften sicher zu widerstehen; das bemerkte zuerst
J. Resal1 (er setzte ein parabolisches ,,aktives" Gewölbe voraus), später M.
Malterre21 (mit einem kreisförmigen „aktiven" Bogen von bleibender und
veränderlicher Stärke) und L. J. Mensch25 Die genaue Berechnung nach der
Theorie von Chambaud zeigt, daß die wirkliche Beanspruchung viel günstiger
ist: es fallen besonders Zugspannungen auf der Außenseite weg (was besonders

wichtig für Undurchlässigkeit des Mauerwerkes ist) und Zugspannungen auf
der Innenseite beschränken sich höchstens auf eine kleine Partie am Scheitel.
Die genaue Berechnung gibt im ganzen kleine Differenzen gegenüber der üb-

tNÄ

Fig. 5.

C AI

Fig. 6.

liehen Berechnung von stark gekrümmten Bogen, was den Einfluß des

Biegungsmomentes anbelangt; namhafte Unterschiede treten aber beim Einfluß der
Normalkraft auf, welcher bei starker Krümmung beträchtlich den Einfluß des

Biegungsmomentes überwiegt, wenn man genau rechnet. Die Abweichungen in
den Spannungen betreffen hauptsächlich die Innenseite des Bogens. Außerdem
berücksichtigt die genaue Berechnung richtig den Einfluß der Querkraft. Die
übliche Theorie der starken Bogen gibt unrichtige Ergebnisse für sehr große
Stärken, weil sie auf Voraussetzungen fußt, die nicht ganz richtig sind: sie

vernachlässigt radial gerichtete Normalspannungen und berechnet Normalspannungen
in Querschnitten unter Voraussetzungen, daß ebene Querschnitte auch nach

der Formänderung eben bleiben. Besonders die letzte Voraussetzung ist für
krumme Stäbe (Bogen) nicht richtig, weil man hier nicht wie bei geraden Stäben
die Berechnung des Einflusses von Normal- und Querkräften trennen kann. Die

genaue Theorie gibt für Normalspannungen (vx in der Richtung des Halbmessers.

v2 tangential zum Bogen und v3 in der Richtung der Zylinderachse) wie auch

für Tangentialspannungen t (senkrecht zur Achse im radialen und zylindrischen
Schnitte) überhaupt Kurven; Fig. 6 zeigt diese Kurven für den Scheitelquer-
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schnitt CXC2 und für den Kämpferquerschnitt A3A2 eines Bogens mit dem
Halbmesser r t C1C2 AXA2. Chambaud berechnete diese Spannungen für ein
Gewölbe, in dem die äußeren und inneren Kräfte symmetrisch zur Ebene der
Mittellinie wirken, sodaß es sich um einen ebenen Spannungszustand handelt.
Für andere Fälle gibt diese Berechnung allerdings nur Näherungswerte.

Die Berechnung der Bogenstaumauer als ein System von waagerechten
Gewölben, welche unabhängig dem Wasserdruck, den Temperaturänderungen, dem
Schwinden und Schwellen des Betons widerstehen, trifft sehr gut zu, wenn z. B.
durch Ausführung in Schichten der Zusammenhang der Schichten in lotrechter
Richtung verletzt wird, was plötzliche Brüche der Biegungslinien für lotrechte
Schnitte zeigen.15 Diese Berechnung wäre genau, wenn die Staumauer wirklich
in unabhängige waagerechte Bogen durch z. B. mit Asphalt und gebogenem
Kupferblech ausgefüllte Dilatationsfugen getrennt wäre; das hat A. Perm

Boeuf2G vorgeschlagen. Sonst ist diese Berechnung nur annähernd.

Berechnung der Gewölbestaumauer als ein System von
waagerechten Gewölben und lotrechten Freiträgern.

In Wirklichkeit hängen die waagerechten Bogen in lotrechter Richtung zusammen

und können sich also nicht unabhängig verformen; dadurch entsteht die
gegenseitige Wirkung zwischen den waagerechten Schichten in lotrechter Richtung.

Das beachtet die genauere Methode der Berechnung von Gewölbestaumauern,

bei der die Staumauer durch waagerechte Schnitte in waagerechte
Bogen und durch lotrechte radiale Schnitte in lotrechte Freiträger geteilt wird.
Die äußeren Kräfte werden auf diese beiden Tragsysteme verteilt. Die
Bedingungen dieser Verteilung folgen aus der Verformung der Staumauer, welche
in jedem Punkte für die beiden Systeme gleich sein soll. Wenn man dabei alle
Komponenten der Verformung (drei Komponenten der Verschiebung in drei
senkrechten Achsen und drei Komponenten der Drehung um diese Achsen)
beachten würde, hätte man eine genaue Berechnung. Da aber diese Art der
Berechnung praktisch fast unmöglich ist, wird sie dadurch vereinfacht, daß man
alle Drehungen und die zugehörigen Drehungsspannungen, wie auch die tangentiale

Komponente der waagerechten Verschiebung und die zugehörige Tangential-
spannung vernachlässigt. Außerdem kann man auch die lotrechte Verschiebung
vernachlässigen, wenn man die Staumauer nach der vollbrachten Verformung
infolge des Eigengewichtes betrachtet. Es bleibt dann nur die waagerechte
radiale Verschiebung, also eine einzige Bedingung für jeden Punkt, in dem sich
die Mittellinie des gedachten waagerechten Bogens mit der Achse des lotrechten
Freiträgers kreuzt. Auf diese Weise wird die Staumauer durch ein System von
lotrechten Trägern und waagerechten Bogen ersetzt, welche sich gegeneinander
ohne Einspannung stützen.27 Die Drehungsspannungen, die dabei vernachlässigt
werden, vermindern ein wenig die Beanspruchung auf Biegung und vergrößern
die Sicherheit.

Eine richtige Berechnung auf diese Weise wäre schwierig, da die Verschiebung
eines beliebigen Punktes im Träger (oder Bogen) von allen auf den Träger
(Bogen) wirkenden Lasten abhängt. Die Bedingungen der gleichen Verschiebung
von waagerechten Bogen und lotrechten Trägern in allen Punkten würden also

Gleichungen ergeben, deren jede eine große Anzahl von Unbekannten enthält.
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S. H. Woodard28 vereinfacht die Berechnung dadurch, daß er die Verformung

der Staumauer nur in einem durch die Bogenscheitel geführten Schnitte
(in der höchsten Stelle der Staumauer) beachtet; er setzt in den Bogen einfache

(gleichförmige) Druckbeanspruchung voraus, bestimmt die Durchbiegung des

Scheitels unter Annahme eines Bogens mit zwei Gelenken und nimmt die
Verteilung des Wasserdruckes auf die Bogen und Freiträger, die er so aus dem

Scheitelpunkte berechnet, auf jedem Bogen gleichförmig. R. Shireffs29
trachtete diese Berechnung zu verbessern, indem er die Scheiteldurchbiegung
der Bogen unter Annahme eines Bogens ohne Gelenke bestimmte, sonst aber
dieselbe Methode benützte; er vernachlässigte aber dabei den Einfluß von
Normalkraft und bekam eine zu komplizierte und unrichtige Formel, wie W. Cain11

zeigte. //. Bellet19 berechnete die Verteilung des Wasserdruckes auf waagerechte

Bogen und lotrechte Träger auf Grund einer falschen Annahme, daß die
relative Dehnung der Bogenmittellinie in jedem Punkte gleich Null ist.

//. Ritter9 nahm (i. J. 1913) in einem Zahlenbeispiel an jedem
waagerechten Bogen eine gleichförmige radiale Belastung an und bestimmte deren
Wert, indem er die Durchbiegung des Bogenscheitels und des lotrechten Trägers

im mittleren lotrechten Schnitt gleich setzte. Ähnlich betrachtete auch L. R.

Jorgensen30 nur den mittleren lotrechten Schnitt, berechnet aber die
Verteilung des Wasserdruckes auf waagerechte Bogen und lotrechte Träger nur
mit grober Annäherung; L. J. Mensch31 benützt für die Berechnung der
Verteilung der äußeren Kräfte die unpassende Bedingung der Gleichheit von
Formänderungsarbeiten. J. Resal1 beachtet auch nur den mittleren lotrechten
Schnitt.

P't

Inm

Fig
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!M>
M, K
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//. Ritter32 gab das Prinzip einer genaueren Berechnung der Druckverteilung

auf lotrechte Träger und waagerechte Bogen so an: "Die Durchbiegung in
einem Punkt M des lotrechten Trägers AB (Fig. 7) kann mittels deren Einflußlinie

(d. i. Biegungslinie des mit der Last P 1 im Punkte M belasteten

Freiträgers AB); sie hat den Wert

Hm £ Pn' nnm O52)

wo P,,' eine im Punkte N auf den Freiträger wirkende Last bedeutet. Diese

Durchbiegung wird verglichen mit der Durchbiegung des waagerechten Bogens
in demselben Punkt, wobei auf den Bogen die Lasten Pn" Pn wirken;
Pn ist die wirkliche Last im Punkte N. Auf diese Weise bekommen wir so viel
Gleichungen, soviel waagerechte Teile wir nehmen, wenn wir die Belastung
der Bogen gleichförmig voraussetzen, so daß auf jeden Bogen nur eine unbe-
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kannte Last Pn" entfällt. Ähnlich würden wir für jeden lotrechten Schnitt
andere Bogenlasten bekommen; die Belastung der Bogen ist also nicht gleichförmig.

Erst A. Stucky14: betrachtet wirklich (in der statischen Berechnung der
Staumauer an der Jogne, die unter Mitarbeit von Prof. A. Rohn in der techn.
Kanzlei von Ing. H. E. Grüner in Basel gemacht wurde) alle lotrechten
Freiträger und waagerechten Bogen (beide von veränderlichem Querschnitt) und
beachtet nicht nur verschiedene Spannungen und Pfeile der Bogen, sondern auch
verschiedene Höhen der lotrechten Schnitte, welche einen wesentlichen Einfluß
auf ihre Starrheit und dadurch auf die Verteilung der Lasten auf lotreqhte
Träger und waagerechte Träger haben. Die Auflösung der Bedingungsgleichungen

kann man erleichtern, wenn man für jeden lotrechten Träger nur die ihn
betreffenden Gleichungen auflöst, wobei nur die auf den Träger entfallenden
Lasten genommen werden. Die so berechneten Näherungswerte können dann
durch Iteration aus den ursprünglichen Gleichungen verbessert werden. Da
aber bei Staumauern wegen der Baumethode und des Baumaterials die genaue
Erfüllung der Voraussetzungen der Rechnung nicht garantiert werden kann, so
muß man jede statische Berechnung der Staumauer nur als annähernd ansehen,
sodaß oft schon die Ergebnisse der ersten Näherungsrechnung genügen. Das

Ergebnis kann dadurch kontrolliert werden, daß man die Durchbiegungen der
lotrechten Träger und waagerechten Bogen für errechnete Lasten bestimmt; es

genügt, wenn die Differenzen zwischen den Durchbiegungen in demselben Punkt
nicht mehr als 10 o/o betragen.

Eine praktische Versuchsmethode wurde von F. A. Noetzli11 angegeben und
von W. Ca in33 ergänzt. Man ermittelt zuerst, ob die waagerechten Bogenträger
überhaupt statisch wirken. Zu diesem Zweck muß man die Biegungslinie
AXM2B2 (Fig. 8) des lotrechten Trägers zwischen zwei lotrechten radialen Schnitten

in der Mitte der Mauer, und zwar für den gesamten Wasserdruck AA'B
bestimmen. Außerdem ermittelt man die Durchbiegungen der waagerechten Bogen
wiederum für vollen Wasserdruck. Bekommt man die Durchbiegungen der
lotrechten Träger überall kleiner als die durch die Kurve B3M3 gegebenen
Durchbiegungen der waagerechten Bogenträger, so tragen die lotrechten Träger die

gesamte Last; die Bogen könnten nur bei Temperaturerhöhung beansprucht
werden, welche eine Verminderung ihrer Durchbiegung zur Folge hätte. Dieser
Fall kommt vor, wenn der Querschnitt der Staumauer ohne Rücksicht auf Bo-
genwirkung (also wie für eine gerade Mauer) bestimmt wurde.

Bei einer schwächeren Mauer übertragen die lotrechten Träger einen Teil des
Wasserdruckes, die waagerechten Bogenträger den Rest. Der lotrechte Träger
übernimmt am Fuß den gesamten Wasserdruck, weil seine Durchbiegung dort
sehr klein (kleiner als die Durchbildung des Bogens für vollen Wasserdruck)
ist. Vom Fuß zur Krone der Mauer wächst die auf die Bogen entfallende Last
annähernd nach einer Geraden AB' (Fig. 9); im oberen Teile der Staumauer
sind die Bogen steif genug, so daß sie die Durchbiegung der lotrechten Träger
hindern (sie biegen sich weniger durch als der lotrechte Träger, also stützen ihn)
und infolgedessen auf den lotrechten Träger mit Reaktionen wirken, die
entgegen dem Wasserdruck gerichtet sind. Vom Belastungsdiagramm des Wasserdruckes

AA'B tragen die Bogen den Teil AB'B, die lotrechten Träger den Teil
AA'B'B (AA'C ist positiv, C'B'B negativ). Wir betrachten dabei den höchsten
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lotrechten Schnitt und setzen auf den Bogen annähernd eine gleichförmige
Belastung voraus. Zur Belastung des lotrechten Trägers bekommt man leicht (am
besten durch Rechnung) die Biegungsmomente und konstruiert dann die
Biegungslinie des Trägers als Seilpolygon zum Belastungsdiagramme mit Ordinaten

M-^;J0 ist ein konstantes Trägheitsmoment, J das Trägheitsmoment des be-
j

treffenden Querschnittes. In einem gewählten Punkt C soll die gesamte Last
durch den Bogen getragen werden. Wir bestimmen in C die Durchbiegung des

Bogenscheitels für vollen Wasserdruck. Hat der lotrechte Träger in C eine
größere Durchbiegung yc als der Bogen, so ist es nötig, den Punkt C niedriger zu
wählen und die Berechnung zu wiederholen. Die genaue Lage von C wird durch
lineare Interpolation zwischen den gewählten Punkten, Cv C2 bestimmt (s. Fig.
10, wo C^C^, C2C2 die Durchbiegungen der Bogen C1C"1, C2C"2 die
Durchbiegungen des lotrechten Trägers darstellen). Kennt man den Punkt C, so

vergleicht man die Durchbiegungen der Bogen und des lotrechten Trägers in allen
Punkten. Gewöhnlich bekommt man nicht eine volle Übereinstimmung. Um nicht
nur in C, sondern auch in der Mauerkrone gleiche Durchbiegung zu bekommen,
muß man das Belastungsdiagramm für waagerechte Bogen dadurch ändern,-daß
man die Gerade C'B4 durch die Gerade C'B" ersetzt; auf die Bogen entfällt dann

f 2 3*
B'B" B Bf »'r<*' B

M «L.
CY--

Jb-

--\v7A.Ä
Fig. 9.

C c, C

c. c; ct

Fig. 10.

die durch AC'B"B (AC'A* ist positiv, C'B "B negativ) gegebene Last und auf
die lotrechten Träger die durch AC'B"BA. Wir ändern den Punkt B" so lange,
bis wir in C und B gleiche Durchbiegungen für die Bogen und den lotrechten
Träger bekommen. In anderen Punkten müssen die Durchbiegungen nicht gleich
groß sein, weil anstatt der gebrochenen Linie AC'B" eine Kurve sein sollte.
Man kann diese Kurve durch Versuch bestimmen, indem man für die Bogen
eine kleinere (größere) Last annimmt, je nachdem die berechnete Durchbiegung
des Bogens größer (kleiner) als die Durchbiegung des lotrechten Trägers ist.

Der Wasserdruck erzeugt in den lotrechten Trägern die größten Spannungen
in der untersten Fuge, wo auch größere Zugspannungen auf der Wasserseite
entstehen können. Wenn sie nicht durch Armierung abgefangen werden, können
waagerechte Risse auf der Wasserseite am Fuße der Staumauer auftreten. Dann
wirkt der lotrechte Träger nicht als ein unten vollkommen eingespannter,
sondern nur als ein teilweise eingespannter oder gelenkig befestigter Träger. Für
diesen Fall kann man versuchsweise die richtige Lösung finden, wenn man die

Tangente zur Biegungslinie im unteren Ende des Trägers wählt, die vorher
angeführte Berechnung vornimmt und sich davon überzeugt, ob die Durchbie-

71
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gungen des lotrechten Trägers und die der waagerechten Bogen überall
übereinstimmen.

R. Chambaud23 deutet auch eine Methode zur Bestimmung der Lastverteilung

auf waagerechte Bogen und lotrechte Träger an. Er geht von einem

beliebigen (annähernden) Gesetz für den auf die Bogen entfallenden Teil des
Wasserdruckes aus, setzt in jedem Bogen die Belastung gleichförmig voraus
und berechnet waagerechte Verschiebungen der Bogenscheitel aus der Belastung
der Bogen, wie auch aus der Belastung des lotrechten Trägers und dessen

Formänderung. Für die zweite Berechnung wählt er arithmetische Mittel dieser
Verschiebungen, ermittelt daraus die Lastverleilung und wiederholt die Berechnung.

So kann er die genauen Werte approximieren. Zugleich betrachtet er
auch annähernd die Normalspannungen in lotrechter Richtung, und zwar mit
ihrem durchschnittlichen Wert.

A. Rohn3* empfiehlt für die erste Berechnung diese Näherungsmethode: Auf
die lotrechten Träger nimmt man vom Diagramm AA'B (Fig. 11) des gesamten
Wasserdruckes den dreieckigen Teil AA'D mit der Basis AA' x Höhe der

b
Mauer und AD n • x, wo n 1/5 bis 1

2 Iür 1.1 bis 1,8; b ist die

Länge der Mauerkrone, h die Höhe der Mauer. Der Rest des Wasserdruckes
wirkt auf die waagerechten Bogen. Außerdem empfiehlt er, immer den Auftrieb
des Wassers mit einem dreieckigen Diagramm A1C1A2 (als für gerade Mauern)
zu beachten, wo AXA2 m • x mit m < 1; im oberen Teil der Mauer würde
m 0,8 genügen. Für einen Dreieckquerschnitt der Mauer ist die nötige
Stärke am Fuß

y nx y ;
V y - m

(33)

Y ist das spezifische Gewicht des Mauerwerks. Für m 1, n i/d, y 2,3
(t/m3) würde y 0,22x bekommen.

-.A X -

^fr

E'E

-JE

B D

Fig. 11. Fig. 12.

Die gleichförmige Verteilung der radialen Drucke auf den Bogen, welche in
den meisten Näherungsmethoden vorausgesetzt wird, ist nicht genau genug.
Die Verteilung des Wasserdruckes auf waagerechte Bogen und lotrechte Träger
hängt sehr wesentlich von der Gestalt des Talprofils ab. Man soll also bei der
Berechnung der Spannungen richtig nicht nur einen lotrechten Träger (in höchster

Stelle der Mauer) beachten, sondern eine größere Anzahl von lotrechten
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Trägern und waagerechten Bogen, was schon A. Stucky1* getan hat. Eine
andere Versuchsmethode wurde durch C. H. Howell und A. C. JaquitJi35
angegeben ; sie wählen eine ungleichmäßige Belastung der Bogen, berechnen für
sie die Durchbiegungen der Bogen und für den Rest der Belastung die
Durchbiegungen der lotrechten Träger in ihrer ganzen Länge, und ändern nach und
nach die Belastung der Bogen so lange, bis sie in allen Punkten praktisch gleiche
Durchbiegungen für Bogen und Träger bekommen. Es ist nötig mehrere
Versuche zu machen, bevor man zu einer genügenden Übereinstimmung kommt.
Die resultierende Belastung dient zur Berechnung der Spannungen in den Bogen
und Trägern. Howell und Jaquith vernachlässigen in ihrer Berechnung die

gezogenen, nicht aktiven Teile der Bogen und Träger und beschränken die
endgültige Berechnung der Mauer (ohne Armierung) nur auf diejenigen Teile, die
auf Druck beansprucht werden. Sie bekommen so Immer Bogen von veränderlichem

Querschnitt, die sie mit Vernachlässigung des Einflusses der Querkraft
berechnen.

Der Vergleich einiger Fälle zeigte, daß die Berechnung der Gewölbestaumauer
als ein System von unabhängigen waagerechten Gewölben nicht zutrifft und
daß sie auch mehr Material erfordert, besonders wenn die Bogen in grober
Annäherung als dünne zylindrische Schalen berechnet werden, wie es früher
üblich war. Bei den Projekten der Gewölbestaumauern sollte man nicht den

Einfluß der lotrechten Träger vernachlässigen, da er immer auftritt und die

Belastung wie den Spannungszustand der waagerechten Bogen ändert. Die
letzte Berechnungsmethode kann für beliebige, auch unsymmetrische Form des

Talprofils angewandt werden.
Der Einfluß der Temperaturänderungen, welche größere Spannungen als der

Wasserdruck erzeugen kann, wird ähnlich berechnet wie der des

Wasserdruckes. Man kann sogar nach H. Ritter9 diesen Einfluß durch einen gedachten
Wasserdruck ersetzen, der dieselben Durchbiegungen wie die Temperaturänderung

hervorrufen würde; dieser gedachte Wasserdruck verteilt sich auf das

System von lotrechten Trägern und waagerechten Bogen ähnlich wie der wirkliche

Wasserdruck.
Durch Versuch kann man den Einfluß der Temperaturänderung nach F. A.

Noetzli11 bestimmen, dessen Methode von W. Cain21 verbessert wurde. Wir
setzen wieder voraus, daß die Staumauer in lotrechte Träger und waagerechte
Bogen geteilt ist. Die Mittellinie des Bogens ACB (Fig. 12), der an den Enden
eingespannt, sonst aber frei wäre, würde durch Temperaturänderung die Form
ACB annehmen; die Durchbiegung des Bogenscheitels wäre laut Formel (31)
für starke Bogen

V[t C C — co0 • b e r0.
Diese Durchbiegung ist verhindert durch die Reaktionen p' des lotrechten Trägers

DCE; wenn man p' als konstant auf dem ganzen Bogen annimmt, hat man
laut (29) die Verschiebung

n C C coo • r
Et

Die resultierende Verschiebung ist

y CCT' co0T0(^—be) (34)

71*
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Die endgültige Biegungslinie des lotrechten Trägers istDC'E". Die Belastung p'
kann durch Berechnung der Staumauer bestimmt werden. Am Fuße der
Mauer ist

y coo r0 \-j^ b 8 0.

was p0:
beEt

ergibt. Wir wählen dann in der Krone einen kleinen spezifi-
x2

sehen Druck (Fig. 13) und im lotrechten Schnitt eine Kurve für die Verteilung
der Drucke p' (für die erste Berechnung kann eine Gerade gewählt werden).
Zu der so gewählten Belastung bestimmt man für den lotrechten Träger die

Biegungsmomente M und die Werte M • ^-, welche das Belastungsdiagramm für

die Biegungslinie als Seillinie bestimmen. Die Berechnung ist richtig, wenn die
Durchbiegungen y des lotrechten Trägers mit denen der Bogen laut Gl. (34)
übereinstimmen; die Bogen haben dieselbe Belastung p' wie der lotrechte Träger,

aber in entgegengesetzter Richtung. Gibt es keine Übereinstimmung, so muß
man die Belastungslinie für p' ändern.

A p

Fig, 13.

Die Temperatursenkung kann mit dem Schwinden des Betons kombiniert
werden; ist e' das Schwinden für eine Längeneinheit, so ist die resultierende
Durchbiegung des Bogenscheitels

y C C" —- co0 r0 I e' — b e "Et r (34a)

die Temperaturänderung ist hier negativ und die Reaktion p' des lotrechten
Trägers (in der letzten Gleichung positiv) wirkt in der Richtung vom Bogen-
mitlelpunkt. Das Schwinden des Betons hat natürlich denselben Einfluß wie eine

Temperatursenkung, welche dieselbe Verkürzung des Bogens verursachen würde.
Die Temperaturerhöhung bei leerem Becken hat eine Ausbiegung der

Staumauer nach der Wasserseite zur Folge; lotrechte Schnitte verbiegen sich auch
nach der Wasserseite hin, was in lotrechten Trägern Zugspannungen an der
Luftseite des unteren Teiles der Staumauer verursacht. In den Bogen
entstehen im Gegenteil Zugspannungen im Scheitel an der Wasserseite, welche
lotrechte Risse zur Folge haben können, falls es keine Armierung gibt. Bei
vollem Becken und Temperatursenkung bewegt sich die Staumauer talwärts;
da können eventuell Zugspannungen im lotrechten Träger im unteren Teil der
Wasserseite, in den Bogenscheiteln auf der Luftseite entstehen. Alle Zugspannungen

sollten durch entsprechende Armierung aufgefangen werden, da sonst
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in den Bogenscheiteln lotrechte Risse auf beiden Seiten auftreten und die Sicherheit

der Staumauer sehr ungünstig beeinflussen würden. Vernachlässigt man
bei dem Projekt der Staumauer die Verteilung der Belastung auf lotrechte
Träger und waagerechte Bogen (also rechnet man nur mit dem Widerstand der
Bogen), können leicht durch ungeeignete Ausführung waagerechte Risse
entstehen, wie auch die Ergebnisse der Messungen an einigen Staumauern zu

zeigen scheinen.17
Was den Wert der Temperaturänderung anbelangt, so empfiehlt F. A.

Noetzli11 für höhere, also unten stärkere Staumauern in der Krone die größte
Änderung (etwa + 14° C), am Fuß keine Änderung zu nehmen; für genaue
Berechnung hat man bisher nicht genügende Grundlagen in wirklichen Messungen.

Bei der Staumauer Arrow-Rock36 wurde eine jährliche Temperaturschwan-
kung in der Krone 29° F und am Fuße nur 6,5° F gefunden. Es können auch
verschiedene Kombinationen der Temperaturänderungen auf der Wasser- und
Luftseite auftreten. Es ist besonders nötig bei leerem Becken die gleiche größte
Abkühlung auf der Wasser- und Luftseite, und bei vollem Becken eine verschiedene

Abkühlung auf der Wasserseite (zur niedrigsten Temperatur des Wassers)
und auf der Luftseite (zur niedrigsten Temperatur der Luft) zu betrachten.

Bei größeren Stärken der Staumauer durchdringt die Temperaturänderung
nicht gleich die ganze Mauer; näher behandelt diese Frage A. Stuckyu.
Ausführlich verfolgt die Eindringung der Temperaturänderungen der Luft in
das Mauerwerk G. Ippolito13 welcher für die Verteilung der Temperatur im
Mauerwerk einfache Formeln ableitet; man kann sie für beliebige massive
Bauwerke zur Bestimmung der täglichen und jährlichen Temperaturschwankungen
benützen. Derselbe Verfasser ermittelt auch den Einfluß der Erwärmung beim
Erhärten des Betons und gibt die Ergebnisse der Temperaturmessungen an
verschiedenen Staumauern wieder; diese Messungen genügen nicht, um sichere

Schlußfolgerungen zu gestatten. Die Berechnungen ergeben gewöhnlich zu große
Temperaturspannungen, wenn man die Temperaturänderung in der ganzen
Staumauer gleich oder linear veränderlich annimmt, was der Wirklichkeit nicht
entspricht. Die durch Temperatur verursachten Formänderungen können auch

• einen ziemlich wesentlichen günstigen Einfluß auf die Größe der Spannungen
ausüben, wenn die Kämpfer unelastisch nachgeben oder auch im Innern der
Staumauer unelastische Formänderungen auftreten.

Eine einfache Formel für das Durchdringen der Temperaturänderungen in
das Innere einer dicken Staumauer wurde auf Grund amerikanischer Messungen
von H. Ritter9 angegeben:

& -?-=. (35a)

wo b die Temperaturänderung im Mauerwerk in einer Entfernung x von der

Oberfläche, b± die Temperaturänderung der Luft bezeichnet. G. Paaswell31
leitet für diesen Fall die Formel ab:

b 0l e~kxcoskx; (35b)
k ist eine vom Material und von der Zeit abhängige Konstante: für Beton und
eine eintägige. Periode ist k 0,079, für Beton und eine einjährige Periode
k 0,00413.
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Zu große Einflüsse von Temperaturänderungen und Schwinden des Betons
können durch Errichtung von Dilatationsfugen ausgeschieden werden.
Betrachtet man bei der Berechnung die Staumauer als einen oben freien, unten
eingespannten Träger, so sind diese Fugen statisch unschädlich. Bei einer Ge-
wölbestaumauer ist eine zu große Anzahl von Dilatationsfugen ein Nachteil für
die Stabilität.

Berechnung der Staumauer als einer elastischen Schale.
Die Gewölbestaumauer ist eigentlich eine oben freie, in den Talhängen und im

Talboden gestützte oder eingespannte Schale. Aber die Berechnung der
Staumauer auf dieser Grundlage ist sehr schwierig. Es ist dabei nötig vom Gleichgewicht

und von der Formänderung eines unendlich kleinen Elementes auszugehen

und den Randbedingungen zu genügen, welche durch die Stützung in
den Talhängen und im Talboden, sowie durch die freie Oberfläche in der
Mauerkrone gegeben sind. Der Gedanke einer solchen Berechnung wurde allgemein

von G. Pigeaud3 formuliert.
B. A. Smith38 versuchte zum erstenmal eine Gewölbestaumauer als eme

elastische Schale zu berechnen. Er vereinfachte die Berechnung, indem er nur
den höchsten Teil der Mauer betrachtete und in waagerechter Richtung überall
dieselben Verhältnisse wie im höchsten Schnitt voraussetzte; er schied dadurch
von der Rechnung die Änderung in waagerechter Richtung aus (die Abhängigkeit

vom Zentriwinkel cp). Er beachtete die Randbedingungen nur für die Krone
und den Fuß des lotrechten Schnittes; das stimmt eigentlich mit der Berechnung

einer Behälterwand überein. Der Zusammenhang der Teile in waagerechter
Richtung ist zwar in Spannungen, nicht aber in Formänderungen berücksichtigt.
Es ist nur mit einer groben Annäherung gezeigt, daß für Zentriwinkel, die
kleiner als 120° sind, die Durchbiegung des Scheitels eines waagerechten Bogens
als für einen vollen Kreis berechnet werden kann, wenn man den wirklichen

9
Elastizitätsmodul E0 durch — E0 ersetzt. Smith betrachtet auch die Scherkräfte

o

in waagerechten Ebenen und bekommt aus dem Gleichgewicht der auf das
Element t.ds.dy (zwischen zwei waagerechten Ebenen, zwei lotrechten radialen
Ebenen und beiden Oberflächen der Staumauer) wirkenden Kräfte und aus der
Formänderung des lotrechten Freiträgers durch Biegungsmomente und des

waagerechten Bogens durch Normalkräfte (bei Vernachlässigung der Biegungsmomente

im Bogen) die Grundgleichung
d2 (n d2z\ E0

vd^lCld7J + ^tZ p; (36)

hier bedeutet r2 den Halbmesser der Wasserseite (Fig. 14), p den gleichförmig
am Bogen verteilten äußeren Druck (Wasserdruck), t die Stärke der Mauer,

Cx E1J=—E1t3 die Biegungssteifigkeit (für ein lotrechtes Element von der
i c.

Breite gleich der Längeneinheit), Ex den Elastizitätsmodul für den lotrechten
Träger (welcher bei anderer Armierung vom Modul E0 für den Boden abweichen

kann), z die radiale Verschiebung und y die Tiefe, gemessen von der
Wasseroberfläche (in der Ebene der Mauerkrone) in der Richtung der lotrechten
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Achse beider zylindrischen Oberflächen der Mauer. Die Berechnung ist fehlerhaft,

weil dabei der lotrechte Träger ohne Verbindung mit anderen lotrechten
Trägern als ein unabhängiges Tragelement genommen wird; dadurch fällt aus
der Gleichung Poisson's Konstante der Querdehnung weg.

Smith führte die Berechnung für eine Staumauer gleicher Stärke und für
den Fall durch, daß sich die Mauerstärke linear ändert, also für lotrechten
Trapezquerschnitt. Im ersten Falle ist die Lösung ähnlich der bekannten Lösung
für eine Behälterwand, nur fehlt Poisson's Konstante. Für den Fall einer linear
veränderlichen Stärke enthält die Lösung Reihen in der Form von speziellen
Funktionen von Michell. Die Abhandlung enthält Tabellen dieser Funktionen
zur Erleichterung der Berechnung und leitet den Zusammenhang mit den

komplexen Funktionen von Bessel ab.

W. Cain33 zeigte in einem numerischen Beispiel, daß die Methoden von
Smith und Noetzli vollkommen gleiche Ergebnisse geben, obwohl Noetzli die
Scherkräfte außer acht ließ, was demnach möglich ist. Die Übereinstimmung
von beiden Methoden ist natürlich, da sie den gleichen Grund haben: beide
betrachten den lotrechten Träger in der Mitte der Mauer und vernachlässigen die

Änderung der Werte in waagerechter Richtung. Der einzige Unterschied ist,
daß Smith eine Differentialgleichung integriert, also unendlich kleine Elemente
benützt, während Noetzli endliche Elemente nimmt, was aut die Ergebnisse
keinen wesentlichen Einfluß hat, wenn die Anzahl der Teile im lotrechten
Schnitt nicht zu klein ist.

Fig. 14.

...*°

t
Fig. 15

G. Paaswell31 leitet von den Grundbezichungen für Formänderung und von
der Formänderungsarbeit die allgemeine Differentialgleichung für die

Biegung einer elastischen Schale in der Form ab:

_ EJ /a4z 2_ 2lz 1 aVz 2_ <^z 2 a2z _z_\
P —r^^lay* +?" 2y22cp2

+ r^* dtf + "r2" "ä^2 + 71' ä'cp2 + r*7 ' ^ '
z ist hier die Durchbiegung der Schale, y der lotrechte Abstand von der
Wasseroberfläche (Fig. 15), cp der Winkel mit der Symmetrieebene, gemessen in
waagerechter Ebene, r der Halbmesser der zylindrischen Mittelfläche, p der

radiale äußere Druck (Wasserdruck) und ^ —, wenn m Poisson's Konstante

bedeutet. Für r oo (und r-dcp - dx) geht Gl. (37) in die Grundgleichung für
ebene Platte über, Paaswell bestimmt nicht das allgemeine Integral der Glei-
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chung (37); er gibt nur eine partikuläre Lösung an und leitet von ihr die
Beziehung von Biegungsmomenten im lotrechten Träger und Bogen ab. Es zeigt
sich, daß die Momente im lotrechten Träger am Fuß viel größer sind als die
Momente im Bogen und daß die Momente in den Bogen im unteren Mauerteil
ihr Vorzeichen wechseln.

In der ausgezeichneten Schrift „Report on Arch Dam Investigation, Vol. /2,
befaßt sich H. M. Westergaard theoretisch mit der Berechnung der Gewölbestaumauer

als einer elastischen Schale. Er betrachtet in radialen und waagerechten
Schnitten Normalkräfte und zwei Komponenten der Scherkräfte (in radialer
und dazu senkrechter Richtung), dann Biegungsmomente in lotrechten Schnitten
und waagerechten Bogen und Drehmomente; die Verteilung der Spannungen
ist wie für Platten angenommen, also die Normal- und Tangentialspannungen
linear veränderlich in der Mauerstärke, was eine kleine Stärke voraussetzt. Vom
Gleichgewicht und der Formänderung eines Elementes, das aus der Mauer durch
zwei waagerechte Ebenen in einer Entfernung dy und zwei radiale Ebenen in
einer Entfernung dx (auf dem mittleren Kreise vom Halbmesser r gemessen)
herausgeschnitten wird, leitet Westergaard die Biegungsgleichung ab

Z ^ 34 Z 34 Z 1 d2 Z JLI
c*2 Z T/-(^z &* z H ^z

(38)

ax4 + 22x2ay2 + ay* r 'dy*— ° (39)

3 x4 ^ 9 x2 9 y2 ^ 3 y4 r2 d x2 r2 d y2 \3 y8 9 x2 d y +r2'3y

+i(l7+MÄ-+^)-*(p-^+'V"+H=o
und die Kräftegleichung

a*F ^ a4F a4F Et a2z

In diesen Gleichungen bedeutet: z die Durchbiegung der Mauer, r den
Halbmesser des Zylinder, der z. B. durch den Mittelkreis in der Mauerkrone (Fig. 15)
geht, x die auf diesem Mittelkreis von der lotrechten Symmetrieebene (OC ist
Symmetrieachse in der Krone) gemessene Entfernung, y die lotrechte Entfer-

d r d r»
nung von der Mauerkrone, t die Mauerstärke; weiter ist r' =—-.— ,r" -^—-,wody dy
ry den Halbmesser der Mittelfläche (der nur von y abhängt) bedeutet, E ist
Elastizitätsmodul des Mauerwerks, u. Poisson's Zahl (für Beton ju 0,15),

Et3 2 N' N"
N== gr das Maß der Biegungssteifigkeit der Mauer, K= -^—, k -^p,

dN d2N
N'=-=—, N" -i—g-, p ^-= spezifischer Wasserdruck, bezogen auf den Zylinder

\om Halbmesser r, y spezifisches Gewicht des Mauerwerks, Px waagerechte
Normalkraft für Längeneinheit im lotrechten radialen Schnitte Py ~lotrechte
Normalkraft für Längeneinheit im waagerechten Schnitte. Schließlich bedeutet
F die Spannungsfunktion, welche die inneren Kräfte mit Hilfe der Gleichungen
bestimmt

d2 F d2 F F d2 F

J
o

J

Pxy ist die lotrechte Scherkraft für Längeneinheit im radialen Schnitt.
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In derselben Schrift leitet W. Slater >on der Differentialgleichung für
ebene Platten eine einfachere Differentialgleichung für die Biegung der
Staumauer

a4z n a4z alz 1 a2z F / \ l — u2 //I1X^ + 2ätfä7+a7 + ^-^-jrl^ + ^x^ P--E^ (41)

ab, wo F die Querschnittsfläche des radialen lotrechten Schnittes, J dessen

Trägheitsmoment und ,\x, Ay die relativen Dehnungen in der Richtung x und y
bedeuten.

Zur genauen Berechnung der Staumauer wäre es nötig, die Differentialgleichungen

(38), (39) zu lösen und die Randbedingungen für die freie Krone
und für die Stützung an den Talhängen und am Talboden zu befriedigen. Bei
der Berechnung der Staumauer kann man auch nach Fred. Vogt39 die

Formänderung des Baugrundes (Felsen) beachten. Auf Grund seiner Theorie
bestimmte Fred. Vogt40 allgemein und numerisch den Einfluß eines Nachgebens
des Felsengrundes in einer Gewölbestaumauer. Er kam zum Ergebnis, daß man
das Nachgeben des Felsengrundes sehr annähernd dadurch ermitteln kann, daß

man den Bogen um die Länge 0,45 t zum gedachten unnachgiebigen Grunde
verlängert. Das Nachgeben des Grundes ändert natürlich die Spannungen
und Formänderungen einer Gewölbestaumauer. Für kleine Stärke hat dieses

Nachgeben keinen wesentlichen Einfluß. Bei großen Stärken (in den unteren
Teilen hoher Staumauern) vermindert das Nachgeben des Grundes das

Biegungsmoment am Bogenkämpfer, also vermindert auch die Zugspannung an der
Wasserseite; im Gegenteil wächst im Bogenscheitel das Biegungsmoment und
die Zugspannungen an der Luftseite. Die Spannungen von der Temperaturänderung

und vom Schwinden und Schwellen des Betons werden durch das

Nachgeben des Grundes kleiner, die Durchbiegung des Scheitels wächst aber
wesentlich (bis zu zweifacher Größe).

Die Auflösung der Differentialgleichungen (38), (39) ist sehr kompliziert
und schwierig, auch wenn sie so viel als möglich vereinfacht wird, wie es We-
stergaard am Beispiel der Versuchsstaumauer am Stevenson Creek in Califor-
nien zeigte. Für gewöhnliche praktische Fälle ist diese Berechnungsmethode
zu mühsam.

Form der Gewölbestaumauern.
Die ersten Gewölbestaumauern wurden in der Regel mit lotrechter Wasserseite

und gleichem Krümmungshalbmesser in allen Schichten oder mit einem
nach unten wachsenden Halbmesser ausgeführt. Eine solche Form ist zweck
mäßig, wenn die Breite der Mauer in allen Schichten gleich groß ist, also für
ein Gewölbe zwischen lotrechten Pfeilern, obwohl es auch hier be&ser ist, den
stärkeren unteren Schichten einen kleineren Halbmesser zu geben, um
nachgiebigere Bogen zu erhalten. Wenn aber die Staumauer in einem Tale liegt,
dessen Breite sich nach unten vermindert, bekommt man bei konstantem
Halbmesser unten sehr flache Bogen. Wird die Staumauer als ein System von
lotrechten Trägern und waagerechten Bogen berechnet (das gilt auch weiter), so
entfällt auf die Bogen ein verhältnismäßig kleiner Teil des Wasserdruckes,
der meistenteils durch lotrechte Träger getragen wird: das erfordert wegen
ungünstiger Beanspruchung der lotrechten Träger auf Biegung viel Material.
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Es ist deshalb vorteilhafter, den Krümmungshalbmesser von der Krone zum
Fuß zu vermindern; dadurch wird ein größerer Teil der Belastung auf die
Bogen übertragen, wo die Beanspruchung gleichmäßiger und die Festigkeit
des Materials besser ausgenützt ist (Stuckyu). Das führte L. R. Jorgensen30
zum Entwurf der Staumauer mit konstantem Zentriwinkel in allen waagerechten
Schichten; solche Staumauern wurden in Amerika oft in großen Abmessungen
gebaut. Aber die Gleichheit des Zentriwinkels ist nicht nötig und kann praktisch
nicht genau erreicht werden.

Den Gedanken des konstanten Zentriwinkels hat eigentlich schon 1879
Pelletreau5 ausgesprochen, welcher auch zum erstenmal den vorteilhaftesten
Wert des Zentriwinkels, wenn man vom Einfluß der Normalkraft absieht,
mit dem Näherungswert von 134° bestimmte, der zum kleinsten Volumen des

Bogens führt. Wenn man den Einfluß der Normalkraft beachtet, so ist nach
Ritter9 der vorteilhafteste Zentriwinkel zwischen 120° und 180°; in diesen
Grenzen ändert sich das Volumen des nötigen Mauerwerks nur wenig.
Zugspannungen in einem dünnen Bogen mit gleichförmigem radialen Druck werden

ausgeschlossen, wenn bei gleicher Stärke der Zentriwinkel größer als 158°
ist; bei einem kleineren Zentriwinkel können die Zugspannungen auf der
Wasserseite bei den Kämpfern vermieden werden, wenn der Zentriwinkel mehr
als 115° beträgt. In Betreff des Einflusses der Temperaturänderungen zeigt
Ritter,9 daß ein Halbkreisbogen am besten ist.

Ippolito13 untersucht sehr gründlich die Bedingungen der größtmöglichen
Wirtschaftlichkeit, indem er von der Theorie eines elastischen Bogens relativ
kleiner Stärke und von der Berechnung der Staumauer als ein System von
unabhängigen waagerechten Gewölben ausgeht. Er zeigt, daß für einen
Gewölbegurt gleicher Stärke der vorteilhafteste Zentriwinkel zwischen 133° bis
180° liegt und von der Wassertiefe abhängig ist; in einer Tiefe, welche in
Metern numerisch gleich der zulässigen Spannung k in kg/cm2 ist, wäre
annähernd der Winkel von 180° am besten. Er ermittelt dann zuerst für eine
konstante Spannweite (also für ein Gewölbe zwischen lotrechten Pfeilern) den
besten Zentriwinkel, für den das Volumen der ganzen Staumauer am kleinsten
ist. Für eine Gewölbestaumauer in einem Tal, dessen Breite sich der Höhe
nach ändert, konstruierte er Nomogramme, weiche erlauben, für einen
gegebenen Zentriwinkel in der Mauerkrone das Volumen von Gewölbegurten in
verschiedener Höhe (für konstanten Halbmesser der Mittelfläche oder der
Wasserseite), durch Summierung das Volumen der ganzen Staumauer und durch
Vergleich der Ergebnisse für verschiedene Winkel den besten Zentriwinkel in
der Krone zu bestimmen, der zum 'kleinsten Volumen "der ganzen Staumauer
führt.

Die beste Form der Bogenmittellinie für einen gleichförmigen radialen Druckist
ein Kreisbogen, der auch für praktische Ausführung Vorteile besitzt. In

Wirklichkeit sind aber die Drücke auf die Bogen nicht gleichmäßig verteilt,
weil infolge von verschiedenem Widerstand der lotrechten Träger ungleicher
Höhe (bei Berechnung der Staumauer als ein System von waagerechten Bogen
und lotrechten Trägern) auf die Bogen in verschiedenen Punkten verschiedene
Anteile des Wasserdruckes in der betreffenden Schicht entfallen. Es wäre natürlich

möglich, die Form der Staumauer dem anzupassen, indem man für Mittellinie
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in einzelnen Schichten immer eine Seillinie zur betreffenden Belastung wählen
würde (Stuckyu). Die eventuelle Materialersparnis würde aber wahrscheinlich

durch Nachteile bei der Ausführung überwogen, denn für die Ausführung
sind die Kreisbogen, welche auch die einfachste Berechnung gestatten, am
besten.41 Außerdem ist die Berechnung der Druckverteilung auf den Bogen mühsam

und kann nicht genau durchgeführt werden. Wenn die Form der Bogen
der berechneten Druckverteilung angepaßt ist, kann es vorkommen, daß die

wirkliche Druckverteilung eine andere ist und der ermittelten Bogenform
nicht entspricht, so daß die wirklichen Spannungen die berechneten Grenzwerte

überschreiten können.
Ein Dreiecksquerschnitt im lotrechten Schnitt, der für gerade oder leicht

gekrümmte Staumauern, wo man die Bogenwirkung vernachlässigt, paßt, ist
für eine Gewölbestaumauer nicht vorteilhaft. Mit Rücksicht auf die Beanspruchung

ist es günstig, die Staumauer möglichst dünn zu wählen und sie gegen die

Kämpfer an den Talhängen und am Talboden zu verstärken (Stucky1*),
besonders bei Staumauern mäßiger Höhe (bis zu 30 m), wo man die Festigkeit
des Mauerwerks nicht voll ausnützen kann und wo in den unteren Teilen eine
beträchtliche Belastung auf die lotrechten Träger entfällt. Eine vielfach elastische

Unbestimmtheit in der Lastverteilung auf das System von lotrechten
Trägern und waagerechten Gewölben macht die Gewölbestaumauer sehr empfindlich

gegenüber den Abmessungsänderungen; durch geeignete Änderungen der
Stärken kann man immer die Ausnützung der Materialfestigkeit verbessern oder
das Volumen des Mauerwerks vermindern, denn diese Änderungen können
wesenthch die Biegsamkeit der waagerechten Bogen und lotrechten Träger und
dadurch die Verteilung der äußeren Kräfte auf beide Tragsysteme beeinflussen,
wie auch Howell und Jaquith35 gezeigt haben.

Für sehr hohe Staumauern ist die Verstärkung an den Kämpfern vorteilhaft,

bei größerer Talbreite auch die lotrechte Wasserseite, welche den
lotrechten Trägern größere Steifigkeit gibt.35 Der Einfluß des Auftriebes ist
für Gewölbestaumauern viel weniger gefährlich als für gerade Staumauern,
weil die seitliche Einspannung schon allein das Umkippen der Staumauer
verhindert. Aber es ist angezeigt, mit dem Auftrieb besonders da zu rechnen, wo
die Belastung größtenteils auf die lotrechten Träger wirkt.

Eine besondere Vorsicht ist nötig, wenn man die Abmessungen der Staumauer
da ermittelt, wo sich die Talbreite plötzlich ändert. Hier ändert sich auch

plötzlich die Spannweite der Bogen, welche dann in benachbarten waagerechten
Schichten sehr verschiedene "Formänderungen haben sollten. Um hier zu große
Scherspannungen zu vermeiden, empfiehlt es sich, an dieser Stelle mächtige
Widerlager für die Gewölbestaumauer zu errichten; das gibt dem Umfange
eine regelmäßigere Form, welche erlaubt, die Festigkeit des Mauerwerks voll
und ohne Gefahr zu großer Spannungen auszunützen (Resal1).

Vereinzelt in der Form ist die Gewölbestaumauer am Six-Mile Creek bei
Ithaca in Nord-Amerika; der Entwurfsverfasser G. S. Williams*2 wollte hier
die Wirkung des lotrechten Trägers gänzlich vermeiden und nur die
Bogenwirkung zur Geltung zu bringen. Die Staumauer hat unten die Form einer
verkehrten Kuppel, was auch im Talbogen sichere Kämpfer gibt; der
Wasserdruck auf die Kuppel hebt teilweise das Gewicht der Staumauer auf.



1132 Zd. Bazant

Kuppeln von großen Abmessungen in Eiform wurden bei der Coolidge-Stau-
mauer am Gila River (Arizona) benützt.43 Diese Staumauer wurde als ein System
von unabhängigen Gewölben berechnet, die von den Kuppeln durch schiefe, zu
den geneigten Kämpferlinien senkrechte Ebenen abgetrennt wurden.

Die Verteilung der waagerechten äußeren Kräfte auf das System von lotrechten

Trägern und waagerechten Bogen hängt vom Verhältnis der Höhe zur
Kronenlänge der Staumauer ab. Mit der wachsenden Länge der Staumauer nimmt
die Länge der waagerechten Bogen und ihre Biegsamkeit zu, aber die lotrechten
Träger behalten ihre Steifigkeit. Es entfällt daher ein größerer Teil der
waagerechten Belastung auf lotrechte Träger und die Staumauer nähert sich in ihrer
statischen Wirkung der geraden Mauer, wo alle Lasten von auf Biegung und Druck
beanspruchten lotrechten Trägern übernommen werden. Im Gegenteil wirkt
in kürzeren Staumauern der größte Teil der waagerechten Belastung auf die

waagerechten Bogen; vermindert sich die Länge, so nähert sich die Staumauer
dem Falle, wo die Wirkung der lotrechten Träger verschwindet und nur die

waagerechten Bogen wirken. An Hand von ausgeführten und durchgerechneten
Staumauern zeigen Resal1 und Stucky,1* daß die Bogenwirkung nur in
Staumauern zur Geltung gelangt, wo das Verhältnis der Kronenlänge l zur Mauerhöhe

h höchstens 2.5 beträgt. Staumauern mit 1 >2.5 h, deren Stärke größer
ist, sind als gerade Mauern (Schwergewichtsmauern) zu berechnen. In diesem
Falle kann man die Bogenwirkung vernachlässigen, da sie geringe Bedeutung
hat; sie ist auch für die Stabilität vorteilhaft, da sie ein wenig, besonders in
oberen Teilen, die lotrechten Träger entlastet. In verhältnismäßig dünnen
Staumauern, auch von größerer Länge, kommt die Bogenwirkung so zur Geltung,
daß man mit ihr rechnen kann.35

Gewölbestaumauern brauchen natürlich sichere Widerlager in den Talhängen;
sie können nur da errichtet werden, wo die Talhänge aus festen Felsen bestehen.
Die Bogen sollen an den Kämpfern annähernd senkrecht zu Schichtenlinien des

Baugrundes verlaufen, um eine sichere Stützung zu bekommen.
Ist die Berechnung der Gewölbestaumauer genauer, die wirklichen Spannungen

ausführlich ermittelt und die Temperaturwirkung in Betracht gezogen, so kann
man (ähnlich wie für Brückenkonstruktionen) die zulässigen Spannungen im
Vergleich zur gewöhnlichen flüchtigen Berechnung erhöhen. Stucky1*
empfiehlt in diesem Falle für Beton eine zulässige Spannung auf Druck bis 35 kg/cm2,
auf Zug bis 10 kg/cm2. Juillard*1 wendet dagegen ein, daß man über die
bisher üblichen zulässigen Spannungen nicht gehen sollte, so lange als eine

längere Erfahrung die Zuverlässigkeit der neuen Berechnungsmethoden nicht
nachweist.

Die wirklichen Spannungen in Gewölbestaumauern können wesentlich von der
Art der Ausführung abhängen.44 Um die Bogenwirkung zur Geltung zu bringen,
ist es nötig, daß die Staumauer in lotrechter und waagerechter Richtung
monolithisch ist: alle vorherigen Betrachtungen setzen also voraus, daß beim Bau
alle Schichten gut miteinander verbunden werden. Wenn man in der Staumauer
lotrechte Dilatationsfugen ausführt, so kann die Bogenwirkung wesentlich
vermindert oder bei offenen Fugen gänzlich ausgeschieden werden. Füllte man
nachher enge Dilatationsfugen aus, dann können waagerechte Kräfte in der
Querrichtung (in waagerechten Bogen) übertragen werden, wozu auch die durch
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Normaldrücke hervorgerufene Reibung in den Dilatationsfugen hilft. Dann kann

man auch mit Bogenwirkung (wenigstens teilweise) rechnen.

Bestätigung der Theorie durch Messungen und Versuche.
Die Spannungen in der Staumauer können aus gemessenen Durchbiegungen

bestimmt werden, wje von F. A. Noetzli15 gezeigt wurde. Ist As die Verkürzung
der Bogenmittellinie (absoluter Wert), so gilt für die durch As allein erzeugte
Horizontalkraft die Formel

Et
"h2"

mit* _
h2 s

H -krwAs (42)

tf—
3 f>2 dl pcos2 cp d s psin2cpds\ (42a

für einen Bogen von der Breite b=l;47 die Bedeutung der anderen Größen
wurde früher erwähnt (s. Fig. 1). Die Werte von k f für verschiedene Zentriwinkel

2a und für verschiedene Verhältnisse -,— wurden von Noetzli in einem
h

Nomogramm zusammengestellt. Ersetzt man die Mittellinie annähernd durch
eine Parabel und beachtet nur den Einfluß des Biegungsmomentes, so ist
kf 0.94; stellt man auch den Einfluß der Normal- und Querkraft in Bech-

nung, so kann man setzen kf 0.75.
Für eine Verkürzung As der Mittellinie bekommt man annähernd, wenn man

die verformte Mittellinie als Kreisbogen (wie bei einem Zweigelenkbogen)
annimmt, die Durchbiegung des Bogenscheitels (positiv in der Richtung zum

3 s
Bogenmittelpunkt) r\ —; • -f- • A s.

Durch Einsetzung von A s aus dieser Gleichung in (42) erfolgt

S2
Annähernd kann man einsetzen kf 0,75; V £>3r, wo r den Halbmesser

h

der Mittellinie bedeutet; es ist dann

H -0,48^--n (43a)

Diese Kraft H wirkt in der Schwerachse der Mittellinie, also annähernd in der

Entfernung— vom Bogenscheitel; es ist dann leicht, die Spannungen im Scheitel

und in den Kämpfern zu berechnen.
Die Formeln von Noetzli können nach W. Cain*5 gute Ergebnisse für Zentriwinkel

von 0 bis 30° und für dünne Bogen; für größere Winkel und starke
Bogen werden die Ergebnisse von den genauen wesentlicher abweichen.

h*l2* Der Nenner von kf sollte richtig anstatt von h2S sein, wie aus der Ableitung folgt.
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Betrachtet man den Wasserdruck p (auf die Wasserseite) und die
gleichmäßige radiale Belastung p' (positiv in der Richtung zum Bogenmittelpunkt),
welche die Temperaturänderung und das Schwinden des Betons ersetzt, so hat
die waagerechte Durchbiegung des Bogenscheitels nach W. Cain21 den

genaueren Wert

y — coo r0 be +
(P + P)r2

Et (44)

mit den in Gl. (34a) schon benützten Bezeichnungen; für eine Temperatursenkung

würde man b und p' negativ einsetzen. Aus (44) kann man (p-j-p)
berechnen, wenn man die wirkliche Durchbiegung y und andere Größen in der
Formel durch Messung bestimmt; (p-}~P ist die gesamte radiale Belastung,
die gleichförmig vorausgesetzt wird. Die Formel (44) wie auch (34), (39a)
gelten nur dann, wenn der betrachtete Bogen voll wirkt, also wenn es keine
Risse vom Schwinden des Betons oder von zu großen Zugspannungen gibt.

Wenn in der Staumauer lotrechte Risse auftreten, welche die Wirkung der
waagerechten Bogen (ihre Querschnitte) ändern, sollte man die Messungen der

Durchbiegungen und der Temperatur in einer Zeit vornehmen, wann die Risse

geschlossen sind; aus zwei Beobachtungen in verschiedenen Zeitpunkten könnte
man durch die Differenz der beobachteten Größen die Durchbiegung y und die

Temperaturänderung b bestimmen, die man in die Formel einzusetzen hat. Es
ist auch darauf zu achten, daß man die ungünstigen Einflüsse des ungleichen
Elastizitätsmoduls (der Ungleichartigkeit des Betons) und der Ungleichmäßig-
keit in Temperaturverteilung ausscheidet. Um das zu erreichen, muß man die

Durchbiegungen und die Temperatur in einer mehrtägigen Periode messen, in
welcher sich die Lufttemperatur nicht ändert. Bekommt man durch Rechnung
aus den gemessenen Größen den Druck p fast gleich dem Wasserdruck am
Fuße der Staumauer oder größer, so bedeutet es, daß in der Staumauer Risse
vorhanden waren oder daß die Temperatur zu ungleichmäßig verteilt war; die

Ergebnisse solcher Messungen kann man nicht benützen.
Von der gemessenen radialen Durchbiegung jx im Scheitel des waagerechten

Bogens kann das Biegungsmoment im Bogenscheitel nach der Gleichung
Et3

M0 —a.-j^-.ri, (45)

berechnet werden; die Gleichung gilt gleichfalls für die vom radialen Druck
(Wasserdruck) wie von der Temperatur herrührende Durchbiegung. Der Koeffizient

a hat den Wert: für einen gelenklosen Boden,21 wenn der Einfluß der
Scherkraft vernachlässigt wird,

/ sin a\

a_J_ smq(l——j
6

(a - sin a) (l + ^) + 2,88 — • -^ (a + sin 2 a)
(45a)

V r02/ r0 r02 7

und für Zweigelenkbogen,16 wenn die Scherkraft vernachlässigt wird,
1 sin et 1— cos et)

3 _ "6" ~ ~7. ö TT1'2^ ^7 (45b)
sin et + et (1 — 2 cos a) + — (a — sin a)
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Der Koeffizient a hängt nur vom Zentriwinkel 2a und vom Verhältnis — ab,

so daß man a für verschiedene Winkel a und verschiedene Verhältnisse — be-
r

rechnen kann. Man kann da a direkt einer so zusammengestellten Tabelle
entnehmen und aus der Formel (45) M0 berechnen. Daraus bekommt man leicht
die Kraft X pr—Hc, weil M0 das Moment zum Bogenscheitel dieser Kraft
bedeutet, die beim gelenklosen Bogen in der Schwerachse der Neutrallinie (beim
Zweigelenkbogen in der Verbindungsgeraden der Kämpfergelenke) wirkt. Weiter
bestimmt man Hc und aus dieser Kraft und dem Moment M0 die Beanspruchung
in der Scheitelfuge des Bogens. Aus M0 und Hc kann man nach früher
angeführten Formeln das Moment und die Normalkraft, also auch die Spannungen
in der Kämpferfuge berechnen.

Wenn für jede Belastung und Temperaturänderung die volle Bogenwirkung
gesichert ist, das heißt wenn die Gewölbestaumauer so armiert und am Felsen

in den Talhängen befestigt ist, daß sich keine lotrechten Risse bilden können,
kann man aus genau gemessenen Durchbiegungen und der Temperatur den

Elastizitätsmodul E berechnen. Es ist dazu nötig, durch Berechnung der
Staumauer (nach Smith oder Noetzli) die radiale Belastung p' des waagerechten
Bogens zu bestimmen; E ist dann durch Gl. (34) gegeben. Es ist vorteilhafter,
die Temperaturänderungen dadurch auszuscheiden, daß man die Durchbiegungen

bei verschiedener Wassertiefe und gleicher Temperatur beobachtet.

Zur Kontrolle der Theorie kann man auf Grund der vorhergehenden
Formeln ausgeführte Messungen an fertigen Staumauern46 benützen, oder man
kann die Theorie durch systematische Versuche an Modellen nachprüfen. Cam.
Guidi41 prüfte ein Modell der Bogenstaumauer in der Form eines halbkreisförmigen

Bogens vom Halbmesser 2,61 m, konstanter Stärke 16 cm und
Höhe von 5 m; er belastete das Modell mit dem Druck des Wassers, das
zwischen diesem und einem 20 cm starken größeren Bogen mit derselben Achse
in einer Entfernung von 1,01 m enthalten war (Fig. 16). Beide Bogen waren
in den Boden und in zwei große seitliche lotrechte Pfeiler eingespannt; der
äußere Bogen war auch mit einer Betonplatte oben befestigt, aber der innere
Bogen endete unter dieser Platte, und zwischen dem Bogen und der Platte war
eine elastische Verbindung, welche ermöglichte, daß man den Bogen unter Druck
setzen konnte. Die Versuche zeigten, daß die Biegungslinie des Bogens nicht
einer gleichförmigen Belastung durch Wasserdruck entspricht, daß sie aber gut
im Einklang ist mit einer Belastung, welche im Scheitel gleich 3/4 Wasserdruck
ist und zu den Kämpfern kontinuierlich auf vollen Wasserdruck wächst; das
hat Guidi schon in seinem Buche über die Statik der Staumauern empfohlen.10

Für Versuche an Modellen schlugen A. Mesnager und J. Veyrier*8 im Jahre
1926 eine sehr zweckmäßige Methode vor, welche erlaubt, an einem Modell
in verkleinertem Maßstab dieselben Spannungen wie im wirklichen Bau zu
bekommen. Wenn man anstatt des Wassers zur Belastung des Modells eine

Flüssigkeit benützt, deren spezifisches Gewicht n-nial größer ist (z. B. Quecksilber

mit spezifischem Gewicht n=13.6), so bekommt man im Modell aus
demselben Material wie die wirkliche Staumauer, das im Verhältnis l:n ver-
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kleinert ist, dieselben Spannungen wie im betreffenden Punkt der wirklichen
Staumauer; die Formänderungen sind ähnlich. Benützt man für das Modell ein

Material, dessen Festigkeit m-mal kleiner ist und belastet man das Modell mit
einer Flüssigkeit von spezifischem Gewicht n, so bekommt man gleiche
Wirkung mit Rücksicht auf Bruch, wenn das Modell im Maßstab 1: mn ausgeführt
ist. Auf diese Weise prüften Mesnager und Veyrier das Modell einer gekrümmten
Stufenstaumauer,* die sie am Flusse Dordogne bei Mareges für die Höhe von
70 m (5 Stufen je 14 m) vorschlugen. Sie benützten für die Belastung Quecksilber

soo
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Fig IG

(spez. Gewicht 13.6) und verfertigten das Modell aus Gips, das so bereitet war,
daß seine Festigkeit 7.35-mal kleiner als diejenige des Betons war; dann genügte
ein Modell im Maßstab 1: mn 1: 13.6 X 7.35 1: 100. Sie belasteten das

Modell bis zum Bruch und bestimmten so das Sicherheitsmaß (von 3 bis 5) für
jeden Bogen im wirklichen Bau nach ihrem Entwurf. Sie fanden auch, daß die
Formeln und Tabellen von Guidi für die Praxis gut und sicher sind. Sie

beabsichtigten weitere Versuche mit einem Modell aus Beton im Maßstabe 1:13.6
bei Belastung durch Quersilber zu machen.

* Die erste Stufenstaumauer wurde 1894 von Boule

entworfen, nachher 1912 \on Rutenberg in Italien
fur die Staumauer am Nil bei Assuan
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Im großen Maßstabe wurden Versuche mit einer Gewölbestaumauer in
Nordamerika ausgeführt, wo auf Veranlassung von F. A. Noetzli im Jahre 1926 eine

Versuchsstaumauer am Stevenson Creek in Kalifornien errichtet wurde. Die
Versuche wurden ausführlich beschrieben.2 Die amerikanischen Versuche sind höchst

wichtig für die Nachprüfung verschiedener Theorien wegen ihres Umfanges
und sorgfältigen Bearbeitung der Ergebnisse. Sie brachten viel Interessantes und

zeigten deutlich, welche von den bisher benützten Berechnungsmethoden eine

Berechtigung haben.

Sicherheit von Staumauern.
Gerade Staumauern besitzen ein kleines Sicherheitsmaß, in der.Regel kaum größer

als 1,5. Das beweisen die Unfälle, welche gerade Staumauern betroffen
haben. Bei der Staumauer von Bonzey genügte die Überhöhung des vorgesehenen
Wasserspiegels um 80 cm zur Herbeiführung einer Katastrophe,54 so daß hier
das Sicherheitsmaß nur wenig größer war als 1. Eine Reihe weiterer Unfälle
bei geraden Staumauern hatte in der Regel auch ihre Ursache in der Erhöhung
des Wasserspiegels über das höchste, im Entwurf vorgesehene Maß (ungenügende
Überfälle) und im Überströmen der Staumauer. Die Sicherheit der Staumauer
wächst erheblich ohne Querschnittsänderung, wenn sie im Grundriß gekrümmt
wird; das kann außerdem wesentlich den ungünstigen Einflüssen der
Temperaturänderung und des Schwindens von Beton abhelfen, welche in einem geraden
Damm durch Errichtung von Dilatationsfugen vermieden werden können.

Das Sicherheitsmaß der Gewölbestaumauern ist im Gegenteil erheblich größer
als das der geraden Staumauern. Das bezeugt auch der Umstand, daß bei
Gewölbestaumauern Unfälle sehr selten sind und meistens durch ungenügende
Fundamente herbeigeführt werden (Moyie River,50 Lake Lanier56 und Gleno51

Staumauer). Gut ausgeführte Gewölbestaumauern haben eine erhebliche Sicherheit,
viel größer als bei geraden Staumauern. Eine gerade Staumauer widersteht dem
Wasserdrucke nur durch Eigengewicht. Steigt der Wasserdruck nur ein wenig
(durch unvorhergesehene Erhöhung des Wasserspiegels), so kann sich die größte
Druckspannung^ am luftseitigen Ende der untersten Fuge sehr wesentlich
vergrößern; die Bruchlast hat oft zur Entwurfslast das Verhältnis (Sicherheitsmaß)
wenig größer als 1. Die Krümmung der Staumauer vergrößert ihre Sicherheit
sehr erheblich; eine gekrümmte Staumauer ist schon durch ihre Form selbst

gegen Umkippen gesichert. Die Versuche von Mesnager zeigten, daß die Last,
welche die gekrümmte Staumauer sicher tragen kann, mehrfach gehoben werden
kann, bevor es zum Bruch kommt. Das Sicherheitsmaß, das durch das Verhältnis
der Bruchlast zur wirklichen Last gegeben ist, hat hier ähnliche Werte wie bei
anderen Ingenieurbauten.
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Z usammenfassung.

Die Konstruktion der Gewölbemauern hat bis heute eine lange Entwicklung
durchgemacht. Auch ihre Theorie, welche mit einer Abhandlung v. J. 1866
beginnt, entwickelte sich von den einfachen Anfängen zu der heutigen bedeutenden

Vollkommenheit. Die Gewölbestaumauern werden immer mehr und in
immer größeren Abmessungen gebaut; sie sind sehr wichtig für die Sicherheit
der unter ihnen liegenden Gegend. Es ist deshalb interessant, die Entwicklung
ihrer Theorie zu verfolgen. Es zeigt sich dabei klar, wie der menschliche
Gedanke die wahre Bedeutung und Wirkung dieses wichtigen Ingenieurbaues
durchdringt.

Am Anfang wurde die Gewölbestaumauer als ein System von unabhängigen
waagerechten Gewölben angesehen, welche dem Wasserdruck, den eventuellen

Temperalureinflüssen und dem Schwinden des Betons widerstehen. Die Grundlage

der Theorie ist hier dieselbe wie für gewöhnliche Gewölbe, auf welche
lotrecht) Lasten wirken. Dennoch aber erfordert die radiale Belastung eine etwas
verschiedene und besonders gründliche Berechnung als gewöhnlich bei lotrechten
Gewölben. Die Theorie des waagerechten Gewölbes wurde nach und nach
vervollkommnet, indem man neben Biegungsmomenten und Normalkräften auch
Querkräfte berücksichtigte. Weiterhin ging die Theorie des dünnen Gewölbes in die
Theorie des dicken Gewölbes über, zuerst eine angenäherte, dann eine genaue,
die auf der mathematischen Elastizitätslehre aufgebaut ist.

Größere Höhen von Staumauern führten zur Notwendigkeit, den Zusammenhang

der waagerechten Bogen in lotrechter Richtung zu beachten. Dem
entspricht die Theorie der Gewölbestaumauer als ein System von waagerechten
Bogen und lotrechten Freiträgern. Die Verteilung der Belastung auf beide
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Systeme wurde zuerst annähernd bestimmt, indem man die Belastung des Bogens
als gleichmäßig annahm. Die Berechnung wurde nach und nach vervollkommnet,
sodaß wir heute die genaue Lastverteilung auf Bogen und lotrechte Freiträger
zu berechnen vermögen, und zwar für symmetrische wie für unsymmetrische
Staumauern.

Das letzte Wort in der Theorie der Gewölbestaumauer ist ihre Berechnung
als die einer elastischen Schale, welche zuerst in den U.S.A. praktisch ausgearbeitet

und dort auch vervollkommnet wurde.

Amerikanische Ingenieure haben außer theoretischen Arbeiten auch
praktische Messungen in großem Maßstabe durchgeführt und sie mit Messungen
an kleinen Modellen verglichen. Diese Versuche klärten manche theoretischen
Fragen und versprechen, einen sicheren Weg zur richtigen Bemessung und
Konstruktion von Gewölbestaumauern zu zeigen.
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