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V10

Genaue Berechnung des Rautenträgers.

Calcul exact de la poutre en treillis rhomboidal.

Girders with Rhombic Arrangement of Members.

Dr. Ing. Fr. Krabbe,
Reichsbahnoberrat, Reichsbahnzentralamt München.

/. Besondere Eigenschaften des Rautenträgers.

In früheren Jahrzehnten ist der Rautenträger, wohl seines guten Aussehens

wegen, vielfach ausgeführt worden; eine größere Ausführung ist die Weichselbrücke

bei Dirschau. Die Berechnung erfolgte meist nach dem von Prof.
Mehrtens, Dresden angegebenen Verfahren, wonach dieses Tragwerk in zwei

Teilsysteme zerlegt wurde, die einfache Streben-Fachwerke darstellten. Spätere,
insbesondere von Müller-Breslau nach dem kinematischen Verfahren
durchgeführte, genaue Untersuchungen ergaben jedoch, daß der Rautenträger, als

Fachwerk mit reibungslosen Gelenken in den Knotenpunkten betrachtet, wesentlich

anders gestaltete Einflußlinien, besonders für die Streben, zeigt, als sie

sich nach dem vorhin angedeuteten Verfahren von Mehrtens ergeben. Die
Einflußlinien zeigen zickzackförmige Gestalt, von Knoten zu Knoten zwischen

positivem und negativem Bereich wechselnd. Fig la zeigt die Form einer
solchen Einflußlinie nach dem Verfahren von Mehrtens, Fig. 1 b, die sich nach
dem kinematischen Verfahren ergebende Form, die zweifellos bei Annahme

reibungsloser Gelenke in den Knoten nach der üblichen Fachwerktheorie die

richtige ist. Eine zickzackförmige Gestalt zeigen auch die unter einer Einzellast
nach dem kinematischen Verfahren ermittelten Biegelinien des Trägers (Fig. 2a).
Diese zweifellos ungünstigen Formen der Einfluß- und Biegelinien führten dazu,
daß man späterhin von der Verwendung des Rautenträgers als Hauptträger für
Brücken absah.

Die Einflußlinie nach Fig. lb gibt jedoch bei näherer Betrachtung zu
erheblichen Einwänden Anlaß, wenn man sich daran erinnert, daß Einflußlinien
Biegelinien sind, nämlich die Biegelinien des Lastgurts, die sich durch
Verlängerung des betreffenden Stabes um „eins" ergeben. Dieselben Bedenken
erweckt natürlich die in Fig. 2 a dargestellte Biegelinie. Es ist klar, daß bei
derartigen Verformungen einer kontinuierlich durchgeführten Gurtung erhebliche
Querkräftc auftreten müssen, die die Gestalt der Biegelinie wesentlich
beeinflussen können. Diese sind aber bei der Berechnung nicht berücksichtigt. Diese

Überlegungen führten dazu, daß man sich bei der Wahl des Hauptträger-
Syslems für die in den Jahren 1926/27 erneuerten Überbauten für die Eisen-
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bahnbrücke über den Rhein bei Wesel1 über die gegen Rauten träger erhobenen
Bedenken hinwegsetzte und hier den seit längerer Zeit gemiedenen Rautenträger
wieder zu Ehren brachte. Nach erfolgter Aussführung wurde die nach Fig. 2a
errechnete Biegelinie durch Belastung des Trägers mit einer Einzellast von 80 t

nachgeprüft; es ergab sich dabei
durch genaue Messung die in
Fig. 2b dargestellte wirkliche Biege-
linie. Das ließ ohne weiteres den
Schluß zu, daß auch die durch
Verlängerung einer Strebe
entstehende Biegelinie des Lastgurts

Fig ia in Wirklichkeit eine wesentlich an-
F,9-1b dere Form als die der Fig. lb

hat. Das bestätigten später von
Dr. Christiani mit großer Sorgfalt

durchgeführte strenge Ermittlungen

der Einflußlinien eines
kleinen Rautenträgers (Fig. 3), der
hierbei unter Berücksichtigung der
Steifigkeit der Gurtungen und der
Streben als 72 fach statisch
unbestimmtes System behandelt wurde.2
Hieran anschließende Untersuchungen

von Christiani ergaben
ferner, daß der Einfluß der Steifigkeit

der Gurtungen und Streben
bei dem Rautenträger so erheblich
ist, daß dieser auch ohne den

sogenannten Stabilitätsstab, der
notwendig ist, um das Fachwerk mit
Gelenken in den Knoten stabil zu
machen, in Wirklichkeit für die
Stabilität des Tragwerkes im
allgemeinen nicht erforderlich ist,
und ferner, daß er überhaupt nur
auf die ihn unmittelbar benachbarten

Felder irgend welchen Einfluß

auszuüben imstande ist.3
Die hier angeführten

Überlegungen, Messungen und statisch

strengen Untersuchungen weisen
deutlich darauf hin, daß der

Rautenträgen kein Fachwerkträger
im üblichen Sinne ist, daß vielmehr gerade die Besonderheiten seiner nach

i Die Bautechnik 1927, Heft 46/47.
2 Christiani: Strenge Untersuchung an Rhombcn-Fachwerken. Berlin 1929, Jul. Springer.
3 Christiani: Über die angebliche Labilität von Fachwerken. „Der Stahlbau" 1931, Heft 2.
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der Fachwerktheorie ermittelten Einfluß- und Biegelinien ihn aus der Reihe
der eigentlichen Fachwerkträger ausschalten, daß er ein Tragwerk ist, welches

nur unter Berücksichtigung der Steifigkeit in den Knotenpunkten der
Wirklichkeit entsprechend berechnet werden kann. Dieser Umstand ließ es

notwendig erscheinen, auch für die allerdings inzwischen bereits fertiggestellte
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Rheinbrücke bei Wesel eine genaue Berechnung aufzustellen. Das war aber

praktisch nur möglich, wenn es gelang, hierfür ein einfacheres Verfahren zu
finden, als das von Christiani angewandte, denn das System der Rheinbrücke bei
Wesel ist unter Berücksichtigung der Steifigkeit und der steifen Anschlüsse
aller Stäbe 208 fach statisch unbestimmt und selbst bei Vernachlässigung der

Steifigkeit der Streben und ihrer Anschlüsse 57 fach statisch unbestimmt. Daß
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die Berechnung derartig hochgradig statisch unbestimmter Systeme nach den
hierfür üblichem Verfahren praktisch undurchführbar ist, dürfte ohne weiteres
klar sein.

//. Auffallender Einfluß der Gurtsteifigkeit des Rautenträgers.

In meinem Aufsatz „Das Wesen des Rautenträgers und seine einfache richtige
Berechnung",4 habe ich mich darauf beschränkt, den Einfluß der Gurtsteifigkeit
des Rautenträgers zu berücksichtigen und die Streben als gelenkig an die
kontinuierlich durchgeführten Gurtungen angeschlossen angenommen, wobei ich
auch die steife Vernietung der Streben in ihren Kreuzungspunkten unberücksichtigt

gelassen habe.

Ich beschränke mich hier darauf, die Ergebnisse dieser Untersuchungen kurz
zusammenzufassen. Um Vergleiche ziehen zu können, wurde der von Christiani
als 72 fach statisch unbestimmtes System behandelte Rautenträger auch meinen
Untersuchungen zu Grunde gelegt, die nach dem Formänderungsgrößen-Verfahren

durchgeführt wurden. Das Hauptsystem wurde durch Einfügung eines

starren, in den Knotenpunkten gelenkig angeschlossenen senkrechten Stabes

in jede Raute gebildet (Fig. 4a). Seine Einflußlinien ergaben auf Grund
einfacher, kinematischer Betrachtungen die Formen nach Fig. 4 b—e. Dann wurden
nacheinander durch Verlängerung je eines dieser starren Stäbe um eins die
Zustände „tm 1" gebildet, die bestimmte Stabspannungen 0, U und D in den
beiden benachbarten Feldern zur Folge haben (Fig. 5) und außerdem sämtliche
starren Stäbe mit Kräften Z belasten. Durch Nullsetzung der einzelnen
Belastungen dieser starren Ersatzstäbe unter Belastungen nach Fig. 6a ergaben
sich dann die Verformungen des Träger unter dieser Belastung nach
Entfernung der starren Stäbe, d. h. die Verlängerung dieser Stäbe £m, die die
Nullbelastung der einzelnen Ersatzstäbe bedingen. Dabei ergab die Durchrechnung
einer Reihe von Beispielen, daß in allen praktisch vorkommenden Fällen eine

Belastung des Trägers nach Fig. 6 a in den Punkten m0 und mu nur eine

nennenswerte lotrechte Verschiebung der Punkte m0 und mu selbst und ihrer
beiden Nachbarpunkte m -f 1Q und m + lu und m — 10 und m — lu
gegeneinander erzeugt, daß also alle Werte £ mit Ausnahme von ^m-Xi £m und
£m 4- j von Null nur unmerklich verschieden sind. Daraus ergab sich die äußerst

wichtige Möglichkeit, sämtliche Verformungen durch Belastung nach Art der

Yig. 6d durch Gleichungs-Systeme mit nur drei Unbekannten feststellen zu
können. Die Verformung des Lastgurtes, in diesem Falle des Untergurtes, unter
der Belastung nach Fig. 6 a ist selbstverständlich die Einflußlinie für die

Spreizung Zm; sie erstreckt sich nur von Knoten £m_2 bis £m + 2 (fig. 6 b). Da

nun jedes £m bestimmte Stabkräfte in den beiden benachbarten Feldern erzeugt,
können in einfacher Weise durch Überlagerung der Einflußlinien der einzelnen
Werte £m die zusätzlichen Einflußlinien für diese Stäbe gebildet werden, die zu
den Einflußlinien für das Hauptsystem zu addieren sind. Diese nehmen dadurch
als endgültige Einflußlinien die Formen der Fig. 7a—d an. Bemerkt sei, daß die
auf diese Weise von mir gefundenen Einflußlinien ganz überraschend genau mit

* „Der Stahlbau" 1931, Heft 15.
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den von Christiani gefundenen Einflußlinien übereinstimmen (vergl. die Fig. 16

der unter 4 genannten Abhandlung).

Hieraus ergeben sich, zunächst allerdings nur für den untersuchten Träger,
folgende Feststellungen:

1. Der Träger (Fig. 3) ist auch ohne Stabilitätsstab stabil; für alle seine

Stäbe ergeben sich eindeutige, durchaus normale Einflußlinien.
2. Die Wirkung eines in einer Raute angebrachten, lotrechten Stabilitäls-

stabs erstreckt sich nur auf je 2 Felder beiderseits des Stabes.

3. Die Einflußlinie der Stäbe, insbesondere auch der Streben, wechseln nicht
mit scharfen Knicken von Feld zu Feld zwischen positiven und negativen
Werten, sondern verlaufen durchaus normal.

4. Die Form der Einflußlinien weicht von der Form der unter Annahme
reibungsloser Gelenke ermittelten Einflußlinien erheblich ab, dagegen sind
die durch Zerlegung in Teilfachwerke sich ergebenden Einflußlinien
annähernd richtig (Fig. 7e—h).

5. Der Einfluß der Steifigkeit der Gitterstäbe und ihrer steifen Anschlüsse
ist unbedeutend. (Gute Übereinstimmung der Einflußlinien.)

6. Die in den Gurtstäben ermittelten Biegungsspannungen unter dem Lastenzug

N erreichen den Höchstwert von 420 kg/cm2. Nun läßt sich aber der

berechtigte Einwand erheben, daß der hier untersuchte Träger mit seinen
sehr hohen Gurtungen (60 cm bei 28 m Stützweite) kein in üblicher Weise

ausgebildeter Träger ist. Ich habe daher die Untersuchung auch für
denselben Träger mit der normalen Gurthöhe von 30 cm durchgeführt.
Hinsichtlich der Einflußlinien für die Stabkräfte ergab dies keine großen
Unterschiede, dagegen ergaben die Biegungsspannungen in den Gurtungen
etwa 30 o/o geringere Werte. Daraus ergibt sich die weitere, für die
konstruktive Durchbildung des Rautenträgers wichtige Folgerung:

7. Die auch sonst bei Fachwerkträgern übliche Gurtsteifigkeit reicht zur
Herstellung der Stabilität auch ohne Stabilitätsstab völlig aus. Steifere

Gurtungen sind nachteilig, da sie höhere Biegungsspannungen in den

Gurtungen herbeiführen.
Auf Grund dieser Ergebnisse habe ich nach dem hier angedeuteten Verfahren

die genaue Berechnung des Hauptträgersystems der Weseler Rheinbrücke
durchführen lassen.5 Es handelt sich dabei um über zwei Öffnungen von je 104 m
Stützweite ohne Gelenke durchgeführte Parallel-Träger mit der auch sonst
für Fachwerke durchaus normalen Gurthöhe von 90 cm.6 Wegen des Ganges
der Berechnung verweise ich auf die unter 5 genannte Abhandlung und darf
mich daher hier auf die Mitteilung der Hauptergebnisse dieser Nachrechnung
beschränken. Ich gebe in Fig. 8 die Einflußlinie für je einen Ober- und
Untergurtstab, sowie für je eine Zug- und Druckstrebe wieder, ferner in Fig. 2 die

Einflußlinie für das Moment des Untergurtstabes an einem Knotenpunkt. Mit
der Einflußlinie der Strebe D4_v vergleiche man die in Fig. la nach dem kine-

5 Krabbe: „Einfluß der Gurtsteifigkeit in ebenen Tragwerken". Leipzig 1933, Verlag von
Robert Noske. S. 12—17.

6 Die Bautechnik 1927, Heft 45/46.
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ma tischen Verfahren ermittelte Einflußlinie und in Fig. lb die durch
Zerlegung in Teilfachwerke ermittelte Einflußlinie. Es unterliegt danach keinem
Zweifel, daß die Einflußlinie der Fig. lb der Wirklichkeit erheblich näher
kommt wie die der Fig. la. Ich komme hier zu dem Schluß, daß das
kinematische Verfahren unter Annahme gelenkiger Knotenpunkte für Rautenträger
nicht verwendbar ist, daß aber die Zerlegung in Teilfachwerke gute Annäherungswerte

ergibt, eine genaue Berechnung unter Berücksichtigung der Gurtsteifigkeit
aber notwendig ist.

1 n m n v v w w sc x ja M

m inj nn HL *** nn104 00 10400

igj*
D1Y

& 1317 t

0.1317 t 24-"9*1

Ftgjfc 0 N

"' o, 6867 tU 4-5:&8d

fjgJL M8
10 tcm

Fig. 8—9.

Die Einflußlinie für das Biegungsmoment im Untergurtstab ergibt bei
ungünstigster Belastung nach Lastenzug N Biegungsspannungen von etwa 260 kg/cm2.
Bei Überlagerung mit den Einflußlinien der Stabspannungen ergaben sich

jedoch nur zusätzliche Biegungsspannungen von etwa 10 kg/cm2, die praktisch
als ganz unwesentlich zu bezeichnen sind.

Schließlich habe ich noch die in Fig. 2 a kinematisch ermittelte und nach

Fig. 2 b gemessene Biegelinie unter einer Einzellast auch unter Berücksichtigung
der Gurtsteifigkeit berechnet; das Ergebnis ist in Fig. 2e wiedergegeben. Die
Übereinstimmung mit der unter einer Einzellast gemessenen Biegelinie,
besonders hinsichtlich der entstandenen Knicke, ist wohl überraschend gut.
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///. Weiterer Einfluß der Biegungs-Steifigkeit der Streben und ihrer biegungsfesten

Anschlüsse in den Knoten.

1. Allgemeines.
Wenn auch das bisher entwickelte Verfahren in einfacher Weise offenbar

der Wirklichkeit ziemlich nahe kommende Ergebnisse zeigt, so wird doch bei
näherer Betrachtung eines Rautenträgers, wie etwa des der Weseler Rhein-
brückc, klar, daß solche Tragwerke mit ihren in den Kreuzungspunkten meist
dm cli starke Knotenbleche verbundenen Streben einem biegungsfest verbundenen
Stabwerk in ihrer Wirkungsweise viel näher kommen als einem Fachwerk. Es

Fig 10 a

Figj1a_ h

_J_

^rFig 11b h r

-9— j-c/l hC-
i

Figlld 1CV0 ~\Fh SL-i

Figlie JLcv-d h
c vu tec
i

FwFtL>9ÜL
+ B

2 sma
L__

Fu> Fo£'91*9- +J
2sma*r_

hg 11h

<f+ci>

MaL'gJh-ö+\4

Mäh

IQ 11kFigjlk

__L_

Fig 10b

fl nach - d'apres - acc y 10

Fo Fy
*9

fo< Fu

Vo « Vu GJ Will

T1 M M6J **2smof i r £y

" Fo "' " FQrZ».*%»

f -fl -c) -J

tq Eq

b-(l-c)# C

i 8 6J 18, * GJ 19
Fq Eq

**2t

Fig. 10—11.



1036 Fr. Krabbe

soll daher hier das Verfahren auch auf die Steifigkeit der Streben ausgedehnt
werden. Dabei sollen auch ungleiche Querschnitte und Trägheitsmomente der
Gurtungen berücksichtigt werden. Wir sind dann auch in der Lage, die in den
Streben auftretenden Biegungsspannungen genau ermitteln zu können. Das
Verfahren wird an dem Rautenträger Fig. 10a erläutert. Für den Gang des
Verfahrens ist es grundsätzlich bedeutungslos, ob er in einem oder mehreren
Feldern die punktiert gezeichneten Pfosten enthält oder nicht. Ebenso ist es

_j4£^_ i40l

c 2\

>fc09. 09.
?*B> A.»

B f\i-r^-ja«/—Mü ff
D D C*C

IfiL- _J_t-i
FJ9 3

fLL 1'9-JL

cFffsifri

JdFä

24EJdco55a
a3

EFdsirfacos
12 EJ

J

Fig. 12—16.

I'9-JL

für die Behandlung belanglos, ob der Träger an den Enden mit einer ganzen
Raute (Fig. 10b) oder mit einer halben Raute (Fig. 10a) abschließt. Der letztere
Abschluß ist übrigens, wie die Nachrechnung der Weseler Rheinbrücke ergab,
statisch entschieden vorzuziehen. Als Hauptsystem wählen wir den Träger
Fig. IIa, der in jeder Raute einen starren Pfosten enthält, welcher biegungsfest

mit den Gurtstäben und Streben verbunden ist.
Zunächst müssen einige für die weitere Behandlung wichtige Grundbegriffe

festgelegt werden. Der hier behandelte Träger besitzt, wie jeder Fachwerkträger,
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ein Trägheitsmoment Jt, welches von Feld zu Feld wechselt und sich zusammensetzt

aus:
1. Dem Trägheitsmoment des reinen Fachwerks mit ,,massenlos gedachten

Stäben, Jf.
2. Einem Beitrag aus den Trägheitsmomenten der Gurtstäbe, J0 + Jtl.
3. Einem Beitrag aus den Trägheitsmomenten der Gitterstäbe, Jg.

Zu 1. Haben Ober- und Untergurt gleichen Querschnitt, so verlängert sich
bei reiner Biegungsbeanspruchung der Untergurtstab um dasselbe Maß, um
welches sich der Obergurtstab verkürzt (Fig. 12); die massenlos gedachten
Streben ändern ihre Länge dabei nicht, bleiben spannungslos und liefern keinen

Beitrag zum Trägheitsmoment Jf. Die Schwerachse liegt in der Mitte und es

ist einfach

Jr ^(F0 + Fu). (1)

Bei ungleichen Querschnitten der Gurtstäbe ist jedoch die Summe der
Längenänderungen der beiden Gurtstäbe von Null verschieden; das bedingt
Längenänderungen und Stabkräfte in den Streben. Diese liefern daher auch einen

Beilrag zum Trägheitsmoment Jf. Nach Fig. 13 entspricht jeder Verlängerung
eines Gurtstabes um den Wert Eins eine Verlängerung beider Streben um

^r-cosex, also einer Strebenkraft in jeder Strebe.

^ 1 EFd oD — cos'2 a,2 a

deren wagrechte Seitenkräfte sind

T./
1 EFd

D — cos3 a.2 a

Wir können daher hinsichtlich ihres Beitrages zum Trägheitsmoment Jf die
beiden Streben ersetzt denken nach Fig. 14 durch einen wagrechten, durch den

Schnittpunkt der Streben gehenden Stab mit dem Querschnitt
F'd 2Fdcos3a. (2)

Die Lage der wagrechten Schwerachse ist dann gegeben mit den Bezeichnungen

der Fig. 14 durch:
h 2FU + F'd

n0 —2 F0 + Fu + F'd

h 2F0 + F'd
hu=TT2 F() + FU + FV

und der Schwerpunktsabstand von der Mitte ist

h —A-A F» - FQ
0 2 2 ~F0 + Fu + F'd'

damit ergibt sich das Trägheitsmoment

T-h'' F'd +
4F0F„ + F'd
F0 + Fu + F'd

bei F0 Fu geht Gleichung 3 in Gleichung 1 über,

(3)
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Zu 2. Unabhängig von der Lage der Schwerachse liefern die Gurtstäbe ein
zusätzliches Trägheitsmoment JG + J«.

Zu 3. Bei einer Verdrehung nach Fig. 15 mit einem Drehwinkel cp kann aus
kinematischen Gründen der Schnittpunkt der Streben nur in den Schnittpunkt F
der in E auf A'C' und B' D' errichteten Mittellote fallen. Dann ist

EG==AA' + CC'; <EFG a

also das Dreieck EFG ^ CAB;

daher

oder

EG_ h_ AA' + CC
EF-d"— 2EF

EF_ AAM-_CC'
d~~ 2h

9daraus folgt <£ ß

Die Endtangenten der Streben müssen also in den Geraden C'F und D'F liegen.
Die Verformung der Streben erfolgt also nach den stark gezeichneten Linien

mit Drehwinkeln —- ß.

Sie wirken in dieser Verformung auf das Tragvverk in den Punkten A'B'C'D'
mit den Querkräften Q und den Momenten M; das gesamte hierdurch von den

verbogenen Streben auf den Träger ausgeübte Moment ist:

M - 2 Q y + 2 3R

a k • • f n 4-6. EJd cp 2-2EJd q>dabei uit Q _-d-_£; 3ß —-p- -f
M

8 EJd 8 EJd cos a
-d-1,= a

«P-

Die Streben liefern also einen Gesamtbeitrag zum Biegungswiderstand, d. h. dem

Trägheitsmoment des Tragwerkes:
J'd 8 Jd cos a Jg. (4)

Das ist der vierfache Widerstand, den zwei gekreuzte, in der Mitte nicht
verbundene Streben liefern würden.

Es ist aio das gesamte Trägheitsmoment des Tragwerkes:

Jt Jf + Jo + Ju + 8 Jd cos a, (5)
wobei Jf nach Gleichung 1 bezw. 3 zu bestimmen ist. Entsprechende Begriffe
legen wir bezüglich der Querkraft fest.

Der Verschiebung der beiden starren Pfosten um Eins (Fig. 16) setzt das
gesamte Tragwerk den Widerstand Kt entgegen.

Die Verlängerung der beiden Streben ist dabei:

A + 1 • sin a;

also die Strebenkraft D + 1 —
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Die lotrechte Seitenkraft beider Streben zusammen ist also

„ 2 sin2 a cos a E Fd
Kf 1 — (b)

a x

d. h. der Querwiderstand des Fachwerkes mit massenlos gedachten Stäben; die
Gurtstäbe bleiben spannungslos.

Infolge der Verbiegung der beiden Gurtstäbe entsteht ferner:

«.+*._, «&+£*. ro
a

Die Verbiegung der beiden Streben, deren Enden sich gegen die Stabachse

um verdreht haben, liefert an Querwiderstand
1-cosa

24 EJd cos5 a
ftd 1 -g [fi)

a

Also ist der gesamte Querwiderstand des Tragwerkes

v v v v i v i2ETt7-2 i ßJo + Ju + 2Jdcos5al
Kt Kf + K0 + Ku + Kd 1 — Fd sin2 a cos a + 6 5 (9)

Bemerkt sei hier, daß bei normalen Ausführungen, wie etwa die Weseler
Rheinbrücke, durch den Biegungswiderstand der Gurtstäbe und Streben, der
Querwiderstand des Tragwerkes sich um etwa 13 o/o erhöht; es ist also nicht
ohne weiteres angängig, hier die Steifigkeit der Stäbe zu vernachlässigen. Die

Erhöhung des Trägheitsmomentes des gesamten Tragwerkes durch den
Biegungswiderstand der Stäbe ist jedoch gering und bleibt unter 1 o/0.

2. Die Einflußlinien für das Hauptsystem.1

a) Die Einflußlinien der Gurtstabkräfte.
Die Einflußlinie des Obergurtstabs ist bestimmt durch die Biegelinie des

Lastgurts (Untergurt), welche infolge Verlängerung des Obergurtstabes um
.Eins entsteht. Wir verlängern den Obergurtstab um Eins (Fig. 17) indem wir
ihn in der Mitte durchschneiden und durch eine Kraft X um Eins auseinander
treiben. Dann entstehen, wenn wir zunächst den Biegungswiderstand der Stäbe

vernachlässigen, die in die Figur eingetragenen Stabkräfte. Unter dem Einfluß
der Kraft X, die bei gleichen Querschnitten Ober- und Untergurtstab um
dasselbe Maß verkürzt, verdrehen sich die beiden Pfosten gegeneinander um den

Winkel .-. Damit wäre die Einflußlinie für 0 für das reine Fachwerk
h

bestimmt.
Da jedoch die verbogenen Gurtstäbe und Streben eine Gegenwirkung ausüben,

wird der Drehwinkel kleiner als t-, er sei v- u. Daraus folgt ohne weiteres mit

Bezug auf Gleichung 1, 3 und 5:

u ^. (10)

7 Vergleiche zu der hier allgemein angewandten Darstellungsweise der Einflußlinien den Aufsatz

des Verfassers in „Der Stahlbau" 1933, Heft 2.
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Die Einflußlinie für den Obergurtstab 0 ist also durch den Drehwinkel t~ u

gekennzeichnet und hat die in Fig. IIb dargestellte Form; ganz entsprechend
ergibt sich die Einflußlinie für den Untergurtstab U nach Fig. 11c.

Haben aber Ober- und Untergurtstab verschiedene Querschnitte, so ist der
Drehwinkel nicht mehr von X unabhängig, da Ober- und Untergurt zwar
dieselben Stabkräfte X, aber infolgedessen verschiedene Dehnungen erfahren.

Da die äußere Kraft X den durchschnittlichen Obergurtstab um eins
auseinander treibt, ist nach dem Clapeyron sehen Theorem

X* a X2 a _ X2 a1X EFo^EFu"1" EFdcos3a'

da der Wert X o, der die Gleichung befriedigen würde, keine Bedeutung hat,
ergibt sich

Y i tl r 0 r u

a(F0 + Fu+-J^M
\ Fd cos* a!

Damit ist die gesamte Verlängerung des Obergurtstabes

x -1 *L.A°~ *
EF0'

die Verkürzung des Untergurtstabes

also der Drehwinkel

A _ Xa

„ A„ — Ao 1

*° h~ ~h 1 _ F0- Fu

Fu + F0+2:
FuFo

(10)

Fd cos3 a

Wir setzen den Klammer-Ausdruck v0 und schreiben:

»o —|;Vo. (11)

Für den Untergurtstab gibt eine entsprechende Ableitung den Beiwert

F04

F„ + F0 +- '+ "^KW ^
Fd cos3 a

»a + ^Vu. (13)

Die beiden Einflußlinien sind in Fig. 11 d—e dargestellt; der stärkere Gurt
bekommt natürlich auch die größere Stabkraft.

b) Die Einflußlinien der Streben.

Die Einflußlinie der Strebe CB (Fig. 18) ermitteln wir als Biegelinie des

Untergurts, die durch Verlängerung der Strebe um Eins entsteht. Unter An-
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nähme massenloser Stäbe erzeugt eine die durchschnittene Strebe um Eins
auseinandertreibende Kraft X, die in der Figur eingetragenen Stabkräfte. Abgesehen
von dieser Verlängerung Eins, verkürzen sich beide Streben um dasselbe Maß,

was eine lotrechte Verschiebung der starren Pfosten gegeneinander um ——7

verursacht; dadurch entsteht die in Fig. 11 f dargestellte Biegelinie des Untergurtes

und damit die Einflußlinie für die Strebe. Infolge des Biegungswiederstands

der Gurtstäbe und Streben verringert sich jedoch die lotrechte Verchie-

bung der Pfosten gegeneinander: sie sei -—r ju.

Dann ist:

ju ^ (Gleichung 6- 9).
Jvt

(14)

Daraus ergibt sich die Einflußlinie Fig. 11 f.
Haben min Ober- und Untergurtstab verschiedene Querschnitte, so entsteht

wegen ihrer ungleichen Längenänderung bei gleicher Stabkraft -\- X cos a auch

x x

'sina.

JL

FJ9

__L

Ss.

3
3 I

Nu!
1 \AL//*<* 1

\v ^7!
lai vi4

/ £>9ji f\

smarfos

"7^

U9

sina

\ r-* tU a

X n '»Wh$«
1 v\ \-
1 N^
l \
1 Tri

«:

1 TffM'i

M
C

'ie f
Fig 20 \

Mol Mc

\Mdto mJ

7

1/
<Mdk

A

/Mdlu
I'B ll Mdru\

Fig. 17—22.

Mal Mur

66
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noch eine Drehung der starren Pfosten gegeneinander um den Winkel $, der
sich in diesem Falle entsprechend der Gleichung 10 ergibt:

&=- ± r
Fu rA (i5>h 2F F

F„ + Fo+ ^u*° cos a
Fd cos3 a

Hiernach ergibt sich die Einflußlinie Fig. 11g.

c) Die Einflußlinien für die Eckmomente der Stäbe.

Die Einflußlinie für das rechte Endmoment des Obergurtstabs (Fig. 19)
ermitteln wir als Biegelinie des Lastgurts, die durch Knicken des Stabes an seinem
rechten Ende um den Winkel Eins entsteht. Durch die Knickung entsteht im
Stabe eine Querkraft

Q +^;a

sie bedingt eine Verschiebung der starren Pfosten senkrecht gegeneinander um

bor 1 ^?-> (Kt siehe Gleichung 9)

&or +l^ (16)
a- JVt

Ferner wirkt im lotrechten Schnitt unmittelbar rechts von 0 ein dem Sinn des

Uhrzeigers entgegengesetzt drehendes Moment

M _EJo
a

und im Schnitt unmittelbar links von 0 das umgekehrte Moment

M= +
EJo

dadurch entsteht im Träger ein positiver Drehwinkel der beiden starren Pfosten
gegeneinander

% - Ma
*or_ EJt

oder ^or=.+ ^£. (17)
Jt

Die durch die Verschiebung b und die Verdrehung 0- bedingte Einflußlinie
für Mor ist in Fig. 11h veranschaulicht.

Die Einflußlinie für das Moment am oberen Ende der nach rechts steigenden
Strebe Mdro ermitteln wir als Biegelinie des Lastgurts, die durch Knicken dieses
Stabes am oberen Ende um den Winkel Eins entsteht (Fig. 20).

Hierdurch wird aber nun zunächst das Kreuz in O belastet mit einem Moment
4 E Jd cos a

a

es dreht sich unter dem Einfluß dieser Momentbelastung entgegen dem Sinn
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des Uhrzeigers um den Drehwinkel wobei die Streben die punktiert gezeichnete

zusätzliche Verbiegung erleiden. Dann ist der Punkt 0 mit einem Moment
nicht mehr belastet, denn jede der vier verbogenen halben Streben belastet ihn

E Jd cos amit + —
a

Bei dieser Verformung entstehen, sowohl in einem Schnitt rechts als links von

0, also im ganzen Feld, die in der Fig. 20 gekennzeichneten Querkräfte, wobei

~ 24 E Jd cos8 a

nämlich rechts: v 8 4 4

4 8 4

6EJ,j cossa

links:
a*

Das bedingt eine Verschiebung der starren Pfosten gegeneinander um

6EJdcos3a v

Odro H ^g • (löj

Ferner greift am lotrechten Schnitt unmittelbar rechts von 0 in 0 ein entgegengesetzt

dem Uhrzeigersinn drehendes Moment an

r
4 E Jd cos a E Jd cos a 2 E Jd cos a

a a a

und im lotrechten Schnitt unmittelbar links von 0

\[ — _|_ 9
EJd COS a

a

Diesem Moment muß ein durch Verbiegung des ganzen Trägers erzeugtes,
entgegengesetztes Moment entgegenwirken; dazu ist ein Drehwinkel des Trägers
erforderlich von:

»äm ^ -2-±^. (19)

Die durch die Verschiebung b und die Verdrehung fr bedingte Einflußlinie
für Mj ,o ist in Fig. 11 i veranschaulicht.

Die Einflußlinie für das Eckmoment derselben Strebe unmittelbar rechts

von 0 ermitteln wir als Biegelinie des Lastgurts, die durch Knicken dieses

Stabes in K um den Winkel Eins entsteht (Fig. 21). In entsprechender Weise

wie vorhin bedingt hier die Belastung des Kreuzes in 0 mit -j- die
a

zusätzliche, punktiert dargestellte Verdrehung dieses Kreuzes um den

Drehwinkel —, wobei wiederum das Kreuz bei 0 mit Momenten nicht belastet ist.
4

In entsprechender Weise wie vorhin ergibt sich jetzt: Q o; daher auch

bdk o. (20)
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Unmittelbar rechts bezw. links von O greifen jetzt die Momente an

4EJdcosaM +— a

Diesem Moment muß ein durch die Biegung des ganzen Trägers erzeugtes
Moment entgegenwirken; dazu ist ein Drehwinkel des Trägers erforderlich:

4 E Jd cos et
fruk — + (21)

Sehr interessant ist dabei das Ergebnis, daß der die Einflußlinie für Mdk

erzeugende Drehwinkel fr nach Gleichung 21 doppelt so groß ist und entgegengesetztes

Vorzeichen hat, wie der die Einflußlinie für Mdor erzeugende
Drehwinkel nach Gleichung 19. Das entspricht nämlich genau der aus reiner
Verdrehung, also reiner Momentbelastung nach Fig. 15 ermittelten Verbiegung der
Streben. Ferner geht aus der Fig. 16 ohne weiteres hervor, daß bei reiner
Paralleleverschiebung der starren Pfosten kein Moment Mdk auftritt; infolgedessen

kann auch umgekehrt (MaocweWscher Satz) eine Knickung der Strebe
unmittelbar rechts von 0 nach Fig. 21 keine die Pfosten parallel verschiebende

Querkraft erzeugen, was durch die Gleichung 20 bestätigt wird.
Einer besonderen Bestimmung der Einflußlinien für die übrigen Stabendpunkte

bedarf es nicht, denn mit den Bezeichnungen der Fig. 22 ergibt sich
nach den Fig. 15 (Momenten-Beanspruchung) und Fig. 16 (Querkraft-Beanspruchung)

ohne weiteres das Vorzeichen der Werte b und fr in den einzelnen
Fällen; es ist nämlich

(22)

Damit sind alle Einflußlinien für das als Hauptsystem gewählte Tragwerk
(Fig. IIa) mit starren, in den Knoten biegungsfest angeschlossenen
Hilfspfosten ermittelt.

Für diese grundlegenden Einflußlinien wurde verschiedene Ausbildung von
Ober- und Untergurt in Bezug auf Querschnitt und Trägheitsmoment
berücksichtigt. Für die im folgenden zu ermittelnden Korrekturen dieser Einflußlinien
wird hierauf jedoch verzichtet und Symmetrie zur wagrechten Trägerachse

angenommen, um das Verfahren nicht zu umständlich zu gestalten. (Wir legen
dabei aus besonderen Gründen die Abmessung des der Fahrbahn ferne liegenden
Gurtes für beide Gurtungen zu Grunde.) Eine einfache Möglichkeit, die für
Unsymmetrie erforderlichen Verbesserungen nachträglich anzubringen, wird zum
Schluß als Annäherungsverfahren angegeben werden.

3. Die Auflösung der starren Anschlüsse der Hilfspfosten in gelenkige
Anschlüsse.

Sind die eingebauten Hilfspfosten des Tragwerkes (Fig. IIa) nicht biegungsfest,

sondern gelenkig an die Knoten angeschlossen, so werden sich bei den

für or ol ur ul dro dlo dru diu dk

o + — + — + — + — o

9- + + + + — — — — +
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einzelnen Verbiegungen des Trägers (Einflußlinien) die Knoten um gewisse
Drehwinkel gegen die Achse der starren Pfosten verdrehen, und zwar im
allgemeinen in demselben Sinn, also antisymmetrisch zur wagrechten Trägerachse.
Es kann jedoch, unabhängig hiervon, auch eine Verdrehung der Ober- und
Untergurtknoten im entgegengesetzten Sinn, also symmetrisch zur Trägerachse,
hinzutreten.

a) Antisymmetrische Verdrehung der Ober- und Untergurtknoten.
Verdrehen wir die Knoten om und um gegen die Achse des Hilfspfostens m

in demselben Sinn um einen Drehwinkel cp (Fig. 23), so entsteht, wenn wir
zunächst die Knoten in lotrechter Bichtung als unverschiebbar annehmen, die

Verformung der Fig^ 23 a, wobei wir die Mittelkreuze der Strebenkreuzungs-
punkle Om und Om + ± zunächst unverdreht festhalten. Dadurch wird aber dieses

2E Jd
Kreuz belastet mit einem links drehenden Moment — 2 —-j— cp. Dieses Moment

T
wird durch Linksdrehung des Kreuzes um — cp ausgeglichen. Die Kreuze

drehen sich also um — cp und so entsteht die Verformung der Fig. 23b.

Vergleichen wir diese Abbildung mit den Fig. 19—20, so sehen wir, daß
in den beiden Feldern die doppelte Verformung der Fig. 19—20 zusammengenommen

eingetreten ist, in dem Feld m + 1 im entgegengesetzten Sinn. Daraus

folgt ohne weiteres mit Bezug auf die Gleichungen 16 bis 19, daß zum
Ausgleich der durch die Verformung entstandenen Momente und Querkräfte
folgende weitere Verformungen notwendig sind:

"6E(J0 + J„)m 12EJdmcos3a"
Feld m: _, tr6E(j,+~^ [ a*Kt; a2 Ktm

6 E (J0 + J„ + 2 Ja cos8 a)m
+1 a^K^ *

(J0 + Ju + 2 Jd cos a)m
\?m -\ f —— Cp

9

Feld m + 1:

_ 1 6E(J0 + Ju + 2 Jdcos3a)m + i
Om + l — — 1 " ö~^ <P

a2Kt(m + 1)
Y

_ (J0 + Jn + 2 Jd cosa)m + iVmlt — j Cp.
Jt(m + 1)

Diese Verformung des Trägers ist in Fig. 23 c dargestellt. Links von m — 1

und rechts von m -J- 1 schließen sich die weiteren Felder natürlich normal an
die Pfosten an und es gelangen die Auflager-Punkte A und B nach A' und B';
nach Wiederherstellung der Auflagerbedingungen durch die Verbindungsgerade
A' B' ergibt sich die Verbiegung des Untergurtes, die durch den Drehwinkel
cpm =- 1 d. h. durch den Zustand „cpm 1" entstanden ist.

Bei diesem Zustand sind nun die Kreuze

o m u m, o (m — 1) u (m — 1), o (m -f- 1) u (m + 1)
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mit Momenten belastet, und zwar die oberen und unteren Kreuze gleich, da

wir Symmetrie voraussetzten.
Wir finden als Belastung eines jeden der Kreuze om und um:

Aus Fig. 23 a:

Typ 4E(Jom -j-J0(m_|-i)) 4EJdm4- Jd(m-|-i) 6EJ7
^1 m ra — i •

a ahAus Fig. 23 b:

ir</ (Jdm + Jd(m + 1))CQS Ct
^•'1 m m — i

a

Aus Fig. 23c: (Mit Bezug auf die Fig. 15—16.)

Jörn frm + Jo (m + 1) fym + 1) — 4 Jdm COS d —-M'" — —1,1 mm —
a

A T ^m 4-1 I n T "m I f* T "m + l"4 Jd(m + l)COS a —^r hoJom ~ + 0 J0(ai + 1) —
& a a

^m o ,nj öm + l *COS5a '^J0(m + 1)—— COS* et+ 6 Jdm _a m* a

Als Belastung eines jeden der Kreuze o (m — 1) und u (m— 1) finden wir:
Aus Fig. 23 a:

M, £ EJom
(m —1) m — •v ' a

Aus Fig. 23 b:

M„ E Jdm COS et
M (m-l)m — ~\ •

a

Aus Fig. 23 c:

M (m — 1) m =+![-j°> frm + 4 Jdm COS et -£- + 6 J0r

+ 6 Jdm — COS3 et

Endlich finden wir als Belastung eines jeden der Kreuze o (m -f-1) und u (m + 1)

Aus Fig. 23 a:

M, 2EJ0(m + l)

Aus Fig. 23 b:

v#, _ EJd(m + 1)cos a
VI (m + l)m— ~\ "

Aus Fig. 23 c:

(m -
^Tt a .AI Öm + l

i + 1) m — — Jo (m + 1) ^m +1 "h * Jd (m +1) COS et —¦

n T Omli -, &m + l u
1

+ 6 J0 (m + 1) H 6 Jd (m + 1) — cos* a
a a j

Die Gesamtbelastung der oberen und unteren Kreuze ist also:

Mmm 2 (M'mm + M"mm + M'"nB)
M(m - l) m 2 (M'(m - 1) m + M"(m _ 1} m -f M"'(m _ 1} m)

M(m _|_ i) m 2 (M'(m -j- i) m + M '(m _j_ J} m -|- M'"(m -j- i) m).

(23)

(24)

(25)
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Betrachten wir nun in Fig. 17—18 die Verformungen, welche die Einflußlinien

des Hauptsystems als Biegelinien des Lastgurts verursachen, so finden
wir, daß bei diesen Verformungen eine Grundbelastung der Knoten des

verformten Feldes besteht, welche wir mit Mom bezeichnen wollen. Sie ist für
Unter- und Obergurtknoten gleich; für beide zusammen ist in Fig. 17
(Einflußlinie für den Obergurtstab):

M(
2E

o (m -1) —r- [J + Ju + 2 Jd cos et] (wobei J0 Ju)
a n

(*6>

Mom — M0(m-i). (27)
Bei der Verformung nach Fig. 18 (Einflußlinie für die Strebe) ergibt sich:

6E(J0 + JU) 1 12EJd 1

M0(m-i) M0 ^12EJd
o • mH cos" et-—. ju2 sin et a 2 sin a

(28)

3E
a sin a

ju (J0 + Ju + 2 Jd cos3 a) (wobei wieder J0 Ju)

Da nun bei Ersatz der biegungsfesten Einspannung der starren Pfosten durch
Gelenke Momente in diesen Gelenkpunkten nicht auftreten können, gilt nunmehr
in jedem Falle für jedes Punktpaar die Gleichung:

Mm 0 Mom -f- Mm (m _ i) cpm - 1 + Mmm cpm + Mm (m + i) cpm + 1 (29)

Weitere Glieder können nicht auftreten. Wir haben also bei n Knotenpunkten
stets ein Gleichungssystem mit n unbekannten Drehwinkeln cpm der Clapeyronschen
Form, beispielsweise für den Träger IIa für die Einflußlinie der Strebe D:

9i 92 93 94 95 96 97

1 M« M12

2 M21 M22 M23

3 M32 M88 M34 M03

4 M« M44 M45 M04

5 M54 M55 M56

6 Mfl3 M66 M67

7 M70 M77

(29 a)

Jedem dieser Drehwinkel cpm entspricht nun aber eine bestimmte Biegelinie des
Last-Gurtes (vgl. Fig. 23 c), nämlich die mit cpm multiplizierte Biegelinie, die
sich für den Zustand cpm 1 ergab. Diese 7 Biegelinien sind also zu den
durch Fig. 18 gegebenen Biegelinien des Lastgurts zu addieren, und wir haben
dann die Einflußlinie für den Träger mit gelenkig angeschlossenen Hilfspfosten.

Zur Ermittlung der Einflußlinie für den Gurtstab 0 nach Fig. 17—IIb dient
dasselbe Gleichungssystem: Es wären als unabhängige Glieder in Spalte 3 und 4
die Werte Mo3 und Mo4 nach Gleichung 26—27 einzusetzen.
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b) Symmetrische Verdrehung der Ober- und Untergurtknoten.
Handelt es sich aber nun um die Berichtigung der durch die Verformungen

nach Fig. 19, 20 und 21 bedingten Einflußlinien, so bemerken wir, daß hier
Ober- und Untergurtknoten mit ungleichen Momenten belastet sind.

Bei diesen Verformungen ergibt sich in allen drei Fällen außer der gleichen
Belastung der Ober- und Untergurtknoten m — 1 und m, die wir mit M0(m_1}
und Mom bezeichnen, noch eine Sonderbelastung der oberen Knoten und zwar

in Fig. 19: Mm_1 -?^;
4Eaj <30)

a

t^- r^ HT 8 EJd cos a /rt>iNin Fig. 20: Mm ; (31)
a

•n- tM Ti/r 4EJdCOSCt /ocVvin Fig. 21: Mm -\ (32)
a

Diese Belastung zerlegen wir in antisymmetrische und symmetrische
Belastungen von Ober- und Untergurtknoten und setzen beispielsweise

für der Fig. 19
a °

EJ EJ
1. oben: -; unten: (Antisymmetr. Belastungsanteil)

a a

EJ EJ
2. oben: —; unten: -| (Symmetr. Belastungsanteil)

a a

2EJ
zusammen oben: -; unten: 0.

a

Die aus den antisymmetrischen Belastungsanteilen sich ergebenden
Verformungen sind nach dem unter a gegebenen Verfahren zu ermitteln. Zu den

symmetrischen Belastungsanteilen aber gehört, wenn wir Ober- und Untergurtknoten

zusammenfassen wollen, auch symmetrische Verdrehung des Ober- und
Untergurtknotens (Fig. 24). Diese Drehwinkel bezeichnen wir mit i|>. Fig. 24

zeigt im Gegensatz zu Fig. 23 a, daß die Mittelkreuze Om_1 und Om unbelastet
sind, also eine Verdrehung nicht erfahren, ferner, daß Querkräfte und Momente
in den beiden Feldern sich aufheben, also auch weitere Verschiebungen nicht
eintreten.

In diesem Falle bezeichnen wir Verdrehungen und Momentenbelastungen als

positiv, wenn sie das Obergurtkreuz positiv drehen oder belasten. Hierbei ergibt
sich nun ohne weiteres:

Mmm
op i EI

[Jom + Jo(m + l) + 2(Jdm + Jd (m +1)) COS dj — 2 -r~ (33)

M(m_1)m -—^ (34)
a

M(m + 1)m -4^+A (35)
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Die aus symmetrischer Belastung der Ober- und Untergurtknoten sich
ergebende Verformung ist also durch ein der Gleichung 29 entsprechendes
Gleichungssystem der Clapeyronschen Form gegeben, nämlich beispielsweise für
die Verformung nach Fig. 19:

*i *>2 ^3 4>4 4>5 <l>e *7

1 Mn M«
i

1

2 M21 M22 Ms8

3 M82 M88 M„
EJ0

a

4 M43 MH M«
2EJ«

a

5 MH Mw MM

6 M» Mee M67

7 M,„ M„

(36)

wobei die abhängigen Beiwerte nach den Gleichungen 33 bis 35 und die
unabhängigen Glieder nach (30) zu bestimmen sind.

So ergeben sich nun in diesem Falle 7 symmetrische Drehwinkel \\>; aber zum
großen Unterschied von den Drehwinkeln cp ergeben sie keine Verschiebungen
der Lastgurtknoten. Sie ergeben also (wenigstens wenn wir Belastungen nur in
den Knotenpunkten annehmen) keine Beeinflussung der Einflußlinien.

Die abgeleiteten Ergebnisse gebrauchen wir jedoch im nächsten Abschnitt.
Wir haben also bisher die genauen Einflußlinien für das System mit gelenkig
eingefügten starren Pfosten.

4. Entfernung der eingefügten, starren Hilfspfosten.

Verlängern wir einen der starren Pfosten m, zunächst unter Beibehaltung
seiner starren Einspannung an beiden Gurten, um den Wert t\, also nach oben

und unten um je — r\, so entsteht die Verformung der Fig. 25. Da in beiden
Lt

Streben Zug entsteht, entsteht in allen Gurtstäben Druck; sie verkürzen sich
dementsprechend um die Werte y und y'. Die Verbiegung der Streben hat
natürlich weder auf die in den Streben und Gurtstäben entstandenen

Längsspannungen noch auf die Verschiebungen y und y' einen nennenswerten Einfluß.
Der Wert y wurde bereits in der unter 4. genannten Abhandlung ermittelt,
nämlich in Gleichung 7.

Danach ist:

_ sin et cos2 q Fd m

T~2(cos3aFdm + Fomy {öi)

Auf die Ableitung soll hier verwiesen werden. Dementsprechend ist

sin et cos2 et Fd (m + ^
2 (cos3 aFd(m + 1) + F0(m + i))

(37 a)
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m+1 m-1^-^^T\jn m+1m-1

m+J

Fig 23 bFig 23 a

<---4.
2pr~i

fig23c

iCeU-*3R-*
m m + 1 M-T ^ __

7 m
m + 1m-1

F,gJl_FigJ£

-*5 V1 Jy'K J^i^*<^--;-r''

Fig26_

C^^^r^ ^mit VT^
isV 1t__7S

B~Linie des symmetrischen Systems \_\_
Courbe D du Systeme symelnque
D-lme fon symmetrical system

Q-Linie des Hauptsystems
Courbe D du Systemeprineipal
D'hne for prineipal System

Berichtigte endgültige D-Linie
Courbe D definitive comgee
Corrected. final D-fine

Fig. 23-27.

Danach ergibt sich aus Fig. 25 die Verschiebung der Kreuzungspunkte der
Streben:

h

oder: ö
(2 Fdm cos3 et + Fom) tg et

4(Fom + Fdmcos3a) n (38)

und ganz entsprechende b' mit den entsprechenden Stabquerschnitten im Felde

m-f- 1.

Hiernach ergibt sich nun die Verschiebung der Endtangenten-Kreuze senkrecht

zu den Stabachsen:
Für die inneren Strebenhälften im Feld m

b • sin et + -~ cos et
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und im Feld m + 1

&' sin ct + ~ cos et;

für die äußeren Strebenhälften:

(b—y) sin a

beziehungsweise (b'—y') sin a

Daraus ergeben sich nun alle bei der Verformung (Fig. 25) entstandenen

Biegungsmomente der Stabenden, nämlich im linken Feld:

ir Tl t)riiJora o tlJ0m^or -^-~-—=-3-^1,

Bezeichnungen

siehe

Fig. 22

M0i

Mnr

Mul

Mdro

F T

+ 3^Fn
3

k Jum

24EJdmcos2ct/^ r|
z o sin et + -± cos a

Md ki Md ro

Mdru — Mdro

Mdk4 + Mdro

at at i 24EJdmcos2a/s^ *

Mdio Mdk3 H
a (b — y) sin a

a

!vf Af 24EJdmcos2ct/^
Mdiu Mdk, 2 (& — V sin a

Die Stabendmomente im rechten Feld sind ganz entsprechend mit den
Trägheitsmomentwerten im Feld m + 1; damit ergibt sich nun als symmetrische
Momentenbelastung der Kreuzpaare m, m — 1 und m-f 1 für den Zustand

r| =; 1, wobei also in den Gleichungen 39 r\ 1 zu setzen ist:

(39)

Mm
2E

3(J0(m + i) — Jom) + 24Jd(m + i)Cos*a (&'sina+ „ cos et)
_>

— 24 Jdm cos' a !b sin a + -^ cos al

2E r "i
Mm _ j 2-1^3 Jom + 24 Jdm cos2 a (o — y) sin a] (41)

2EZ tj r ~]

Mm +1 —r 13 J0 (m +1) + 24 Jd (m +1) cos2 a (&' — y') sin aj. (42)

Wenn wir jetzt diese Momentwerte nach Gleichung 40 bis 42 als unabhängige
Glieder, d. h. Belastungsglieder in die Gleichung 36 einsetzen, so erhalten wir
aus derselben die Knotendrehwinkel 4>x bis i]?7, die sich nach Ersatz der Hills-
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pfosten durch Gelenke ergeben. Diese Verformung bezeichnen wir zum Unterschied

von dem Zustand r\m 1 nach Fig. 25 als den „Zustand £m 1"
(Fig. 26).

Zur Bildung des Zustandes £4 1 würden wir also die Werte M4 M3 und
M5 nach Gleichung 40 bis 42 in die wagrechten Reihen 4, 3 und 5 der
Gleichung 36 als unabhängige Glieder einzusetzen haben. Diese Zustände
entsprechen nun genau der in der unter 4. genannten Abhandlung in Fig. 4 als
„Zustand £4 1" bezeichneten Verformung. Die Kräfte Rmn, welche die jetzt
gelenkig angeschlossenen Hilfspfosten belasten, ergeben sich nun wie folgt:

Zunächst ergibt sich aus der Fig. 25, wenn wir m der Einfachheit halber
4 setzen, als Belastung der Pfosten 3, 4 und 5:

Pfosten 4: R44 - (D4 + D5) sin a - 6E(J°yHJo») _L
o a ^ a

48EJ4cos3a/^ 1

ö4 sin ct-f-— cos et
a* r- '2

48EJ5cos*ct/<, 1 \
lö5 sin ct+ cos et)

Dabei sind die Werte D4 und D5 bereits durch Gleichung 10 genannte
Abhandlung gegeben; nämlich z. B.

1 sin et cos3 et Fd4
sin et

r, * 2(cos3aFd4 + F
D4 -| - - L Jd4 cos a

6EJ04 1

?84 _1,4Bmu-r—¥-ä--Pfosten 3: R34 — D4 sin et +

(b4 — y4) sin a
48EJ4cos3a

6EJ05 1

*54 ^^ — ^5 ö111 « -I ^ 2^Pfosten 5: R54 — D5 sin a +
48EJ5cos3a

(&s — Ts) sin cx.

Ist in Punkt 4 ein elastischer Pfosten vorhanden, so erhöht sich der Wert
EF

Ro44 noch um die Spannkraft dieses Pfostens — 1- -, —. Nun entstehen aber

noch weitere Pfostenbelastungen durch die Drehwinkel i[>, wobei es aber unter
allen Umständen genügt, die Belastung der Stäbe m — 1, m und m + 1, in
unserem Falle also R3, R4 und R5 zu berücksichtigen.

Dabei ist nun allgemein

6 E r
Rm —2" No (m + 1) (^m + t)>m +1) — Jörn (l|>m - 1 + *|>m) / ,g\

+ 4 (Jd(m-r-l) — Jdm) COS3 et \})mj
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also

R44 -^ä"
• [Jo5 (i|>4 + ^5) + Jo4 (t|>s + Ah) + 4 (Jd5 — Jd4) cos8 a t|>±]

R34 — • [J04 (t|)8 + x|>4) + Jos 0|>a + t|>s) + 4 (Jd4 — Jd3) cos3 a 1^3]

ß TT

R54 -^T ' [J06 (*t>5 + W + J05 (^4 + l|)5) + 4 (Jd6 ~ Jd6) COs3 <* W]'

Es ist nun
R44 R44 + R44 }

0 4

R34 R34 + R34
0 4

R54 R54 + R54

Wir erhalten also, nach Ausscheidung sehr kleiner
> Belastungswerte, nur R-Werte, deren Zeiger sich
nicht mehr als um 1 unterscheiden.

Belasten wir nun das Tragwerk in den Punkten m0 und mu mit dem Lastenpaar

Eins (Fig. 26), welches wir natürlich der Nullbelastung Rm zuzählen müssen,
o

so sind die durch dieses Lastenpaar Eins entstandenen Verformungen £ durch
die Gleichung gegeben:

Rra 0 Rm(m_i) im - 1 + Rm m £m + Rm (m + 1) £m + 1 (44)

oder vollständig in unserm Falle bei Belastung in den Punkten 4Q und 4U:

U U ^3 u U U ll
1 Rn R12

2 R21 R22 R23

3 R33 R33 R34

4 R43 R44 R« 1

5 | R54 R55 R56

6

- -
RÜ5 R66 R67

7 R77

(44 a)

Das Gleichungssystem 44 ist wiederum ein Gleichungssystem Clapeyronscher
Art. Es liefert uns, wenn wir den unabhängigen Wert -f 1 nacheinander in die

wagrechten Spalten 1 bis 7 einsetzen, die durch Belastung der Punktpaare 1

bis 7 mit Lastpaaren Eins entstehenden £-Werte.
Die sieben sich dabei ergebenden Biegelinien des Lastgurtes (Untergurt) sind

die Einflußlinien für die 7 Werte £t bis £7. Da nun jedem dieser Werte £
nach Fig. 26 ganz bestimmte Kraftgrößen-Werte für die Achsspannungen der
Stäbe und der Stabendmomente der benachbarten Felder entsprechen, wobei wir
uns auf die beiden, links und rechts von dem betreffenden £-Wert liegenden
Felder beschränken können, ergeben sich für alle Kraftgrößen in einem Feld m



1054 Fr. Krabbe

zusätliche Einflußlinien, deren Ordinaten t\ gegeben sind durch die Gleichung:

Hm — JLim - 1 Im - 1 + JUm Em. (45)
Diese Zusatzeinflußlinien sind zu dem nach Fig. 11 gefundenen und durch

die sich nach Fig. 23e ergebenden Biegelinien bereits verbesserten Einflußlinien

zu addieren; wir erhalten dann die endgültigen Einflußlinien für alle
Kraftgrößen.

Nachzutragen bleibt noch eine Bemerkung über die auf Grund der
Verformungen der Fig. 19—21 gefundenen Einflußlinien. Es ergab sich dabei
bekanntlich außer der antisymmetrischen Belastung des Ober- und Untergurtknotens

noch eine zusätzliche symmetrische Belastung, welche zunächst eine

Verschiebung der Lastknotenpunkte nicht verursachte, solange die gelenkig
angeschlossenen Hilfspfosten noch vorhanden waren. Die sich durch diese
symmetrische Belastung ergebenden Drehwinkel if> nach Gleichung 36 erzeugen jedoch
Belastungen dieser gelenkig angeschlossenen Hilfspfosten nach Gleichung 43,
die, als unabhängige Glieder in das Gleichungssystem 44 eingesetzt, Werte für
(^ bis £7 ergeben. Die hierdurch bedingten Biegelinien des Lastgurtes sind
zu den betreffenden Einflußlinien noch zu addieren. Eine antisymmetrische
Momentenbelastung dagegen, welche die Drehwinkel cp erzeugt, hat zwar eine

Verbiegung des ganzen Träger nach Fig. 25 e zur Folge, aber keine
Pfostenbelastung, also keine Spreizungen.

5. Nachträgliche Berichtigung der Einflußlinien unsymmetrischer Träger.

Wir hatten die Einflußlinien des Hauptsystems unter Berücksichtigung
verschiedener Querschnitte oder Trägheitsmomente des Ober- und Untergurtes
ermittelt, bei der weiteren Entwicklung dieser Einflußlinien jedoch, die Un-
symmetrie nicht berücksichtigt und jeweils die der Fahrbahn fern liegenden
Gurte zu Grunde gelegt und unter dieser Annahme die Biegelinie des

Fahrbahngurts als Einflußlinie ermittelt.
Ist nun in Fig. 27 die gestrichelte Linie die Einflußlinie des Hauptsystems,

die also mit Rücksicht auf die Unsymmetrie richtig ermittelt wurde, die punktierte

Linie die als endgültig ermittelte Einflußlinie ohne Berücksichtigung der
Unsymmetrie, so ermittle man den Unterschied der Trägheitsmomente des

wirklichen Trägers Jt und des angenommenen symmetrischen Trägers Js.

Dann kann man sich vorstellen, daß man einen Träger von dem Trägheitsmoment

Jt—J^ der also das Bestreben haben würde, der Biegelinie des

Hauptsystems zu folgen, gewaltsam in die Lage der punktierten Linie verbiegt. Er
wird dann das Bestreben haben, diese Gurtbiegelinie in die ursprüngliche Lage
der Biegelinie des Hauptsystems zurückzubiegen. Sind die Ordinaten der Einflußlinie

des Hauptsystems r\Q, die des symmetrischen Systems r\s und die des

endgültigen Systems t\, so wird angenähert die richtige Ordinate sich ergeben als

n no + (ns — no) -p (46)

Da der Unterschied zwischen Js und Jt immer nur gering sein wird, so ergibt
sich, daß der unter Annahme der Symmetrie gemachte Fehler überhaupt stets
klein ist, seine Berichtigung nach dem hier angegebenen Annäherungsverfahren
also durchaus zulässig ist.
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6. Übersichtliche Zusammenfassung des Verfahrens.

1. Ermittlungen der Einflußlinien des Hauptsystems für die Kraftgrößen
(Fig. 11) durch Anbringung der der betreffenden Kraftgröße entsprechenden

Verformung „Eins".
2. Feststellung der durch diese Verformung entstandenen Momentenbelastung

der Knotenpunkte und Zusammenfassung derselben in antisymmetrische und
symmetrische Momentenbelastung der Ober- und Untergurtknoten (Gleichung
26 bis 28 und 30 bis 32).

3. Darstellung der einzelnen (je 7) Zustände cpm 1 und it>m 1 (Fig. 23
bis 24).

4. Ermittlung der Beiwerte Mmu aus diesen einzelnen Zuständen (Gleichung 23
bis 25 und 33 bis 35).

5. Aufstellung der Clapeyronschen Gleichungssysteme 29a und 36 aus den
nach 2. gefundenen unabhängigen Belastungsgliedern und den nach 4.
gefundenen Beiwerten der abhängigen Glieder.

6. Auflösung dieser Gleichungssysteme, wobei sich die Knotendrehwinkel cpm

und i)v ergeben. Damit ergeben sich auch nach Fig. 23c die zu jedem
der gefundenen Winkel cpm gehörenden Biegelinien des Lastgurtes, die den
nach Fig. 11 gefundenen Einflußlinien zuzuzählen sind, während die
symmetrischen Drehwinkel if>m keine Verschiebung der Lastgurtknoten
herbeiführen.

7. Darstellung der einzelnen Zustände „r\m 1" (Fig. 25); Ermittlung der
dabei entstehenden, in diesem Falle nur symmetrischen Momentenbelaslungen
der Knotenpunkte: Einsetzen dieser Momentenbelastungen als unabhängige
Glieder in das Gleichungssystem 36; Auflösung desselben, wodurch sich
alle Knotendrehwinkel \J>m für jeden einzelnen Zustand r\m 1 und damit
die Zustände ^m 1 ergeben.

8. Ermittlung der bei den einzelnen Zuständen £m 1 entstehenden
Belastungen der Hilfspfosten.

9. Anbringung von Einzellastpaaren in den einzelnen Knotenpunkten m als

Grundbelastungen des Systems.

10. Aufstellung des Gleichungssystems 44 für die einzelnen Einzellastpaare unter
Benützung der nach 8. und 9. sich ergebenden unabhängigen Glieder und
Beiwerte der abhängigen Glieder.

11. Durch Auflösung der 7 Gleichungssysteme 44 ergeben sich die den ein¬

zelnen Einzellastpaaren entsprechenden Verformungen nach Beseitigung der
Hilfspfosten und damit die Einflußlinien für £4 bis <£7.

12. Alle Kraftgrößen je eines Feldes werden als lineare Funktionen der beiden,
das Feld einschließenden £ -Werte dargestellt und dementsprechend ihre
Zusatzeinflußlinien aus den Einflußlinien dieser beiden £-Werte entwickelt

13. Für die Einflußlinien der Stabendmomente, deren Verformungen auch sym¬
metrische Knotenpunktbelastungen ergeben, werden noch nach Gleichung 44,
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die dadurch bedingten £-Werte ermittelt, und die auf die Verbiegung des

Lastgurts entfallenden Anteile der £ den bisher gefundenen Einflußlinien
zugezählt.

14. Bei unsymmetrischen Trägern Verbesserung der gefundenen Einflußlinien
nach Gleichung 46 (Fig. 27).

Zusammenfassung.

Nach einer Einleitung über die besonderen Eigenschaften des Rautenträgers und
über den auffallenden Einfluß der Gurtsteifigkeit dieses Balkens, studiert der
Autor die schwierige Aufgabe, den Rautenträger als Tragwerk aus biegungs fest
verbundenen Stäben zu behandeln, unter Anwendung von nur drei sehr einfachen
Gleichungssystemen der Clapeyronschen Form, wobei zu beachten ist, daß sich
in allen Fällen nur die unabhängigen Glieder, nicht aber die Beiwerte der
abhängigen Glieder der Gleichungssysteme ändern.
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