Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht
Band: 2 (1936)
Artikel: Genaue Berechnung des Rautentragers
Autor: Krabbe, Fr.
DOl: https://doi.org/10.5169/seals-2733

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-2733
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

V10
Genaue Berechnung des Rautentragers.
Calcul exact de la poutre en treillis rhomboidal.

Girders with Rhombic Arrangement of Members.

Dr. Ing. Fr. Krabbe,

Reichsbahnoberrat, Reichsbahnzentralamt Miinchen.

1. Besondere Eigenschaften des Rautentrdgers.

In fritheren Jahrzehnten ist der Rautentriger, wohl seines guten Aussehens
wegen, vielfach ausgefiihrt worden; eine gréfiere Ausfiihrung ist die Weichsel-
briicke bei Dirschau. Die Berechnung erfolgte meist nach dem von Prof.
Mehrtens, Dresden angegebenen Verfahren, wonach dieses Tragwerk in zwei
Teilsysteme zerlegt wurde, die einfache Streben-Fachwerke darstellten. Spitere,
insbesondere von Miiller-Breslau nach dem kinematischen Verfahren durch-
gefiihrte, genaue Untersuchungen ergaben jedoch, daf3 der Rautentriger, als
Fachwerk mit reibungslosen Gelenken in den Knotenpunkten betrachtet, wesent-
lich anders gestaltete EinfluBllinien, besonders fiir die Streben, zeigt, als sie
sich nach dem vorhin angedeuteten Verfahren von Mehrtens ergeben. Die Ein-
flullinien zeigen zickzackformige Gestalt, von Knoten zu Knoten zwischen
positivem und negativem Bereich wechselnd. Fig 1a zeigt die Form einer
solchen Einflufilinie nach dem Verfahren von Mehriens, Fig. 1b, die sich nach
dem kinematischen Verfahren ergebende Form, die zweifellos bei Annahme
reibungsloser Gelenke in den Knoten nach der iiblichen Fachwerktheorie die
richtige ist. Eine zickzackférmige Gestalt zeigen auch die unter einer Einzellast
nach dem kinematischen Verfahren ermittelten Biegelinien des Trigers (Fig. 2a).
Diese zweifellos ungiinstigen Formen der Einfluf3- und Biegelinien fiihrten dazu,
dafi man spiterhin von der Verwendung des Rautentrigers als Haupttriger fiir
Briicken absah.

Die EinfluBilinie nach Fig. 1b gibt jedoch bei niherer Betrachtung zu er-
heblichen Einwinden Anlaf3, wenn man sich daran erinnert, dafy Einfluflinien
Biegelinien sind, némlich die Biegelinien des Lastgurts, die sich durch Ver-
lingerung des betreffenden Stabes um ,.eins” ergeben. Dieselben Bedenken er-
weckt natiirlich die in Fig. 2a dargestellte Biegelinie. Es ist klar, daf3 bei der-
artigen Verformungen einer kontinuierlich durchgefiihrten Gurtung erhebliche
Querkrifte auftreten miissen, die die Gestalt der Biegelinie wesentlich beein-
flussen konnen. Diese sind aber bei der Berechnung nicht beriicksichtigt. Diese
Uberlegungen fiihrten dazu, dafl man sich bei der Wahl des Haupttriger-
Systems fiir die in den Jahren 1926/27 erneuerten Uberbauten fiir die Eisen-
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bahnbriicke {iber den Rhein bei Wesell iiber die gegen Rautentriiger erhobenen
Bedenken hinwegsetzte und hier den seit lingerer Zeit gemiedenen Rautentriger
wieder zu Ehren brachte. Nach erfolgter Aussfiihrung wurde die nach Fig. 2a
errechnete Biegelinie durch Belastung des Triigers mit einer Einzellast von 80 t
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nachgepriift; es ergab sich dabei
durch genaue Messung die in
Fig. 2b dargestellte wirkliche Biege-
linie. Das lief3 ohne weiteres den
Schluf$ zu, daf3 auch die durch
Verlingerung einer Strebe ent-
stechende Biegelinie des Lastgurts
in Wirklichkeit eine wesentlich an-
dere Form als die der Fig. 1b
hat. Das bestitigten spiter von
Dr. Christiani mit grofer Sorg-
falt durchgefiihrte strenge Ermitt-
lungen der Einfluflinien eines
kleinen Rautentragers (Fig. 3), der
hierbei unter Beriicksichtigung der
Steifigkeit der Gurtungen und der
Streben als 72fach statisch unbe-
stimmtes System behandelt wurde.2
Hieran anschlieffende Untersuch-
ungen von Christiani ergaben fer-
ner, daf3 der Einfluf3 der Steifig-
keit der Gurtungen und Streben
bei dem Rautentriger so erheblich
ist, dafy dieser auch ohne den so-
genannten Stabilititsstab, der not-
wendig ist, um das Fachwerk mit
Gelenken in den Knoten stabil zu
machen, in Wirklichkeit fiir die
Stabilitit des Tragwerkes im all-
gemeinen nicht erforderlich ist,
und ferner, daf} er iiberhaupt nur
auf die ihn unmittelbar benach-
barten Felder irgend welchen Ein-
flufy auszuiiben imstande ist.3

Die hier angefithrten Uber-
legungen, Messungen und statisch
strengen Untersuchungen weisen
deutlich darauf hin, daf3 der
Rautentrigen kein Fachwerktriger

im iblichen Sinne ist, dafs vielmehr gerade die Besonderheiten seiner mnach

1 Die Bautechnik 1927, Heft 46/47.
2 Christiani: Strenge Unlersuchung an Rhomben-Fachwerken. Berlin 1929, Jul. Springer.
8 Christiani: Uber die angebliche Labilitit von Fachwerken. ,,Der Stahlbau® 1931, Heft 2.
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der Fachwerktheorie ermittelten Einfluf3- und Biegelinien ihn aus der Reihe
der eigentlichen Fachwerktriger ausschalten, daf3 er ein Tragwerk ist, welches
nur unter Beriicksichtigung der Steifigkeit in den Knotenpunkten der Wirk-
lichkeit entsprechend berechnet werden kann. Dieser Umstand lief3 es not-
wendig erscheinen, auch fiir die allerdings inzwischen bereits fertiggestellte
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Rheinbriicke bei Wesel eine genaue Berechnung aufzustellen. Das war aber
praktisch nur méglich, wenn es gelang, hierfiir ein einfacheres Verfahren zu
finden, als das von Christiani angewandte, denn das System der Rheinbriicke bei
Wesel ist unter Beriicksichtigung der Steifigkeit und der steifen Anschliisse
aller Stabe 208fach statisch unbestimmt und selbst bei Vernachlissigung der
Steifigkeit der Streben und ihrer Anschliisse 57fach statisch unbestimmt. Daf3
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die Berechnung derartig hochgradig statisch unbestimmter Systeme nach den
hierfiir tiblichem Verfahren praktisch undurchfiithrbar ist, diirfte ohne weiteres
klar sein.

I1. Auffallender Einfluf3 der Gurtsteifigkeit des Rautentrigers.

In meinem Aufsatz ,,Das Wesen des Rautentrigers und seine einfache richtige
Berechnung‘‘,4 habe ich mich darauf beschrinkt, den Einfluf3 der Gurtsteifigkeit
des Rautentrigers zu beriicksichtigen und die Streben als gelenkig an die kon-
tinuierlich durchgefiihrten Gurtungen angeschlossen angenommen, wobei ich
auch die steife Vernietung der Streben in ihren Kreuzungspunkten unberiick-
sichtigt gelassen habe.

Ich beschrinke mich hier darauf, die Ergebnisse dieser Untersuchungen kurz
zusammenzufassen. Um Vergleiche ziehen zu konnen, wurde der von Christiani
als 72fach statisch unbestimmtes System behandelte Rautentriger auch meinen
Untersuchungen zu Grunde gelegt, die nach dem Forminderungsgrofien-Ver-
fahren durchgefithrt wurden. Das Hauptsystem wurde durch Einfiigung eines
starren, in den Knotenpunkten gelenkig angeschlossenen senkrechten Stabes
in jede Raute gebildet (Fig. 4a). Seine EinfluBlinien ergaben auf Grund ein-
facher, kinematischer Betrachtungen die Formen nach Fig. 4b—e. Dann wurden
nacheinander durch Verlingerung je eines dieser starren Stibe um eins die
Zustinde ,,C,, = 1 gebildet, die bestimmte Stabspannungen O, U und D in den
beiden benachbarten Feldern zur Folge haben (Fig. 5) und auflerdem sdmtliche
starren Stibe mit Kriften Z belasten. Durch Nullsetzung der einzelnen Be-
lastungen dieser starren Ersatzstibe unter Belastungen nach Fig. 6a ergaben
sich dann die Verformungen des Triger unter dieser Belastung nach Ent-
fernung der starren Stibe, d. h. die Verlingerung dieser Stibe T, die die Null-
belastung der einzelnen Ersatzstibe bedingen. Dabei ergab die Durchrechnung
einer Reihe von Beispielen, daf3 in allen praktisch vorkommenden Fillen eine
Belastung des Trigers nach Fig. 6a in den Punkten m, und m, nur eine
nennenswerte lotrechte Verschiebung der Punkte m, und m, selbst und ihrer
beiden Nachbarpunkte m + 1, und m 4 1, und m — 1, und m — 1, gegen-
einander erzeugt, daf3 also alle Werte T mit Ausnahme von %, _,, T. und
G+ ; von Null nur unmerklich verschieden sind. Daraus ergab sich die duf3erst
wichtige Moglichkeit, simtliche Verformungen durch Belastung nach Art der
¥ig. 6d durch Gleichungs-Systeme mit nur drei Unbekannten feststellen zu
konnen. Die Verformung des Lastgurtes, in diesem Falle des Untergurtes, unter
der Belastung nach Fig. 6a ist selbstverstindlich die Einflufilinie fiir die
Spreizung T, ; sie erstreckt sich nur von Knoten G, _, bis Tn 4o (Fig. 6b). Da
nun jedes T, bestimmte Stabkrifte in den beiden benachbarten Feldern erzeugt,
konnen in einfacher Weise durch Uberlagerung der Einflufilinien der einzelnen
Werte ¢, die zusitzlichen EinfluBlinien fiir diese Stibe gebildet werden, die zu
den Einflufilinien fiir das Hauptsystem zu addieren sind. Diese nehmen dadurch
als endgiiltige Einfluflinien die Formen der Fig. 7a—d an. Bemerkt sei, daf} die
auf diese Weise von mir gefundenen EinfluBlinien ganz tiberraschend genau mit

¢ ,Der Stahlbau* 1931, Heft 15.
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den von Christiani gefundenen EinfluBlinien iibereinstimmen (vergl. die F 1g. 16
der unter 4 genannten Abhandlung).

Hieraus ergeben sich, zunichst allerdings nur fir den untersuchten Triiger,
folgende Feststellungen: '

1. Der Trager (Fig. 3) ist auch ohne Stabilititsstab stabil; fiir alle seine
Stiabe ergeben sich eindeutige, durchaus normale Einfluf3linien.

2. Die Wirkung eines in einer Raute angebrachten, lotrechten Stabilitits-
stabs erstreckt sich nur auf je 2 Felder beiderseits des Stabes.

3. Die EinfluBlinie der Stibe, insbesondere auch der Streben, wechseln nicht
mit scharfen Knicken von Feld zu Feld zwischen posmven und negativen
Werten, sondern verlaufen durchaus normal.

4. Die Form der Einflufilinien weicht von der Form der unter Annahme
reibungsloser Gelenke ermittelten Einflufilinien erheblich ab, dagegen sind
dic durch Zerlegung in Teilfachwerke sich ergebenden Einfluflinien an-
nihernd richtig (Fig. 7e—h).

5. Der EinfluB3 der Steifigkeit der Gitterstibe und ihrer steifen Anschliisse
ist unbedeutend. (Gute Ubereinstimmung der Einfluf3linien.)

6. Die in den Gurtstiben ermittelten Biegungsspannungen unter dem Lasten-
zug N erreichen den Hochstwert von 420 kg/cm2. Nun lafit sich aber der
berechtigte Einwand erheben, daf3 der hier untersuchte Triger mit seinen
sehr hohen Gurtungen (60 cm bei 28 m Stiitzweite) kein in iiblicher Weise
ausgebildeter Triger ist. Ich habe daher die Untersuchung auch fiir den-
selben Triger mit der normalen Gurthéhe von 30 cm durchgefiihrt. Hin-
sichtlich der Einflufllinien fiir die Stabkrifte ergab dies keine grofien
Unterschiede, dagegen ergaben die Biegungsspannungen in den Gurtungen
etwa 3004 geringere Werte. Daraus ergibt sich die weitere, fir die
konstruktive Durchbildung des Rautentrigers wichtige Folgerung:

7. Die auch sonst bei Fachwerktrigern iibliche Gurtsteifigkeit reicht zur
Herstellung der Stabilitit auch ohne Stabilititsstab vollig aus. Steifere
Gurtungen sind nachteilig, da sie hohere Biegungsspannungen in den
Gurtungen herbeifiihren.

Auf Grund dieser Ergebnisse habe ich nach dem hier angedeuteten Verfahren
die genaue Berechnung des Haupttrigersystems der Weseler Rheinbriicke durch-
fiihren lassen.5 Es handelt sich dabei um tiiber zwei Offnungen von je 104 m
Stiitzweite ohne Gelenke durchgefiihrte Parallel-Triager mit der auch sonst
fiir Fachwerke durchaus normalen Gurthéhe von 90 cm.5 Wegen des (zanges
der Berechnung verweise ich auf die unter 5 genannte Abhandlung und darf
mich daher hier auf die Mitteilung der Hauptergebnisse dieser Nachrechnung
beschrinken. Ich gebe in Fig. 8 die Einfluflinie fiir je einen Ober- und Unter-
gurtstab, sowie fiir je eine Zug- und Druckstrebe wieder, ferner in Fig. 2 die
EinfluBlinie fiir das Moment des Untergurtstabes an einem Knotenpunkt. Mit
der EinfluBlinie der Strebe D, _v vergleiche man die in Fig. 1a nach dem kine-

5 Krabbe: ,Einflufy der Gurtsteifigkeit in ebenen Tragwerken'. Leipzig 1933, Verlag von
Robert Noske. S. 12—17.
6 Die Bautechnik 1927, Heft 45/46.
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matischen Verfahren ermittelte Einflufllinie und in Fig. 1b die durch Zer-
legung in Teilfachwerke ermittelte Einfluflinie. Es unterliegt danach keinem
Zweifel, daf3 die Einflufilinie der Fig. 1b der Wirklichkeit erheblich niher
kommt wie die der Fig. 1a. Ich komme hier zu dem Schluf}, dafl das kine-
matische Verfahren unter Annahme gelenkiger Knotenpunkte fiir Rautentriger
nicht verwendbar ist, daf3 aber die Zerlegung in Teilfachwerke gute Anniherungs-
werte ergibt, eine genaue Berechnung unter Beriicksichtigung der Gurtsteifigkeit
aber notwendig ist.
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Die Einflufilinie fiir das Biegungsmoment im Untergurtstab ergibt bei ungiin-
stigster Belastung nach Lastenzug N Biegungsspannungen von etwa 260 kg/cm?2.
Bei Uberlagerung mit den Einflufilinien der Stabspannungen ergaben sich
jedoch nur zusitzliche Biegungsspannungen von etwa 10 kg/cm2, die praktisch
als ganz unwesentlich zu bezeichnen sind.

SchlieBlich habe ich noch die in Fig. 2a kinematisch ermittelte und nach
Fig. 2b gemessene Biegelinie unter einer Einzellast auch unter Beriicksichtigung
der Gurtsteifigkeit berechnet; das Ergebnis ist in Fig. 2 e wiedergegeben. Die
Ubereinstimmung mit der unter einer Einzellast gemessenen Biegelinie, be-
sonders hinsichtlich der entstandenen Knicke, ist wohl iiberraschend gut.
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I11. Weiterer Einfluf3 der Biequngs-Steifigkeit der Streben und ihrer biequngs-
festen Anschliisse in den Knoten.
1. Allgemeines.

Wenn auch das bisher entwickelte Verfahren in einfacher Weise offenbar
der Wirklichkeit ziemlich nahe kommende Ergebnisse zeigt, so wird doch bei
niherer Betrachtung eines Rautentrigers, wie etwa des der Weseler Rhein-
briicke, klar, da3 solche Tragwerke mit ihren in den Kreuzungspunkten meist
durch starke Knotenbleche verbundenen Streben einem biegungsfest verbundenen
Stabwerk in ihrer Wirkungsweise viel niher kommen als einem Fachwerk. Es
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soll daher hier das Verfahren auch auf die Steifigkeit der Streben ausgedehnt
werden. Dabei sollen auch ungleiche Querschnitte und Trigheitsmomente der
Gurtungen beriicksichtigt werden. Wir sind dann auch in der Lage, die in den
Streben auftretenden Biegungsspannungen genau ermitteln zu koénnen. Das Ver-
fahren wird an dem Rautentriger Fig. 10a erliutert. Fiir den Gang des Ver-
fahrens ist es grundsitzlich bedeutungslos, ob er in einem oder mehreren
Feldern die punktiert gezeichneten Pfosten enthilt oder nicht. Ebenso ist es
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fir die Behandlung belanglos, ob der Triger an den Enden mit einer ganzen
Raute (Fig. 10b) oder mit einer halben Raute (Fig. 10a) abschlie3t. Der letztere
Abschlufs ist tbrigens, wie die Nachrechnung der Weseler Rheinbriicke ergab,
statisch entschieden vorzuziehen. Als Hauptsystem wihlen wir den Triger
Fig. 11a, der in jeder Raute einen starren Pfosten enthilt, welcher biegungs-
fest mit den Gurtstiben und Streben verbunden ist.

Zunichst miissen einige fiir die weitere Behandlung wichtige Grundbegriffe
festgelegt werden. Der hier behandelte Trager besitzt, wie jeder Fachwerktriger,
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ein Trigheitsmoment J;, welches von Feld zu Feld wechselt und sich zusammen-
setzt aus:
1. Dem Triagheitsmoment des reinen Fachwerks mit ,,massenlos gedachten
Stiiben, Jf.
2. Einem Beitrag aus den Trigheitsmomenten der Gurtstibe, Jo + J.. '
3. Einem Beitrag aus den Trigheitsmomenten der Gitterstibe, J,.

Zu 1. Haben Ober- und Untergurt gleichen Querschnitt, so verlingert sich
bei reiner Biegungsbeanspruchung der Untergurtstab um dasselbe Maf3, um
welches sich der Obergurtstab verkiirzt (Fig. 12); die massenlos gedachten
Streben édndern ihre Linge dabei nicht, bleiben spannungslos und liefern keinen
Beitrag zum Trigheitsmoment J;. Die Schwerachse liegt in der Mitte und es
ist einfach

= % (Fo + Fy). (1)

Bei ungleichen Querschnitten der Gurtstibe ist jedoch die Summe der Lingen-
dnderungen der beiden Gurtstibe von Null verschieden; das bedingt Langen-
dnderungen und Stabkrifte in den Streben. Diese liefern daher auch einen
Beitrag zum Trigheitsmoment J;. Nach Fig. 13 entspricht jeder Verlingerung
eines Gurtstabes um den Wert Eins eine Verlingerung beider Streben um

1 ; .
5 cos a, also einer Strebenkraft in jeder Strebe.

2
D= 1 E—F—d cos? q,
2 a
deren wagrechte Seitenkrifte sind
D'= —}— EFq cos® a.
2 a

Wir konnen daher hinsichtlich ihres Beitrages zum Triagheitsmoment J; die
beiden Streben ersetzt denken nach Fig. 14 durch einen wagrechten, durch den
Schnittpunkt der Streben gehenden Stab mit dem Querschnitt

F'qa = 2F4 cos? a. (2)

Die Lage der wagrechten Schwerachse ist dann gegeben mit den Bezeich-

nungen der Fig. 14 durch:

L _h 2F.+F,
0_2 F0+Fu+F‘d
h —h 2F0+F‘d

"2 Fo+F 4 FY
und der Schwerpunktsabstand von der Mitte ist
h_ h F.—F,
2 2 Fo+Fu4+Fy°
damit ergibt sich das Trigheitsmoment
h? 4F,F,+F¢
= [Pt R |
bei ¥, = F, geht Gleichung 3 in Gleichung 1 iiber.

h, —

(3)
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Zu 2. Unabhingig von der Lage der Schwerachse liefern die Gurtstibe ein
zusilzliches Trigheitsmoment J, - J..

Zu 3. Bei einer Verdrehung nach Fig. 15 mit einem Drehwinkel ¢ kann aus
kinematischen Griinden der Schnittpunkt der Streben nur in den Schnittpunkt I’
der in E auf A’CY und B’D’ errichteten Mittellote fallen. Dann ist

AN CC

EG = 9

; LEFG =a
also das Dreieck EFG ~ CAB;

EG_h _ AA'4CC

daher EF= 4= 9EF
EF  AA'4+CC
Oder Ad“ _— —é l,i——i— -

daraus folgt L 3 = %

Die Endtangenten der Streben miissen also in den Geraden C'F und D’F liegen.
Die Verformung der Streben erfolgt also nach den stark gezeichneten Linien

mit Drehwinkeln 9 _

2
Sie wirken in dieser Verformung auf das Tragwerk in den Punkten A’B’'C'D’
mit den Querkriften Q und den Momenten M; das gesamte hierdurch von den

verbogenen Streben auf den Triger ausgeiibte Moment ist:

NI:—?Q%+2§U€

. 4-6-Elq ¢ 2.2EJ; o
dabei ist Q= — 9 W—T 5
M 8EJd SEJd CoS a
— T a4 T a2

Die Streben liefern also einen Gesamtbeitrag zum Biegungswiderstand, d. h. dem
Tragheitsmoment des Tragwerkes:
J'a =8J4cosa=J, 4)
Das ist der vierfache Widerstand, den zwei gekreuzte, in der Mitte nicht ver-
bundene Streben liefern wiirden.
Es ist alo das gesamte Tragheitsmoment des Tragwerkes:

Jo=Ji+Jo+Ju+8Jq4cos a, . (3)
wobei J; nach Gleichung 1 bezw. 3 zu bestimmen ist. Entsprechende Begriffe
legen wir beziiglich der Querkraft fest.

Der Verschiebung der beiden starren Pfosten um Eins (Fig. 16) setzt das ge-
samte Tragwerk den Widerstand K. entgegen.
Die Verlingerung der beiden Streben ist dabei:

A=-+1-sina;

also die Strebenkraft D =+1 EF, smaa e
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Die lotrechte Seitenkraft beider Streben zusammen ist also

Kf =1 2_Sin2 a (;OS_GE& (6)

d. h. der Querwiderstand des FFachwerkes mit massenlos gedachten Stiben; die
Gurtstibe bleiben spannungslos.
Infolge der Verbiegung der beiden Gurtstibe entsteht ferner:

Ko+ Ky =1 %;:_”E (7)
Die Verbiegung der beiden Streben, deren Enden sich gegen die Stabachse
m { o verdreht haben, liefert an Querwiderstand

Ky =124 EJSSC—OS—SE. (8)

Also ist der gesamte Querwiderstand des Tragwerkes

Jo+Ju+2J3cos® a
2

a

Ktsz-|—K0+Ku-|-Kd:lgaE[Fdsinzacosa—i-G } (9)

Bemerkt sei hier, da3 bei normalen Ausfiihrungen, wie etwa die Weseler
Rheinbriicke, durch den Biegungswiderstand der Gurtstibe und Streben, der
Querwiderstand des Tragwerkes sich um etwa 13 0o erhoht; es ist also nicht
ohne weiteres angiingig, hier die Steifigkeit der Stibe zu vernachlissigen. Die
Erhohung des Tragheitsmomentes des gesamten Tragwerkes durch den Biegungs-
widerstand der Stibe ist jedoch gering und bleibt unter 1 0/.

2. Die Einfluflinien fiir das Hauptsystem.?

a) Die Einfluflinien der Gurtstabkrifte.

Die Einflufilinie des Obergurtstabs ist bestimmt durch die Biegelinie des
Lastgurts (Untergurt), welche infolge Verlingerung des Obergurtstabes um
Eins entsteht. Wir verlingern den Obergurtstab um Eins (Fig. 17) indem wir
thn in der Mitte durchschneiden und durch eine Kraft X um Eins auseinander
treiben. Dann entstehen, wenn wir zunichst den Biegungswiderstand der Stibe
vernachlissigen, die in die Figur eingetragenen Stabkrifte. Unter dem Einfluf3
der Kraft X, die bei gleichen Querschnitten Ober- und Untergurtstab um das-
selbe Maf3 verkiirzt, verdrehen sich die beiden Pfosten gegeneinander um den
Winkel — —1141. Damit wire die Einfluf3linie fiir O fiir das reine Fachwerk

bestimmt.
Da jedoch die verbogenen Gurtstibe und Streben eine Gegenwirkung ausiiben,

. . . 1 .1 . .
wird der Drehwinkel kleiner als T er sel Daraus folgt ohne weiteres mit

Bezug auf Gleichung 1, 3 und 5:

Jg
_—a 10
b=y~ (10)

7 Vergleiche zu der hier allgemein angewandten Darstellungsweise der Einflufilinien den Auf-
satz des Verfassers in ,,Der Stahlbau‘’ 1933, Heft 2.
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Die Einflufilinie fiir den Obergurtstab O ist also durch den Drehwinkel % u
gekennzeichnet und hat die in Fig. 11b dargestellte Form; ganz entsprechend
ergibt sich die EinfluBlinie fiir den Untergurtstab U nach Fig. 1lc.

Haben aber Ober- und Untergurtstab verschiedene Querschnitte, so ist der
Drehwinkel nicht mehr von X unabhingig, da Ober- und Untergurt zwar die-
selben Stabkrifte X, aber infolgedessen verschiedene Dehnungen erfahren.

Da die duflere Kraft X den durchschnittlichen Obergurtstab um eins aus-
einander treibt, ist nach dem Clapeyron’schen Theorem

X2 Xz
EF, +EFu+ EFy cos® o’

da der Wert X = o, der die Gleichung befriedigen wiirde, keine Bedeutung hat,
ergibt sich

1-X=

EF, Fl1
' - 9F,F, )
(FO+F +F cos® a

Damit ist die gesamte Verlingerung des Obergurtstabes

X=1-

Xa
Ao — 1 b ﬁq;,
die Verkiirzung des Untergurtstabes
A — — Xa
u — EFus
also der Drehwinkel
n - 0o FO - Fu
FutFot 2 4 cos’
Wir setzen den Klammer-Ausdruck = v, und schreiben:
o= — Ly (11)
' o — — h Yoo |
Fir den Untergurtstab gibt eine entsprechende Ableitung den Beiwert
. FO + FU
va=1+4—- 9F, F, (12>

ll+F0+ F C053

1
&u = + F Yu. (13)
Die beiden EinfluBlinien sind in Fig.llld—e dargestellt; der stirkere Gurt be-

kommt natiirlich auch die grofiere Stabkraft.

b) Die Einfluflinien der Streben.

Die Einflufilinie der Strebe CB (Fig. 18) ermitteln wir als Biegelinie des
Untergurts, die durch Verlingerung der Strebe um Eins entsteht. Unter An-
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nahme massenloser Stibe erzeugt eine die durchschnittene Strebe um Eins aus-
einandertreibende Kraft X, die in der Figur eingetragenen Stabkrifte. Abgesehen

von dieser Verlingerung Eins, verkiirzen sich beide Streben um dasselbe Maf3,

1

was eine lotrechte Verschiebung der starren Pfosten gegeneinander um S sin a

verursacht; dadurch entsteht die in Fig. 11f dargestellte Biegelinie des Unter-
gurtes und damit die Einfluflinie fiir die Strebe. Infolge des Biegungswieder-
stands der Gurtstibe und Streben verringert sich jedoch die lotrechte Verchie-

. . . 1
bung der Plosten gegeneinander: sie sei 5o g ™
Dann ist:
n =% (Gleichung 6- 9). (14)
t

Daraus ergibt sich die EinfluBlinie Fig. 11f.
Haben nun Ober- und Untergurtstab verschiedene Querschnitte, so entsteht
wegen ihrer ungleichen Lingeninderung bei gleicher Stabkraft 4 X cos @ auch

a7t
\ Lese Z5mal
.
S,\‘\\ //V
¥ A
E 47 5
x g
* X
+
// ':v
A \
Fig 18 i NN
e
1
*p \| 777z #
COJ‘ P, I
Fl E]
A "';3' P I/
| 1q
N 'R.:.g. ’/13
Y41
/ .
Ny Fig. 17—22.
|
7 | /?1 \}q
Z \ I 1 \
; \ /}/4@ \{éa
= 1
V2N NEQ Fg0 TN
AN —_—-
~—— \\ 1.—6
Mol Mor
AN 3_.'._Q._.Ia Mo My,
I 3 Y
la NS .!a: 4"&
| N ! /
1 \YOZ4K: 1,
| g ' 2
l /, =y 3 Mak
i / \“’? TI 4
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,/ fig 2t Moty Mdry
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noch eine Drehung der starren Pfosten gegeneinander um den Winkel &, der
sich in diesem Falle entsprechend der Gleichung 10 ergibt:

F,—F,
$— . (15)

h[Fu+Fo+ Jcosa

F cos® a

Hiernach ergibt sich die Einfluf3linie Fig. 11g.

¢) Die Einfluflinien fiir die Eckmomente der Stdibe.

Die Einfluflinie fir das rechte Endmoment des Obergurtstabs (Fig. 19) er-
mitteln wir als Biegelinie des Lastgurts, die durch Knicken des Stabes an seinem
rechten Ende um den Winkel Eins entsteht. Durch die Knickung entsteht im
Stabe eine Querkraft

bEJ

sie bedingt eine Verschiebung der starren Pfosten senkrecht gegeneinander um

dor=1 I? (K, siehe Gleichung 9)
t
6EJ,
dor =+1 K, (16)

Ferner wirkt im lotrechten Schnitt unmittelbar rechts von O ein dem Sinn des
Uhrzeigers entgegengesetzt drehendes Moment

EJ,

a

M=—

und im Schnitt unmittelbar links von O das umgekehrte Moment

1\/I=+ E:O;

dadurch entsteht im Triiger ein positiver Drehwinkel der beiden starren Pfosten
gegeneinander

Ma
3'Ol‘ - EJt
JO -
OdeI‘ ‘8’01‘ = + T (1 ‘)
Jt

Die durch die Verschiebung & und die V_erdrehung ¥ bedingte Einflufilinie
fir M, ist in Fig. 11 h veranschaulicht.

Die Einflufilinie fiir das Moment am oberen Ende der nach rechts steigenden
Strebe My, ermitteln wir als Biegelinie des Lastgurts, die durch Knicken dieses
Stabes am oberen Ende um den Winkel Eins entsteht (Fig. 20).

Hierdurch wird aber nun zunichst das Kreuz in O belastet mit einem Moment
4EJacosa
a 3

es dreht sich unter dem Einfluff dieser Momentbelastung entgegen dem Sinn
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des Uhrzeigers um den Drehwinkel e wobei die Streben die punktiert gezeich-

nete zusilzliche Verbiegung erleiden. Dann ist der Punkt O mit einem Moment

nicht mehr belastet, denn jede der vier verbogenen halben Streben belastet ihn
EJ co

mit + acosa

Bei dleser Verformung entstehen, sowohl in einem Schnitt rechts als links von
O, also im ganzen Feld, die in der Fig. 20 gekennzeichneten Querkriifte, wobei

24 EJ, cos? a

Q
o . ) Q Q (\)
nimlich rechts: Q—2 8 4 4 6 EJ4cos®a
- .z
links: 2. 9 — (5‘ % ] "

Das bedingt eine Verschlebung der starren Pfosten gegeneinander um

6 EJ; cos®
bdm:"‘_—;Kt a- (l8>

Ferner greift am lotrechten Schnitt unmittelbar rechts von O in O ein entgegen-
gesetzt dem Uhrzeigersinn drehendes Moment an
M — __4EJd cos o +2EJdcosa:_2th cos o

a a a

und 1m lotrechten Schnitt unmittelbar links von O

EJ4 cos a
. )

M=42

Diesem Moment muf3 ein durch Verbiegung des ganzen Trigers erzeugtes,
entgegengesetztes Moment entgegenwirken; dazu ist ein Drehwinkel des Trigers
erforderlich von:

Ma  2Jqcosa

tdro = ‘E—Jt - _Jt—*ﬁ (19)

Die durch die Verschiebung ® und die Verdrehung ¢ bedingte Einfluf3linie
fir Mg, ist in Fig. 111 veranschaulicht.

Die Einfluflinie fiir das Eckmoment derselben Strebe unmittelbar rechts
von O ermitteln wir als Biegelinie des Lastgurts, die durch Knicken dieses
Stabes in K um den Winkel Eins entsteht (Fig. 21). In entsprechender Weise

8 EJjgcosa

wie vorhin bedingt hier die Belastung des Kreuzes in O mit - e die
zusitzliche, punktiert dargestellte Verdrehung dieses Kreuzes um den Drch-
winkel e wobei wiederum das Kreuz bei O mit Momenten nicht belastet ist.

In entsprechender Weise wie vorhin ergibt sich jetzt: Q = o; daher auch

6dk = O. l\20>
66*
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Unmittelbar rechts bezw. links von O greifen jetzt die Momente an

M:ié_l*_:.]d cos a

a

Diesem Moment mufl ein durch die Biegung des ganzen Trigers erzeugtes
Moment entgegenwirken; dazu ist ein Drehwinkel des Trigers erforderlich:

4EJq cos a 1)
Ji

Sehr interessant ist dabei das Ergebnis, dafl der die Einflufilinie fiir Ma
erzeugende Drehwinkel & nach Gleichung 21 doppelt so grofy ist und entgegen-
gesetztes Vorzeichen hat, wie der die Einflufflinie fiir My, erzeugende Dreh-
winkel nach Gleichung 19. Das entspricht nimlich genau der’ aus reiner Ver-
drehung, also reiner Momentbelastung nach Fig. 15 ermittelten Verbiegung der
Streben. Ferner geht aus der Fig. 16 ohne weiteres hervor, daf3 bei reiner
Paralleleverschiebung der starren Pfosten kein Moment My auftritt; infolge-
dessen kann auch umgekehrt (Mazwell’scher Satz) eine Knickung der Strebe un-
miftelbar rechts von O nach Fig. 21 keine die Pfosten parallel verschiebende
Querkraft erzeugen, was durch die Gleichung 20 bestitigt wird.

Einer besonderen Bestimmung der Einflulinien fiir die iibrigen Stabend-
punkte bedarf es nicht, denn mit den Bezeichnungen der Fig. 22 ergibt sich
nach den Fig. 15 (Momenten-Beanspruchung) und Fig. 16 (Querkraft-Bean-
spruchung) ohne weiteres das Vorzeichen der Werte d und & in den einzelnen
Fillen; es ist nidmlich

Pk =

fir or \ ol ur ul dro dio dru dia di

22
s |+ 1=+ -|+]-1+1=]. &
S R T e e e

Damit sind alle Einflufilinien fiir das als Hauptsystem gewihlte Tragwerk
(Fig. 11a) mit starren, in den Knoten biegungsfest angeschlossenen Hilfs-
pfosten ermittelt.

Fir diese grundlegenden Einflufilinien wurde verschiedene Ausbildung von
Ober- und Untergurt in Bezug auf Querschnitt und Trigheitsmoment bertick-
sichtigt. Fiir die im folgenden zu ermittelnden Korrekturen dieser Einfluf3linien
wird hierauf jedoch verzichtet und Symmetrie zur wagrechten Tragerachse
angenommen, um das Verfahren nicht zu umstindlich zu gestalten. (Wir legen
dabei aus besonderen Griinden die Abmessung des der Fahrbahn ferne liegenden
Gurtes fiir beide Gurtungen zu Grunde.) Eine einfache Moglichkeit, die fiir
Unsymmetrie erforderlichen Verbesserungen nachtriglich anzubringen, wird zum
Schluf$ als Anndherungsverfahren angegeben werden.

3. Die Auflosung der starren Anschliisse der Hilfspfosten in gelenkige
Anschliisse.

Sind die eingebauten Hilfspfosten des Tragwerkes (Fig. 11a) nicht biegungs-
fest, sondern gelenkig an die Knoten angeschlossen, so werden sich bei den
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einzelnen Verbiegungen des Triigers (Einflullinien) die Knoten um gewisse
Drehwinkel gegen die Achse der starren Pfosten verdrehen, und zwar im allge-
meinen in demselben Sinn, also antisymmetrisch zur wagrechten Trigerachse.
Es kann jedoch, unabhingig hiervon, auch eine Verdrehung der Ober- und
Untergurtknoten im entgegengesetzten Sinn, also symmetrisch zur Tréigerachse,
hinzutreten.

a) Antisymmetrische Verdrehung der Ober- und Untergurtknolen.

Verdrehen wir die Knoten o, und u. gegen die Achse des Hilfspfostens m
i demselben Sinn um einen Drehwinkel ¢ (Fig. 23), so entsteht, wenn wir
zuniichst die Knoten in lotrechter Richtung als unverschiebbar annehmen, die
Verformung der Fig: 23a, wobei wir die Mittelkreuze der Strebenkreuzungs-

punkie O, und O, ,, zunidchst unverdreht festhalten. Dadurch wird aber dieses
2EJq4

Kreuz belastet mit einem links drehenden Moment — — 2 —q ¢ Dieses Moment
2
. . . @ 1 : .
wird durch Linksdrehung des Kreuzes  um - ¢ ausgeglichen. Die Kreuze

4

drehen sich also um % ¢ und so entsteht die Verformung der Fig. 23b.

Vergleichen wir diese Abbildung mit den Fig. 19—20, so sehen wir, daf3
in den beiden Feldern die doppelte Verformung der Fig. 19—20 zusammen-
genommen eingetreten ist, in dem Feld m + 1 im entgegengesetzten Sinn. Daraus
folgt ohne weiteres mit Bezug auf die Gleichungen 16 bis 19, dal zum Aus-
gleich der durch die Verformung entstandenen Momente und Querkrifte fol-
gende weitere Verformungen notwendig sind:

_ o 6EJo+Ju)m , 12EJym cos® a
Feld m: el [ a* Ky + a’ Kim ] i

| (6Eo+Ju+2Jacos® a)m
=+1 a®- K P
(Jo+Ju+2Ja cos a)m

Tim ?

&m:"}"
Feld m + 1:

6E(J0+JII+2Jd cos® a)m+1(P

o) =—1
mt1 ath(m-f—l)

(Jo+Ju+2Ja cos a)m 41 "

P = —
= Ji(m+1)

Diese Verformung des Trigers ist in Fig. 23c¢ dargestellt. Links von m — 1
und rechts von m 4 1 schlielen sich die weiteren Felder natiirlich normal an
dic Pfosten an und es gelangen die Auflager-Punkte A und B nach A’ und B’;
nach Wiederherstellung der Auflagerbedingungen durch die Verbindungsgerade
A’ B’ ergibt sich die Verbiegung des Untergurtes, die durch den Drehwinkel
¢m = 1 d. h. durch den Zustand ,,¢, = 1% entstanden ist.

Bei diesem Zustand sind nun die Kreuze

omum, o (m—1)u (m—1), o (m+1) u (m+1)
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mit Momenten belastet, und zwar die oberen und unteren Kreuze gleich, da
wir Symmetrie voraussetzten.

Wir finden als Belastung eines jeden der Kreuze 0, und u,:
Aus Fig. 23a:

M __4E(Jom+J0(m+1)>_4EJdm+Jd(m+1)__6EJv
mm — 9 a h °
Aus Fig. 23b:
M — 4 JamtJam4n)cosa
a
Aus Fig. 23¢: (Mit Bezug auf die Fig. 15—16.)
E m
1\[’“mm — ; [Jom ¥m + Jo (m—+1) 8’(mﬁ-l) - 4Jdm cos a §2‘

S’m bm > bm
_“4Jd(m+l) Ccos a 2+1 +6Jom"{+b']0(m+1) _a+_1

+ 6 Jam %n cos® a '—‘BJO (m-+1) 6ma+10053 a].

Als Belastung eines jeden der Kreuze o (m — 1) und u (m — 1) finden wir:
Aus Fig. 23a:

1\Il(m —1) m = — g_Fi(;_Io_m
Aus Fig. 23b:

M 1y == EJdmaCOS a
Aus Fig. 23c:

E ] Om
NI”'(m——l)m = + ;[_ Jom ¥m + 4 Jam Cosa?m+6*]om—a“

+6Jam bj’" cos? aJ.

Endlich finden wir als Belastung eines jeden der Kreuze o (m+1) und u (m+1)

Aus Fig. 23a:
2EJo@m+1)

Mntym = — o

Aus Fig. 23b:
1““(m—}—l) m — +
Aus Fig. 23c:

EJd(m+1) CosS a
a

E c
M“I(m—i—l)m=;[_Jo(m—+—]){)’m+1+4Jd(m+1)COS(l m2+1
Om o) .
+6Jom+ :1 +6Jam+ m:l cos‘a}.
Die Gesamtbelastung der oberen und unteren Kreuze ist also:
Mpw =2 Mmnm+Mum+Mnm) (23)
Mo -npm=2M@m-1ym+M'@_nm+M"w-1m) (24)

Mu+1ym =2Mmtnm+M@tnm+ M@t 1m) (25)
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Betrachten wir nun in Fig. 17—18 die Verformungen, welche die Einfluf3-
linien des Hauptsystems als Biegelinien des Lastgurts verursachen, so finden
wir, dafl bei diesen Verformungen eine Grundbelastung der Knoten des ver-
formten Feldes besteht, welche wir mit M., bezeichnen wollen. Sie ist fiir
Unter- und Obergurtknoten gleich; fiir belde zusammen ist in Fig. 17 (Ein-
fluBBlinie fir den Obergurtstab):

Mom—1) = 2aE [J +Ju+2Jacosa) (wobei J,=1J,) (26)
\ Mom = — Mo @ — 1)- (27)
Bei der Verformung nach Fig. 18 (Einflufilinie fir die Strebe) ergibt sich:
6EJo+Ju) 1 12 EJa 1
Mo@—n =Mom = a 2sing " + a cos" “9sina (28)
3E

= sna M {Jo+Ju+2Jacos*a) (wobei wieder J, = J,).

Da nun bei Ersatz der biegungsfesten Einspannung der starren Pfosten durch

Gelenke Momente in diesen Gelenkpunkten nicht auftreten konnen, gilt nunmehr
in jedem Falle fiir jedes Punktpaar die Gleichung:

I\'Im.:(): Mom+ Mm(m—l) (Pm—l+ Mmm (Pm+ I\‘Im(m—+-1) Pm+1 (29)

Weitere Glieder konnen nicht auftreten. Wir haben also bei n Knotenpunkten
stets ein Gleichungssystem mit n unbekannten Drehwinkeln ¢., der Clapeyronschen
Form, beispielsweise fiir den Triger 11a fiir die Einflullinie der Strebe D:

P1 P2 P3 P4 Po Pe P

My, | My, I

M21 1\/122 1\'123
Mgy | Mgy | Mg, My (29a)

1\143 I\I“ NI_‘:) l\lm
My, | My, | M

tiki]

! Mg, | Mgs | My

Q| | | RO -

Jedem dieser Drehwinkel ¢., entspricht nun aber eine bestimmte Biegelinie des
Last-Gurtes (vgl. Fig. 23¢), nidmlich die mit ¢, multiplizierte Biegelinie, die
sich fiir den Zustand ¢, = 1 ergab. Diese 7 Biegelinien sind also zu den
durch Fig. 18 gegebenen Biegelinien des Lastgurts zu addieren, und wir haben
dann die EinfluBlinie fiir den Triger mit gelenkig angeschlossenen Hilfspfosten.

Zur Ermittlung der Einflufilinie fiir den Gurtstab O nach Fig. 17—11b dient

dasselbe Gleichungssystem: Es wiren als unabhingige Glieder in Spalte 3 und 4
dic Werte M,; und M,, nach Gleichung 26—27 einzusetzen.
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b) Symmetrische Verdrehung der Ober- und Untergurtknoten.

Handelt es sich aber nun um die Berichtigung der durch die Verformungen
nach Fig. 19, 20 und 21 bedingten EinfluBlinien, so bemerken wir, daf3 hier
Ober- und Untergurtknoten mit ungleichen Momenten belastet sind. |

Bei diesen Verformungen ergibt sich in allen drei Fillen aufler der gleichen
Belastung der Ober- und Untergurtknoten m — 1 und m, die wir mit M, 4,1
und M, bezeichnen, noch eine Sonderbelastung der oberen Knoten und zwar

in Fig. 19: Mm—1————2}iJo;

e li . (80)
in Fig. 20: My =— w‘;—c‘iﬁf‘—; (31)
in Fig. 21: Mp =+ 4ﬂ—“aws-l (32)

Diese Belastung zerlegen wir in antisymmetrische und symmetrische Be-
lastungen von Ober- und Untergurtknoten und setzen beispielsweise

fur _ 2 lzJo der Fig. 19

1. oben: — EI;IO; unten: — £l (Antisymmetr. Belastungsanteil)
2. oben: - EaJo; unten: EaJo (Symmetr. Belastungsanteil)
zusammen oben: — 2EJ°; unten: 0.

Die aus den antisymmetrischen Belastungsanteilen sich ergebenden Ver-
formungen sind nach dem unter a gegebenen Verfahren zu ermitteln. Zu den
symmetrischen Belastungsanteilen aber gehort, wenn wir Ober- und Untergurt-
knoten zusammenfassen wollen, auch symmetrische Verdrehung des Ober- und
Untergurtknotens (Fig. 24). Diese Drehwinkel bezeichnen wir mit . Fig. 24
zeigt im Gegensatz zu Fig. 23a, dafl die Mittelkreuze On_; und O, unbelastet
sind, also eine Verdrehung nicht erfahren, ferner, dafl Querkrifte und Momente -
in den beiden Feldern sich aufheben, also auch weitere Verschiebungen nicht
eintreten.

In diesem Falle bezeichnen wir Verdrehungen und Momentenbelastungen als
positiv, wenn sie das Obergurtkreuz positiv drehen oder belasten. Hierbei ergibt
sich nun ohne weiteres:

8E EJ,

Mum = — T[Jom‘l‘Jo(m-i-l) +2(Jam+ Jam4v) cos a| — 2 (33
4EJom

Mu -y =——"" (34)
4EJ,(m

M4 1ym = — ——@+D, (35)

a
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Die aus symmetrischer Belastung der Ober- und Uantergurtknoten sich er-
gebende Verformung ist also durch ein der Gleichung 29 entsprechendes
Gleichungssystem der Clapeyronschen Form gegeben, nimlich beispielsweise fiir
die Verformung nach Fig. 19:

\b1 lbz 11)3 1b4 lb:') 'bﬁ ¢7

1 M“. NIiQ i 1

2 My | My, | My
Elo

3 Mg, | Mg | My, B (36)
E

" Mg | My | Mg L

5 Mg, | My, | Mg

6 Mg, | Mgs | Mg;

7 Mi | My

wobei die abhingigen Beiwerte nach den Gleichungen 33 bis 35 und die un-
abhingigen Glieder nach (30) zu bestimmen sind.

So ergeben sich nun in diesem Falle 7 symmetrische Drehwinkel 1 ; aber zum
groflen Unterschied von den Drehwinkeln ¢ ergeben sie keine Verschiebungen
der Lastgurtknoten. Sie ergeben also (wenigstens wenn wir Belastungen nur in
den Knotenpunkten annehmen) keine Beeinflussung der Einfluf3linien.

Die abgeleiteten Ergebnisse gebrauchen wir jedoch im néchsten Abschnitt.
Wir haben also bisher die genauen Einflufilinien fiir das System mit gelenkig
eingefiigten starren Pfosten.

4. Entfernung der eingefiigten, starren Hilfspfosten.

Verlingern wir einen der starren Pfosten m, zunichst unter Beibehaltung
seiner starren Einspannung an beiden Gurten, um den Wert n, also nach oben

.o : : . g s
und unten um je - N so entsteht die Verformung der Fig. 25. Da in beiden

Streben Zug entsteht, entsteht in allen Gurtstiben Druck; sie verkiirzen sich
dementsprechend um die Werte Y und Y. Die Verbiegung der Streben hat
natiirlich weder auf die in den Streben und Gurtstiben entstandenen Lings-
sparmungen noch auf die Verschiebungen y urd ¥y’ einen nennenswerten Einfluf3.
Der Wert y wurde bereits in der unter 4. genannten Abhandlung ermittelt,
namlich in Gleichung 7.

Danach ist:

__ sinacos’a Fan
Y= 9(cos’ a Fam + Fom) (87)

Auf die Ableitung soll hier verwiesen werden. Dementsprechend ist

sin o cos® a Fd(m+])
g g 37a
T T 2(cos" aFam+ 1+ Fom+n) (872)
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Danach ergibt sich aus Fig. 25 die Verschiebung der Kreuzungspunkte der

Streben :
L

o= 2 +4 a
2Fqmcos® a4+ Fom) tga

4 (Fom + Fam cos® a)
und ganz entsprechende ® mit den entsprechenden Stabquerschnitten im Felde
m - 1.

Hiernach ergibt sich nun die Verschiebung der Endtangenten-Kreuze senk-
recht zu den Stabachsen:

Fir die inneren Strebenhilften im Feld m

oder: 5= (

(38)

6‘sina+—n—cosa

2
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und 1m Feld m + 1
b‘sina—|——g—cosa;
fir die dufBeren Strebenhilften:
(d—¥) sin a
beziehungsweise (&' —7v’) sin a

Daraus ergeben sich nun alle bei der Verformung (Fig. 25) entstandenen
Biegungsmomente der Stabenden, némlich im linken Feld:

Myp=— . 6Eon g Edom
2 a® a?
EJom
My, = —+ 3
EJum
A'\'Iur — + 3 u n
EJun
Mul — —3 a: n
: 2 39
Bezeich- Miro = — 24 EJd:; cos a (b sin o + _g‘ cos 0.) ( )
nungen My, = — My,o
siehe
Fig. 22 | Mara = — Mar,
Max, = + Maro
EJqm cos® .
Maro = Mg, = + 24 daz cos @ (d — vy)sina
My, = My, — — 24EJd:; cos’ a (6 — ) sin a

Die Stabendmomente im rechten Feld sind ganz entsprechend mit den Trig-
heitsmomentwerten im Feld m + 1; damit ergibt sich nun als symmetrische
Momentenbelastung der Kreuzpaare m, m — 1 und m + 1 fiir den Zustand
1 =: 1, wobei also in den Gleichungen 39 n = 1 zu setzen ist:

E
Mm_%—[?;(Jo(m_}_l)—Jom)—|—24Jd(m+1)cos a(b sin a + cosa) (40)
— 24 J4m cos®a (b sin o -l—% cos a)]
2E .
T\Im_lz-——[3J0m+24Jdmcos2 (6— 1) sinal (@)
2E
Mo 1 =— [3J m+1+ 24 Ja@+1) c0s* a (0 — ¥') sin a] (42)

Wenn wir jetzt diese Momentwerte nach Gleichung 40 bis 42 als unabhingige
Glieder, d. h. Belastungsglieder in die Gleichung 36 einsetzen, so erhalten wir
aus derselben die Knotendrehwinkel ¥, bis ¥, die sich nach Ersatz der Hilfs-
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pfosten durch Gelenke ergeben. Diese Verformung bezeichnen wir zum Unter-
schied von dem Zustand n, = 1 nach Fig. 25 als den ,,Zustand ¢, = 1“
(Fig. 26).

Zur Bildung des Zustandes T, — 1 wiirden wir also die Werte M, M, und
M; nach Gleichung 40 bis 42 in die wagrechten Reihen 4, 3 und 5 der
Gleichung 36 als unabhingige Glieder einzusetzen haben. Diese Zustinde ent-
sprechen nun genau der in der unter 4. genannten Abhandlung in Fig. 4 als
»Lustand T, = 1% bezeichneten Verformung. Die Krifte Rn., welche die jetzt
gelenkig angeschlossenen Hilfspfosten belasten, ergeben sich nun wie folgt:

Zunichst ergibt sich aus der Fig. 25, wenn wir m der Einfachheit halber
= 4 setzen, als Belastung der Pfosten 3, 4 und 5:

Pfosten 4: R44 — <D4+D5) T 6 E(Jo{‘l- Jos) . L
0

a’ 2a
3
— ﬁw (b, sin ot-’,—_i cos a)
'y
ﬁ'laﬂ (65 sin o -I— cos a)

Dabei sind die Werte D, und D; bereits durch Gleichung 10 genannte Ab-
handlung gegeben; nédmlich z. B.

1 sin q sin a cos® a Fa,
o - )
D=+ 2 Z(C:S o Fa, + F°4)EJd4cosa
| 6EJ,, 1
Pfosten 3: 1:\34——D4 sin o 4 — = YJoa 5a
48EJ, cos? a
+———7—— (0 — ) sina
6EJ 1
Pfosten 5: l}“ = — D, sin a+_a\’°()_5 G
48 EJ; cos®
+ 2= (8 — s sin .
Ist in Punkt 4 ein elastischer Pfosten vorhanden, so erhsht sich der Wert
EF,
Ro;4s noch um die Spannkraft dieses Pfostens — 1- N Nun entstehen aber

noch weitere Pfostenbelastungen durch die Drehwinkel ¥, wobei es aber unter
allen Umstiinden geniigt, die Belastung der Stibe m — 1, m und m 4- 1, in
unserem Falle also R;, Ry und Ry zu beriicksichtigen.

Dabei ist nun allgemein

E
Rm—ﬁT[ o+ (Pm + ¥m+1) — Jom (Pm 1+ Ym) (43)

-|— 4 (Jd (m+41) — Jdm) COS3 a ‘me]
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also

6 E -
I}“ = [Jos (by + 11’5) +Jos (g 4+ Oy) + 4 (Jas — Jay) cos® o 11’4_
E -
I:‘u = 6az : [Jo; (s + Vy) + Jog (0z + Ps) + 4 Jay — Jag) cos® @ 4’3_
. . H
l}m = O [Joe (‘1)5 + 11’6) + Jos (‘4’4 + lbs) +4 (Jag — Jus) cos® a 11’5;

Es ist ﬁun

Rag Io{M + E{“ Wir erhalten also, nach Ausscheidung sehr kleiner

R;, = Ry, + R;, | Belastungswerte, nur R-Werte, deren Zeiger sich
0 nicht mehr als um 1 unterscheiden.

Ry, = 13‘54 + %54

Belasten wir nun das Tragwerk in den Punkten m, und m, mit dem Lasten-
paar Eins (Fig. 26), welches wir natiirlich der Nullbelastung R., zuzihlen miissen,

0
so sind die durch dieses Lastenpaar Eins entstandenen Verformungen 7 durch

die Gleichung gegeben:
Plm=0—':le(m-—l) Z_m—l""Rmm Z,m+Bm(m—{-1) Cm—+—1 (44)

oder vollstindig in unserm Falle bei Belastung in den Punkten 4, und 4.:

41 [ Cs [ 49 [ 4]
1 Ry, ‘ Ry, |
2 Ry R, Ry
3 Rgs | Reg | Rgs | (44a)
4 Ris | Ry | Ry 1
5 1 Rys | Ris | Rgg
6 1 Res Res Rg;
7 1 - ‘ _R?s ‘ R:

\

Das Gleichungssystem 44 ist wiederum ein Gleichungssystem Clapeyronscher
Art. Es liefert uns, wenn wir den unabhéingigen Wert -~ 1 nacheinander in die
. wagrechten Spalten 1 bis 7 einsetzen, die durch Belastung der Punktpaare 1
bis 7 mit Lastpaaren Eins entstehenden Z-Werte.

Die sieben sich dabei ergebenden Biegelinien des Lastgurtes (Untergurt) sind
die EinfluBlinien fiir die 7 Werte 7; bis ;. Da nun jedem dieser Werte ¢
nach Fig. 26 ganz bestimmte Kraftgrofien-Werte fiir die Achsspannungen der
Stibe und der Stabendmomente der benachbharten Felder entsprechen, wobei wir
uns auf die beiden, links und rechts von dem betreffenden 7-Wert liegenden
Felder beschrinken konnen, ergeben sich fiir alle Kraftgrofien in einem Feld m
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zusitliche EinfluBlinien, deren Ordinaten 1 gegeben sind durch die Gleichung:

Nm = Mm —1%m —1+ Mm Cm- (45)

Diese ZusatzeinfluBlinien sind zu dem nach Fig. 11 gefundenen und durch
die sich nach Fig. 23e ergebenden Biegelinien bereits verbesserten Einfluf-
linien zu addieren; wir erhalten dann die endgiiltigen EinfluBilinien fiir alle
Kraftgrofien.

Nachzutragen bleibt noch eine Bemerkung iiber die auf Grund der Ver-
formungen der Fig. 19—21 gefundenen EinfluBlinien. Es ergab sich dabei
bekanntlich aufler der antisymmetrischen Belastung des Ober- und Untergurt-
knotens noch eine zusitzliche symmetrische Belastung, welche zuniichst eine
Verschiebung der Lastknotenpunkte nicht verursachte, solange die gelenkig
angeschlossenen Hilfspfosten noch vorhanden waren. Die sich durch diese sym-
metrische Belastung ergebenden Drehwinkel ¥ nach Gleichung 36 erzeugen jedoch
Belastungen dieser gelenkig angeschlossenen Hilfspfosten nach Gleichung 43,
. die, als unabhingige Glieder in das Gleichungssystem 44 eingesetzt, Werte fir
C; bis T; ergeben. Die hierdurch bedingten Biegelinien des Lastgurtes sind
zu den betreffenden Einfluflinien noch zu addieren. Eine antisymmetrische
Momentenbelastung dagegen, welche die Drehwinkel ¢ erzeugt, hat zwar eine
Verbiegung des ganzen Triger nach Fig. 25e zur Folge, aber keine Pfosten-
belastung, also keine Spreizungen.

5. Nachirdgliche Berichtiqung der Einflufilinien unsymmetrischer Triger.

Wir hatten die Einflufilinien des Hauptsystems unter Beriicksichtigung ver-
schiedener Querschnitte oder Trigheitsmomente des Ober- und Untergurtes er-
mittelt, bei der weiteren Entwicklung dieser Einflufilinien jedoch, die Un-
symmetrie nicht beriicksichtigt und jeweils die der Fahrbahn fern liegenden
Gurte zu Grunde gelegt und unter dieser Annahme die Biegelinie des Fahr-
bahngurts als EinfluBlinie ermittelt.

Ist nun in Fig. 27 die gestrichelte Linie die Einflu3linie des Hauptsystems,
die also mit Riicksicht auf die Unsymmetrie richtig ermittelt wurde, die punk-
tierte Linie die als endgiiltig ermittelte Einflufllinie ohne Beriicksichtigung der
Unsymmetrie, so ermittle man den Unterschied der Trigheitsmomente des
wirklichen Tragers J. und des angenommenen symmetrischen Trigers J..

Dann kann man sich vorstellen, daf3 man einen Triger von dem Trigheits-
moment J—J,, der also das Bestreben haben wiirde, der Biegelinie des Haupt-
systems zu folgen, gewaltsam in die Lage der punktierten Linie verbiegt. Er
wird dann das Bestreben haben, diese Gurtbiegelinie in die urspriingliche Lage
der Biegelinie des Hauptsystems zuriickzubiegen. Sind die Ordinaten der Einfluf3-
linie des Hauptsystems m,, die des symmetrischen Systems n, und die des
endgiiltigen Systems n, so wird angenihert die richtige Ordinate sich ergeben als

Js .
n="no+ (s —no) - (46)

Da der Unterschied zwischen J; und J; immer nur gering sein wird, so ergibt
sich, daf3 der unter Annahme der Symmetrie gemachte Fehler iiberhaupt stets
klein ist, seine Berichtigung nach dem hier angegebenen Anniherungsverfahren
also durchaus zuldssig ist.
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6. Ubersichtliche Zusammenfassung des Verfahrens.

. Ermittlungen der EinfluBlinien des Hauptsystems fiir die Kraftgrofien

(Fig. 11) durch Anbringung der der betreffenden Kraftgréfie entsprechen-

den Verformung , Eins“.

. Feststellung der durch diese Verformung entstandenen Momentenbelastung

der Knotenpunkte und Zusammenfassung derselben in antisymmetrische und
symmetrische Momentenbelastung der Ober- und Untergurtknoten (Gleichung
26 bis 28 und 30 bis 32).

. Darstellung der einzelnen (je 7) Zustinde ¢, = 1 und b, = 1 (Fig. 23

bis 24).

. Ermittlung der Beiwerte M. aus diesen einzelnen Zustinden (Gleichung 23

bis 25 und 33 bis 35).

. Aufstellung der Clapeyronschen Gleichungssysteme 29a und 36 aus den

nach 2. gefundenen unabhingigen Belastungsgliedern und den nach 4. ge-
fundenen Beiwerten der abhingigen Glieder.

. Auflosung dieser Gleichungssysteme, wobei sich die Knotendrehwinkel ¢

und ¥, ergeben. Damit ergeben sich auch nach Fig. 23c die zu jedem
der gefundenen Winkel ¢, gehorenden Biegelinien des Lastgurtes, die den
nach Fig. 11 gefundenen EinfluBlinien zuzuzihlen sind, wihrend die sym-
metrischen Drehwinkel ¥, keine Verschiebung der Lastgurtknoten herbei-
fihren.

. Darstellung der einzelnen Zustinde ,n. = 1 (Fig. 25); Ermittlung der

dabei entstehenden, in diesem Falle nur symmetrischen Momentenbelastungen
der Knotenpunkte; Einsetzen dieser Momentenbelastungen als unabhingige
Glieder in das Gleichungssystem 36; Auflosung desselben, wodurch sich
alle Knotendrehwinkel ., fiir jeden einzelnen Zustand nn, = 1 und damit
die Zustinde T, = 1 ergeben.

. Ermittlung der bei den einzelnen Zustinden C. = 1 entstehenden Be-

lastungen der Hilfspfosten.

. Anbringung von Einzellastpaaren in den einzelnen Knotenpunkten m als

Grundbelastungen des Systems.

Aufstellung des Gleichungssystems 44 fiir die einzelnen Einzellastpaare unter
Beniitzung der nach 8. und 9. sich ergebenden unabhingigen Glieder und
Beiwerte der abhingigen Glieder.

Durch Auflésung der 7 Gleichungssysteme 44 ergeben sich die den ein-
zelnen Einzellastpaaren entsprechenden Verformungen nach Beseitigung der
Hilfspfosten und damit die Einfluf3linien fir T; bis Z,.

Alle Kraftgrofien je eines Feldes werden als lineare Funktionen der beiden,
das Feld einschlieffenden T-Werte dargestellt und dementsprechend ihre
Zusatzeinfluflinien aus den Einflufilinien dieser beiden 7-Werte entwickel?

Fir die Einflufilinien der Stabendmomente, deren Verformungen auch sym-
metrische Knotenpunktbelastungen ergeben, werden noch nach Gleichung 44,
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die dadurch bedingten T-Werte ermittelt, und die auf die Verbiegung des
Lastgurts entfallenden Anteile der T den bisher gefundenen EinfluBlinien
zugezihlt.

14. Bei unsymmetrischen Tragern Verbesserung der gefundenen Einfluf3linien

nach Gleichung 46 (Fig. 27).

Zusammenfassung.

Nach einer Einleitung iiber die besonderen Eigenschaften des Rautentrigers und
iber den auffallenden Einflufl der Gurtsteifigkeit dieses Balkens, studiert der
Autor die schwierige Aufgabe, den Rautentriger als Tragwerk aus biegungsfest
verbundenen Stiben zu behandeln, unter Anwendung von nur drei sehr einfachen
Gleichungssystemen der Clapeyronschen Form, wobei zu beachten ist, dafy sich
in allen Fillen nur die unabhingigen Glieder, nicht aber die Beiwerte der ab-
hingigen Glieder der Gleichungssysteme éndern.
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