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V5
Die Bemessung der waagerecht ausgesteiften Steg*

bleche vollwandiger Träger.

Dimensionnement des ämes renforcees horizontalement dans
les poutres ä äme pleine.

Design of Horizontally Stiffened Web Plates of Plated Girders.

Dr. Ing. E. Chwalla,
Professor an der Deutschen Technischen Hochschule in Brunn.

/. Einleitung.
Wir untersuchen das Stegblech in einem der mittleren Felder eines vollwandigen

Trägers (Fig. la), dessen Belastung durch einen Bost von Fahrbahnträgern
übertragen wird und dessen Eigengewicht in üblicher Weise durch ein System
konzentrierter, an den Querträger-Orten wirksamer Kräfte ersetzt wird. Die Querkraft

Q ist dann innerhalb der Feldweite a eine konstante Größe und das
Biegemoment M wächst innerhalb dieser Feldweite linear vom linken Endwert Mi bis
auf den rechten Endwert Mr Mi -f- Q • a an.
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Fig. 1.

Die Beanspruchung
des Stegbleches in
einem mittleren
Trägerfeld.

Der Querschnitt des Trägers setzt sich im untersuchten Feld aus den beiden

Gurtquerschnitten Fco und Fgu sowie dem Stegquerschnitt Fst t • h zusammen

(Fig. lb) und weist bezüglich der Biegehauptachse das Trägheitsmoment
Jo auf; die größten im untersuchten Stegblech auftretenden Biegerandspannun-
gen betragen max ö Mr v2/Jo und min ö — Mr Vj/Jo Von den Gurtungen,
die mit dem Stegblech durch Nietung oder Schweißung verbunden sind, werden

waagerechte Schubkräfte auf das Stegblech übertragen, die wir innerhalb des

untersuchten Feldes längs der Nietrißlinie bezw. Schweißnaht gleichmäßig
aufteilen wollen; die Intensität dieser Verteilung besitzt dann die Größe t0 • t —
Q • Sgo/Jo und xu • t Q • Sgu/Jo, wobei Sgo und Sgu die statischen Momente



958 E. Chwalla

der Gurtflächen Fgo und Fgu bezüglich der Nullinie der Biegespannungen
bedeuten. Die Verteilung der Schubspannungen x längs der Stegblechhöhe h ist in
allen Querschnitten des untersuchten Feldes die gleiche (Fig. lb); der Größtwert

der Schubspannung wird in der Achse des Trägers erreicht und beträgt
h / tv 2\

max x c • Q/t. h, wobei c durch die Beziehung c =y- (Sgo + —£-) festgelegt

wird und zwischen 1,00 und 1,50 gelegen ist.1

Wollen wir eine örtliche Plastizierung des Stegbleches unter einer
vorgegebenen Belastung (bei Außerachtlassung der Spannungskonzentrationen an den

Nietlöchern) vermeiden und legen wir unserer Untersuchung die Plastizitätshypothese

der konstanten Gestaltänderungsenergie zugrunde, dann müssen wir die
größte innerhalb des untersuchten Feldes auftretende „Vergleichsspannung'' öy
V °2 4-3t2 berechnen und das Stegblech so bemessen, sdaß öy die Fließgrenze
öF des verwendeten Baustahls nicht erreicht. S/nd die Biegespannungen groß
im Vergleich zu den Schubspannungen, dann wird die Vergleichsspannung, die
nach der in Fig. lb dargestellten Kurve verteilt ist, an den Orten der Nietrißlinie

bezw. der Schweißnähte am größten. Sind jedoch die Biegespannungen klein
gegenüber den Schubspannungen, dann tritt der Größtwert max öy in der
Sclrwerachse des Trägers auf und beträgt im untersuchten Feld max öy

max t • Y'd c Y 3 • -, Im Falle einer beweglichen Belastung (Brücken- und

Kranbahnträger) hängt die einem untersuchten Stegblechelement zugeordnete
größte Vergleichsspannung von der Stellung des Lastenzuges ab; zur Bestimmung

der „ungünstigsten Laststellung" können wir uns der Einflußlinie
bedienen, die sich für die Größe d y2 (ö2 -f- 3 x2) mit Hilfe der bekannten
Einflußlinien für M und Q ermitteln läßt.

Neben der Frage der Vermeidung örtlicher Plastizierungen und der Frage
der Vermeidung unzulässig großer Pressungen an den Lochwänden der Halsniete

(welche Frage im Bereich der mittleren Trägerfelder mit Rücksicht auf
die relative Kleinheit der Querkräfte ausgeschieden werden darf) ist die Frage
der Stabilitäts-Sicherung von grundsätzlicher Bedeutung für die Bemessung
des Stegbleches. Um wiederholte Überanstrengungen des Trägers und seiner
Niet- oder Schweißverbindungen zu vermeiden, müssen wir ein Ausbeulen des

Stegbleches unter der Gebrauchsbelastung mit Sicherheit ausschließen. Die
theoretische Festlegung der Stabilitätsgrenze ist an eine weitgehende Idealisierung
des Stegbleches hinsichtlich seiner geometrischen und materialtechnischen
Eigenschaften, semer Lagerung und seiner Belastung gebunden, so daß wir uns
genötigt sehen, zur Deckung der unvermeidlichen Diskrepanz zwischen idealisierter
Voraussetzung und Wirklichkeit eine Beulsicherheitszahl Vb in Rechnung zu stellen.

Diese Beulsicherheitszahl bezieht sich auf die Bruttospannungen
(Spannungskomponenten ohne Rücksicht auf die Nietlochschwächung) und darf bei
sorgfältiger Ausführung fraglos kleiner als die durchschnittliche Knicksicherheits-
zahl vk gedrückter Stäbe gewählt werden, da das Tragvermögen umfangsgela-
gerter Bleche mit Rücksicht auf die mit dem Ausbeulen verknüpfte starke
Mittelflächen-Dehnung erst erheblich oberhalb der Stabilitätsgrenze erschöpft wird.

1 E. Chwalla: Der Bauingenieur, 17. Jahrg., 1936, S. 81.
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Zur Erhöhung der Stabilitätsgrenze pflegt man das Stegblech durch lotrechte,
waagerechte oder schräg liegende Steifen oder durch ganze „Steifen-Roste" zu
verstärken. Während in den Endfeldern des Trägers, wo die Schubspannungen
verhältnismäßig große Werte erreichen, vornehmlich lotrechte Steifen zur
Anwendung gelangen (bezüglich der Stabilitätstheorie des Stegbleches im Endfeld
vgl. die unter Fußnote 1 genannte Abhandlung), erweisen sich in den mittleren
Trägerfeldern waagerechte, auf der Biegedruckseite gelegene Steifen unter
Umständen als recht zweckmäßig. Die bei den weitgespannten, in den letzten Jahren
ausgeführten oder projektierten Vollwand trägem gewählten Stegblechstärken und
Aussteifungen wurden von Karner2 übersichtlich zusammengestellt; bezüglich
der umfangreichen, die Stabilitätstheorie dünner Bleche betreffenden Literatur
sei auf die unter Fußnote 1, 4 und 5 genannten Abhandlungen verwiesen.

//. Die Idealisierung der Stegblechtafel für die Stabilitätsuntersuchung.

Wir beziehen uns auf eine Stegblechtafel, die eine konstante Dicke t und eine

genau ebene Mittelfläche besitzt und aus einem homogenen, isotropen Werkstoff
besteht. Das auf das Stegblech entfallende, innerhalb der Feldweite a linear
veränderliche Biegemoment ersetzen wir durch ein konstantes Biegemoment und
die von der oberen und unteren Gurtung herrührenden, unter Umständen
verschieden großen Schubkräfte ersetzen wir durch die beiderseits gleich großen
Schubkräfte x • t, die wir uns unmittelbar an den beiden Längsrändern der
Stegblechtafel wirksam denken wollen. Die Biegespannungs-Nullinie liegt dann
in halber Höhe und die Stegblechtafel wird auf reine Biegung und reinen
Schub beansprucht (Fig. 2 b), wobei ö und x ohne Rücksicht auf die Niet-
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Fig. 2.

Verschiedene Fälle der idealisierten Plattenbelastung.

lochschwächung zu berechnen ist. Die größte innerhalb des untersuchten Feldes
auftretende Vergleichsspannung max öy möge unter der gesuchten kritischen
Belastung noch unterhalb der Proportionalitäts- und Elastizitätsgrenze des
verwendeten Baustahles gelegen sein, so daß sich der Stabilitätswechsel noch inner-

2 L. Karner: Abhandlungen der Int. Vereinigung für Brücken- und Hochbau, I. Bd., 1932.
S. 297.
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halb des Hooke'schen Bereiches vollzieht. Die Plattensteifigkeit der Stegblechtafel

beträgt dann

D üT<T^y <•>

wobei fi das Verhältnis der Querkürzung zur Längsdehnung bedeutet; für E
2100 t/cm2 und ju 0,3 gilt D 192,3 • t3 in tcm.

An den Rändern x 0 und x a denken wir uns die rechteckige Stegblechtafel

durch die lotrechten Steifen (Fig. la) seitlich festgehalten, jedoch frei drehbar

gelagert, da die Torsionssteifigkeit der lotrechten Steifen relativ klein ist
und auch durch das benachbarte Stegblech (das sich unter der in Rücksicht
gezogenen Belastung schon selbst in der Nähe seiner eigenen Stabilitätsgrenze
befindet) keine nennenswerte Einspannung erzielt werden kann; im übrigen ist
der Einfluß einer Einspannung der Schmalseiten, wie Schleicher3 gezeigt hat,
bei Plätten mit größeren Seitenverhältnissen a/h praktisch bedeutungslos.

An den Rändern y 0 und y h wird die Stegblechtafel durch die biege-
und torsionssteifen Gurtungen festgehalten. Zur Klarstellung des Einflusses, den
eine derartige Lagerung auf die Größe des Beulwiderstandes nimmt, hat der
Verfasser die Stabilität einer gleichmäßig gedrückten Rechteckplatte mit biege-
und torsionssteifen Randwinkelpaaren untersucht.4 Es zeigte sich hierbei, daß
innerhalb des Hooke'sehen Bereiches die seitliche Biegesteifigkeit B der
Gurtungen immer ausreichend groß ist, um praktisch wie eine starre Abstützung
des Plattenrandes (B oo) zu wirken. Wir können dies aus Fig. 3 und 4 er-

b(t

6.50

0.985 tm9)CT

i6010010

4008

B*1643tm2

($•3199 e*
av-o>

Fig. 3.

Das Ausbeulen von gedrückten, durch Randwinkel verstärkten Platten (vollwandige Druckstäbe).

sehen, in denen (ebenso wie auch in Fig. 5 und 6) auf der Abszissenachse das

Seitenverhältnis a/h der Platte und auf der Ordinatenachse die Beulziffer k, das

ist das Verhältnis der kleinsten kritischen Druckspannung zur Bezugsgröße

3 F. Schleicher: Mitteilungen aus den Forschungsanstalten des Gutehoffnungshütte-Konzerns.
Bd. 1, Heft 8, Nürnberg 1931.

4 E. Chwalla: Ingenieur-Archiv, Bd. V, 1934, S. 54.
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Öe
:t2D
h2T (2)

(Euler'sche Knickspannung eines Plattenstreifens der Breite „eins" und der
Länge h, beträgt für E 2100 t/cm2 und u- 0,3 einfach öe 1898 (t/h)2 in
t/cm2) aufgetragen wurde; die Kurven „a", „b" und „c" in Fig. 3, die sich auf
den Fall einer Gurtung mit relativ kleiner seitlicher Biegungssteifigkeit (B 164,5
tm2) beziehen, liegen nur unmerklich tiefer als die entsprechenden Kurven in
Fig. 4, die sich auf den Grenzfall B oo beziehen. Auch die Torsionssteifigkeit
T der Gurtungen ist in der Regel genügend groß, um innerhalb des Hookeschen
Bereiches eine verhältnismäßig starke Einspannung zu bewirken. Wir ersehen
dies aus den Fig. 3, 4 und 5, in denen sich die Kurven „c" auf den Fall einer

k-^?-

WT-tt)

6ß7

6,51

C (T' 0,985 tm1)

4008

JL B'

">>3400

9 (T-0)

4008

5,40
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C(T- 0,985tnV

4,00

a(T-O)

Fig. 4.

Das Ausbeulen von umfangsgelagerten,
durch Randwinkel verstärkten Platten.

Fig. 5.

Das Ausbeulen von umfangsgelagerten,
einseitig verstärkten Platten.

Gurtung mit relativ kleiner Torsionssteifigkeit (T 0,985 tm2) beziehen und
trotzdem nur wenig tiefer liegen als die Kurven ,,b", die dem Grenzfall unendlich

großer Torsionssteifigkeit T oo zugehören. Diese stark einspannende
Wirkung von Gurtungen mit verhältnismäßig geringer Torsionssteifigkeit ist der
relativ kleinen Länge der beim Ausbeulen des Stegbleches zur Ausbildung
gelangenden sinusförmigen Längswellen zuzuschreiben (in Fig. 3, 4, 5 und 6 bedeutet m
die Zahl dieser Halbwellen); denn den in der Längsrichtung aufeinanderfolgenden
Beulen des ausbeulenden Stegbleches sind abwechselnd positive und negative
Torsionswinkel zugeordnet, so daß die Gurtungen beim Ausbeulen des Stegbleches
innerhalb dicht aufeinander folgender Torsions-Nullstellen abwechselnd nach der
einen und der anderen Seite verdrillt werden müssen. *

Der Einfluß, den eine Einspannung auf die Stabilitätsgrenze einer Platte
nimmt, ist jedoch erheblich kleiner als der Einfluß, den eine Einspannung auf

61
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die Knicklast gedrückter Stäbe zu nehmen vermag. Wie wir in den Fig. 3, 4

oder 6 durch Vergleich der Kurven „a" (einspannungsfreie Lagerung der Plattenränder)

und „b" (starre Einspannung der Längsränder) feststellen können, ist
bei Druck- oder Biegungsbeanspruchung selbst durch eine starre Einspannung
und bei unbeschränkter Gültigkeit des Hookeschen Gesetzes nur eine
durchschnittliche Erhöhung der Stabilitätsgrenze auf das 1,7-fache zu erzielen;
derselbe Durchschnittswert wird auch im Falle reiner Schubbelastung erhalten.5 In
den meisten praktischen Fällen ist die durch die Einspannung des Stegbleches
erzielbare Erhöhung des BeulWiderstandes bedeutend geringer, da die unter der

Vb-fachen Gebrauchsbelastung auftretenden Verhältnisse in der Regel vom Idealfall

weit entfernt sind. Es ist daher zu empfehlen, bei der Stabilitätsuntersuchung
des Stegbleches die Längsränder zwar als seitlich festgehalten, jedoch als frei
drehbar gelagert anzunehmen. Für die wirksame Stegblechhöhe pflegt man

39,6

23,9

0.5 80

Fig. 6.

Das Ausbeulen von Platten,
die in ihrer Ebene auf

Biegung beansprucht werden.

anstelle einer ideellen (durch die gegenseitige Entfernung der Torsionsachsen der
beiden Gurtungen festgelegten) Höhe die effektive Höhe, bei genieteten Trägern
vielfach auch die zwischen den Nietrißlinien gemessene Höhe in Rechnung zu
stellen.

Wird nun die elastische Stabilität einer an allen vier Rändern frei drehbar
gelagerten Rechteckplatte im Fall reiner Biegungsbeanspruchung (Fig. 2 a) untersucht,

dann wird nach Timoshenko* die in Fig. 6 durch die Kurve „a" festgelegte

Lösung erhalten. Auf der Abszissenachse ist hier, wie schon erwähnt wurde,
das Seitenverhältnis a/h und auf der Ordinatenachse die Beulziffer k (das ist das
Verhältnis der kleinsten kritischen Biegerandspannung ök zur Bezugsgröße öe
gemäß Gl. 2) aufgetragen. Die dargestellte Kurve bildet die untere Berandungslinie
einer Schar affin verwandter Kurven, die nach dem Parameter m (das ist die

5 Vgl. die Zusammenstellung von O. S. Heck und H. Ebner: Luftfahrtforschung, Bd. 11,
1935, S. 211.

6 S. Timoshenko: Der Eisenbau, 12. Jahrg., 1921, S. 147.
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Zahl der in der Längsrichtung zur Ausbildung gelangenden, sinusförmigen
Halbwellen) geordnet sind. Der Kleinstwert der kritischen Randspannung beträgt
min ök 23,9 öe und wird bei Platten mit dem Seitenverhältnis a/h 0,667 • m,
m 1, 2, 3, erreicht. Für eine quadratische Platte, deren kritische
Randspannung die Größe ök 25,54 • öe besitzt, ist der Fall m 2 maßgebend.
Die dieser Stabilitätsgrenze zugeordnete Wölbfläche ist in Fig. 7 in Form
eines Schichtenplanes dargestellt worden. Die den einzelnen Niveaulinien
beigeschriebenen Koten stellen Verhältniszahlen vor und sind an der Stabilitätsgrenze
unendlich klein zu denken; am Ort x a/2 wird eine „Knotenlinie4' ausgebildet,
auf der jene Punkte der Plattenmittelfläche gelegen sind, die bei der Auswölbung
keine seitliche Ausbiegung erfahren.

1.52

'\\\V-»V///
W / I>/7\ \ ^

-0.8\ \ ' /-0.6

--Q4

-0.2-

^--0.05^--

Fig. 7.

Wölbfläche einer auf Biegung beanspruchten Quadratplatte.

Die Kurve „b" in Fig. 6 bezieht sich auf den Fall starr eingespannter
Längsränder, der von Nölke1 der Lösung zugeführt wurde. Die Beulziffer k und die
Halbwellerizahl m ist hier größer als früher; der Kleinstwert der kritischen
Randspannung beträgt min ök 39,6 • öe und wird bei Platten mit dem
Seitenverhältnis a/h 0,475 • m, m 1, 2, 3, erreicht.

Die Lösungskurven Fig. 6 lassen erkennen, daß lotrechte Streifen selbst dann
kein geeignetes Mittel zur Erhöhung der Stabilitätsgrenze darstellen, wenn sie

biegesteif genug sind, um eine lotrechte „Knotenlinie" an ihrem Wirkungsort
zu erzwingen. Es wurde daher von Timoshenko6 und anderen Fachleuten8
vorgeschlagen, die Erhöhung des Beulwiderstandes von Stegblechen, die vorwiegend
durch Biegungsspannungen beansprucht werden, mit Hilfe von waagerechten Steifen

durchzuführen, die auf der Biegedruckseite angeordnet werden. Da diese
Steifen mit dem Stegblech durch Nietung oder Schweißung verbunden sind,
erhalten sie angenähert die gleiche Druckspannung, die im Stegblech am Ort der
Steife wirksam ist. Im Rahmen der Stabilitätsuntersuchung müssen wir diese

7 K.Nölke: Der Bauingenieur, 17. Jahrg., 1936, S. 111.
8 Vgl. F. Schleicher: Der Bauingenieur, 15. Jahrg., 1934, S. 505; F. Wansleben: Der

Stahlbau, 8. Jahrg., 1935, S. 110; „Stahlbau-Kalender 1936", Verlag von W. Ernst & Sohn,

Berlin, S. 380, u. a. m.

61*
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Druckspannung, die die Wirkungsweise der Steife wesentlich beeinflußt, voll in
Rechnung stellen; hingegen ist eine Berücksichtigung der Längssteife bei der
SpannungsUntersuchung des Trägers nur in jenen Fällen ratsam, in denen die

Längssteife an den Orten der lotrechten Steifen keine Unterbrechung erfährt.
Die Steife kann auf einer oder auf beiden Seiten der Stegblechwand angeordnet

sein. Bei einseitiger Anordnung kommt beim Ausbeulen des Stegbleches anstelle
der Biegesteifigkeit der von der Platte losgelöst gedachten Steife die Biegesteifigkeit

einer ideellen Steife zur Geltung, die aus der einseitig liegenden Steife und
einem anschließenden Stegblechstreifen von bestimmter Breite besteht; die
Ermittlung der Breite dieses mitwirkenden Blechstreifens fällt in den Rahmen eines
bekannten elastostatischen Problems.9 Ist die Steife achsial nicht belastet (z. B.
bei versteiften Platten unter reiner Schubbelastung oder bei lotrecht ausgesteiften
Platten mit waagerechter Druckbelastung), dann existiert auch bei Platten mit
einseitig angeordneten Steifen eine „Stabilitätsgrenze mit Verzweigungsstelle".
Ist jedoch die Steife achsial belastet, dann ist die Frage nach der Existenz von
„Stabilitätsgrenzen mit Verzweigungsstellen" nur in jenen Fällen unmittelbar
zu bejahen, in denen die Steife beiderseits der Blechwand so angeordnet ist,
daß ihre Achse in die Mittelebene des Bleches zu liegen kommt.

///. Die Stabilität der waagerecht versteiften, auf Biegung in ihrer Ebene
beanspruchten Rechteckplatte.

Wir untersuchen eine Rechteckplatte von der Länge a und der Höhe h, die

an allen vier Rändern einspannungsfrei gelagert ist (Navier'sche Randbedingungen)

und in ihrer Ebene auf reine Biegung beansprucht wird. Die Platte ist durch
eine waagerechte Steife ausgesteift, die in der Entfernung 0,25 • h vom biege-
druckseitigen Rand gelegen ist und beiderseits der Blechwand so angeordnet sein

möge, daß ihre Achse in die Mittelebene der Platte zu liegen kommt (Fig. 2 c mit
t 0). Die Querschnittsfläche der Steife sei mit F, die bei Ausbiegungen senkrecht

zur Plattenebene zur Geltung kommende Biegungssteifigkeit mit EJ und
der Querschnittsträgheitsradius mit i \ J/F bezeichnet; um mit Verhältniszahlen

rechnen zu können, beziehen wir diese Festwerte auf entsprechende
Festwerte der Platte und gewinnen damit die Hilfsgrößen

b W T M' 7= Ki2(i-^)&- (3)

Der Verfasser hat die Stabilität dieser Platte unter Zugrundelegung des Energie-
Kriteriums untersucht10 und für den Fall a/h 0,8, F 0,12 th die in
Fig. 8 dick ausgezogene Kurve als Lösung erhalten. Die Kurve läßt erkennen,
wie die an der tiefsten Stabilitätsgrenze vorhandene Biegerandspannung ök
ansteigt, wenn die Biegesteifigkeit der Steife bei konstant gehaltener
Steifenquerschnittsfläche anwächst; auf der Abszissenachse ist das Verhältnis des Steifen-
Trägheitsradius i zur Blechdicke t und auf der Ordinatenachse ist die
Beulziffer k (Verhältnis der kritischen Randspannung ök zur Bezugsgröße öc gemäß
Gl. 2) aufgetragen.

9 Vgl E. Chwalla: Der Stahlbau, 9. Jahrg., 1936, S. 73.
io E. Chwalla: Der Stahlbau, 9. Jahrg., 1936.
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Der Kurvenast (I) ist jenen kritischen Gleichgewichtszuständen zugeordnet,
in denen die Steife beim Ausbeulen der Platte eine seitliche (nach einer Sinuslinie

erfolgende) Ausbiegung erfährt. Ist i/t zufällig gleich (i/t)Q 0,847,
dann wird hier ein Sonderfall erreicht, der dadurch gekennzeichnet ist, daß
die von der Platte losgelöst gedachte Steife im kritischen Zustand an die

(der Halbwellenzahl m 1 zugeordnete) Euler'sche Knickgrenze gelangt und
daher das Ausbeulen der Platte weder im günstigen noch im ungünstigen
Sinne zu beeinflussen vermag; die kritische Randspannung der Platte beträgt
hier nämlich ök k • öe 24,47 • öe, so daß auf die Steife im kritischen

ßj, i

A OSOk
m-3

100
0,5h (I)

0,8h

50-

X (I)
6-0.12*T25

- 0,8h -

\0,345 \0,W 2,620 2,780

Fig. 8.

Die Abhängigkeit der
Beulspannung von der
Biegesteifigkeit der
waagerechten Steife.

Gleichgewichtszustand die Druckspannung 0,5 • ök 12,24 • öe entfällt, die,
wie man sich leicht überzeugt, mit der Euler'schen Knickspannung der
isoliert gedachten Steife übereinstimmt. Da die untersuchte Platte mit Rücksicht

auf das kleine Seitenverhältnis auch im unausgesteiften Zustand nach
m 1 Halbwellen ausbeulen würde, ist die in unserem Sonderfall gefundene
Beulziffer k 24,47 mit der für die unversteifte Platte geltenden Beulziffer
(Theorie von Timoshenko)6 identisch; die versteifte Platte verfügt hier über
genau denselben Beulwiderstand wie die unausgesteifte Platte.

Wird die Querschnittsform der Steife bei gegebener Querschnittsfläche
F 0,12 • th so gewählt, daß die Verhältniszahl i/t > 0,847 wird, dann vermag
sich die Platte an der Steife abzustützen; der Beulwiderstand der Platte erfährt
hier die durch die Kurve (I) festgelegte Erhöhung. Wird die Form des
Steifenquerschnittes hingegen so gewählt, daß trotz der vorhandenen großen
Querschnittsfläche F 0,12 • th die Verhältniszahl i/t < 0,847 wird, dann stützt
sich die gedrückte Steife an der Platte ab: im Grenzfall i/t 0 (Aufteilung
der Steife in eine Reihe dünner Lamellen, die beiderseits der Blechwand
flach am Blech anliegen) würde hier die Stabilitätsgrenze der Platte bis auf
ök — 16,385 • öe heruntersinken und damit um 33 o/0 tiefer als die Stabilitätsgrenze

der unversteiften Platte liegen.
Wächst it bei festgehaltenem F 0,12 • th stark an, dann wird ein Grenzfall

erreicht, in welchem an der Stabilitätsgrenze zwei verschiedene Wölbformen
existieren und die Platte daher die Möglichkeit hat, unter derselben kritischen
Belastung entweder nach der •einen oder nach der anderen Wölbform
auszuheulen. Die schon erwähnte Wrölbform (I) weist im Längsschnitt einen
sinusförmigen Verlauf auf (Fig. 9), so daß die Steife beim Ausbeulen nach einer



966 E. Chwalla

Sinushalbwelle verbogen wird; die in der ausgebeulten Platte aufgespeicherte
potentielle Energie setzt sich hier aus der in der ausgebogenen Platte und der
in der ausgebogenen Steife aufgespeicherten Energie zusammen. Die Wölbform

(II) zerfällt hingegen in eine Anzahl kleinerer Beulen und ist dadurch
gekennzeichnet, daß am Ort der Steife eine waagerechte „Knotenlinie" zur
Ausbildung gelangt, so daß die Steife an der Stabilitätsgrenze keine seitliche
Ausbiegung erfährt (Fig. 10); die in der ausgebeulten Platte aufgespeicherte potentielle

Energie besteht hier nur aus der in der ausgebogenen Platte
aufgespeicherten Energie, doch ist der Betrag dieser Energie ein verhältnismäßig

a -a

14.0

12,0

mo

4,0

QO

H25
0.2-'

Fig. 9.

Wölbfläche einer waagerecht

ausgesteiften, auf
Biegung beanspruchten
Platte; Wölbform I.

großer. Der erwähnte Grenzfall, in welchem beide Auswölbungsformen energetisch
gleichwertig werden, so daß beide Formen unter derselben kritischen Belastung
zur Ausbildung gelangen können, wird bei der untersuchten Platte (a/h 0,8,
F 0,12 • th, vgl. Fig. 8) für i/t (i/t)i,n 2,780, k 101,85 erreicht.
Die dieser Stabilitätsgrenze zugeordneten beiden Wölbflächen sind in Fig. 9
und 10 in Form von Schichtenplänen dargestellt worden. Die den einzelnen
Niveaulinien beigeschriebenen Koten sind auch hier wieder nur als Verhällnis-
zahlen aufzufassen und die Absolutbeträge der Auswölbung sind an der
Stabilitätsgrenze unendlich klein zu denken; neben den beiden Schichtenplänen wurden
die Querschnitte a—a der Wölbflächen zur Darstellung gebracht.

Der Sonderwert (i/t)i,n hängt allgemein vom Seitenverhältnis der Platte und
von der Hilfsgröße b F/th ab und nimmt mit b zu. Er ist, wie wir im Rahmen
der Untersuchung eines ähnlichen Belastungsfalles (Fig. 15) zeigen werden, an
einen Höchstwert max (i/t)i,n gebunden; führen wir die waagerechte Steife
derartig biegesteif aus, daß i/t > max (i/t)i,n ist, dann vermag sie bei Platten
mit beliebig großem Seitenverhältnis im kritischen Gleichgewichtszustand die

Ausbildung der Wölbform II zu erzwingen.
Die der Wölbform (II) zugeordnete Beulziffer beträgt, wenn wir den

Torsionswiderstand der Steife grundsätzlich vernachlässigen, k 101,85 und ist 4,16-mal
so groß wie die Beulziffer der unversteiften Platte. Die Zahl der in der
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Längsrichtung zur Ausbildung gelangenden sinusförmigen Halbwellen beträgt
m 3 (vgl. Fig. 10), doch würde der Beulwiderstand im Falle m 4 nur
unbedeutend größer (k 103,49) sein. Da die Wölbform (II) am Ort der
Steife eine waagerechte „Knotenlinie" aufweist, ist die Beulziffer k 101,85
von der Biegesteifigkeit EJ der Steife und damit auch vom Werte i/t unabhängig;
jede Steife, für die sich i/t ^ (i/t) i,n ergibt, vermag diese waagerechte „Knoten-
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Wölbfläche einer waagerecht ausgesteiften, auf Biegung beanspruchten Platte; Wölbform II,

linic" in der Wölb fläche zu erzwingen und wirkt daher ebenso wie eine „unendlich

biegungssteife" Steife.
Unsere Untersuchung bezieht sich, wie ausdrücklich vermerkt sein möge, bloß

auf die Grenze der elastischen Stabilität, also bloß auf die Ausbildung
unendlich wenig ausgebeulter Gleichgewichtsformen. Die Frage, wie sich
die Wölbform im Zuge einer überkritischen Belastung, also bei Biegerandspan-

nungen ö > ök weiter entwickelt, vermag unsere linearisierte Stabilitätstheorie nicht
zu beantworten. Auswölbungen mit endlich großem Auswölbungspfeil sind mit
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endlich großen Verschiebungen der Randpunkte in Richtung der ursprünglichen
Plattenebenc (senkrecht zur ursprünglichen Randlinie) verknüpft, so daß hier
die Problemlösung vornehmlich davon abhängen wird, ob und in welchem
Maße derartige Verschiebungen (das „Einziehen" der Randlinien) im untersuchten
Fall tatsächlich möglich sind. Diese Überlegungen sind nicht nur bei der
Beurteilung der praktischen Bedeutung der Wölbform II und des Grenzzustandes

i/t (i/t) i,ii sondern auch beim Vergleich der aus der linearisierten Stabilitätstheorie

abgeleiteten Ergebnisse mit experimentell erhaltenen Ergebnissen von
einiger Bedeutung.

IV. Die Beeinflussung der Stabilitätsgrenze durch zusätzliche Schubspannungen.

Das Stegblech eines vollwandigen Trägers wird nicht nur durch Biegungs-
sondern auch durch Schubspannungen beansprucht, die auf die Lage der

Stabilitätsgrenze und die Form der Wölbfläche merkbaren Einfluß nehmen
können. Es existiert hier eine „ungünstigste" Kombination der unter den
verschiedenen Laststellungen auftretenden Werte ö und x, die der tiefsten
Stabilitätsgrenze zugeordnet ist und im allgemeinen nur auf indirektem Wege
ermittelt werden kann. Praktisch pflegt man sich allerdings auf die
Berücksichtigung von bloß zwei Laststellungen (jener, für welche das Biegemoment
und jener, für welche die Querkraft im untersuchten Feld ein Extrem wird)
zu beschränken.

Das Stabilitätsproblem der in ihrer Ebene auf reine Biegung und reinen Schub

beanspruchten Rechteckplatte (Fig. 2 b) wurde für den Fall der einspannungsfreien

Lagerung der Plattenränder von Timoshenko11 und Stein11 der Lösung
zugeführt. Wir können diese Lösung in übersichtlicher Weise darstellen, wenn
wir außer dem Wertepaar ök, xk, das der Stabilitätsgrenze zugeordnet ist, auch
noch die Beulspannungen öko, xko berechnen, die für die untersuchte Platte
Geltung haben würden, wenn sie ausschließlich auf reine Biegung beziehungsweise

ausschließlich auf reinen Schub beansprucht wäre; die Verhältniszahlen
ök/<*u und Xk/xko bestimmen dann die Koordinaten eines Punktes der Kurve
ök/öko $> (tk/xko), die dem Parameter a/h zugehört und die Lösung des

Stabilitätsproblems für sämtliche Kombinationen der Größen ö und x festlegt.
Da ein Vorzeichenwechsel des Biegemoments oder der Schubkraft keinen Einfluß

auf die Stabilitätsgrenze nimmt, verläuft diese Kurve symmetrisch bezüglich

beider Koordinatenachsen und schneidet diese Koordinatenachsen an den

Stellen ök/öko 1,00 bzw. xk/xko 1,00 im rechten Winkel.
In Fig. 11 ist die von Timoshenko für den Fall a/h 0,5 und 1,00

gefundene Lösung in dieser Weise dargestellt worden. Die für die verschiedenen
Seitenverhältnisse erhaltenen Lösungskurven können wir im Rahmen praktischer
Anwendungen durch einen Kreisbogen mit dem Radius „eins" approximieren. Wir
brauchen dann bei der Bemessung des Stegbleches bloß die unter der vb-fachen

Gebrauchsbelastung auftretenden Bruttospannungen vb • ö, vb • x sowie die
gedachten Beulspannungen öko und xko zu berechnen; liegt der Punkt, der durch
das Koordinatenpaar vbö/öko, vbx/xko bestimmt ist, auf oder unterhalb des Kreis-

11 S. Timoshenko: Miscell. Papers pres. Amer. Soc. Mech. Engr.-Meetings 1933, Paper Nr. 3
und Engineering 138, 1934, S. 207; O. Stein: Der Stahlbau, 7. Jahrg., 1934, S. 57.
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bogens in Fig. 11, ist also vbö/öko < \ 1 — (vbx/xko)2, dann ist die gewünschte
Beulsicherheit näherungsweise gewährleistet. An Stelle des Kreisbogens können
wir zur Approximation der Lösungskurven auch ein dreiseitiges Polygon
verwenden ; wir haben dann vb • ö und vb • x so zu wählen, daß drei bestimmte,
den drei Polygonseiten zugeordnete Ungleichungen erfüllt werden.

Ist das Stegblech im Bereich der Biegedruckspannungen durch eine waagerechte

Steife verstärkt (Fig. 2c), dann wird sowohl der Bezugswert öko (den wir
uns mit Hilfe der im III. Abschnitt erwähnten Theorie ermitteln können) als
auch der Bezugswert xko (der mit Hilfe der von Timoshenko6 entwickelten
Lösung bestimmt werden kann) erheblich größer als früher. Die Kurve

W\—=--

Fig. 11.

Gegenseitige Abhängigkeit
der Beulspannungen bei

Biegungs- und
Schubbeanspruchung.

ök/öko O (xk/x^), die wir nunmehr erhalten, trifft zwar nach wie vor die
Koordinatenachsen an den Stellen ök/öko 1,00 bzw. xk xko 1,00, schneidet
jedoch die Abszissenachse nicht mehr stetig und unter einem rechten Winkel, da

die Stabilitätsgrenze mit Rücksicht auf die bloß auf der Biegedruckseite
angeordneten Steife nunmehr vom Vorzeichen des Biegemomentes abhängig ist.

V. Die Stabilität der gleichmäßig gedrückten, zusätzlich durch Schubspannungen
beanspruchten Rechteckplatte.

Wir untersuchen eine Rechteckplatte vom Seitenverhältnis a/h, die an allen
vier Rändern einspannungsfrei gelagert ist und durch gleichmäßig über die
Höhe h verteilte Normalspannungen ö sowie durch gleichmäßig verteilte
Schubspannungen x beansprucht wird (Fig. 2e). Das Stabilitätsproblem dieser Platte
wurde von Wagner12 und Wansleben8 unter Voraussetzung eines unendlich
langen Plattenstreifens näherungsweise gelöst und vom Verfasser10 für Platten
mit kleinem Seitenverhältnis untersucht. Ähnlich wie im IV. Abschnitt können
wir die gefundene Lösung auch hier in übersichtlicher Weise darstellen, wenn
wir außer dem Wertepaar ök, xk, das der gefundenen Stabilitätsgrenze zugehört,
noch die gedachten Beulspannungen öko, xko berechnen, die für die untersuchte
Platte gelten würden, wenn sie ausschließlich auf reinen Druck beziehungsweise

ausschließlich auf reinen Schub beansprucht wäre. Die Verhältniszahlen

!2 H. Wagner: Jahrbuch der uiss. Ges. für Luftfahrt, 1928, S. 113.
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ök/ök0, xk/xko bestimmen dann die Koordinaten eines Punktes der Kurve
ök/öko ^ (fk/xko), die dem Parameter a/h zugeordnet ist und die Lösung des

Stabilitätsproblems für sämtliche Kombinationen der Größen ö und x festlegt.
Da ein Vorzeichenwechsel der Schubkraft ohne Einfluß auf die Stabilitätsgrenze
ist, verläuft diese Kurve symmetrisch zur Ordinatenachse und schneidet die
Ordinatenachse an der Stelle ök/öko 1,00 im rechten Winkel; die Abszissenachse

wird an der Stelle xk/xko 1,00 stetig unter einem schiefen Winkel
geschnitten, da die Stabilitätsgrenze durch einen Vorzeichenwechsel der Normal-
spannung (Übergang vom Fall „Druck und Schub" auf den Fall „Zug und
Schub") geändert wird.

Die Wölbflächen, die an der Stabilitätsgrenze zur Ausbildung gelangen,
zerfallen bei Platten mit großen Seitenverhältnissen in eine Reihe von Beulen, die
durch „Knotenlinien" getrennt sind. Zum Unterschied von den in Fig. 3 bis

Fig. 10 dargestellten Lösungsergebnissen, die sich auf Platten mit linear über
die Höhe h verteilten Normalspannungen bezogen, werden bei Platten mit
zusätzlicher Schubbeanspruchung Wölbflächen ausgebildet, deren Längsschnitt nicht
mehr nach einer einfachen Sinuslinie verläuft und deren Knotenlinien nicht
mehr gerade sind; um diesen Unterschied hervorzuheben, wollen wir die Halb-
wellenzahl hier nicht mit m sondern mit m' bezeichnen. Die allgemeine
Bedingungsgleichung für das Erreichen von Grenzen der elastischen Stabilität
zerfällt hier (ebenso wie auch im Fall reiner Schubbeanspruchung) in zwei
voneinander unabhängige Beulbedingungen, von denen die eine den Wölbflächen
mit m' 1, 3, 5, und die anderen den Wölbflächen mit m' 2, 4, 6,

zugeordnet ist; je nach dem Seitenverhältnis der Platte und der Größe der
zusätzlichen Schubspannung führt die eine oder die andere auf die tiefste
Stabilitätsgrenze.

In Fig. 12 ist die Lösungskurve ök/öko ^ (xk/xko) für Rechteckplatten mit
dem Seitenverhältnis a/h 1,00, 1,60 und 3,20 dargestellt worden. Quadratische
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Platten beulen an der tiefsten Stabilitätsgrenze nicht nur im Fall reiner
Schubbeanspruchung (ök/öko 0) sondern auch im Fall „Druck und Schub" und
im Fall „Zug und Schub" nach einer Wölb fläche mit bloß einer Halbwelle aus,
so daß die Kurve ök/ök0 ^ (xk/xko) hier aus einem einzigen Ast (m' 1)
besteht. Bei Platten mit dem Seitenverhältnis a/h 1,60 wird im Fall reiner
Druckbelastung (xk xko 0) und im Fall kleiner zusätzlicher Schubspannungen
(x < 0,639 • xko, ö> 0,672 öko) eine Wölbfläche mit zwei Halbwellen maßgebend,
so daß sich die Kurve ök/öko ^ (xk/xko) aus zwei Ästen (m' 1 und m' 2)
zusammensetzt. Platten mit dem Seitenverhältnis a/h 3,20 bilden im Fall
reiner Druckbeanspruchung (xk/xko 0) oder im Fall kleiner zusätzlicher

Schubspannungen (x < 0,565 • xko, ö > 0,820 öko) eine Wölbfläche mit drei Halbwellen
und im Fall großer zusätzlicher Schubspannungen oder im Fall ,,Zug und
Schub" eine Wölbfläche mit zwei Halbwellen in der Längsrichtung aus, so daß
sich auch hier die Kurve aus zwei Ästen (m' 2 und m' 3) zusammensetzt.

Die Kurven ök/öko ^ (xk/xko) in Fig. 12 können, sofern wir uns auf den

Spannungsbereich — 0,40 < (ök/öko) ^£ + 1,00 beschränken und den Zerfall der
Kurven in einzelne Äste außer Betracht lassen, durch Parabeln vom Gesetz

— 1 — —) approximiert werden; ein derartiges Näherungsgesetz wurde

schon im Rahmen einer ähnlichen Stabilitätsuntersuchung (Ausbeulen eines

dünnwandigen Rohres unter achsialer Belastung und zusätzlicher Torsionsbeanspruchung)

in Vorschlag gebracht.13 Für % 2 erhalten wir eine quadratische
Parabel, die sich mit der dem Parameter a/h 1,00 zugeordneten Kurve ök/öu0

^ (^k/xko) praktisch vollständig deckt. Statt der Parabel kann zur Approximation
der Lösungskurven auch ein dreiseitiges Polygon verwendet werden; die
Bemessungsgrundlage wird dann durch drei (den drei Polygonseiten zugeordnete)
Ungleichungen festgelegt.

Ist a/h 1,6 und besitzt die Druckspannung die Größe ö 2,82 • öc, dann
tritt das Ausbeulen ein, wenn die zusätzlich vorhandene Schubspannung den Wert
x 4,47 • öe erreicht; da die Bezugswerte hier öko 4,20 • öe und xko 7,00 • öe

betragen, gilt ök/öko 0,672 und xk/xko 0,639, so daß wir in Fig. 12 auf
jenen Sonderfall gelangen, in welchem ein Ausbeulen nach zwei verschiedenen
Wölbflächen (m' 1 und m' 2) unter derselben kritischen Belastung möglich

wird. Diese beiden Wölbformen, die hier energetisch gleichwertig sind und
mit gleicher Wahrscheinlichkeit zur Ausbildung gelangen, sind in Fig. 13 a

und 13b in Form von Schichtenplänen dargestellt worden; die den einzelnen
Niveaulinien beigeschriebenen Koten sind auch hier wieder nur als Verhältniszahlen

anzusehen und die Absolutwerte der Auswölbung sind an der Stabilitätsgrenze

unendlich klein zu denken.

VI. Die Stabilität der gleichmäßig gedrückten, waagerecht ausgesteiften
Rechteckplatte.

Wir untersuchen die Stabilität einer Rechteckplatte vom Seitenverhältnis a/h,
die durch gleichmäßig verteilte Druckspannungen beansprucht wird und durch

13 F. J. Bridget, C. C. Jerome and A. B. Vosseller: Transactions Amer. Soc. Mech. Engr., 56,
1934, S. 569.
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eine waagerechte Steife verstärkt ist (Fig. 2f mit x 0). Die Steife sei beiderseits

der Plattenebene derartig angeordnet, daß die Steifenachse in die Mittelebene

der Platte zu liegen kommt; ihre Querschnittfläche sei mit F, ihre
Biegungssteifigkeit (bezogen auf Ausbiegungen senkrecht zur Plattenebene) mit EJ
und ihr Querschnitts-Trägheitsradius mit i \ J/F bezeichnet. Die
Stabilitätsuntersuchung dieser Platte, die wir Timoshenko6 verdanken, führt, wenn wir uns
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Fig. 13.

Wölbfläche einer auf Druck und Schub beanspruchten Platte.

mit einer praktisch ausreichend genauen Näherungslösung zufrieden geben und
die Hilfsgrößen

S-J- -M i
— 1/"" T u_^k rt _n»D _ a

°~ th' T_Dh' t — F 12(1 —u2)b' de' e_ h2t' Pl~ rah'

m=l,2, 3,

einführen, auf die verhältnismäßig einfache Beulbedingung

(1 + 4 b) • (k |3l2)2 - (k |V) • {4 Y + (1 + 2 b) ¦ [(1 + |V)' + (1 + 9 ß^)2]}
+ 2T[(l + ßl')2 + (l+9ß12)2] + (l + ß12)2-(l+9ßl2)2 0.

In Fig. 14 ist die Lösung, die wir für den Fall b 0,20 mit Hilfe der
Gl. 5 gewinnen, in Form einer nach dem Parameter y geordneten Schar von
„Berandungslinien" dargestellt worden. Die Wölbflächen, die diesen Lösungen

(4)

(5)
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zugehören und im weiteren als „Wölbformen I" bezeichnet werden mögen,
werden bei Platten mit großen Seitenverhältnissen durch lotrechte „Knotenlinien"
in eine Reihe von Beulen mit sinusförmigem Längsschnitt zerlegt; die für
die tiefste Stabilitätsgrenze maßgebende Zahl m der sinusförmigen Halbwellen
wurde den einzelnen Kurvenästen in Fig. 14 beigeschrieben.

Die tiefste Kurve in Fig. 14 bezieht sich auf den gedachten Grenzfall y 0,
in welchem der Querschnitt der Steife zwar den Flächeninhalt F 0,20 • lh
bebesitzt, die Querschnittsform aber derartig unzweckmäßig gewählt wird, daß die

H-
0.20

16,0

r*
2,85

Fig. 14.

Das Ausbeulen \on gedrückten,
waagerecht \ersteiften Platten.

Biegesteifigkeit EJ praktisch gleich Null ist (an der Platte flach anliegende
Lamellenpakete). Die unter Druckbelastung stehende „Steife" muß hier von der
Platte abgestützt werden, so daß die Beulziffer k kleiner als die der unversteiften
Platte (Kurve „a" in Fig. 4) wird. Ist hingegen der Querschnitt F 0,20 • th so

geformt, daß EJ und damit auch y verhältnismäßig groß wird, dann vermag die
Steife ihre Aufgabe zu erfüllen und die Platte an der Stabilitätsgrenze
abzustützen. Ähnlich wie in Fig. 8 kann jedoch der Beulwiderstand auch hier nicht
unbeschränkt gesteigert werden, da für alle y ^ yi,n an der tiefsten Stabilitätsgrenze

eine „Wölbform II" zur Ausbildung gelangt, die durch eine waagerechte,
am Ort der Steife auftretende „Knotenlinie" gekennzeichnet ist. Die Steife erfährt
hierbei keine seitliche Ausbiegung, so daß die der Wölb form II zugeordneten
Beulziffern von der Größe y unabhängig sind und auch durch die Anordnung
einer „unendlich biegesteifen" Steife nicht erhöht werden können. Die diesem
Grenzfall entsprechende Lösungskurve (höchsthegende Kurve in Fig. 14) kann
aus der Kurve „a" in Fig. 4 unmittelbar abgeleitet werden, wenn wir den

Torsionswiderstand der Steife vernachlässigen und beachten, daß die gegebene
Platte durch die waagerechte „Knotenlinie" in zwei gleichartig beanspruchte
Plattenstreifen der Höhe h/2 zerfällt, deren kleinste kritische Druckspannung

min ök 4,00 • ~rj-r- 16,00 • öe beträgt.
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Der Grenzwert yi,n hängt vom Seitenverhältnis a/h und von der Hilfsgröße
b F/th ab und ist an einen Höchstwert maxyi,n gebunden. In Fig. 15 wurde
die Abhängigkeit des Grenzwertes yi,n vom Seitenverhältnis der Platte für
Steifen mit b 0,20 und 0,05 graphisch dargestellt; der nach Erreichen
der ersten Maximalstelle auftretende wiederholte Abfall und Wiederanstieg
dieser Kurven ist hierbei vernachlässigt. Beide Kurven setzen sich aus
einzelnen Ästen zusammen, die den beigeschriebenen Parametern m (Zahl der
bei der Wölbform II zur Ausbildung gelangenden, sinusförmigen Halb-

?xx 5160

r
30,15

ö-OZ

6-0.05

2.80 3,17

Fig. 15.

Zusammenhang zwischen dem

Grenzwert des Steifigkeits-
\erhältnisses y^ jj und dem

Seitenverhältnis der Platte.

wellen) zugeordnet sind, und erreichen an den Stellen a/h 3,17 beziehungsweise

2,80 den Höchstwert max yi,n ä; 51,60 bzw. 30,15. Steifen mit einer
Biegungssteifigkeit EJ > (max yi,n). Dh sind ausreichend biegesteif, um auch
bei Platten mit beliebig großem Seitenverhältnis an der tiefsten Stabilitätsgrenze

die Ausbildung einer Wölbfläche mit einer „Knotenlinie" am Ort der
Steife zu erzwingen. Bei Zugrundelegung der in Fig. 15 dargestellten Kurven
bietet es keine Schwierigkeiten, einfache Näherungsformeln für den Grenzwert

yi,n und den Höchstwert max y^n zu entwickeln.

In Fig. 16 wird gezeigt, wie die Beulziffer einer Platte von gegebenem
Seitenverhältnis (a/h 1,00, 1,60 und 3,00) anwächst, wenn die Steife die
Querschnittsfläche F 0,20 • th besitzt, die Querschnittsform jedoch verschiedenartig

gewählt wird, so daß die Verhältniszahl i/t verschieden große Werte
annimmt. Im Fall a/h 1,00 bildet die an der tiefsten Stabilitätsgrenze maßgebende

„Wölbform I" nur eine einzige Halbwelle in der Längsrichtung aus, so
daß die diesem Fall zugeordnete Kurve im Bereiche 0 rg i/t < 2,16 bloß aus
einem einzigen Ast besteht, dessen Ordinate von k 2,85 bis auf k 16,00
anwächst. Die Kurve für den Fall a/h 1,60 setzt sich im Bereiche 0 rg i/t
rg 3,26 aus zwei Ästen zusammen, da für kleine Werte i/t eine Wölbform mit
m 2 Halbwellen maßgebend wird; die Ordinaten dieser Kurve steigen im
angegebenen Bereich von k 3,30 bis auf k 16,07 an. Im Fall a/h 3,00 wird
die Kurve innerhalb des Bereiches 0 rg i/t rg 4,83 aus drei Ästen gebildet, da an
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der tiefsten Stabilitätsgrenze je nach der Größe von i/t Wölb flächen mit m 3,

m 2 oder m 1 Halbwellen zur Ausbildung gelangen; die Kurvenordinaten
wachsen innerhalb des angegebenen Bereiches von k 2,85 bis auf k

16,00 an.

Vll. Die Stabilität der waagerecht ausgesteiften, gleichmaßig gedrückten und
zusätzlich auf Schub beanspruchten Rechleckplatte.

Wird die im VI. Abschnitt untersuchte Platte nicht nur durch gleichmäßig
verteilte Normalspannungen sondern zusätzlich auch durch gleichmäßig
verteilte Schubspannungen beansprucht (Fig. 2f), dann wird der Längsschnitt der

den Stabilitätsgrenzen zugeordneten Wölbflächen nicht mehr aus aneinander

16,00 16,07

/r—r~
16,00

*\ / I .\

t-f»J | /7 /
s/ '16

5- ,V<
6-0,20— yr?*

:\$

\t*,832,16 3.260A96 1,077

5 ±

Fig. 16.

Zusammenhang zwischen

der Beulziffer K und dem

Steifigkeitsverhältnis

gereihten Sinushalbwellen gebildet und die „Knotenlinien" verlaufen nicht
mehr geradlinig. Ähnlich wie im Fall reiner Schubbelastung und im
Fall kombinierter Druck- und Schubbelastung unversteifter Platten (V.
Abschnitt) zerfällt die allgemeine Bedingungsgleichung für das Erreichen von
Stabilitätsgrenzen in zwei voneinander unabhängige Beulbedingungen, denen
Wölbflächen mit gerader beziehungsweiser ungerader Halbwellenzahl m' zugehören;
je nach der Größe von a/h, b und, y ist die eine oder die andere dieser beiden
Beulbedingungen für die Ausbildung der tiefsten Stabilitätsgrenze maßgebend.
Die Lösung kann in Form der Kurven ök/ökG ^ (xk/x^) dargestellt werden,
doch hängt der Verlauf dieser Kurven hier nicht nur von a/h sondern auch von
b und y ab; als Bezugsgrößen öko und xko werden hierbei wieder die
Beulspannungen verwendet, die für die untersuchte, waagerechte ausgesteifte Platte im
Fall ausschließlicher Druckbelastung (vgl. dazu die im VI. Abschnitt geschilderte
Lösung) beziehungsweise im Fall ausschließlicher Schubbeanspruchung (vgl. dazu
die von Timoshenko6 entwickelte Lösung) in Geltung stehen.

In Fig. 17 ist die Kurve ök/öko ^ (tk/tko) für eme Platte mit dem
Seitenverhältnis a/h 1,60 und einer waagerechten Steife mit F 0,24 • th und

i/t 2,00 dargestellt; die Beulspannungen öko und xko besitzen hier die Größe
^ko 8,83 ¦ öe bezw. xko 12,72 • öe und die Zahl der von der Wölbfläche an
der tiefsten Stabilitätsgrenze ausgebildeten Halbwellen beträgt in allen Fällen
m' —. 1. Zum Vergleich wurde auch die Kurve für den Fall der unversteiften
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Platte (Kurve „a/h 1,60" in Fig. 12) sowie die Kurve für jenen Grenzfall
eingetragen, in welchem die Biegesteifigkeit ausreichend groß ist, um die Ausbildung
der „Wölbform II" zu erzwingen; da die Platte in diesem Grenzfall in zwei

gleichartig beanspruchte Plattenstreifen der Höhe h/2 zerfällt, stimmt diese Kurve
mit der Kurve „a/h 3,20" in Fig. 12 überein. Wir erkennen, daß die
untersuchte Platte (b 0/24, i/t 2,00) gegen zusätzliche Schubspannungen
„empfindlicher" als eine unversteifte Platte (b 0, i/t 0) oder eine sehr stark
ausgesteifte Platte (b — 0,24, i/t — oo) ist, was wohl darauf zurückzuführen ist,
daß durch die Anbringung der gewählten Steife sowohl im gedachten Fall reiner
Druck- als auch reiner Schubbeanspruchung Wölbflächen erzwungen werden,
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Gegenseitige Abhängigkeit

der Beulspannungen

einer versteiften

Platte bei reiner
Druck- und
Schubbeanspruchung.

die die gleiche Halbwellen-Zahl und einen ähnlichen Verlauf zeigen. Bei dem

Vergleich der Kurven in Fig. 17 und der Beurteilung der soeben geschilderten
„Empfindlichkeit" muß beachtet werden, daß in Fig. 17 als Koordinaten nicht
die Absolutwerte ök und xk sondern die Verhältniszahlen ök/öko und Xk/xko

aufgetragen worden sind, wobei die Bezugswerte öko, xko bei den drei gezeichneten
Kurven verschieden groß und bei der versteiften Platte wesentlich größer als

bei der unversteiften Platte sind.

Vlll. Die Näherungsberechnung waagerecht versteifter Stegbleche.

Untersuchen wir eine Rechteckplatte, die an allen vier Rändern einspannungsfrei

gelagert ist und in der Längsrichtung durch trapez- oder dreieckförmig
verteilte Druckspannungen mit dem Größtwert ö beansprucht wird, dann
können wir die an der tiefsten Stabilitätsgrenze in Geltung stehende kritische
Spannung ö ök entweder genau (mit Hilfe des von Timoshenko6
angegebenen Lösungsverfahrens) oder aber angenähert in der Weise ermitteln, daß
wir die gegebene ungleichmäßig verteilte Druckspannung durch eine gleich-
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mäßig verteilte Druckspannung öm ij? • ö, ij? < 1 ersetzen und für diesen
einfachen Belastungsfall die tiefste Stabilitätsgrenze (öm)k bestimmen; die

Rechnungsgröße ök - • (öm)k ist dann, wie auch von Shizuo Ban14: vermerkt worden

ist, nur wenig von dem genauen Wert ök unterschieden. Dieses Ergebnis
führt nun auf den Gedanken, die kritische Randspannung ök der in ihrer Ebene
auf reine Biegung beanspruchten Rechteckplatte (Fig. 2 a) angenähert unter
Zugrundelegung einer „Ersatzplatte" zu bestimmen, die wir uns auf der
Biegedruckseite der Originalplatte herausgeschnitten denken und die daher die Höhe
h' — h/2 aufweist. Die auf diese Ersatzplatte einwirkenden dreieckförmig
verteilten Druckspannungen mit dem Randwert ö ersetzen wir durch die gleichmäßig
verteilten Druckspannungen ö' 0,5 • ö und alle der Ersatzplatte zugeordneten
Größen wollen wir zum Unterschied von den der Originalplatte zugehörigen
Größen durch einen beigefügten Strich kennzeichnen.

Um die Näherungsuntersuchung möglichst einfach zu gestalten, denken wir
uns die Ersatzplatte an allen vier Rändern in derselben Weise wie die Originalplatte

gelagert, müssen dann aber die gefundenen Rechnungsgrößen ök ö'k/0,5
2 • ö'k um rund 30 o/o vermindern, um brauchbare Näherungswerte für die

gesuchte kritische Biegerandspannung ök zu erhalten. Diese Reduktion ist deshalb

erforderlich, weil wir im Rahmen des Näherungsverfahrens auch die untere
Randlinie der Ersatzplatte als seitlich festgehalten ansehen, während die auf
dieser Linie gelegenen Plattenelemente beim Ausbeulen der Originalplatte (vgl.
Fig. 7) eine relativ große seitliche Ausbiegung erfahren. Sind die Längsränder
der Originalplatte einspannungsfrei gelagert, dann erhalten wir mit Hilfe der

Ersatzplatte z. B. für die kleinste kritische Randspannung das Ergebnis min ö\
4,00 • ö'e 16,00 • öe (Kurve „a" in Fig. 4), ök 32,00 • öe und daher

nach Durchführung der erwähnten Reduktion 0,7 • ök 22,4 • öe, während die

strenge Lösung (Kurve „a" in Fig. 6) min ök 23,9 • öe beträgt. Sind die

Längsränder der Originalplatte starr eingespannt, dann ergibt sich bei Zugrundelegung

der Ersatzplatte min ö'k 6,97 • öe 27,88 • ö(> (Kurve „b" in Fig. 4).
ök 55,76 • öe und daher 0,7 • ök 39,0 • öe, während der strenge Wert (Kurve
,,b" in Fig. 6) min öu 39,6 • öe beträgt.

Ist die untersuchte, in ihrer Ebene auf reine Biegung beanspruchte Rechteckplatte

an den Rändern einspannungsfrei gelagert und am Ort y 0,75 • h durch
eine waagerechte Steife verstärkt, deren Achse in der Plattenmittelebene gelegen
ist (Fig. 2c mit x 0), dann gelangen wir im Rahmen unseres Näherungsverfahrens

auf eine Ersatzplatte mit der Höhe h' 0,5 • h, die in ihrer Mitte durch
eine waagerechte, zentrisch angeordnete Steife ausgesteift und durch die gleichmäßig

verteilten Druckspannungen ö' 0,5 • ö belastet wird (Fig. 2f mit x 0).
Ermitteln wir die kleinsten kritischen Druckspannungen ö\ dieser Ersatzplatte

mit Hilfe der im VI. Abschnitt geschilderten Theorie (unter Verwendung der
einfach gebauten Beulbedingung Gl. 5) und reduzieren wir die auf diese Weise

gewonnenen Rechnungsgrößen ök — n ~ in den praktisch vorkommenden Fällen

14 Shizuo Ban: Abhandlungen der Int. Vereinigung für Brücken- und Hochbau, III. Bd.,

1935, S. 1.
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um rund 10—20o/o, dann gelangen wir auch hier auf brauchbare Näherungswerte

für die kritische Biegerandspannung ök der Originalplatte. Ist beispielsweise
a/h 0,8, F 0,12 • th und i/t 2,00, dann erhalten wir für die Ersatz-
platte a'/h' 1,60, &' 0,24, y' 12 • (1—u?) &' (i/t)* 10,48 und aus
Gl. 5 die Beulziffer k' 8,83, so daß sich ö'k k' • ö'e =- 4 ¦ k' • öe 35,32 • öe

und ök 8 k' • öe 70,64 • öe ergibt; diese Rechnungsgröße müßte um 13,8o/o
reduziert werden, um mit dem genauen Wert der kritischen Biegerandspannung
ök 60,86 • öe (vgl. den III. Abschnitt) übereinzustimmen. In Fig. 8 wurde die

Lösungskurve, die wir auf diese Weise mit Hilfe unserer Ersatzplatte gewinnen,
als gestrichelte Linie dargestellt. Für sehr kleine Werte i/t wird im Rahmen
dieser Näherungslösung schon eine Wölbfläche mit m 2 Halbwellen
maßgebend, so daß die Näherungslösung aus zwei Ästen zusammengesetzt ist; im
Fall m 1 gilt z. B. für i/t 0, 0,847, 2,00, 2,78 und 3,00 der Reihe nach
k' 3,34, 4,34, 8,83, 13,71 und 15,43, während sich im Fall m 2 für
i/t 0, 0,2, 0,4 und 0,6 der Reihe nach k' 2,82, 3,05, 3,72 und 4,83 ergibt.

Auch die der „Wölbform II" zugeordnete kritische Biegerandspannung und
der im III. Abschnitt definierte Grenzwert (i/t) i, n kann näherungsweise mit
Hilfe des geschilderten Verfahrens ermittelt werden. Die waagerechte „Knotenlinie",

die die Wölbform II am Ort y 0,75 • h aufweist, zerlegt die Originalplatte

in zwei Teilplatten, von denen die obere die Höhe h' 0,25 • h besitzt
und durch eine trapezförmige Druckspannungsverteilung mit dem Durchschnittswert

ö' 0,75 • ö beansprucht wird. Diese obere Teilplatte, die wir als „Ersatzplatte"

einführen, hängt an ihrem unteren Rand mit der unteren, vornehmlich

auf Zug beanspruchten Teilplatte zusammen und erfährt hier eine
elastische Einspannung. Wir wollen den Einfluß dieser elastischen Einspannung
angenähert in der Weise berücksichtigen, indem wir einmal eine einspannungsfreie

Lagerung und ein andermal eine starre Einspannung des unteren
Ersatzplattenrandes in Rechnung stellen und von den so erhaltenen beiden
Beulziffern das arithmetische Mittel nehmen. Besitzt die Originalplatte
beispielsweise das Seitenverhältnis a/h 0,8 und eine Steife mit F 0,12 • th
(Fig. 8), dann erhalten wir aus der im III. Abschnitt geschilderten genauen
Lösung eine Wölbform gemäß Fig. 10 mit m 3 Halbwellen in der
Längsrichtung und einer kritischen Biegerandspannung ök 101,85 • öe, doch würde
der Beulwiderstand der Platte bei einer Auswölbung mit m 4 Halbwellen nur
wenig größer (ök 103,49 • öe) als dieser Kleinstwert sein. Für die Ersatzplatte,
die das Seitenverhältnis a'/h' 3,20 aufweist, gilt bei Voraussetzung
einspannungsfrei gelagerter Ränder k' 4,04 und m 3 (vgl. die Kurve „a" in Fig. 4),

1 fi
so daß wir ö'k k' • öe 16 k' • öe und ök w~^7 k' • öc 86,19 • öe erhalten ;

0,75
wird für den unteren Rand der Ersatzplatte eine starre Einspannung angenommen,

dann ist k' 5,41 und m 4 (vgl. die Kurve „b" in Fig. 5), so daß
1 £»

sich ök= tt-^z k' • ö0 115,41 • öe ergibt. Das arithmetische Mittel der beiden
0,7o n

Grenzwerte hat die Größe ök 100,80 • öe und entspricht einer Wölbform mit
m 3—4 Halbwellen in der Längsrichtung, ein Ergebnis, das mit der früher
erwähnten strengen Lösung befriedigend übereinstimmt. Der durch die
Beulziffer k 100,80 festgelegte, in Fig. 8 gestrichelt eingetragene Kurvenast (II)
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der Lösungskurve schneidet den gestrichelt gezeichneten Kurvenast (I) an der
Stelle (i/t) j TI =2,62; auch dieses Näherungsergebnis stimmt mit dem genauen
Lösungsergebnis (i/t) r ,T 2,780 praktisch ausreichend überein.

Der Einfluß zusätzlicher Schubspannungen kann im Rahmen unseres Nähe-
rungsverfahreris gleichfalls in einfacher Weise berücksichtigt werden. Ist keine
Aussteifung vorhanden (Fig. 2 b), dann können wir den Einfluß, den die zusätzlichen

Schubspannungen auf die Stabilitätsgrenze nehmen, unmittelbar mit Hilfe
des im IV. Abschnitt erwähnten Näherungsverfahrens (Approximation der
Lösungskurven durch einen Viertelkreis oder ein dreiseitiges Polygon) abschätzen.
Ist die Originalplatte waagerecht ausgesteift (Fig. 2 c), dann legen wir der
Näherungsuntersuchung eine Ersatzplatte mit der Höhe h' h/2 zugrunde (Fig. 2f)
und gelangen damit auf die im VII. Abschnitt (Fig. 17) geschilderten Lösungskurven,

die in erster Annäherung durch eine passend gewählte Parabel oder ein

dreiseitiges Polygon ersetzt werden können.

/ \. Über das Ausbeulen im „unelastischen" Bereich.

Ist die im kritischen Gleichgewichtszustand vorhandene (ohne Rücksicht auf
die Nietlochschwächung berechnete) größte örtliche Vergleichsspannung (öv)k
größer als die Elastizitäts- und Proportionalitätsgrenze öp des verwendeten
Baustahles (nach den deutschen Knickvorschriften gilt sowohl für Stahl 37 als auch
für Stahl 52 der Wert öp 2,073 t/cm2), dann verlieren die an das Hooke sehe

Gesetz gebundenen Beulbedingungen ihre Gültigkeit. Nehmen wir an, daß die

Quasi-Isotropie des Baustahles auch im Bereich zwischen der Elastizitäts- und der
Fließgrenze erhalten bleibt, dann brauchen wir bloß den in Gl. 1 auftretenden
Quotienten E/(l — jli2) durch eine Größe T' zu ersetzen, die kleiner als E/(l—u2)
ist und von der wir beispielsweise annehmen können, daß sie ausschließlich von
der im kritischen Gleichgewichtszustand vorhandenen örtlichen Vergleichsspannung

(öv)k abhängt. Ist die Platte in ihrer Ebene auf Biegung beansprucht, dann
wird (ö\)k und damit auch T' eine Funktion des Ortes x, y (inhomogener
Spannungszustand), wodurch der theoretischen Bestimmung der Stabilitätsgrenze
erhebliche Schwierigkeiten in den Weg gelegt werden.

Ermitteln wir hingegen die Stabilitätsgrenze im Rahmen unseres Näherungsverfahrens

mit Hilfe der gleichmäßig gedrückten und zusätzlich auf reinen
Schub beanspruchten Ersatzplatte, dann gelangen wir auf einen homogenen
Spannungszustand und T' wird vom Orte x, y unabhängig. Der funktionale
Zusammenhang zwischen T' und der an der Stabilitätsgrenze vorhandenen Vergleichsspannung

(öy)k kann hier durch ein geeignetes Näherungsgesetz festgelegt werden,

wobei wir zu beachten haben, daß für (öy)k öj, die an das Hooke sehe

Gesetz geknüpfte Beulbedingung gerade noch in Geltung steht und für (öv)k=öF
die Beulspannung mit Rücksicht auf die durchgreifende Plastizierung des

Werkstoffes verschwindend klein ist; es muß daher für (ö\)k öp, T' E,'(1 — u2)

und für (öv)k öF, T' 0 sein.

Die Ähnlichkeit dieser Grenzbedingungen mit den Grenzbedingungen, denen
der „Knickmodul" eines gedrückten Stabes aus Baustahl unterliegt, führt nun
auf den Gedanken, die Ermittlung der kritischen Vergleichsspannung (öy)k einer
im „unelastischen"* Bereich ausbeulenden, homogen beanspruchten Rechteckplatte

62*
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auf die Ermittlung einer Knickspannung Sk zurückzuführen (Schleicher15). Wir
berechnen die Beulspannung der untersuchten Platte unter Verwendung der in
den früheren Abschnitten erwähnten Beulbedingungen, also unter Voraussetzung
eines Idealmaterials, das unbeschränkt dem Hooke'schen Formänderungsgesetz
gehorcht, erhalten hierbei die ideellen Beulspannungen ök,id, ^k,id und berechnen
nun mit Hilfe dieser Werte die vom Orte x, y unabhängige, ideelle kritische
Vergleichsspannung (öv)k,id- Untersuchen wir nun einen beiderseits gelenkig
gelagerten, mittig gedrückten, geraden Stab, der aus demselben Baustahl wie die
Platte besteht, und wählen wir für den Schlankheitsgrad dieses Stabes den „ideel-

1 f E ~
len Schlankheitsgrad" Ata zi • 1/ -,—-—, dann stellt die Knickspannung sk dieses

r (öv)k.id
Stabes einen praktisch verwendbaren Näherungswert für die gesuchte kritische
Vergleichsspannung (öv)k dar; aus (öv)iv können die kritischen Spannungskom-
ponenten ök und xk durch Rückrechnung gefunden werden. Die Knickspannung
Sk wird in Form der bekannten Knickspannungs-Diagramme als Funktion der
Schlankheit X festgelegt und kann daher unmittelbar aus diesen (für die genormten

Baustahl-Sorten amtlich vorgeschriebenen) Diagrammen entnommen werden;
ist die erhaltene Rechnungsgröße (öv)k,id rg tfp, dann wird nach diesem Verfahren

(öv)k (ö\)k,id erhalten und wächst anderseits (öv)k,id sehr starl$ an (was
z. B. bei einer auf Schub und zusätzlichen Zug beanspruchten Platte unbeschränkt
möglich ist), dann nähert sich (öv)k immer mehr der Fließspannung öF des

verwendeten Baustahls. Da die Beulsicherheitszahl Vb von der Knicksicherheitszahl vk
unterschieden ist, dürfen wir aus den amtlich festgelegten Knickspannungs-
diagrammen bloß den Wert Sk, nicht aber auch die „zulässige Druckspannung"
fco-Verfahren) entnehmen. Ist der untersuchte Spannungszustand inhomogen,
dann können wir an Stelle des vom Orte x, y unabhängigen Wertes (öv)k, ;a den
vorhandenen Größtwert max (öv)k, id in die Rechnung einführen und gelangen
damit auf Beulspann ungen, die kleiner als die wahren Werte sind.

X. Über die Bemessung der waagerechten Steifen.

Die erforderlichen Querschnittsabmessungen der waagerechten Steife werden
durch das Ergebnis der im III. Abschnitt dargelegten Theorie oder der im
VIII. Abschnitt geschilderten Näherungsuntersuchung eindeutig festgelegt, so
daß wir uns im weiteren auf einige Bemerkungen grundsätzlicher Art
beschränken können. Die an den Rändern einspannungsfrei gelagerte, waagerecht
versteifte Platte beult sowohl unter gleichmäßig verteilter Druckbelastung als
auch im Fall reiner Biegungsbeanspruchung nach einer Wölbfläche aus, deren
Längsschnitt nach einer einfachen, aus m Halbwellen zusammengesetzten Sinuslinie

verläuft. Ist an der untersuchten Stabilitätsgrenze die „Wölbform I"
maßgebend, dann wird auch die waagerechte Steife nach einer derartigen Sinuslinie
ausgebogen. Da nun diese Sinuslinie bekanntlich eine Gleichgewichtsfigur der
von der Platte losgelöst gedachten Steife unter der mittig angreifenden Druck-

15 F. Schleicher: Schlußbericht des I. Int. Kongresses in Paris 1932, S. 129, und: Der
Bauingenieur, 15. Jahrg., 1934, S. 505; vgl. auch E. Chwalla: Bericht über die II. Int. Tagung
für Brücken- und Hochbau in Wien 1928, S. 321, sowie .1/. RoS und A. Eichinger: Schlußbericht

des I. Int. Kongresses in Paris 1932, S. 144.
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belastung P — — —, — vorstellt, können wir ctie folgende Feststellung machen:
a~

Stimmt die Druckkraft, die an einer der Halbwellenzahl m zugeordneten
Stabilitätsgrenze auf die waagerechte Steife entfällt, zufällig mit diesem Wert P

überein, dann hält sich die Steife an der Stabilitätsgrenze gerade selbst das

Gleichgewicht und vermag daher in diesem Zustand die Wölbfläche der Platte in
keiner Weise zu beeinflussen. Die Beulziffer k ist dann identisch mit der
derselben Halbwellenzahl in zugeordneten Beulziffer der un versteiften Platte,
doch ist wohl zu beachten, daß die Zahl der an der tiefsten Stabilitätsgrenze zur
Ausbildung gelangenden Halbwellen durch die Anordnung der Steife beeinflußt
werden kann und daher bei der ausgesteiften Platte von anderer Größe als bei der

unausgesteiften Platte sein kann.

Im Fall reiner Biegungsbeanspruchung (Fig. 2 c mit x 0) ist die

Druckspannung, die an der Stabilitätsgrenze auf die Steife entfällt, gleich der halben

11 k n2 D
kritischen Randspannung — ök ^

k <5e »>V»2 f > so daß die Bedingung für

das Erreichen des Sonderzustandes der „Wirkungslosigkeit der Aussteifung"

nr ;r* EJ k tz2 D

^F YhH=0 <ba>

lautet und nach Einführung von Gl. 1 die Form

T).= ^hV 24 (!-,!«) (6b)

annimmt: für k ist hierbei, da die Stabilitätsgrenze der Platte von der Steife
nicht beeinflußt wird, die für die unversteifte Platte geltende, der Halbwellenzahl

m zugeordnete Beulziffer einzusetzen. Der Wert (i/t)0 ist von der Hilfs-
größc b unabhängig und bezieht sich auf eine Wölbform mit m Halbwellen.
Bei einer Platte mit dem Seitenverhältnis a/h 0,8 wird der Sonderzustand
der „Wirkungslosigkeit der Aussteifung", wie wir im III. Abschnitt schon
geschildert haben, im Fall m 1 für k 24,47 und (i/t)D 0,847 erreicht.
Wird die Steife mit i/t < (i/t)Q ausgeführt, dann stützt sich die gedrückte
Steife im kritischen Gleichgewichtszustand an der Platte ab, wodurch der
Beulwiderstand der Platte herabgesetzt wird; wird die Steife hingegen mit i/t > (it)0
ausgeführt, dann vermag sie die Platte zu stützen und den Beulwiderstand zu
erhöhen.

Ist die Platte durch gleichmäßig verteilte Druckspannungen beansprucht
(Fig. 2f mit x 0), dann ist die beim Ausbeulen auf die waagerechte Steife
entfallende Druckspannung ebenso groß wie die kritische Druckspannung

ök k • öe -r-fT"> so daß die Bedingung für das Erreichen des

Sonderzustandes der „Wirkungslosigkeit der Aussteifung"

m2;x2EJ kjr2D ft /n x

lautet; für die Beulziffer k, die sich auch hier auf eine nach m Halbwellen
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m2h2/ a2 \2
ausbeulende, unversteifte Platte Rezieht, gilt unmittelbar k —2~\1H 2X2)

(Kurve „a" in Fig. 4), so daß wir die Bedingungsgleichung (7a) nach
Einführung von Gl. 1 auch in der Form

1 / 1 \ m- hz

t \t/o Kl2(I —fi*)
(7 b)

schreiben können. Der Wert (i/t)0 ist auch hier von der Hilfsgröße b

unabhängig und bezieht sich auf eine Wölbform mit der gewählten Halbwellenzahl

m. Bei einer Platte mit dem Seitenverhältnis a/h 1,60 wird der Sonderzustand

der „Wirkungslosigkeit der Aussteifung" im Fall m 1 für k 4,9506,
(i/t)0 1,077 und im Fall m 2 für k 4,2025, (i/t)0 0,496 erreicht; die
beiden Punkte, deren Koordinaten durch diese beiden Wertepaare bestimmt
sind, wurden in Fig. 16 (Kurve „a/h 1,60") besonders hervorgehoben.

Der Sonderzustand der „Wirkungslosigkeit der Aussteifung" bezieht sich, wie
wir schon betont haben, ausschließlich auf die untersuchte Wölbform mit der
in die Gl. 6b bzw. 7b eingeführten Halbwellenzahl m. Ein Entfernen der
„wirkungslosen" Aussteifung ist demnach nur in jenen Fällen ohne Einfluß auf
den kritischen Gleichgewichtszustand, in denen m mit der Halbwellenzahl
übereinstimmt, die an der tiefsten Stabilitätsgrenze der unausgesteif ten Platte zur
Ausbildung gelangt. Untersuchen wir eine Platte mit dem Seitenverhältnis
a/h 1,60, dann wird für die unversteifte Platte die tiefste Stabilitätsgrenze
für m 2 und ök 4,2025 • öe (Kurve „a" in Fig. 4) erreicht. Verstärken
wir nun diese Platte durch eine Steife mit b 0,20 und i/t 0,496, dann

gelangen wir zwar, wie aus der Erfüllung der Gl. 7 b geschlossen werden darf, auf
einen Sonderzustand der „Wirkungslosigkeit der Aussteifung" und es gilt nach wie

vor k 4,2025, doch ist dieser kritische Gleichgewichtszustand nicht mehr der

tiefsten Stabilitätsgrenze zugeordnet. Aus Fig. 16 folgt, daß das Ausbeulen der
in der angegebenen Weise verstärkten Platte (b 0,20, i/t 0,496) nicht
erst unter der Druckbelastung ök — 4,2025 • öe sondern schon unter der
Druckbelastung ök 3,832 • öe eintritt, wobei eine Wölbfläche mit bloß einer
einzigen Halbwelle (m 1) zur Ausbildung gelangt; die Steife stützt sich hierbei
an der ausbeulenden Platte stark ab [der Wert i/t 0,496 ist erheblich
kleiner* als, der dem Fall m=l zugeordnete Sonderwert (i/t)Q 1,077], so
daß die Stabilitätsgrenze durch die Anordnung der angegebenen Aussteifung
gesenkt und nicht gehoben wird. Führen wir die Steife nicht mit i/t — 0,496
sondern mit i t 1,077 aus, dann ist ök 4,9506 • öe und wir gelangen auf
den der Halbwellenzahl m 1 zugeordneten Sonderzustand der „Wirkungslosigkeit

der Aussteifung". Auch hier müssen wir wohl beachten, daß sich die

„Wirkungslosigkeit" ausschließlich auf eine Auswölbung mit einer ganz
bestimmten Halbwellenzahl (hier m 1) bezieht und daß diese Halbwellenzahl
und daher auch die kleinstmögliche Beulziffer verändert werden kann, wenn wir
die Aussteifung entfernen. Die untersuchte Platte würde im unausgesleiften
Zustand schon unter der Druckbelastung ök 4,2025 • öe ausbeulen und die
Halbwellenzahl wäre hierbei m 2; als Folge der Anbringung der angegebenen
Steife erfährt somit die tiefste Stabilitätsgrenze der Platte (trotzdem ein Sonder-
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zustand der „Wirkungslosigkeit der Aussteifung" erreicht wird) eine merkbare

Erhöhung, die hier einzig der von der Aussteifung erzwungenen Reduktion

der maßgebenden Halbwellenzahl von m 2 auf m 1 zuzuschreiben ist
Aus den Ergebnissen all dieser Überlegungen dürfen wir den Schluß ziehen,

daß der Einfluß, den eine waagerechte Aussteifung auf die tiefste Stabilitätsgrenze

einer gleichmäßig gedrückten oder auf reine Biegung beanspruchten
Rechteckplatte nimmt, im allgemeinen nicht unmittelbar aus dem
Knickwiderstand abgeleitet werden kann, den die von der Platte losgelöst gedachte
Steife bei einem Ausknicken senkrecht zur Plattenebene aufweist. Es kann daher
nicht empfohlen werden, die waagerechte Steife etwa ausschließlich in der
Weise zu bemessen, daß wir uns diese Steife von der Platte losgelöst denken
und unter Bezugnahme auf die amtlichen KnickVorschriften (co-Verfahren) eine

ausreichende Sicherheit gegen Knicken senkrecht zur Plattenebene nachweisen.
Dieser Vorschrift liegt ein Ausknicken des Stabes nach einer einzigen
Sinushalbwelle (m 1) sowie eine ganz bestimmte, zum Teil vom Schlankheitsgrad
des Stabes abhängige Knicksicherheitszahl \\ zugrunde, so daß wir je nach
dem Seitenverhältnis der Platte und je nach der Größe der geforderten
Beulsicherheitszahl Vb ganz verschieden starke Beeinflussungen der Stabilitätsgrenze
erzielen und unter Umständen auch auf unzureichende Steifen-Abmessungen
gelangen können. Ist die Knicksicherheitszahl der in der angegebenen Weise
bemessenen Steife z. B. ebenso groß wie die Beulsicherheit der Platte und

ist das Seitenverhältnis der untersuchten Platte ein solches, daß die unversteifte

Platte nach einer Wölbfläche mit m 1 Halbwellen ausbeulen würde
(a/h :g 1,41 bei gleichmäßig verteilter Druckbelastung und a/h < 0,95 bei

reiner Biegungsbeanspruchung), dann ist die Stabilitätsgrenze der Platte trotz
der vorhandenen Aussteifung nicht im geringsten höher als die der unver-
steiften Platte, ist also der Wirkungsgrad der Steife gleich Null. Nur wenn die
vorhandene Knicksicherheitszahl der Steife größer als die geforderte
Beulsicherheitszahl der Platte ist oder wenn das Seitenverhältnis der Platte ein
großes ist, so daß die Platte im unversteiften Zustand nach einer Wölbfläche
mit mehr als einer Halbwelle ausbeulen würde, ist ein Überschuß an
Biegesteifigkeit vorhanden, der der Stabilität der Platte zugute kommt. Wir gelangen
hier, wenn wir die zulässigen Druckspannungen der Platte und der Steife einander
gleichsetzen, auf ein Steifigkeitsverhältnis

t
m

V Vb'U/o
das größer als das Grenzverhältnis (i/t)0 ist und eine (unter Umständen
allerdings nur geringfügige) Erhöhung des BeulWiderstandes gewährleistet.

Abschließend dürfen wir daher feststellen, daß eine rationelle Bemessung der

waagerechten, gedrückten Steifen nur unter Zugrundelegung der im III.
Abschnitt geschilderten Stabilitätstheorie oder des im VIII. Abschnitt dargelegten
NäherungsVerfahrens möglich ist; hierbei wird es sich als zweckmäßig erweisen,
für die im III. Abschnitt entwickelten Grenzwerte (i/t)i,n und max (i/t)i,n (vgl.
dazu auch die im VI. Abschnitt, an Hand von Fig. 15 geschilderten Grenzwerte

Yi,n und max yi,n) einfache Näherungsformeln aufzustellen. Durch eine

Bemessung der von der Steife losgelöst gedachten Steife auf Knickung senkrecht



984 E. Chwalla

zur Plattenebene wird das Ziel der Steifenbemessung (und auch dies nur für
vk > vb) bloß insoweit erreicht, als wir jenen ungünstigen Fall verläßlich
auszuscheiden vermögen, in welchem die Steife den Beulwiderstand der Platte
herabsetzt statt ihn zu erhöhen.

Zusammenfassung.

Das Stegblech eines vollwandigen Trägers wird im Bereich der mittleren
Trägerfelder vorwiegend durch Biegespannungen und in nur geringem Maße
durch Schubspannungen beansprucht. Seine Bemessung und Ausbildung hat
so zu erfolgen, daß unter der Gebrauchsbelastung bleibende Formänderungen
(bei Außerachtlassung der Spannungskonzentrationen an den Nietlöchern) und
seitliche Ausbeulungen vermieden werden. Um örtliche Plastizierungen
auszuschließen, müssen wir verhindern, daß die im Stegblech auftretenden ideellen
„Vcrgleichsspannungen" an die Fließgrenze des verwendeten Baustahles
gelangen (I. Abschnitt des Referates) und um das Stegblech gegen ein vorzeitiges
Ausbeulen zu sichern, müssen wir das Erreichen der tiefsten Stabilitätsgrenze
unter der Gebrauchsbelastung mit Sicherheit vermeiden. Die theoretische
Festlegung dieser Stabilitätsgrenze ist an weitgehende Idealisierungen des Stegbleches
hinsichtlich seiner geometrischen und materialtechnischen Eigenschaften sowie
seiner Lagerung und Belastung gebunden (II. Abschnitt des Referates), so daß
wir uns veranlaßt sehen, zur Deckung der unvermeidlichen Diskrepanz zwischen

Voraussetzung und Wirklichkeit eine Beulsicherheitszahl vb in Rechnung zu
stellen; diese Beulsicherheitszahl darf in der Regel kleiner als die mittlere
Knicksicherheitszahl vk gedrückter Baustahlstäbe angesetzt werden, da das

Tragvermögen umfangsgelagerter Bleche mit Rücksicht auf die beim Ausbeulen
auftretende starke Mittelflächendehnung erst erheblich oberhalb der tiefsten Slabili-
tätsgrenze erschöpft wird. Zur Erhöhung des BeulWiderstandes pflegt man das

Stegblech durch Aussteifungen zu verstärken, wobei sich bei den vorwiegend
durch Biegungsspannungen beanspruchten Stegblechen waagerechte, auf
der Biegedruckseite gelegene Steifen vom stabilitätstheoretischen Standpunkt als

zweckmäßig erweisen. Da diese Steifen mit dem Stegblech durch Nietung oder
Schweißung verbunden sind, werden sie durch achsiale Druckkräfte belastet, die
bei der Klarstellung des Einflusses, den die Aussteifung auf die Stabilitätsgrenze
der Platte nimmt, voll in Rücksicht gezogen werden müssen.

Zur Feststellung des grundsätzlichen Verhaltens derartiger Stegbleche wurde
die Stabilität einer im Druckbereich waagerecht ausgesteiften, in ihrer Ebene
auf Biegung beanspruchten Rechteckplatte mit einspannungsfrei gelagerten Rändern

untersucht (III. Abschnitt des Referates); da wir praktisch mit dem
Auftreten zusätzlicher Schubspannungen rechnen müssen, wurde auch der Einfluß,
den diese Schubspannungen auf die Stabilitätsgrenze nehmen, kurz dargelegt
(IV. Abschnitt des Referates). Zur näherungsweisen Bestimmung der Stabilität
waagerecht ausgesteifter Stegbleche pflegt man sich auf der Biegedruckseite des

Stegbleches einen Plattenstreifen herausgeschnitten zu denken und die auf diesen

Plattenstreifen (die sogenannte „Ersatzplatte") einwirkende dreieck- oder Irapez-
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förmig verteilten Druckspannungen durch mittelgroße, gleichmäßig verteilte
Druckspannungen zu ersetzen, um dann aus dem Beulwiderstand dieser Ersatzplatte

auf den Beulwiderstand des Stegbleches zu schließen. Die Ermittlung
der tiefsten Stabilitätsgrenze der Ersatzplatte erfordert einen erheblich geringeren
Arbeitsaufwand als die Klarstellung der Stabilität des gegebenen Stegbleches und
wird im V. Abschnitt des Referates für den Fall einer gleichmäßig verteilten
Druck- und Schubbelastung, im VI. Abschnitt für den Fall einer gleichmäßig
verteilten Druckbelastung und Anordnung einer waagerechten Mittelsteife und
schließlich im VII. Abschnitt für den Fall einer gleichmäßig verteilten Druck-
und Schubbelastung und Anordnung einer waagerechten Mittelsteife kurz
geschildert. Schreiben wir für die Ersatzplatte dieselben Randbedingungen wie
für die untersuchte Stegblechtafel vor, dann gelangen wir mit Hilfe dieses

Näherungsverfahrens auf kritische Randspannungswerte, die im allgemeinen
höher als die genauen Werte liegen (VIII. Abschnitt des Referates); diese

Überschätzung des Beulwiderstandes ist darauf zurückzuführen, daß wir längs des

unteren Ersatzplattenrandes eine seitliche Festhaltung voraussetzen, während die
auf dieser Randlinie gelegenen Punkte der Plattenmittelfläche in Wirklichkeit
verhältnismäßig große seitliche Verschiebungen erfahren.

Der IX. Abschnitt ist dem Fall der „unelastischen Ausbeulung" gewidmet,
der dann vorliegt, wenn die größte im kritischen Gleichgewichtszustand
auftretende ideelle „Vergleichsspannung" die Elastizitäts- und Proportionalitätsgrenze

des verwendeten Baustahls überschreitet. Im Rahmen des geschilderten
Näherungsverfahrens wird die Ersatzplatte nur durch gleichmäßig verteilte
Druck- und Schubspannungen beansprucht, so daß der entstehende Spannungszustand

homogen und die im kritischen Gleichgewichtszustand auftretende
„Vergleichsspannung" vom Orte unabhängig ist; die Bestimmung dieser „kritischen
Vergleichsspannung" kann, wenn wir die Erhaltung der Quasi-Isotropie des

Baustahls auch im Bereiche zwischen der Elastizitäts- und Fließgrenze als

gesichert ansehen, auf die Ermittlung der Knickspannung eines mittig
gedrückten Stabes von bestimmter „ideeller" Schlankheit zurückgeführt werden.

Der das Referat abschließende X. Abschnitt enthält einige grundsätzliche
Bemerkungen zum Bemessungsproblem der waagerechten Steifen. Die Klarstellung
des Einflusses, den die Steifen auf die Plattenstabilität nehmen, und die
Dimensionierung dieser Steifen ist in rationeller Weise nur auf Grund der Ergebnisse
der Stabilitätsuntersuchung durchführbar, wobei es sich im weiteren als zweckmäßig

erweisen wird, für die praktisch bedeutungsvollen Grenzwerte des Steifig-
keitsverhältnisses einfache Näherungsformeln festzulegen. Würden wir die Steife
ausschließlich in der Weise bemessen, daß wir sie von der Platte loslösen und
unter Bezugnahme auf die amtlichen Knickvorschriften eine ausreichende Sicherheit

gegen Ausknicken senkrecht zur Plattenebene nachweisen, dann vermögen
wir zwar jenen ungünstigen Fall zu vermeiden, in welchem die Stabilitätsgrenze
tiefer als die Stabilitätsgrenze der unversteiften Platte liegt, — gelangen aber

je nach dem Seitenverhältnis der Platte und der geforderten Beulsicherheitszahl
auf verschieden große, nicht unmittelbar klarstellbare Wirkungsgrade dieser

Aussteifung.
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