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quées dans mon rapport. M. Schleicher signale que le module d’élasticité E du
métal utilisé en Ameérique atteignait 20.000 kg par mm2, alors que Tetmayer
est arrivé, en moyenne, pour ce module & une valeur de 21.500 kg par mm?2,
Ceci est toutelois sans importance, car les formules qui s’appliquent & la zone
plastique ne dépendent pas du module d’élasticité I et ce module n’intervient
que pour limiter leur zone d'application. D’ailleurs, j'estime (ue les questions
soulevées dans la discussion ne sont susceptibles d’étre définitivement éclair-
cies que par des essais de plaques trés poussés,

Pour terminer, j'attirerai 'attention sur une erreur contenue dans mon rap-
port. L’équation de départ (2) n’est valable, dans les conditions indiquées pour
les bords de la plaque, que pour un nombre impair de demi-ondulations, c¢’est-
a-dire pour n = 1, 3, 5, ... Elle ne donne donc que la moitié des contraintes
de flambage possibles. On obtient 'autre moitié, qui correspond a des déforma-
tions svmt,tuque par l'opération comp]ementalr

D m X
W = sin [Acosh k; y 4+ Ccos k, y]
= 9}
Les résultats des calculs n’en sont pas moins exacts, car la restriction valable
pour la mise en équation de (2} a été implicitement laissée de coté dans le cours
du calcul et on aadmis des nombres d’ondulations arbitraires n = 1, 2, 3

Participants & la discussion.
Diskussionsteilnehmer.

Participants in the discussion.

Dr.-Ing. IF. SCHLEICHER,

Professor an der Technischen Iochschule Hannover.

[. — Weitere Versuche iber die Knickung von gleichmiissig
gedriickten Stahlplatten.

Eine interessante Versuchsreihe ist gelegentlich des Baues der Hangebriicke
zwischen Philadelphia und Camden durchgefihrt worden 1, 2.

Es handelt sich um mit Winkeln gesiumte Rechteckplatten von /= 88,9 cm
Gesamtbreite, bzw. 5 = 58,5 em zwischen den Saumwinkeln, a = 305 cm
Linge und Blechdicken 7 = 0,93 bis 3,80 cm. Die Platten waren an den
Langsrandern lose gefiithrt, das Material war Silizium-Mangan-Stahl von
s = 3,165 t/em? Quetschgrenze und g = 5,6 bis 6,7 t/cm? Zerreissfestigkeit.

Mit E = 2100 t/cm2, m = 10/3 ergibt sich die Knickspannung ox fir das

Seitenverhaltnis o« = 3,43 und mit n = 3 Halbwellen zu

1) oK = 7150(—5) n t/em?.

W. Scuacuesmeier, Die Delaware-River-Briicke zwischen Philadelphia und Camden.
Dm Bautechnik 1927, ‘selte 513.

. Clement E. Cuase, Research and experimental tests in connection with the design of
the l)udge over the Delaware Rlver between Philadelphia and Camden. Journal of the Frank-
lin Institute, Vol. 200, Oct. 1925, p. 417.
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Far /) = 88,9 em erhilt man danach die folgenden Werle von oi. Die einge-
klammerten Spannungswerte liegen tiber der Proportionalititsgrenze und
bediirfen deshalb einer Reduktion.

Aus dem Bericht ? (S.123) sind die Werte « beohachtet o » entnommen.

h blh oK oK Bemerkung
theoretisch  beobachtet
958 U3 T 0,88 X knickt vorzeitig aus
il ATERRR T | 1,58 X » » »
15595610 2,47 X schon besser
1,90 46,8  (3,53) o, 20 s Querschnitt knickt als Ganzes.
AL it sl (6,30) (3,28 3.17) :
{ 3’09 371 \ » » »

330 235 M/l,]) 5,23 d 27 » ”» »
cm — t/em? t/cm?

Bei 14 Versuchen wurde die Durchbiegung w = w () als I'unktion der

Langsspannung gemessen. Bel den mit z bezeichneten Versuchen konnte keine
ausgepragte Stabilititsgrenze beobachtet werden, da die Platten schlecht gerich-
tet waren. Die Hochstlasten entsprachen fir 2 = 0,95 bis 1,59 em Spannun-
gen von etwa 2,8 t/em?, wobel die Ausbiegungen bereits ein mehrfaches der
Plattendicke betrugen. Abb. 1 zeigt zwei Versuche. Bei der diinnen Platte Gl

= nahm die Ausbiegung mit der Druck-
S kralt stetig zu, von einer Stabilitits-
' S grenze kann nicht die Rede sein. Dage-
i v ~ v/\ % | gen blieb sie bei den Platten von mehr
G ' i als 1,9 em Dicke, die besser gerichtet
7 h=09scm (3 0 Ve/j waren, klein und erreichte erst unfter
6 der gut ausgeprigten Knicklast grossere
Werte. Abb. 1 zeigt als Beispiel hie-
3 I

I fir den Versuch G7A mit einer Platte,
I die aus zwei 3/4 7 starken Blechen
}' | zusammengenietet wurde. Die Platten
G7A  h-3socm(2%) g MW mit h = 1,9 bis 3,8 cm knickten ohne
Fig. 1. — Ussais de Chase. Ddéformation des lr)‘ﬁCkSiCht aul die Plattendicke an der
plaquesen fouction de la charge = Versuche Que tSCth‘EI]Ze. Auszwel Platten zusam-
von ()'ha:c. Ausbiegung d'c‘r Pl‘tlue!l als mengenietete SteU'e erreichten die

Funklion der Belastung = Test by Chase. ¥ S A :

Bending of the slabs as afunetion of the load. glchhe hn]CkSP(lnnun‘r wie einzelne

Bleche von der doppelten Dicke.

Die anflanglichen Ausbiegungen hatten bet den Versuchen sluarken Einfluss.
Eine Bestimmung der Knickspannungen der Platten mit 2 << 1,90 cm war
besonders aus diesem Grunde nicht moglich. Es ist auch nicht bekannt, wie
weit sich die Stegbleche auf Kosten der vier Saumwinkel entlasteten. Dies
gilt besonders fu1 die ditnnen Bleche. Von Chase wird weiter bemerkt, dass
die Festiglkeitszahlen ftr die ditnnen Bleche hoher lagen, als fur die dlckeren
Platten.

Aus den Beobachtungen an den diinneren Platten kénnen also keine Schliisse
rezogen werden. Die Kurven fiic w = w (s) beweisen jedoch, dass die Ver-
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suche fir die dickeren Platten einwandfrei sind. Ein Vergleich mit der Theo-
rie des Herrn Bleich far die Knickung im unelastischen Bereich ist somit
zulassig. Bei den diinnen Blechen stellen sich die Ausbiegungen als Vergrésse-
rung der von vornherein vorhandenen Unebenheiten dar. Die dicken Platten
hatten eine gut ausgepriagte Knickgrenze und nach dem Ausbeulen 4 oder 5
Halbwellen. Eine Veriinderlichkeit der Wellenzahl mit der Plattendicke ist
nicht zu erkennen.

Nach der Theorie der 1sotropen Platte wirden o — \/FZ = 3,46 sowohl
3 als auch 4 Halbwellen auftreten konnen, und zwar fiir die gleiche Knick-
spannung. Die untersuchten Platten (« = 3,43) sind also gerade an der
Grenze. Wenn die Verallgemeinerung der Dilferentialgleichung fir den un-
elastischen Bereich zutreffen wiirde, (Vorbericht, S. 108)

: Qi w DE 2)4 w s. D2
2) ( 2 5esaVst )'*‘ﬁﬁZ“
misste ! die Anzahl n der Halbwellen mit ox zunehmen und die Beulenlinge
jedenfalls viel kleiner als die Plattenbreite sein. Dies ist aber nach Oblgem
nicht der Fall. Auch bei den Versuchen fir die Quebecbriicke ist die zu
erwartende Verkleinerung der Beulenldnge nicht zu beobachten?, sondern die
Wellenlinge stimmt im Wesentlichen mit der Plattenbreite tiberein.

Beniitzt man far die Berechnung der Knickzahl < die Gleichung von Tetma-
jer

3) ox = 3,1 — 0,014 (I/i)?, in t/em?,

die auch Bleich als Grundlage seines Vorschlags fir die Dimensionierungs-
formeln gebraucht, dann er“ehen sich Ixmckspannunoen die mit abnehmen-
dem b/l ansteigen. IMiir Platten aus normalem Stahl wire danach z. B. fur
die Werte b/h = 46,8 bzw. 23,5 ein Unterschied von rd. 20 °/, in den Knick-
spannungen zu erwarten.

Die Versuche von Chase gaben fiir alle Platten, die dicker waren als 1/50
der ganzen Plattenbreite, die Quetschgrenze als Knickspannung, ein Anwach-
sen mit der Plattendicke konnte far i > 5/50 nicht beobachtet werden. Aus
den obigen Versuchen muss also die Folgerung gezogen werden, dass die Tet-
majer- l*ormul bzw. eine ihr entsprechende (ﬂeichung, verbunden mit der
vemllgememerten Theorie von Bleich, keine geniigend genaue Ermittlung
der Knickspannung gestattet.

Zum Schlusse noch eine Bemerkung tiber die Randbedingungen an den Lings-
seiten der Platten. I'iir die Versuche von Chase 1st es unzulissig, die freie
Plattenbreite b etwa nur zwischen den Nietreihen oder den Winkelschenkeln
zu messen. Beim dritten Versuch wird mit 5’ = 58,5 cm Breite o8l = 5,75 t/cm?,
withrend der Versuch einen weit unter der Quetschgrenze hegenden Wert
ergab.

In der Abbildung eines der ausgeknickten Bleche (Chase, p. 420 oder

1. Man vergl. : II. Die Beulenlinge bei Knickung im unclastischen Bereich.
2. Man vergl. : Abb. 8 auf Seite 117 des Vorberichts oder R. Mayer, Die Knick(estigkeit,
Abb. 212 auf Seite 425 und Abb. 215 aul Seile 427



126 Premiére séance de travail

Schachenmeier, S. 514) ist zu erkennen, dass die Beulen nicht durch die
Saumwinkel begrenzt sind. Eine nennenswerte Einspannung des Stegbleches
in den Saumwinkel war also nicht vorhanden. Diese Beobachtung entspricht
dem Vorschlag von Bleich (Vorbericht, S. 112, Tig. 3¢ und d). die ganze
Plattenbreite in die Rechnung einzufiihren.

Eine wirksame elastische Einspannung an den Réndern ist nur vorhanden,
wenn die einspannenden Konstruktionsteile nicht gleichzeitic mit der Platte
ausbeulen konnen. Im Normalfall sind gelenkig gelagerte Riander anzunehmen
und in die Rechnung ist die ganze Plattenbreite ohne Abziige einzufiihren.

II. — Die Beulenlinge bei Knickung im unelastischen Bereich.

Fiir eine an allen Randern frei aufliegende Rechteckplatte mit gleichmiissi-
gen Druckspannungen erhdlt man nach Bleich die Knickspannung cpl m
unelastischen Bereich zu 2

. e \/T( . A

oty ) {/_- PR
Darin bedeutet
: i [De e :
2) ool — 373 (]-)) , mit m — 10/3,

die Knickspannung einer Platte aus Material von unbegrenzt hoher Proportio-
nalititsgrenze bei quadratischen Beulen (n = «). Sie ist ebenso gross, wie die

Euler-Knickspannung eines Stabes aus dem gleichen Material mit der
Schlankheit

3) (bjh).
Die Knickzahl
olt
Ol Gl‘]uler

ist von Knickversuchen mit geraden Stiben zu entnehmen. Sieht man in er-
ster Anndherung davon ab, dass = nach der Theorie von K ngesser-Karman
von der Querschmttsform abhdngt so ergibt sich 1 als emdeutlge Funktion der
Knickspannung b, bzw. der zugeordneten Euler-Knickspannung o pyicr.

Das Minimum der Knickspannung im unelastischen Bereich

/I') min GD = l\l \/‘E
tritt ein, wenn die Beulenzahl n gleich

5) n = afi/:

1st 1. Die Beulenlanwe [ = a/n der ausgeknickten Platten ist also mit der Hohe

der Kmekspfmnunfren verinderlich, u nd zwar nimmt sie mit wachsender Plat-
tendicke ab.

1. Die Beulenzahl ist hier als stetig verinlerlich vorausgesetzt, wihrend sie in Wirklich-
keit nur ganzzahlige Werte annehmen kann. Das a])solute Minimum nach Gl. 4 tritt nur
ein, wenn « ein ganzzahliges Vielfaches der vierten Wurzel aus < ist. Ist das nicht der Fall,

dann sind die beiden henachbarten Werle n zu untersuchen und ch ist etwas grosser als

min O'Rl. Der Unterschied ist jedoch bei mehr als zwei Beulen praktisch ohne Bedeutung.
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Der Zusammenhang zwischen Beulenlinge und Plattendicke soll nachste-
hend niher verfolgt werden.

a) Legt man fir weichen Flusstahl zur Berechnung von = die Tetmajer-
Formel
6) of = 3,1 — 0,0044 3, m §/em?,

zugrunde, dann ist nach Engesser

op! /3,1 — oPI\2
7) = e I ( K) .

E \=. 0,011k

Beschrinkt man sich auf den Kleinstwert der Knickspannung, dann ist fir
Plattendicken h > bH/6%

8) wnofl = 3,1 1 2,282.10° (lﬁ) 2 \/ } 3.1 - 2,282.10-% (?)
13

L»

/i’2

)

in t/em?

2 b 4
9) v = 1,685 108 (min G})(l> : (T> Ll b/em?
v

AN

— 9,61,

In diesen Gleichungen ist nach dem Vorgang von Tetmajer und Bleich
I = 2150 t/em? gesetzt '. Die Anzahl n der Beulen ergibt sich damit zu

10) n = —8_%’1_u ,-L S, gk In tlem?
\/nin ob! b
! K
gegenitber n = « im elastischen Bereich (h << b/64). Fur verschiedene Plat-

tendicken ergeben sich nach Obigem die in Tabelle 1 zusamimengestellten
Werte.

Tabelle 1.

b = R A R B 10 o
min o)l == 2,202 9884 2,779 2,874 2,953 3,017 3,063 t/em

i 0,544 0,276 01041 0,0533 0,0232 0,00755 0,00152 —
i L T L e R G S G ol

b) Fiir Material mit ausgeprigter Quetschgrenze o.s, fiir das die Knickspan-
nung bei Stiben in einem grosseren Bereich der Schlankheit 7 mit s_g zusam-
menfillt, erhalt man folgende Zusammenhinge.

Ist die Knickspannung als Funktion der Stabschlankheit gegeben (Abb. 2),

11) cfg = GF{I (7),
so kann man die Knickzahl t aus
12) GP( — 7. GEuler

berechnen. Man erhilt

pl T2
13) Al CK 'S
' E&\=
1. Vergl. Breica, Theorie und Berechnung der eisernen Briicken, Berlin, 1924, S. 131,
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oder wenn man % durch Umkehrung der Gl. 11 ermittelt und in Gl. 13 ein-
setzt

ok |
G = 32 ([
Fiir die in Abb. 2 dargestellte off -Kurve sind einige Ergénzungen notwen-
dig. Wenn % > %p ist, gilt o = spuler und 1 = 1. In dem Bereich 7, < &

< kp, 1 < 1, in dem sich die Knickspannungen c‘I’{' < o.g mit % iindern, kann

‘man Gl. 11 umkehren und < als einwertige Funktion von P! berechnen.

Ik
Gleiches gilt fiir das Gebiet 7 < 1, bei Knickspannungen, die iiber der Quetsch-

grenze liegen,

\
N, 1
i \ sk > o.s.
\ - .
\ An den Grenzen %, und %, des mittle-
- 3 . . S e
& L) ren Bereichs stimmt die Knickspannung
: . . L
% mit der Quetschgrenze iiberein, ok =s.5.
Die zugehérigen Knickzahlen 7, und ¢
; o te] 1 2
ergeben sich zu
G.S )\1 3 2
14 Tg == = | —
) e E T ;
Die entsprechenden Plattendicken sind
e (/LB DB
5 - = —— ¢/ ==
T A b1z v/t 5
oz ‘ S Vo .
t ‘ . 1
o Fiiralle Werle 7, < © <<=, ist 6k = o.g.
1y ¢
= o i Da'n— = (ok)ifur z < = und'c >,
0 : M
' A1 Ae f\F _ A" bekannt ist, kann die Knickspannung
Fig. 2. — Représentation schémalique de la . Platt nittelbar &
relation entre la contrainte de flambage el le SELSH WSS BB LD
coefficient de flambage = Schemaltische | -~ =2 B /h\,
Darstellung des Zusammenhangs zwischen 16) i 5% e T "__(_ (_ 2
Knickspannung und Knickzahl = Diagrarm- 2,73\ b

matic representation of connectionbetween i :
- . s C < > \re
buckling stress and buckling coefficient, berechnet werden. Iir den Bereich

7 < < 1y kann man somit schliessen :
Wenn h, > h > I, ist, liegt die Knickspannung wegen =, <{t < 7, an der
Quetschgrenze, oP! = o5, und es gilt

K
243 ol e n b
Insbesondere fiir St 37 ergibt sich mit o5 = 2,4 t/em? und! E = 2150 t/em?®
.
18) =9 53 40 (%) und
19) S (’1)
Y b’
b/h = 36,9 wiirde dem Grenzfall = =— 1 der elastischen Beulung entspre-

1. Dieser hohe Wert wird eingesetzl, damit ein. Vergleich mit a) moglich ist.
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chen, wenn op mit o5 zusammenfallen kénnte, Fiir b/h = 28,4 wiire im Ver-
gleich zu der elastischen Knickung bereits die doppelte Beulenzahl zu erwar-

ten. Fiir dieselben Plattendicken wie in Tabelle 1 ergeben sich die nachstehen-
den Zahlen.

Tabelle 2.

bjh = 50 &0 30 95 20 15 10 I
oin off = 2,40 2,40 240 2,40 240 240 240 t/ems
. = 0,597 0,244 0,0773 0,0373 0,01526 0,00483 0,000953 —
pjai RO R olgs = 9 5T s L

Vergleicht man Tabelle 1 und 2, so erkennt man, dass sich die Werte n/x nur
wenig unterscheiden. Die Annahmen iiber die Knickspannungen beim Stal
sind also in weiten Grenzen von geringem Kinfluss auf die Beulenzahl. Diese
Zunahme der Beulenzahl mit steigender Plattendicke miisste aber bej Versu-
chen mit dicken Platten deutlich festzustellen sein. Die bisherigen Versuche
(mit bh/h = 23,5) lassen eine solche Abhiingigkeit nicht erkennen 1,

Bei der Beulung von ebenen Platten durch Schubspannungen liegen fiir
k> tp = 0,58 5p ithnliche Verhiltnisse vor, wie bei der Knickung durch gleich-
miissige Druckspannungen. Versuche von Bollenrath zur Bestimmung der
kritischen Schu])spannungen zeigten ebenfalls keinen Unterschied in der Beu-
lenlidnge fir elastische und unelastische Knickung. Bollenrath 2 sagt dariiber :
« Ein Unterschied in der Wellenlinge fiir elastische und unelastische Ausbeu-
lung war nicht festzustellen » und « Die Wellenlinge der Ausbeulung steht
in einem konstanten Verhiltnis zur Plattenbreite und erweist sich als unabhin-
gig von der Plattendicke und dem Werkstolfe ».

Der nach der Theorie von Bleich bestehende Zusammenhang
zwilischen Knickspannungen und Beulenlange im unelastischen
Bereich wird durch die Versuche nicht bestatigt.

Die hier angeschnittene Frage ist von grundlegender Bedeutung fir die

richtige Anordnung der Aussteifungen. Eine Klarung der Verhiltnisse ist
deshalb dringend notwendig.

HL == Beulung vou Platten im unelastischen Bereich.

Die Nachrechnung auf S. 118 des Vofberichts ist mit E = 2150 t/cm? durch-
gefithrt, wihrend fiir das betr. Malerial im Mittel nur E — 2000 t/ecm? ange-

1. Fiir den Grenzfall der sehr breiten Platte (@ - 0) geht die Knickspannung in
pl. _ el _
°Ko = °Ko- *
itber, worin Gfilu bis auf einen von der Querkontraktion abhiingenden Faklor die bekannte
Euler-Knickspannung eines Stabes von der Knicklinge a bedeutet. Dicse Uebereinstim-

mung ist jedoch kein Beweis dafiir, dass die Reduktion im unelastischen Bereich auch im
allgemeinen Fall zutrifft. :

2. I. Borrexnratu, Ausbeulerscheinungen an ebenen auf Schub beanspruchten Plalten,
Dissertation Technische Hochschule Aachen, 1928, Seite 11 bezw. 16.

9
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geben wird, Die Zerreissfestigkeit betrug ! 5,79 t/cm? Da die Gilligkeit der
Tetmajer-Formel auf Material mit weniger als 4,5 t/em? Zugfestighkeit be-
schrinkt ist 2, wiare mit der « Tetmajer-Formel fur Flusseisen von Stahlcharak-
ter » 3 zu rechnen. Beriicksichtigt man diese Umstinde, dann erhialt man eine
weniger gute Uebereinstimmung. Die von Bleich fiir den unelastischen Bereich
zugrunde gelegte Differentialgleichung entspricht orthotropen Platten. Diese
Voraussetzung « steht jedoch mit der Erfahrung in Widerspruch und fihrt zu
fehlerhaften, auf der Seite der Unsicherheit liegenden Ergebnissen » . 7
Schliesslich ist darauf hinzuwei-

3,5 \ sen, dass eine Verallgemeinerung
Yerm| Sk Ereats :
£ fir unelastische Beulung durch
i o]
) Schubspannungen  bisher fehlt,
30 = —\Q ebenso far alle anderen Bela-
\& “3*_ o ~ . r
\ > : stungsfalle.l< tr praktische Zwecke
\\ “{g ist man jedoch bereits heute ge-
25 = B T zwungen, die Abminderung der
Ye A S, Knicklasten im unelastischen
= Y £ . p
- \ \ Bereich in Rechnung zu
20 ’ stellen. Bis Theorie und
Versuchswesen weitere
Fortschritte gemacht ha-
15 ben, ist ein Weg zu su-
chen, um diese Wirkung,
4/ moglichst fir alle Tille
70 von Instabilitat, auf die
0 20 40 60 gleiche einfache Weise
Fig. 3. — Contraintes de flambage sur des plaques rectangu- 7y beriicksichtigen. Es
laires soumises a une comprcssion uniformément répartie, h lafi bf ] d
dans le domaine inélaslique = Knickspannungen gleich- ste el gt Olgcnat
miissig gedriickter Rechteckplatten im unelastischen Berecich M(’jghchkelten offen :
‘=RecLangulars!absundel‘uniformpressure;buckling stresses a) Entsprechend Gl 6
in the non-elastic zone. d :
Voile ¢lastique = Elast. Beulung = Elast. buckling. auf S.110 des Vorberichts

LR pl 7
1) min 0K = OKi \/T'
konnte man die unter Annahme unbegrenzt elastischen Materials berech-

neten Knickspannungen allgemein mit \/= reduzieren®. Die Abb 3 zeigt den
Verlauf der Knickspannungen nach Gl. 1, fiir eine gleichmissig gedriickte

1. R. Maver, Die Knickfestigkeit, Tabelle 39. S. 423.

2. L.v. Tervaser, Die Geselze der Knickungs- und der zusammengesetzien Druckfestig-
keit der technisch wichtigsten Baustoffe, 3. Aull. Leipzig und Wien, 1903.

3. R. Maver, Die Knickfestigkeit, S. 61, Formel fiir Flusseisen von mehr als 4, 5 t/em?
Zuglestigkeit.

k. E. CnwaLrra, Die Stabilitit zentrisch und exzentrisch gedriickter Stithe aus Baustahl.
Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathem .-naturw. Klasse,
Abt. Ila, 137. Band, 8. Heft, Wien, 1928.

5. Die Bezeichnung t fiir die « Knickzahl » kann zu Verwechslungen Anlass geben, wenn
sich die Stabilititsuntersuchung auf Belastungen durch Schubspannungen t bezieht. Es

empfiehlt sich, die Bezeichnung < fiir die Knickzahl zu vermeiden und nur-mit T =< E bzw
T/E zu rechnen.
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Rechteckplatte aus Flusstahl (St 37), als Funktion der Plattendicke
Die Kurve a, gilt, wenn /< aus der Tetmajer-Formel berechnet wird (Gl 8
von I, a), Kurve a, fiir eine den Reichsbahnvorschriften fiir St 37 entspre-
chende Knickspannungslinie, mit (b/h), = 45,3 (vgl. I1, b).

h) Man kénnte analog dem Vorschlag von Timoshenko firr den unela-
stischen Bereich der Kippspannungen von Balken (vgl. S. 134 des Vorberichts,
bzw. Abb. 3 auf S. 133) auch bei Platten einen geradlinigen Zusammenhang
zwischen « Schlankheit » h/h und Knickspannungen bl annehmen. Die Gerade
1st bestimmt durch die Elastizititsgrenze oy (besser Pr0portionalitiitsgrenze op)
und die Druckfestigkeit op, letztere vielleicht mit einem etwas ermissigten
fiktiven Betrag. Die Kurve 4 in Abb. 3 zeigt diese Gerade mit den Tetm ajer’-
schen Grenzwerten der Spannungen.

¢) Wenn die sk -Linie fiir Stibe  bekannt ist, kann man die unter Voraus-
setzung unbegrenzt elastischen Materials berechneten Spannungen ¢! bei Plat-

ten und Schalen im gleichen Verhaltnis wie die Euler—Knickspan—
nung bei Stiben reduzieren.

Dl el
2) o) = 1.0%.

Iur diesen Zweck braucht man nur die der gleichgrossen Euler—Spannung
entsprechende Vergleichsschlankheit

E
3) =7 e
Sk
zu berechnen und in die als bekannt vorausgesetzte Gl. 4 einzuselzen.
it
4) of = of (M)

Z. B. bei der gleichmissig gedriickten Rechteckplatte ist die Ersatzschlankheit 2
gleich
o)

&) %= 1,652 (b/h).

Die Kurve c¢in abb. 3 zeigt die Knickspannungen, wenn die Knickspannungs-
linie fir St 37 der Reichshahnvorschriften zugrunde gelegt wird.,

Fiir andere Spannungszustinde ist die Tohe der Beanspruchung nach der
Plastizititsbedingung 3 zu messen. 7. B. fiir Plattenknickung durch Schub-
spannungen oder Instabilitit von Zylinderschalen unter Torsionsbheanspru-
chung gilt bet dehnbaren Metallen

5) T8 — O,E)S oS bzw. Tp = 0,08 Gp.

1. Fir den vorliegenden Zweck ist o und < fiir Stibe von Rechteckquerschnitt zu benut-
zen. Ueber den Einfluss der Querschnitisform vergl. man F. Bleich, Theorie und Berech-
nung der eisernen Briicken, Berlin, 1929, Ne 35,

2. Man vergl. den Vorschlag von E. Cuwarra (S. 322 des Berichls tiber die II. inlernat.
Tagung fiir Britickenbau und Hochbau, Wien, 1928, fiir gleichmiissig gedriickle Platten
den Knickmodul allen drei Gliedern der Differentialgleichung zuzuordnen, bei Vernachlissi-
gung der Aenderungen der Poisson’schen Zahl m. Man erkennt, dass dieser Vorschlag
mit der Reduktion nach ¢) ibereinstimmt.

3. Man vgl. F. Scureicner, Ueber die Sicherheit gezen Ueberschreiten der Fliessgrenze
bei stalischer Beanspruchung, Der Bauingenieur (9), 1928, Heft 15.
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Bei allgemeinen kritischen Spannungszustinden ist anstatt Gl. 5 die Plastizi-
titsbedingung zu benutzen. Die Vergleichsspannung ogk, welche die Platte als
einfache Druckspannung ebenso hoch beansprucht, wie der gegebene allge-
meine Spannungszustand, tritt an die Stelle der Euler-Knickspannung ot
sodass die reduzierte Knickspannung wird

6) Bl = ob (o5k) = ok (g)-

Diese Art der Reduktion entspricht der Tatsache, dass die Quasi-Isotropie
des Stahls auch im unelastischen Bereich der Spannungen erhalten bleibt ™.
Aus diesem Grunde tritt nur eine Abminderung in der Hohe der Knickspannun-
gen ein, withrend die Beulenform wie bei der elastischen Knickung bleibt.

Die Abminderung nach c¢) lisst sich ohne Weiteres bei beliebiger Knick-
spannungslinie anwenden. Sie wurde in neuerer Zeit z. B. fir die Stabililits-
untersuchungen bei der « Dreirosenbriicke » iiber den Rhein in Basel (konti-
nuierlicher Blechbalken mit 75 4 105 4 75 m Stiitzweite) angewendet, die
von der M.A.N., Werk Gustavsburg, und der Buss A.G., Basel, erbaut wird.

Wenn die Plattensteifigkeit gleichmissig abgemindert wird (sog. homogene
Spunnungszusté‘mde), so sind die Gleichungen genau zutreffend. Ist dage-
gen der Spannungszustand veranderlich, dann variiert = D mit der Stelle und
die nach ¢) reduzierten Spannungen sind zu klein, wenn die Reduktion fir
die grosste Beanspruchung durchgefithrt wird.

Bei nicht homogenen Spannungszustinden ist nach Ueberschreitung der
Proportionalititsgrenze in der Regel mit einem Spannungsausgleich zu rechnen.
Um in solchen Fillen eine genauere Berechnung durchfithren zu konnen, musste
man, bekannte Spannungsverteilung vorausgesetzt, die Plattensteifigkeit in der
Plattenbiegungsgleichung als Funktion der Hohe der Beanspruchung einfithren.

h.o (y) 2% w
D. = (y) LD a2

T) viw +

Sehliesslich wire noch zu untersuchen, wie sich der Umstand auswirkt,
dass die bleibenden Forménderungen ohne Volumdehnung erfolgen 2. Den
Werten m = 10/3 im elastischen, bzw. m = 2 im plaslischen Bereich
wiirde ein Unterschied von 21 ¢/, in den Plattensteifigkeiten D entsprechen.

Wir fassen unseve Meinung iiber die Reduktion der kritischen Spannungs-
zustande fiir allgemeine Stabilititsgrenzen zusammen !

1. Man vergl. : M. Ros und A. EicHINGER, Versuche zur Klirung der Frage der Bruch-
gefahr. 1) Verhandlungen des zweiten internat. Kongresses fiir technische Mechanik,
Ziirich 1926.2) Mitteilungen des schweizer. Verbandes fiir die Materialpriifungen der Tech-
nik, Ziirich, September 1926. 3) Diskussionsbericht No 34 der eidgen. Malerialpriifungsan-
slalt in Zirich, Februar 1929, _

W. Lopoe, Der Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle.
Disserlation Goilingen, 1926 (Heft 303 der Forsch. Arbeiten auf dem Gebiete des Inge-
nieurwesens, Berlin, 1928).

Neue Versuche weisen allerdings darauf hin, dass unter gewissen Umstinden auch ein
von der Isotropie abweichendes Verhalten eintreten kann. Man vgl. K. Hohenemser und
W. Puacges, Beitrag zur Mechanik des bildsamen Verhaltens von Flusstahl. Z. A. M. M.
(12), 1932,

9. Man vergl. die in 1) genannten Arbeiten von Ro% und EicainGer, und zwar Abb. 12
von Ne. 2 und Abb. &%, 65, 66 von Ne. 3.
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Die Reduktion nach a) ist nicht zu empfehlen, da sie durch die Beobachtun-
gen nicht bestatigt wird und zu hoch liegende Knickspannungen gibt.

Nach 5) erhilt man fir den Bereich op << o < o5 i. a. genugend genau
zutrelfende Werte, sodass diese Art der Reduktion z. B. dann brauchbar sein
diirfte, wenn die Knickspannungslinie nicht bekannt ist. Fir dicke Platten
wird die Stabilitit danach jedoch iiberschiitzt, sodass es sich empfiehlt, Werte
ok > o.g (bzw. die der Plastizitatsbedingung entsprechende Beanspruchung)
durch s.g zu ersetzen.

Die Abminderung nach ¢) entspricht dem heutigen Stande unserer Kenntnisse
am besten. Sie kann allgemein empfohlen werden; sowohl fir homogene, als
fitr nicht homogene Spannungszustinde. Far die letzteren bleibt man auf der
sicheren Seite, wenn man die Reduktion firr die am starksten beanspruchte
Stelle durchtiithrt.

Traduction.

I. — Autres essais sur le flambage des plaques d’acier uni-
formément comprimées,

Une série d'essais treés intéressants a été effectuée a l'occasion de la cons-
truction du pont suspendu reliant Philadelphie & Camden !+ 2,

Il s’agit ici de plaques rectangulaires, bordées avec des corniéres et accusant
les dimensions suivantes : largeur totale b = 88,9 em. ; largeur entre les cor-
nieres b’ = 58,5 em. ; longueura = 3035 cm.; épaisseurs h = 0,95 em. & 3,80 cm.

Les plaques ne comportaient aucun encastrement sur les bords longitudinaux
ot étaient constituées en acier au silicium-manganése, accusant les caractéris-
tiques suivantes : limite de compression o.g = 3,165 t/ecm?; charge de rupture
o= 5,6 & 6,7 t/cm?2.

Pour E — 2100 t/cm?2, m = 10/3, on obtient la charge de flambage ok,
pour un rapport entre les cotés égal A a = 3,43 et en tenant compte d'un
nombre de demi-ondulations n = 3 : par la relation suivante :

h\ 2
1) og = 1150 (E) en t/cm?2.

Pour 5 — 88,9 cm., on obtient les valeurs de ox indiquées dans le tableau
suivant. Les valeurs indiquées entre parenthéses se trouvent au-dessus de la
limite de proportionnalité el doivent done subir une diminution. Les « g obser-
vés » ont été tirées du Rapport.

Au cours de 14 essais, la déformation w = w (¢) a eté déterminée en fonec-
tion de la contrainte longitudinale. Dans les essais marqués « x », on n'a pu
observer aucune limite de stabilité nettement accusée, car les plaques étatent
mises en place d'une maniére défectueuse, Les charges les plus élevées corres-

1. W. Scuacuenveier, Die Delaware River Briicke zwischen Philadelphia und Camden.
Die Bautechnik, 1927, p. 543.

9. Clement E. Cuase, Research and experimental tests in connection with the design of
the bridge over the Delaware River between Philadelphia and Camdem, Journal of the
Franklin Institute, vol. 200, oct. 1925, p. 417.
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pondaient, pour /o = 0,95 & 1,59 ecm., a des contraintes d’environ 2,8 t/cm?,
les déformations correspondantes atteignant déja une valeur multiple de
I'épaisseur de la plaque. La figure 1 se rapporte a deux de ces essais. Pour la
plaque mince G 1 la déformation augmenta régulierement avec l'effort de com-
pression et il ne peut pas dans ce cas étre question d’une limite de stabilité. Par
contre, pour les plaques dont I'épaisseur était supérieure a 1,9 em., la défor-
mation est restée faible, car ces plaques étaient fixées dans de meilleures
conditions ; elle n'a atteint des valeurs élevées que sous l'influence d'une
charge de flambage nettement accusée. On trouvera sur la figure 1, a titre
d’exemple, l'essai GTA, elfectué avec une plaque constituée par deux téles
fortes de 3/4” (19,05 mm.) rivées ensemble. Les plaques ayant une épaisseur
de h=1,9 & 3,8 cm. ont flambé & la limite de compression sans que 1'épaisseur
elle-méme de la plaque intervienne. Sur les picces constituées par deux plaques
rivées, on a atteint la méme contrainte de flambage que sur des toles simples
d’épaisseur double.

Les déformations initiales ont exercé, au cours de ces essais, une influence
trées marquée. Pour cette raison principalement, il ne fut pas possible de déter-
miner les contraintes de flambage des plaques dont I'épaisseur était inférieure
a 1,90 em. On ignore également dans quelle mesure les toles constituant en
quelque sorte I'dme ont pu étre soulagées par la présence des quatre corniéres
de bordure ; ceci d’ailleurs particuliérement en ce qui concerne les téles minces.
Chase a remarqué ultérieurement que les chiffres de résistance des tdles

minces étaient relativement plus élevés que ceux des toles de plus forte
épaisseur.

L L/ théocrl;que 0});:;1"‘1(% Observations

cm t/cm? t/cm?
0,95 93,7 0,88 X flambage anticipé
1,27 70,1 1,58 & flainbage anticipé
1,59 56 2,47 - X comportement meilleur
1,90 46,8 (3,53) 3,23 3,17 la section flambe dans

son ensemble

2,54 35,1 (6,3) ggg ?;i;g ”
3,80 23,3 (14,1) 303 s oy 5

Aucune conclusion n'a pu non plus étre tirée des observations effectuées
sur les toles minces, Les courbes pour w = w (s) montrent toutefois que les
essais effectués sur les toles épaisses sont remarquablement bons. Ils per-
mettent une comparaison avec la théorie établie par M. Bleich pour le flam-
bage dans le domaine inélastique. Pour les téles minces les déformations ne
constituent, en somme, que les accentuations des gauchissements inifiaux
dont il a déja été fait mention. Les toles épaisses ont accusé une limite de
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flambage trés nette, et, apres apparition du voile, 4 ou 5 demi-ondulations se
sont manifestées. On n'a pas pu constater de modifications dans le nomhre des
ondulations en fonction de 1'épaisseur des plaques.

D’apres la théorie des dalles 1sotropes, pour o = \/4_2 = 3,46, 1l pourrait
se produire aussi bien 3 que 4 demi-ondulations ; cela pour la méme contrainte
de flambage. Les plaques étudiées se trouvaient donc & la limite, puisque
2= 3,43. S'il est légitime de géndraliser I'équation dilférentielle de déforma-
tion des plaques minces dans le domaine inélastique (voir Publication Prélimi-
naire, page 120) :

ot w

¢ o & = Rt o h
2) ax4 L—‘_zaxZ 8132\/L—|’_ ayt} +6_

le nombre n des demi-ondulations devrait 1 augmenter avec ok et la longueur
intéressée par le voile devrait dans tous les cas étre beaucoup plus faible que
la largeur des plaques. D’aprés ce qui précede, ce n'est toulefols pas le cas.
La diminulion que l'on pouvait escompter sur la longueur intéressée par le
voile n'a pas été observée non plus au cours des essals sur le pont de Québec 2,
la longueur d’onde coincidant sensiblement avec la largeur des plaques.

Si l'on fait appel, pour le calcul du coefficient de flambage =, & I'équation de
Tetmajer :

d2 w
D

—0

N2

3) : ok = 3,1 — 0,0114% (—i) en t/cm?

qui est également a la base de I'étude de Bleich concernant le calcul des
dimensions des plaques, on obtient alors des contraintes de flambage qui
s’élevent lorsque le rapport h/h diminue. Pour des plaques en acier normal,
on arrive par exemple, pour des valeurs de b/h égales & 6,8 et 23,5, a des
écarts de 20 °/, environ sur les contraintes de flambage, par rapport aux
valeurs escomptées.

Les essais de Chase ont donné comme contrainte de flambage, pour toutes
les plaques dont I'épaisseur est supérieure au 1/50 de la largeur totale, la
limite de compression elle-méme ; pour h > b/50, on n'a pas pu observer de
valeurs supérieures pour une augmentation de I'épaisseur de la plaque. Les
essais qui précédent permettent done de conclure que la formule de Tetmajer,
ou toute autre relation correspondante, en liaison avec la théorie généralisée de
Bleich, ne permettent pas de déterminer d'une maniére suffisamment précise
la contrainte de flambage.

Faisons encore une remarque, pour conclure, au sujet des conditions régnant
aux bords de la plaque, sur les grands cotés. Il n’est pas admissible de mesurer,
pour l'interprétation des essais de Chase, la largeur libre b de la plaque entre
les rangées de rivets ou entre les arétes des cornléres seulement. Dans le

troisieme essai, avec b’ = 58,5 on obtient :
el o ol 2
¢¢l == 5,75 t/em

1. Voir : Die Beulenliinge bei Knickung im elastischen Bereich.
2. Voir : Fig. 8, p. 117 de la Publication Préliminaire, ou R, Mayer, Die Knickfestigkeit,
fig. 212, p. &25 et fig. 215, p. 427.
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tandis que l'essai donne une valeur qui se trouve trés nettement au-dessous
de la limite de compression.

La photographie d'une des toles ayant subi le flambage montre (Chase,
p. 420, ou Schachenmeier, p. 514) que le voile n’est pas limité par les corniéres
de bordure. On ne peut done pas dire qu’il y ait eu effectivement un encastre-
ment de la tdle par la corniere de bordure. Cette observation correspond au
projet de Bleich (Publication Préliminaire, p. 112, fig. 3 ¢ et d) d'introduire la
largeur entiére de la plaque dans le calcul.

Il n’y a effectivement un encastrement ¢élastique sur les bords de la plaque
que lorsque les pieces qui sont susceptibles de constituer cel encastrement ne
peuvent pas simultanément participer au voile de la plaque elle-méme. Dans
le cas général, il faut admettre que les bords de la plaque comportent un

appul articulé et la largeur totale de la plaque doit é&tre introduite dans les
calculs sans aucune réduction.

II. —Importance du voile par flambage dans ledomaine plastique.

Pour une plaque rectangulaire reposant librement sur ses quatre bords, et
soumise & des contraintes uniformément réparties, on obtient la contrainte de
flambage, suivant Bleich, dans le domaine inélastique, pav la relation :

i e
| e e I
) ok K 4 (nl{/t 5 a

/

relation dans laquelle :

2 R 2
2) — ;—7}; (%) avec m = 10/3
i

représente la charge de flambage d'une plaque constituée par un matériau pré-
sentant une limite de proportionnalité infiniment élevée pour le voile rectan-
gulaire (n = ). Cette contrainte de flambage a la méme valeur que la con-
trainte de flambage d'BEuler pour une barre constituée avec le méme matériau
et ayant un degré de finesse :

b
3) n=1,652. 7
Le coelficient de flambage
sk
-
GEuler

est fourni par les essais de flambage sur barre rectilignes.

Si, a titre de premiére approximation, on fait abstraction du falt’qu? 5
dépend de la forme de la section, suivant la théorie dEngesser—K_annan,
on obtient t en le considérant comme fonction détinie de la contrainte de

flambage oP! ou de la contrainte de flambage d’Euler correspondante sgyer.

On atteint le minimum de la contrainte de flambage dans le domaine plas-
tique :

i e 1 =
4) min 0})( == U[C(l \/T.



La stabilité de 'ame et des ailes des barres comprimées 137
lorsque le nombre de demi-ondulations n est égal at:
o
5) n =g =
Ve
: a :
La longueur du voile [ = = de la plaque ayant subi le flambage est donc

variable suivant le niveau des contraintes de flambage ; en pralique, elle
diminue d’ailleurs lorsque I'épaisseur de la plaque augmente. ‘

Il est intéressant d’étudier d'une maniere plus approfondie la relation qui
existe entre la longueur du voile et I’épaisseur de la plaque.

a) Sil'on se base sur la formule de Tetmajer pour le calcul de < dans le cas
de l'acier doux :

b) ol = 3,1 — 0,0114 % en t/cm?
on obtient, d’apres Engesser :
7 o e

' E \z0,0114

Si I'on se limite a la plus faible valeur de la contrainte de flambage, on
obtient alors, pour une épaisseur de plaque h > b/64:

; B\ ¢ NS GE .
8) in oBl = 3,1 - 2,282,103 (7) —\/ (3,1 i 2,282.10-8< ) ) — 961

h
enst/em® et
P : & Dk
9) r— 1,685,110+ (m;n cli){‘) . (7;) en t/em?2.
Dans les équations, suivant la méthode de Tetmajer et de Bleich, on pose
E = 2150 t/cm? 2. Le nombre n des voiles est défini par la relation :

881 h

] e i NN i pl 2
10) n _\/ _ 51;1' 7 ¢ (GK en t/cm?)
min < p
alors que n = « dans le domaine plastique (A < b/64). On trouvera dans le

tableau 2 ci-contre les valeurs obtenues pour différentes valeurs de 1'épaisseur
des plaques.

# l 50 40 30 25 20 13 10
2
o 2,292 2,554 2,779 2,874 2,953 | 3,017 3,063
T 0,544 | 0,276 0,404 | 0,0533 | 0,0232 | 0,00755 | 0,00152
n/a 1,16 1,38 1,76 2,08 2,56 3,30 5,06

1. Le nombre d’ondulations est ici supposé variable d'une maniére continue, tandis qu’en
réalité il ne peut prendre que des valeurs entiéres. Le minimum absolu suivant la relation
(4) ne se produit que lorsque @ est un multiple entier de la racine quatrieme de t. Si ce

nest pas le cas, il fant rechercher les deux valeurs voisines de n et cr?‘l est un peu plus
élevé que pin cll’{l. La différence est toutefois sans importance lorsqu’il s’agit de plus de
deux ondulations.

2. Voir Breicu, Theorie und Berechnung der eisernen Briicken, Berlin, 1924, page 131.
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b) Pour un matériau admettant une limite de compression trés nette o.g
pour lequel la contrainte de flambage & 1'état de barre concorde avec o.g pour

une large marge de variation du degré de finesse %, on obtient les relations qui
suivent :

St la contrainte de flambage est donnée en fonction du degré de finesse a
I'état de barre (figure 2) :
1) o — ch(A)

K K

on peut alors calculer le coefficient de flambage © en partant de la relation :

12) GF(I = 7. G(Euler)

et on obtient :

p 7~
. =3 ()

ou, en déterminant A par inversion de l'équation (11) et en la remplagant par
sa valeur dans I’équation (13) :

1

T =z (cf’g)

Quelques commentaires sont nécessaires au sujet de la courbe de oP! repré-
sentée sur la figure 2.

Si x> hp alors 6§l = opuler €t 1= 1. Dans la zone définie par : %, << A <ip,
t << 1, dans laquelle les contraintes de flambage of! < o5 varient avec %, on

peut inverser 'équation (11) et calculer = comme une fonction définie de abt.

Il en est de méme pour la zone A << 3, pour des contraintes de flambage qui se
trouvent au-dessus de la limite de compression.

Pour les limites %, et %, de la zone moyenne, la contrainte de flambage
coincide avec la limite de compression :

c})(l = oran

Les coeflicients de {flambage correspondants 7, et 1, peuvent étre déduits de
la relation suivante :

3 N\ 2
o A2
1!1') T1,2 — '—g .
! E ™

Les épaisseurs correspondantes des plaques sont données par la relation :

(@) 0,527 /og
b/ig Vs V E

Pour toutes les valeurs de < telles que : 7y < 7 < 7yona:

c§1 — g5

Comme 1 =1 (cf}) est connu pour t <7, et > <, la charge de flambage
d’une plaque peut étre calculée directement & partir de la relation :
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2K /h\?2
; e /i i
%) min ok = /. e (b> :

Pour la zone %, <{ i <%, on peut donc conclure :
Si hy > h > h, la contrainte de flambage coincide avec la limite de résistance
a la compression : crlf(l — g5 canmy= i v el lonial:

: 2,73 s.5\2 /h\4
17) (e
w2 I N
En particulier, pour l'acier St. 37, on obtient avec g5 = 2,4 t/cm? et !
E = 2150 t/ecm?
b\ 4
18) e — 9,53.10° <*> ot
h
19) . TR (1) 2 % s
b/l = 56,9 correspondrait & la limite t = 1 du voile dans le domaine élas-
tique, si op pouvait coincider avec s.g. Pour b/h = 28 4 on pourrait déja

escompter un nombre d’ondulations double, par rapport au flambage dans
le domaine élastique. Pour les mémes épaisseurs de plaque que dans le
tableau 2 précédent, on arrive aux chiffres du tableau 3 ci-contre.

b
7 50 40 30 25 20 15 10
i cli{l 2,40 2,40 2,40 2,40 2,40 2,40 2,40
T 0,597 0,244 0,0773 0,0373 | 0,01526 | 0,00483 | 0,000953
njo 1,14 1,42 1,90 2,28 2,85 3,80 5,70

Sil'on compare les tableaux 2 et 3, on constate que les valeurs de n/x différent
trés peu. Les hypothéses concernant les contraintes de flambage de la barre
sont done, dans de larges limites, sans influence sensible sur le coefficient n.
Cette augmentation du nombre de voiles lorsque 'épaisseur de la placue
augmente demande toutefois & étre établie en toute certitude, par des essais,
pour les plaques épaisses. Les essais qui ont été effectués jusqu'a maintenant,
avec b/h = 23,5 ne permettent pas de mettre en évidence une telle relation 2.

1. Cette valeur élevée est adoptée ici afin de permettre la comparaison avec le cas a
précédent.
2. Dans le cas limite d’une plaque trés large (x = 0), la contrainte de flambage devient :
1 el

p

%Ko = %Ko
relation dans laquelle cf{lo désigne la contrainte de ftambage connue d'Euler pour une barre
ayanl une longueur de flambage a et sous réserve de I'introduction d’un facteur dépendant

de la contraction transversale. Cette concordance ne prouve toutefois nullement que la
réduction se présénte également, dans le domaine plastique, dans le cas général.
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Dans le cas du voile de plaques planes par suite de contraintes de cisaille-
ment et pour :

1x > 1 = 0,58 op

on se trouve en présence de conditions semblables a celles que présente le
flambage sous 1’action de contraintes de compression uniformément réparties.
Les essais effectués par Bollenrath en vue de la détermination des contraintes
critiques de cisaillement n’ont également mis en évidence aucune différence
pour les longueurs de voile, entre les flambages élastique et plastique.
Bollenrath * dit, & ce sujet : « Il n'y a pas a mettre en évidence une différence
entre les flambages élastique el plastique » et « Les longueurs d'onde au voile
sont dans un rapport constant avec la largeur des plaques et se montrent
indépendantes de 1'épaisseur des plaques et du matériau utilisé ».

La relation qui, suivant la théorie de Bleich, existe entre : la
contrainte de flambage et la longueur du voile, dans le domaine
plastique, n’est pas confirmée par les essais.

La question étudiée ici est d’une importance capitale pour la disposition
judicieuse des éléments de renforcement. Il est absolument nécessaire, par
conséquent, d’aboutir & une notion trés nette des conditions elfectives.

III. — Le voile des plaques dans le domaine plastique.

Le calcul de la page 126 de la Publication Préliminaire est exécuté avec
E=2130 t/cm2, tandis que pour le métal considéré, on n’a environ, en moyenne,
que If = 2000 t/cm?2, La résistance & la traction a atteint 4,79 t/em?2. Comme
la validité de la formule de Tetmajer est limitée & un métal accusant une
résistance 2 la traction inférieure & 4,5 t/cin23, le calcul devrait étre effectué
avec la « formule de Tetmajer pour fontes présentant les caractéristiques de
I'acier » 4.

Si I'on tient compte de ceite remarque, on obtient alors une concordance
moins bonne. L'équation différentielle sur Jaquelle se base Bleich pour le
domaine plastique correspond aux plaques orthotropes. Cette hypothése « est
toutefois en contradiction avee les faits expérimentaux et conduit a des résultats
erronés, tendant a4 provoquer une certaine insécurité » °.

Enfin, il faut attirer I'attention sur le fait que jusqu'a maintenant, il n'existe
pas de généralisation pour I'étude du flambage dans le domaine plastique, sous
I'influence de contraintes de cisaillement, pas plus d’ailleurs que pour tous

1. F. Boreexratn, Ausbeulerscheinungen an ebenen auf Schub beanspruchten Platten.
Dissertation, Ecole Polytechnique d’Aix-la-Chapelle, 1928, p. 11 et 16.

2. R. Maveg, Die Knickfestigkeit, tableau 39, p. 423.

3. L. v. Termaser, Die Gesetze der Knickungs- und der zusammengesetzten Druckfestig-
keit der technich wichtigsten Baustoffe, 3¢ édilion, Leipzig et Vienne, 1903.

k. R. Maver, Die Knickfestigkeit, page 61, Formule pour aciers accusant une résistance
i la traction de plus de 4,5 t/cm?2.

5. E. Cowacrra, Die Stabilitit zentrisch und exzentrisch gedriickter Stéibe aus Baustahl.
Rapport de Séance de I’Académie des Sciences de Vienne, Mathématiques-Sc. Naturelles,
Sec. Ila, Vol. 137, fasc. 8, Vienne, 1928.
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autres cas de charges ; en pratique, on est toutefois obligé de faire entrer en
ligne de compte une réduction de la charge de flambage dans le domaine plas-
tique. Tant que la théorie et la recherche expérimentale n’auront pas accompli
de nouveaux progres, il importe de chercher un moyen permettant de tenir
compte de cette influence, s’appliquant, dans toute la mesure du possible,
A tous les cas d'instabilité d'une maniére également simple. On se trouve, a ce
sujet, en présence des possibilités suivantes :
a) Suivant I'équation (6) de la page 121 de la Publication Préliminaire,

| - 1 =
,1) min 5& = GF{‘ \/1

on pourrait réduire dans le rapport \/;, d’une maniére générale, les contraintes
de flambage calculées dans I'hypothese d'un matériau possédant une élasticité
illimitée 1. La figure 3 représente la variation des contraintes de flambage
suivant U'équation (1) pour une plaque rectangulaire soumise & une compres-
sion uniformément répartie en acier St. 37, en fonction de I'épaisseur de cette
plaque. La courbe a, s’applique au cas ou \/: est calculé & partir de la formule
de Tetmajer (équation (8) de la partie 11, a); la courbe a, s’applique & une
courbe de flambage correspondant aux prescriptions des Chemins de Fer
Allemands pour l'acier St. 37, avec (b/h), = k5.3 (voir 11, b).

b) On pourrait également, suivant le projet de Timoshenko concernant les
tensions critiques des poutres dans le domaine plastique (voir figure 3,
page 133 et page 152 de la Publication Préliminaire), admettre une relation
linéaire, méme en ce qui concerne les plaques, entre le degré de finesse b/h
et les contraintes de flambage of). Cette droite est déterminée par la limite
d’¢lasticité (ou mieux par la limite de proportionnalité) et par la résistance a
la compression, cette derniére étant représentée ici d'une maniére fictive avee
une certaine réduction. Cette droite est représentée par la courbe b de la
figure 3, avec les valeurs limites des contraintes suivant Tetmajer.

¢} Si l'on connait la courbe ok pour les barres 2 on peut réduire les con-
traintes calculées dans I'hypothése d'un matériau infiniment élastique ¢ pour
les plaques et les parois minces, dans le méme rapport que l'on
réduit la contrainte d'Euler pour les barres.

2) cll’(‘ = t.c‘f(l.

Il suffit pour cela de calculer le degré de finesse relalif correspondant & la

contrainte d’Euler équivalente :

| =

3)

c

el
oK

1. L’appellation t adoptée pour le coelficient de flambage peut donner lieu & des confu-
sions, si le probléme de stabilité envisagé se rapporle & des charges de cisaillement <. I
est done & recommander d’éviter 'emploi de la désignation t pour le coefficient de flam-
bage et de ne faire intervenir que T — < E ou T/E.

2. Dans le cas présent, il faut faire intervenir ok et © pour des barres de section reclan-
gulaire. En ce qui concerne l'influence de la forme de la section, voir F. Bleich, Theorie und
Berechnung der eisernen Briicken, Berlin, 1929, n° 35.
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et de le reporter dans I'équation (4) supposée connue :
I 3l

&) ol = O,

Par exemple, pour la plaque rectangulaire soumise 4 une compression
uniformément répartie, le degré de finesse équivalent est égal a1

¥) n=1,652 (b/h).

La courbe ¢ de la figure 3 représente les contraintes de flambage obtenues

lorsque I'on adopte la courbe de flambage prévue dans les prescriptions des
Ghemins de Ier Allemands pour I'acier St. 37.

Pour d'autres régimes de charge, la valeur de la contrainte doit étre calculée
d’aprés les considérations de plasticité 2. Par exemple, pour le flambage des
plaques par contraintes de cisaillement ou l'instabilité des parois cylindriques

minces sous I'influence de contraintes de torsion, on a, pour des métaux suscep-
tibles d’accuser un allongement :

5) T8 = 0,58 og et Tp = 0,58 opP.

Pour tous les régimes critiques en général, on utilisera la condition de plas-
ticité au lieu de 'équalion 5. La contrainte de comparaison e,k ui correspond
pour la plaque, a titre de compression simple, 2 la méme contrainte que le
régime de charge général indiqué, intervient a la place de la contrainte de
flambage d’'Euler, de telle sorte que la contrainte de flambage devient, aprés
réduction :

6) GSIK == "gl[{ ("'gﬂ = o} (Ag)-

Ce mode de réduction correspond au fait que la quasi-isotropie de l'acier se
conserve méme dans le domaine inélastique des charges 3.

Par suite, il ne se manifeste qu'une diminution dans la valeur des contraintes

de flambage, la forme que prend le voile restant la méme que dans le cas
du flambage élastique.

La méthode de réduction suivant ¢ peut étre utilisée sans dispositions spé-

1. Voir la proposition de E. Cuwarra {p. 322 du Rapport sur la 2° Conférence Internatio-
nale des Ponts et Charpentes, Vienne, 1929) tendant a rapporter le module de flambage,
pour les plaques soumises 4 une compression uniformément répartie, aux trois termes de
I'équation différenticlle, en négligeant les variations du coelficient de Poisson m. On voit
que celte proposilion concorde avec la réduction indiquée en e. :

2. Voir Scuveicuer, Ueber die Sicherheit gegen Ueberschreiten der Fliessgrenze bei
stalischer Beanspruchuug. Bauingenieur, 9, 1928 no 15,

3. Voir : M. Ros et A. Eicuinger, Versuche zur Erklirung der IFrage der Bruchgefahr.
1. Communications an 2¢ Congrés International de Mécanique Industrielle, Zurich, 1926,
2. Communications de I'Association Suisse pour I'Essai des Matériaux, Zurich, seplembre
1926. 3. Discussion, n° 3%, Laboratoire Fédéral pour I'Essai des Malériaux, Zurich,
février 1929,

W. Lopg, Der Einfluss der mitileren Hauptspanaung aufl das Fliessen der Mclalle. Dis-
serlation, Gotlingen, 1926, Fasc. 303 der Forsch. Arbeiten auf dem Gebiete des Ingenieur-
wesens, Berlin, 1928.

De récenls essais moutrent d’ailleurs que dans certains cas on peut constater un com-
portement s’écartant de Pisotropie (voir Hohenemser et Prager: Beitrag zur Mechanik des
bildsamen Verhaltens von Flussstahl. Z.A M. M., 12, 1932,
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ciales pour une courbe de contraintes de flambage arbitraire. Elle a été d’ailleurs
employée récemment par exemple, pour les recherches de stabilité concernant
le Pont des Trois Roses, sur le Rhin, a Bale (poutres continues en toles avec
portées de T5 4 105 -+ 75 metres), pont qui a 6té construit par la M.A.N.,
les Ateliers de Gustavsburg et la Buss A . G., de Bile.

Lorsque la rigidité de la plaque se trouve uniformement réduite (état
de contrainte dit homogéne), les équations s’appliquent exactement. Si, par
contre, 1'élat de conlrainte n'est pas uniforme, =p varie alors avec le point
considéré et les contraintes réduites suivant ¢ sont alors trop faibles lorsque
la réduction porte sur la contrainte maximum.

Dans le cas d'un régime de charge non homogene, et aprés le dépassement
de la limite de proportionnalité, il faut en regle générale, compter sur une
certaine compensation des contraintes. Pour pouvoir, en pareil cas, effectuer
un caleul plus préeis, il faudrait, en supposant connue la répartition des
contraintes, introduire la rigidité de la plaque dans I'équation de déformation
de cette plaque, & titre de fonction de la valeur de la contrainte.

i

\
¥

hicy(y) 92w
v4lU—-l—— lj:-T(‘y—)_ 3 (I/‘z —

Il conviendrait enfin de rechercher également comment il se fait que les
déformations permanentes s’accomplissent sans augmentation de volume 1.
Aux valeurs m = 10/3 dans le domaine élastique el m = 2 dans le domaine
plastique, il devrait correspondre une différence de 21 °/, dans la rigidité des
plaques.

Résumons maintenant notre maniére de voir au sujet de la réduction du
régime critique de charge dans le cas des limites générales de stabilité :

La réduction suivant a n’est pas a préconiser, car elle ne se trouve pas
confirmée par les observations effectives et elle conduit a des contraintes
de flambage {rop élevées ;

Suivant 5, et pour la zone sp < 5 < o3 on obtient en général des valeurs
suffisamment précises, de sorte que ce mode de réduction pourrait par exemple
étre appliqué lorsque les courbes des contraintes de flambage ne sont pas
connues. Pour les plaques épaisses, la stabilité est toulefois ainsi surestimée,
de sorte qu’il est a recommander de remplacer les valeurs de o supérieures a
s.g par o.s (ou la contrainte correspondant aux conditions de plasticité).

[.a réduction suivant ¢ correspond au mieux a I'état actuel de nos connais-
sances. Elle est a recommander d'une maniére générale, tant pour les régimes
de charge homogénes que pour les régimes non homogenes. Pour ces derniers,
on conservera une marge de sécurité, en elfectuant la réduction pour les points
qui sont soumis aux contraintes les plus élevées.

1. Voir les travaux de Rog et Eichinger mentionnés en (3) et, en particulier, la figure 12
du ne 2 et les figures 4%, 65 et 66 du no 3.
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Dr. Ing. h. ¢c. M. ROS,

Professor an der Eidgendssischen Technischen Hochschule
und Direktor der Eidg. Materialpriifungsanstalt, Ziirich,

und

A. EICHINGER,

Wissenschaftlicher Mitarbeiter der Eidg. Materialpriifungsanstalt, Ziirich.

A]lgemeine Betrachtungen :

Durch die Versuche, welche in der Eidg. Materialprifungsanstalt in den
Jahren 1926-1929 durchgefihrt worden sind ! ist erbracht, dass das Mass der
plastischen Gestaltanderung : 2, in ebenso einfacher Weise von der Vergleich-
spannung : o} abhéngig ist, wie bekannterweise das Mass der elastischen
Gestaltinderung : e, durch dieselbe bedingt ist, namlich :

)

9 9 3
e St e — Cxby — €y €z — €y ex‘i_z(f]iy i (]3/4"!/3\)

N

=2 (14 )

N

elastisch : ¢, =

: 2 2 :
worin : g, =\/ of -k op d- o ox oy — 6y u— mox + Sl1L, T+ o)

2 | o2
und plastisch: 2 _V:X + 37

i e 3 2 79 2
y %2 — %z Sx +[I xy+\>’z+\7ZX)

sowie gesamt : ¢, = e, + 3, = o, > % (1 + i—]\) + ll) (1 - 7;\):

Es sind : elastisch : plastisch : total :

o= & Gx—%(c),—l—c,){ e,:%scx—%@ﬁm)% e
c=qle —ml el a=gla—je e =g+
e,z%}czm%((—l—”)g az-—%(‘sl—;(wrc\){ e
isites 2;3“ (1 A ,%) sz’ o QDT\'Y (\1 + %) Ty oy Vi

1. M. Ro$ u. A. Eicainger, Versuche zur Klirung der Frage der Bruchgefahr : I IFluss-
stahl, 1926, IIl Metalle, 1929 E.M.P A,

M. Ros$ u. A. Eicuincer, Kongress f. techn. Mechanik. Stockholm, 1930. « Weitere
Versuche zur Klirung der Frage der Bruchgefahr. »
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e ( 1 S 1
= Y - e : ! = e — ., +V e
.(/.‘i lﬂ \l + H’l) V.‘f. 1) (1 T 2> W Y2 g)ﬂ YZ
i i ; D 1 -
—— o ey ey - — AX 1 -I—— — ~Max = (4x + \/ X
gu E (\/1 + ]n) \ 7X D ( 2) 'R c.(/

Iibenso wurde damit erbracht, dass die plastische Volumeninderung ziemlich
genau gleich Null ist : 3, 43, + 3, =0, weil m = 2; die mittlere Normal-

spannung g, = Gli;—‘i—ﬂ ohne Finfluss aul die plastische Forminderung ;
£7 & &g
A A A <
S,
¥ g Ve
- Fs / &g ) I

kb"y *6‘9 6\9

SO 6\9% 6:9 Lé-~5\9' —

Fig. 1.

sowle dass die Quasiisotropie auch nach dem Ueberschreiten der E-Grenze
bewahrt bleibt, da der Plastizititsmodul D in allen Richtungen derselbe ist.
In bestimmten Idllen ist es giinstiger, mit der Tangente an das ¢, — 3, —

3

Diagramm I'ig. 1. zu operieren, statt mit dem D-Modul bezw. mit der plas-

;i : 2 s
tischen Dehnungszahl « = 5=
. Co

D 3
Das Letztere ist namentlich der Fall bei
den Knickproblemen der Platten, von /
welchen wir beispielsweise dierechteckige 1
Platte behandeln wollen : Gl /880

Wird die Platte in ebenem Zustand
zentrisch durch o und c’; bis zur Knick-
last gebracht, wobei die Elastizitits-
grenze Uberschritten ist, so treten bei einer
virtuellen Verbiegung der Platte folgende y Qpr28x
Krifteinderungen unter der Voraussetzung
des Ebenbleibens der QQuerschnitte auf.

Weil : A cy— A e, + Ad— (Acx-——é—c—}> +18‘Q-§, (N _A“Y)
2
3

Knicken rechteckiger Platten : E

105 m

1 A o,
A E—Ae = Nor— E(Ac)— An \> + g d.

Axuy=RAgy+ AV, =2+,

ist, konnen A s, A ¢, Aty daraus ermittelt werden.
10
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Die konkave Seite folgt, was die Spannungsverteilung im Schnitt betriflt,
der Tangente an dasg, — s, — Diagramm (tg o -} tg ¥), die konvexe Seite dem

tg o des Cp — € — Dlagramme% d. h. E-Gesetz., Daraus erhalt man den
A])qtand der neutralen Fliche von der Mittelfliiche :

\/ terio— \/t“‘
2\/tgw +Vige
Nun ist leicht, M, My, und M, zu ermitteln, namlich :

worin lg v = tg o 4 tg ¢

M. E.J.c ?izw 1_3N2_W
1 Ex® m 3y
1=
m
(22w 32
Wl EJ.c 2w +1_o w|
! e m :x2|
1____ o
e
{ 22
Mt I J.c1 8, TVV
X 2y
1 o
m
kg ¢

T h3 A
\VOP]?TI — 12 undac = Ez\/t (0+\/tg?;

Bezeichnet man dhnlich wie beim Knicken zentrisch gedriickter Stibe das

Produkt E.¢c = Ty = Knickmodul, so konimt man zu :
1
T bEtgo b 18 tg v
k J— = —— e
P Vigo +v/tgel2 B
f tg o tg w

Fiir m = 2o der elastischen, sowie plastischen Deformationen geht der T, —
Modul fiir plattenférmige Kt‘)rper in denjenigen far Stabe iiber.

Die Differentialgleichung der in beiden Axenrichtungen iiber die Ii-Grenze
zentrisch gedriickten, rechteckigen Platte lautet bei einer v1rtuellen Verbiegung :

il dhw Mt w ok w
jonc i ozt T % 3oy T 3y

m2

g

B 3 0l i 02 )
.1 G\ \

s ergibt sich daraus, dass die Durchbiegungsfliche ihre FForm auch im
Gebiet ausserhalb der E-Grenze nicht dndert, z. B. bei allseitig gefuhrter
Platte :

X o my

o =—"f.sin — sin
a b

womit alles gegeben ist, um Knickprobleme rechteckiger Platten auch ausser-
halb der E-Grenze bei Verschiedenen Rf\ndbedmgunfren losen zu konnen.
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Traduction.
Considérations générales.
Au cours des essais qui ont été effectués entre les années 1926 et 1929 au
Laboratoire Fédéral pour 1'Essai des Matériaux on a pu établir que le degré

de déformation plasthue 3, est relié ala contrainte s, envisagée par une I‘el‘l“

Lion aussi simple que celle qui conditionne le degru de defmmatlon élastique
e, par rapport a la contrainte considérée !. On a en effet :

Cas de l'élasticité :

o=\ Gt dite—en—ee—eet (g bl = B4 1)

S\ 57 2 9 ‘ 9
ou : cgz\/cx 0y f 0, —0y0y—0y0—0,5; 3 (TE,—[—- rygz—[— ‘r,"x)
Cas de la plasticité :

™ N ™ ™~ oy d lI\
g“VA“‘+°—%% 35 —85+ ¢ (Vi + V5 +Vi)= D(ikﬂ
. El 1 1
et:egzeg—}—cg:cgE i—{——’— + 14 - )]
On a
Elasticité Plasticité Au total
5 ; 1T 1 5 .
By == L[ g (6y+a.) S = T)[cx“ B (oy 4+ o) gx = €x + 34
1 | | 1 g
Bo= E[GY— = (62 + oy) S=plo—3 (6.4 54) cl— i
1r 1 8 A { 5
e, — E[GZ_H<JX+GY)_ OZ:—)[GI—E(GX—FG})g g, = (3,—""87‘
o 2 1 _21-“(, 1 k. b
gxy'— E (1 +;;_l> ny”— —')'*' \1 + Q) Y\_\ —,{/xy “{“\x\
2o 1 A 4
= — — e — IR e— /.,
Iz m(1+nJ Vi D(1+2> (=gt Vo
2./ 1" 2T,x( 1 3
— e e f o= — = i
,(/zx l‘: (1- + nl) \lx l) \1 —[— 2) 1IX f/m“‘\n

On a pu établir également que la variation plastique de volume est assez
sensiblement nulle :

S 0
car m = 2 ; la contrainle normale moyenne

Ox +G_\;‘+GZ

Om = 3
L. M. Ros et A. Ercuinger, Contribution a I'étude des possibililés de ruplure. — I. Acier
(1926). — 1I. Métaux divers (1929). — L. F . E.M,
M. Ros et A. Eicimincer, Congreés de Mcécanique Industrielle, Stockholm, 1930, — Nou-

velles contribulions & I’élude des possibilités de rupture.
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est sans influence sur la déformation plastique. De méme, la quasi-isotropie
reste assurée, méme apres le dépassement de la limite élastique, car le module
de plasticité D est le méme dans toutes les directions.

Dans certains cas déterminés, il est plus indigué plutot que de faire interve-
nir le module D ou le coefticient d’allongement plastique
1 2
b 3
de travailler avec la tangente au diagramme ¢, — 2, ci-contre.

Clest précisément le cas pour les probleémes de flambage des plaques, parmi
lesquels nous traiterons a titre d’exemple le cas de la plaque rectangulaire.

(& ¥

o
o

Q

o
o

Flambage des plaques rectangulaires.

Si une plaque plane est soumise axialement & des contraintes sk et gy
jusqu'a la charge de flambage, la limite d’élasticité se trouvant dépassée, on
obtient, pour une déformation virtuelle de cette plaque, les variations suivantes

des elforts, en se basant sur I'hypothése de la conservation de la section :

comme ; As=de.+ 4% = pf An— %)*w- %(A—AT>
1 A 2 N
Agy=A4e + A%y = E(Acy— ijx>+59‘?- “;(AU.\“‘ —2“*)

ik 1 B
Ay =Agy + AV, = 21*"[‘13(1 o)ty

on peut en déduires A, Aoy, A

La répavtition des contraintes sur le ¢oté concave est déterminée par la

tangente au diagramme oz —z,, (£ 9 + (g 4); sur le coté convexe, par tg o du

diagramme g, — e, ¢’est-a-dire par la loi de I'élasticité. On en déduit U'intervalle
entre la surface neutre et la surface médiane :

b Vigo—\lgs
(’:&;\2 \//gj.oil:lgz.):lg?—{—lgap
2 Vigo+\Vigs

Il est maintenant facile de déterminer M, M, et M, :

‘ EJec [22w 1 2w
M,=—— —
1 a2 m - Dy
m2
EJe Jo2w 1 D2 w’
1L\'I\. = — < —_— . £
: 1 1 La. y? m D a
m2
ElJe d2w
e v Tos dy
LT ¢
1 S :
= m
h3
ou : J= —
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blgg

ko Cl— — .
E(Vigo+Vigs)

g

De méme (ue dans le cas du flambage d'une barre soumise a une compression

axiale, si I'on adopte la désignation
E.c = Ty = module de flambage, on obtienl :

LE.
- 4B lgo ; Lg v
ISt P e
t{/C‘D \/ [g(;)

Pour m= « (déformations élastiques aussi bien que déformations plastiques),
le module Ty des éléments plans vient se confondre avec celui des barres.

Pour une déformation virtuelle, I'équation différenticlle de la plaque rectan-
gulaire soumise & une compression axiale suivant les deux directions de ses

axes, au-dessus de la limite d'élasticité, devient :

i L *tw ) L Ofw 2w
1 At ek e o 2 Sy 2 O
{ oL g pnan Eoar sy AR
m2

Il en résulte que la surface de flexion n’est modiliée ni dans sa position, ni
dans sa forme, méme dans la zone située au-dessus de la limite d’élasticité ; on

a par exemple, pour une plaque maintenue sur tous ses cotés :

On est donc en possession de tous les éléments pour pouvoir résoudre le
probleme du flambage des plaques rectangulaires méme au-dessus de la limite
d’élasticité, et pour dillérentes conditions aux bords.
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