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STABILITÄT UND FESTIGKEIT VON AUF DRUCK
UND BIEGUNG BEANSPRUCHTEN BAUTEILEN

STABlLITß ET RESISTANCE DES PIECES TRAVAILLANT SIMULTANEMENT
A LA COMPRESSION ET A LA FLEXION

STABILITY AND STRENGTH OF STRUCTURAL MEMBERS SUBJECTED
TO COMPRESSION AND BENDING

EINLEITENDES REFERAT

RAPPORT D'iNTRODUGTION

INTRODUCTORY REPORT

Dr.-Ing. L. KARNER,
Professor an der Eidgenössischen Technischen Hochschule, Zürich.

I. Einleitung.

Die Berechnung und Dimensionierung von Bauteilen, die auf Druck und
Biegung beansprucht werden, gehört zu den schwierigsten Aufgaben der
Statik. Wenn äussere Belastungen im Bauteil Druckkräfte allein, oder solche
im Zusammenwirken mit äusseren Biegemomenten und Querkräften hervorrufen,

treten senkrecht zu den Axialkräften Deformationen auf, die Zusatzmomente

und erhebliche Spannungen hervorrufen. Je nach dem Ueberwiegen des
Einflusses der Momente oder des Einflusses der Druckkräfte, haben wir es

mit einer Spannungs- oder mit einer Stabilitätsaufgabe, bezw. mit einem
gemischten Problem zu tun. Im ersteren Falle wird für die Dimensionierung
das Einhalten bestimmter zulässiger Spannungen massgebend, während im
zweiten Falle die Untersuchung der Sicherheit gegen Erreichen eines labilen
Gleichgewichtszustandes erforderlich ist.

Zu den bekanntesten und am meisten entwickelten Aufgaben gehört die

Berechnung zentrisch belasteter Säulen und Stäbe. Die hierbei auftretenden
Untersuchungen werden bereits erschwert, wenn die Querschnitte dieser
Bauglieder nicht voll, sondern gegliedert sind, da dann die Stabilität der

Teilglieder geprüft, sowie deren Einfluss auf die Gesamtstabilität berechnet
werden muss. Aber auch bei vollen Querschnitten spielt die Frage des Aus-
beulens (Ausknickens) der einzelnen auf kürzeren Strecken frei abstehenden
Flansche, sowie der dünnen Stege, eine bedeutende Rolle.

Im Stahlbrückenbau hat in den letzten Jahren die Anwendung weitge-
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spannter vollwandiger Balkenbrücken ausserordentliche Fortschritte gemacht.
Bei diesen Bauformen muss ganz besonders auf die Knicksicherheit der
Stegbleche und auf eine zweckmässige Art der Versteifungen geachtet werden.

Die rechnerischen Untersuchungen werden schwieriger, wenn zu den
axialen Beanspruchungen bei Säulen und Stäben oder zu den in der Ebene
der Platten wirkenden Momenten, Normal- und Querkräften noch äussere
Momente hinzutreten, die Verformungen in einer Stabebene oder senkrecht zur
Plattenebene hervorrufen.

Solange sich alle auftretenden Dehnungen elastisch verhalten, sind auch
bei kombinierten Beanspruchungen sowohl Knick- als Festigkeitsuntersuchungen

relativ einfach. Ungleich schwieriger und noch keineswegs abgeklärt
ist dagegen das Verhalten der auf Druck und Biegung beanspruchten
Konstruktionen im unelastischen, bezw. plastischen Bereich unserer Baustoffe. Da
es praktisch als ausgeschlossen betrachtet werden kann, das unelastische
Verhalten der Materialien (nach Ueberschreiten der Proportionalitätsgrenze)
rechnerisch zu erfassen oder in Gleichungen zu kleiden, bleibt es meist bei der
Notwendigkeit der Durchführung von Versuchsrechnungen oder des Auspro-
bierens auf Grund meist etwas willkürlicher Annahmen (Ebenbleibens der
Querschnitte u. s. w.), um für schwierigere Belastungsfälle das Gleichgewicht
zwischen den äusseren Lasten und den inneren Beanspruchungen berechnen
zu können. Beispielsweise müssen wir schon bei Baustahl konstatieren, dass

gerade Stabilitätsfragen nicht ohne Berücksichtigung des plastischen Verhaltens

gelöst werden können. Um nur ein Beispiel zu nennen, verweisen wir auf
den exzentrisch beanspruchten Druckstab, der auch bei grösseren
Schlankheitsgraden zum Teil unelastisch wird, wenn er in das labile Gleichgewicht
übergeht.

Schliesslich deuten wir noch an, dass die meisten Probleme dieser Art bei
genauerer Untersuchung eine weitere Erschwernis dadurch erfahren können,
dass sich Stabilitäts- und Festigkeitsuntersuchungen auf räumliche Spannungs-
zustände erstrecken und sodann die Veränderlichkeit der Elastizitätsmoduli
nach allen Seiten ihren Einfluss geltend macht.

II. Entwicklung und Stand der wissenschaftlichen Forschung
und Versuchspraxis1.

Die älteste Untersuchung eines durch eine Druckkraft beanspruchten geraden

Stabes stammt von Eller aus dem Jahre 1744. Die Euler-Formel kam
jedoch später wegen ihres Versagens bei gedrungenen Stäben in Misskredit,
obwohl schon Lamarle im Jahre 1845 daraufhingewiesen hat, dass für Holz
die Gültigkeit der Euler-Formel an die Elastizitätsgrenze gebunden sei. In der
Folge behalf man sich mit empirisch abgeleiteten Formeln von Tetäjayer,
Schwarz-Rankine u.a.. Tetmayer hatte allerdings bereits die Euler-Formel für
den elastischen Bereich wieder zu Ehren gebracht. Die erste Arbeit Engessers,
in der er auf das plastische Verhalten hinwies, stammt aus dem Jahre 1889,
doch fand sie erst ihre Atolle Anerkennung durch die Arbeiten KÄkmän's aus

1. Siehe Literaturverzeichnis.
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dem Jahre 1910, durch welche die Grundlage für die Theorie von Engesser-
Karman geschaffen wurde. Nach dieser ist es zunächst wenigstens für das
zentrische Knicken möglich geworden, im unelastischen Bereiche die Verhältnisse
richtiger zu erfassen und Säulen und Stäbe verschiedener Materialien auf Grund
der Kenntnis ihres Druck-Stauchung-Diagrammes zu berechnen.

Das nächste Problem, dem sich nun Versuchspraxis und Theorie zuwenden,
mussten, ist das Studium des exzentrisch gedrückten Stabes ; hier sind die
Arbeiten von Krohn und ganz besonders die von Ros und Brunner zu
erwähnen. Von besonderer Bedeutung für die internationale Verbreitung der
Erkenntnisse und für die kritische Behandlung der einzelnen Auffassungen
sind die Berichte und Diskussionen der Internationalen Tagung für Brückenbau
und Hochbau im Jahre 1928 in Wien geworden, und wir verweisen ganz
besonders auf diesen Bericht (siehe Literaturverzeichnis).

Ausser der Behandlung der grundlegenden Fragen, die den vollwandigen
Stabquerschnitt bei zentrischer und exzentrischer Beanspruchung betreffen,
sind gleichzeitig von einer grösseren Zahl von Forschern, — wir nennen
Bleich Chwalla, Dondorff, Elwitz, A. Föppl, Huber, Kayser, Kriemler,
Krohn, Kübler, Love, Mayer, Melan, von Mieses, Müller-Breslau, Ostenfeld,
Reissner, Timoshenko, Waddel, Zimmermann, u. a. — theoretische Untersuchungen

vorgelegt worden, bei welchen kombinierte Lastfälle, verschiedenartige

Lagerungen, veränderliche Querschnitte der Stäbe u. s. w. behandelt
wurden. Auf dem Gebiete der Theorie des Knickens von Platten ist besonders

Timoshenko zu nennen, nachdem als erster Bryan 1891 sich mit dem
Problem des Ausbeulens rechteckiger Platten beschäftigte. Ausser anderen
Forschern wie Reissner, Wagner, Schleicher, u. s. w. hat besonders Bleich
die Theorie der Stege und Flansche gedrückter Stäbe, sowie die Knicksicherheit

der Stegbleche von vollwandigen Stahlträgern der praktischen Verwendung
durch Ausarbeitung von geeigneten Formeln zugänglich gemacht.

Zusammenfassend können wir feststellen, dass die Berechnung von Stäben,
Platten und zusammengesetzten Konstruktionsformen bei Auftreten von Druck
und Biegung sowohl in Bezug auf Knick- als auch Festigkeitsberechnungen

keine unüberwindlichen Schwierigkeiten bietet, solange die Verformungen
sich im elastischen Bereich abspielen. Treten in einzelnen Teilen jedoch
plastische Deformationen auf, so werden die Untersuchungen bedeutend
schwieriger, weil das unelastiche Verhalten, durch besondere Werkstoffeigenschaften

bedingt, keine einwandfreie Gleichgewichtsuntersuchung mehr
ermöglicht. Dem technisch-wissenschaftlichen und dem praktischen Versuchswesen

bleiben hier noch ein sehr weites Arbeitsfeld offen.
Das Versuchswesen hat dabei eine doppelte Aufgabe. Die Praxis erfordert

praktische Dimensionierungs- und Bemessungsformeln für mannigfache
Belastungsarten. Die Wissenschaft wünscht die Vorgänge auch nach Ueberschreiten
der in der Praxis zulässigen Beanspruchungen und Deformationen kennen zu
lernen und wünscht vor allem im Zusammenhang mit Materialprüfungsfragen
die Vorgänge beim Auftreten der Instabilität genauer zu prüfen.

Für die Abklärung der Grundlagen ist es erforderlich, die Verhältnisse beim
Gleichgewichtswechsel im Zusammenhang mit den auftretenden Spannungen
zu betrachten.
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Wir wollen nun verschiedene Belastungsfälle am einfachen, in seinen
Endpunkten gelenkig gelagerten Stab, von diesem Gesichtspunkt aus ganz
allgemein untersuchen, da sich bei anderen Formen sinngemässe Verhältnisse
ergeben.

1. Der zentrisch belastete gerade Stab im elastischen Bereich.
Wird ein an den Enden gelenkig gelagerter Stab durch eine Druckkraft

zentrisch belastet, so bleibt er infolge Belastungen unterhalb der kritischen
Knicklast (Euler'sche Knicklast) gerade. Wird die Stabachse durch Hinzutreten

von äusseren Momenten gebogen (und treten keine Randspannungen
über der Proportionalitätsgrenze auf) so kehrt der Stab nach Wegfallen der
Ausbiegungsursachen wieder in die gerade Lage zurück.

Der Stab bleibt auch bei weiterer Steigerung der Last gerade, er ist im
stabilen Gleichgewicht bis die kritische Last, die Knicklast, erreicht ist. Der
Stab ist bisher nur durch eine Normalkraft beansprucht. Wird nunmehr die
Last um einen noch so kleinen Teil gesteigert, so tritt eine Ausbiegung auf,
es wird ein Zusatzmoment wirksam. Nur diesen Vorgang sprechen wir als
Knickerscheinung an. Die Lage der Stabachse entspricht nun neuerdings einer
Gleichgewichtslage. Bei weiterer langsamster Laststeigerung nimmt die
Ausbiegung rasch zu, die Randspannungen überschreiten in Stabmitte bald
die Proportionalitätsgrenze und der Stab wird teilweise unelastisch.

Die weiteren Formänderungen und das schliessliche Unbrauchbarwerden des
Stabes spielt sich für praktische Schlankheitsverhältnisse im unelastischen
Bereich ab.

2. Der exzentrisch belastete Stab im elastischen Bereich.

Wirkt die Druckkraft exzentrisch, dann ist bereits ein Anfangsmoment
vorhanden, das eine Ausbiegung der Stabachse bedingt. Bei unbegrenzt elastischem
Material entspricht jeder Belastung ein Gleichgewichtsfall. Instabilität kommt
nicht in Frage. Aber auch hier können wir durch die Berechnung feststellen,
bei welcher Belastung die Randspannungen die Proportionalitätsgrenze
überschreiten, und von dieser Belastung an ist wieder plastisches Verhalten
massgebend.

3. Der zentrisch belastete gerade Stab im unelastischen Bereich.

Ist die Belastung unterhalb der kritischen Last (Knicklast), so bleibt der
Stab gerade. Bleiben die Spannungen dabei unterhalb der Proportionalitätsgrenze,

so kehrt der Stab in die gerade Lage zurück, wenn die Ausbiegungsursache

entfernt wird. Ueberschreitet jedoch die Axialkraft (die jedoch unter
der kritischen Last bleibt) die Grenze, für die die Spannungen die
Proportionalitätsgrenze überschreiten, dann dürfen wir einen solchen Stab nicht mehr
ausbiegen, da er sonst in eine zweite ausgebogene Gleichgewichtslage übergeht,

die bereits eine plastische Deformation eines Teiles der Stabes bedingt.
Unterhalb der Knicklast, aber über der Proportionalitätsgrenze, gibt es somit
eine Gleichgewichtslage mü gerade bleibender Achse und eine solche mit
ausgebogener Stabachse. (Letzterer Fall entspricht bei weiterer Steigerung der



Stabilität und Festigkeit von auf Druck und Biegung beanspiuchlen Bauteilen 2i

Last wregen der bereits vorhandenen Exzentrizität den im folgenden behandelten

Fall 4). Setzen wir nun den Stab noch gerade voraus und steigern wir die
Belastung bis zur kritischen Knicklast, so weicht der Stab ähnlich aus, wie
im Knickstadium des elastischen Gebietes. Die Ausbiegung nimmt rasch zu,
die Zusatzmomente wachsen und der Stab erliegt den Verformungen im
plastischen Gebiet.

4. Der exzentrisch belastete gerade Stab im unelastischen
Bereich.

Der Stab verhält sich zuerst wie unter 2. Wird die Last gesteigert, so
deformiert sich der Stab nach den Gesetzen des Baustoffes, bis er schliesslich
ins labile Gleichgewicht kommt, d. h. bei geringster Lastzunahme ausweicht.
Dieser Vorgang des Eintretens des labilen Gleichgewichtes ist nicht zu
verwechseln mit den früher geschilderten Vorgängen des Knickens. Beim
Knicken haben wir es mit dem Wechsel aus einer Gleichgewichtslage (gerade
Stabachse unter Normalkraft) in eine andere Gleichgewichtslage (gekrümmte
Achse unter Normalkraft und Biegemoment) zu tun. Im Falle des Eintretens
des labilen Gleichgewichtes jedoch, wenn ein Teil des Stabes unelastisch
wird, ist das Material des Stabes nicht mehr im Stande, den äusseren Kräften
genügend Widerstand entgegen zu setzen. Für praktische Verhältnisse ist
dieser Zustand des Eintretens der Instabilität im plastischen Bereich auch
wirksam für die Belastungsfälle unter 1)2) und 3), wenn nach dem Ueber-
schreiten der Proportionalitätsgrenze plastische Verformungen eintreten. Dieser
Vorgang lässt sich auch versuchstechnisch deutlich verfolgen, wenn Vorsorge
getroffen wird, dass die Last auch im Momente des Ausweichens des Stabes
wirksam bleibt und wenn unbegrenzte Deformationsmöglichkeit besteht. Die
Stabachse ist zunächst, auch wenn teilweise bereits die Streckgrenze
überschritten ist, in allen Teilen gekrümmt; es ist dies der Fall des in allen Teilen
noch biegungssteifen Stabes. Wenn jedoch in Stabmitte, als der Stelle des

grössten Momentes, infolge mangelnden inneren Widerstandes das Stabmaterial
nicht mehr im Stande ist, das äussere Moment aufzunehmen, so tritt an dieser
Stelle eine gewisse Gelenkwirkung auf. Ein Gleichgewicht wird für ein solches
Tragwerk sofort unmöglich, da der Stab in der Mitte nurmehr begrenzt oder
garnicht mehr biegesleif ist. Diesem Gebilde entspricht eine starke Verringerung

der Momentenwirkung in beiden Stabhälften, und daher strecken sich
die Stabenden, soweit sie nicht bereits dauernd deformiert sind.

5. Schlussfolgerungen.

Die geschilderten Erscheinungen des Knickens und der Instabilität treten bei
Stäben mit nicht gelenkiger Lagerung, bei Platten und anderen Körperformen

sinngemäss auf. Wir fügen noch hinzu, dass im elastischen Bereich die
einzelnen Belastungen hintereinander und in verschiedener Reihenfolge
aufgebracht werden können, um immer den gleichen Endzustand an Verformung
und an Spannungen zu erhalten. Dies trifft nicht mehr zu, wenn Teile der
Konstruktion plastisch verformt werden.
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Es ist selbstverständlich, dass die geschilderten verschiedenen Vorgänge
für verschiedene Baustoffe, je nach deren Materialeigenschaften, verschieden
sind. Wir haben im grossen und ganzen bei unseren Betrachtungen normalen
Baustahl im Auge gehabt.

Wir kommen zum Schluss, dass für das genaue versuchstechnische Studium
und zur theoretischen Abklärung der Fragen des Knickens, ganz besonders
aber für die Frage des Auftretens labiler Gleichgewichtsfälle im plastischen
Bereich die Kenntnis der auftretenden Spannungen erforderlich wird. Ganz
besonders ist es erwünscht, diejenigen Belastungsfälle zu kennen, unter wel¬

chen die Proportionalitätsgrenze an irgend einer
Stelle überschritten wird, um den Augenblick des
Beginnes der plastischen Verformung zu erfahren.

III. Gleichgewichtsberechnungen
für elastische Baustoffe.

Wir setzen unbegrenzt elastisches Material mit
dem Elastizitätsmodul E voraus
und nehmen, um die Ableitung

d<P ganz allgemein zu gestalten, den
Fall exzentrischer Belastung an.
Für den an beiden Stabenden
gelenkig gelagerten Stab gilt

Abb. 1. Sollen unsere Entwicklungen für kleine
Exzentrizitäten, und im Grenzübergang für die
zentrische Belastung gelten, so müssen wir die

genaue Biegelinie berücksichtigen und wir setzen

1 d® P (e cos a + y)
^~~'ds~ ET

J ist das Trägheitsmoment des Querschnittes.
Die Beziehung zwischen ?/, ds und © ist durch

y I ds sin 9gegeben. Setzen wir k^=Kl =r^>

ergibt sich : (-r-) 2/c2cosjp + C.

Die Konstante bestimmt sich aus den
Beziehungen am Stabende, wenn <p x wird aus

do Ma J9-H- rppr =—/oleosads EJ

\ecosa

cc-~zL

ds Y->>

<fP>

L-/ ¦TP
Jm

rm-^

arr /
Fig. i.

Gelenkig gelagerter Stab mit
exzentrischer Belastung im
elastischen Bereich.

Barre articulee aux appuis avec
Charge excentree, dans les li-
mites de Tölasticite.

Member with Hinged Bearings
and Eccentric Loading in the
Elastic Zone.

SO

ds
tf ©

Damit erhalten wir
die Beziehung

in der K2 (T /c2e2cos2a + sin2 £ bedeutet.

Führt man die Integration über die ganze gebogene Stabachse l (unter Ver-

2k
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nachlässigung ihrer Verkürzung durch die reine Druckbelastung P cos 9)

durch, so erhält man in allgemeinster Form :

<x

/"K2_sin2IV
Gl (1)

Das Integral ist nur mit Reihenentwicklung zu lösen und ergibt :

sin^
?Lrcsin-JH 1+ 0,25 K2+0,1406 K*+0,0977 K« + A

| 0,25 + 0,1406. K2 + 0,0977 K* +.
k a

¦^e cos« sin^

—^ecosasin^j 0,0937+ 0,0651 K2 + 0,0050 K4 +

— |ecosasin«? j 0,0391 +0,0299 K2 + J— .1 Gl (2)

Wird e 0, dann bekommen wir für zentrische Belastung (aber bei

vorhandener Ausbiegung), da K sin ^ wird und da are sin 1 ^ ist:

l= — rAi + 0,25 sin2 |+ 0,1406 sin* | + 0,0977 sin «?-+.. Gl (3)

Geht schliesslich auch a in 0 über (nur bei e 0 möglich), dann wird

'-i-'Vt?" G1(i>

was der Euler'schen Knickkraft bei zentrischer Belastung entspricht.
Die Gleichung (2) ist nicht in geschlossener Form nach P auflösbar. Bei

gegebenen Stababmessungen und Belastung kann die Gleichgewichtslage nur
durch Probieren ermittelt werden. Dagegen eignet sich die Form der
Gleichung (2) sehr gut zur Aufstellung von Tabellen und graphischen Darstellungen.

Für praktische Fälle und mit Rücksicht auf die Unzulässigkeit grösserer
Deformationen, bezw. mit Rücksicht auf das Ueberschreiten der Proportionalitätsgrenze

in den Randfasern kommen für die Auswertung nur ganz wenige
Glieder in Frage. Es ergeben sich weiter die Deformationen zu :

y | v/K2 — sin2 | — e cos « Gl (5) lJm k
K ~ - e cos a Gl (7)

/* 1V/K2-Sin22 Gl(6) /m ^K Gl (8)
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Eliminiert man aus der Gleichung (2) den Wert K durch Einführen des Hebelarmes

fm, so geht sie in die Form über :

a

^[arcsin^j 1 + 0,25£./¦„,» +0,U06^. /•„«+. .j
~2~

-|ecosasin|j 0,25 + 0,1406 j fm* +. J - J Gl (9)

Für e 0 wird der are .-= '- und Gleichung 9 nimmt die Form an, die schon

bei Grashof durch Integration der genauen Differentialgleichung der Biegelinie

erscheint:

J ?j l + 0,25^./-m2 + 0,1406^./•„,*+ JG1(10

In den vorangehenden Berechnungen sind die Einflüsse der Querkräfte, der
Stabverkürzung und der Querschnittsveränderung vernachlässigt. Da wir nur
vergleichende Betrachtungen anstellen werden, führen wir für die Auswer-

P
tung der Gleichung (2) die Schwerpunktspannung <jn p und den

Schlankheitsgrad X
-j

ein. Wir nehmen ferner einen rechteckigen Querschnitt mit

der Höhe h und der Breite b an und beziehen die Grösse der Exzentrizität

auf die Kernweite, sodass e m ¦* wird. Es ergibt sich nun
o

7 VI und e' * °'577' m'V f"

Schliesslich berechnen wir noch den grössten Hebelarm für die Last P in
Stabmitte aus der Gleichung (8) durch Einsetzen der obigen Werte zu :

% l i/m2cos2a + 12- sin^ Gl. (11
h 6 V '

<y„ 2 v '

Als Elastizitätsmodul führen wirE=2210 t/cm2 ein, welcher Wert normalem
Baustahl entspricht und den wir zunächst unbegrenzt konstant wählen.

Unter diesen Voraussetzungen lassen sich für die Gleichung (2) und für die
fm

Beziehung -^ Kurvenscharen zeichnen, die in Fig. 2 dargestellt sind und für

verschiedene Werte m gelten. Jeder Punkt dieser graphischen Darstellungen
gibt für die betreffende Exzentrizität die zusammengehörigen Werte an, X, aund
f'— für die Gleichgewicht herrscht.

Die Fig. 2a für m 0 entspricht zentrischer Belastung. In dieser Darstellung

ist der Masstab für a nur bis zum Erreichen der Knickspannung derselbe
wie in den übrigen Teilabbildungen. Von dieser Stelle ab entspricht bei
gleichbleibender Belastung (konstantes an) einem grösser werdenden Winkel a
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ein grosser werdender Schlankheitsgrad. Die Zunahme AX ist jedoch in
hundertfachem X Masstab aufgetragen.

Aus der Gleichung (3) für zentrische Belastung können die zusammengeho-

» #m.o m=Q25

k#• JX

sj tJ
r*±f. Y

Y$
ifi

(AV«

too

200 300 900 200 300

¥¥
mm ## /m 1,0m-0.5

vJX or

Ijnh e

4)

-J
toowo

Jcc200 300 wo 300

IT

0 m-w,om=3o ss fi?N
OV

»ft+—H ~*.m

m

Hl^wo 300 300roo zoo

rm

Gelenkig gelagerter Stab unelastischen Bereich Beziehungen zwischen Schwerpunktsspannungen,
Schlankheitsgraden und Defoimationen, für verschiedene Exzentrizitäten

Barre articulee aux appuis, tra\aillant dans la zone elastique Relations entre les effoits au
centre de gravite, les degres de finesse et les deformations pour difte>entesexcentncitcs

Member with Hinged Beanngs, in the Elastic Zone Relations between stresses at centre of gia-
vity, slenderness ratios and deformations for vanous eccentricities.
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rigen Werte der Stablast P nach Ueberschreitung der Knicklast Pk und des
Winkels a leicht bestimmt werden :

P Pk j 1+0,25 sin21 + 0,1406 sin4 | +
Die folgende Tabelle gibt einen Einblick in diese Zusammenhänge.

P/Pk 1,00015 1,00095 1,0038 1,0350 1,0810

a 2° 5° 10° 30» 45°

l
0,011 0,028 0,055 0,162 0,234

Die Fig. 2b-2 f zeigen, dass für ein gegebenes m jede an-Kurve sich assympto-
tisch der Vertikalen durch jenen Schlankheitsgrad Xk nähert, für den cn bei
zentrischer Belastung Knickspannung wird. Für Stabquerschnitte mit der
Schwerpunktsspannung <jn bleiben bei kleineren Exzentrizitäten mit zunehmenden

X die Deformationen zunächst gering, um dann gegen den Schlankheitsgrad

für zentrisches Knicken zu plötzlich rasch anzuwachsen.
Bei grösseren Exzentrizitäten bewirkt das Ueberwiegen des Momentes bei

wachsendem X eine raschere Zunahme der Werte a und fm; jedoch sind die
Uebergänge gegen den kritischen Schlankheitsgrad zu weniger unvermittelt.

Für den gewählten Elastizitätsmodul E und für eine entsprechende
Proportionalitätsgrenze (jp 1,9 t/cm2 ist sehr bald für die einzelnen Linien
diejenige Grenze erreicht, für die in der Randfaser der Druckseite <rp

überschritten und der Stab teilweise unelastisch wird.
Für die Exzentrizitäten m=0,50, 1,0 und 3,0 sind ap-Linien eingetragen.

Diese geben im Schnitt mit einer an-Kurve den Schlankheitsgrad, für den
gleichzeitig in der Randfaser der Druckseite ap erreicht wird. Nur zusammengehörige

Werte von a, X und <jn, die unter der crp-Kurve liegen, entsprechen
Belastungsfällen, für welche der ganze Stab elastisch ist. Ueber der gp-Kurve
haben wir es mit Belastungsfällen zu tun, für die der ganze Stab oder Teile
desselben unelastisch werden. Unsere Kurvenscharen gelten somit praktisch
nur bis zur ap-Kurve.

Für die gleichen Werte m sind auch a^ Kurven eingezeichnet. Das sind
diejenigen kritischen Schwerpunktsspannungen, für die nach den Versuchen von
Ros Knicken des exzentrisch beanspruchten Stabes oder, nach unseren
eingangs gebrachten Erläuterungen, Instabilität eintritt.

Für die drei dargestellten ra-Fälle liegen für die in der Praxis zulässigen
Schlankheitswerte die Instabilitäten in dem Bereich, für welchen der Stab
teilweise oder ganz unelastisch wird. Ein Unterschreiten der <jp-Kurve durch
die Linie <jkr, auch bei sehr kleinen Werten m, ist nach dem Gesagten nicht
möglich.

Um die Spannungsverhältnisse bei den exzentrischen Druckbeanspruchungen
besser überblicken zu können, werden wir noch die auftretenden Span-
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nungen ermitteln. Wir beschränken uns darauf, die grössten Randspannungen
für den Rechteck-Querschnitt im Stabmitte zu berechnen.

P.fm h
2

1 + 6 4'
h

Gl (12)Um ~ F - 1
min L °

F ist die Querschnittsfläche und J ist das Trägheitsmoment.
Die grössten und kleinsten Spannungen in Stabmitte können ferner auch wie

folgt angeschrieben werden :

<*„ 1 '¦VI-) Gl (13)

Uebersteigt beim zentrisch belasteten Stab die Druckkraft die Knicklast,
dann lassen sich die Randspannungen für den Querschnitt in der Stabmitte
sinngemäss bestimmen.

;•; .„ (W \y/l .-i) gi (H)

Wenn wir für a„ bei kleinen Winkeln a wegen der Geringfügigkeit des
Zuwachses von P gegenüber P^den Wert <ik einsetzen, wird für zentrische Last:

^ l 1

sin -P _ ffp—ffW 7,h ' X.E
Gl (15)

worin ap den Ablenkungswinkel bedeutet, für den am Rande ap erreicht wird.
Die folgende Tabelle zeigt solche zusammengehörige Werte.

A OL
Um

l
2/m i«r

/ =500 cm

ca. 107 0° 0 0

150 0°40' 0,0037 1,85 cm

200 1°18' 0,0072 3, 60 cm

250 i°53' 0,0103 5,15 cm

Nach der Gleichung (13) sind für m 0,5, m l,0 und ra 3,0 je für die
Schlankheitsgrade 100, 150 und 200 für eine wachsende Kraft P <js. F
verschiedene Spannungswerte ermittelt und in den Fig. 3a, 3b, und 3c
dargestellt.

Auf den Abszissen sind über den Lastordinaten die zugehörigen Spannungs-
fm

werte, die Ablenkungswinkel a und die Ausbiegungsgrössen ;~ aufgetragen.

cjs ist die jeweilige Schwerpunktsspannung, a' (Druckseite) und a" (Zugseite)
sind diejenigen Randspannungen in Stabmitte, die sich ohne Berücksichtigung

der Verformung der Stabachse ergeben. <7max (Druckseite) und <jmin (Zugseite)

sind die wirklichen Randspannungen unter genauer Berücksichtigung
der Verformung. Der Unterschied (<jmax — <j') bezw. (amln — <j") ergibt den
Einfluss der Stabausbiegung, der sehr von m und X abhängig erscheint.
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SpannunDen in gelenkig gelageiten exzentusch belasteten Stäben im elastischen Bereich

Eiloi ts dans les barres articulees aux appuis, chargees excentriquement et ti a* aillant
dans lazone elastique

Stiesses in Membeis with Hinged Bearings, eccentncally loaded in the Elastic Zone

Trlauterung — Signes employe» - S\mbols used

P Druckkraft des Stabes — Charge de h barre — Pressuie on the niembt r
jp Spannung an der Propoi tionahtatsgienze — UToit a la lnmte de piopoi tionnaliU. — Sticss at the limit of

proportionality
<jz Zulässige Spannung — Firoit admissible —Peimtssible slress

P
<js - Schwerpunktsspannung — EfTort au centiede gravitd —Sliess at centie of giavityF
<jf <j" Randspannung in Stabmitte ohne Berücksichtigung der Verformung — HTorts pe>iphenques au milieu de

la barre sans tenir compte de la defoi maüon — Stresses at the edge in nuddle of menibei without considering
deformation

amax, amin Randspannung mit Berücksichtigung der Verformung — FfToits pöriphcnques au milieu de la barre
en tenant compte de la deformation — Stresses at the edge taking deformation mlo aecount

ak Knickspannung fui den zentusch belasteten Slab — FIT>rtde flambage pour la barre chargee axialement
— Bückling stiess foi centiallv loaded niember

akz Zulässige Knickspannung fui den zenlnsch belasteten Stab bei 2 5 facliei Sicherheit — nibit admissible
de flambage pour la barre chargee axialement, avec coethcient de soeunte de 2,5 — Permissible bucUhng
stress for centralU loaded membei w lth factor of safel\ of 2 o

aek Knickspannung des exzentrisch belasteten Stabes nach Ros — nroi t de flambage dans la barre chargee
excentriquement d apres Ros —Bückling stiess lor eccentncalh loaded membei aecordingto Ros

<jekz Zulassige Knickspannung des ex/entusch belasteten Stabes nach Ros bei 2 5 facher Sicherheit — UTort
admissible de flambage pom la barre clm gep excentriqueme it d apres Ros avec coefficient de securit^ de 2,5.
— Permissible buckhng stress in eccentncally loaded member aecording to Ros, with factoi of safety of 2,5.
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Der Schnittpunkt der Horizontalen <rp mit der amax Kurve zeigt diejenige
Last P an, für die die Stabmitte mit der äussersten Druckfaser die
Proportionalitätsgrenze überschreitet. Diese Stelle ist in den Figuren durch eine
vertikale Doppellinie gekennzeichnet. Links davon ist das Verhalten des Stabes
elastisch, rechts davon teilweise unelastisch.

Der Schnitt der für eine zulässige Spannung az 1,5l/cni2 gezeichneten
Horizontalen mit der <jmax Linie gibt die Last, für welche die ungünstigste
Randfaser <jz erreicht. In Fig. 3 sind noch weitere Spannungswerte
eingetragen :

1) die Knickspannung <jk des Stabes für zentrische Belastung ;

2) die zulässige Knickspannung <jkz mit 2,5 facher Sicherheit ;

3) die kritische Spannung <jek für den exzentrisch belasteten Stab nach Ros ;

4) Die zulässige Spannung <jekz mit ebenfalls 2,5 facher Sicherheit.
Die Darstellungen der Fig. 3 verdeutlichen uns den Einfluss von m und X

auf die Spannungs- und Ausbiegungsverhältnisse im Querschnitt der Stabmitte.
Wir sehen auch hier (wie schon aus Fig. 2 geschlossen wurde), dass die
Instabilität auch bei schlanken Stäben durch das unelastische Verhalten des
Baustoffes bedingt wird.

Schliesslich weisen wir noch darauf hin, dass bei statischer Belastung (von
Null aus stetig anwachsend) nur bei ganz kleinen Exzentrizitäten (für Werte
m < 1) auf der Zugseite des Stabes Spannungswechsel eintreten kann, indem
amin zunächst noch Druck ist und erst infolge Zunahme der Verformung zur
Zugspannung wird. Für Werte in ganz nahe an Null kann dieser Spannungswechsel

auch erst über <7p eintreten.

IV. Gleichgewichtsberechnung für ganz oder teilweise
unelastische Baustoffe.

Wir haben schon eingangs erwähnt, dass eine rechnerische Erfassung des
Verhaltens von Bauteilen, deren Verformungen ganz oder teilweise unelastisch
werden, ausserordentlich schwierig ist, weil die Plastizitätsmechanik noch
keine sicheren, durch Versuche erhärteten Zusammenhänge zwischen
Spannungen und Formänderungen zu geben vermag.

Um trotzdem an Hand des Spannungs-Dehnungs-Diagrammes (von dem
wir die Druck- und Zugseite benötigen, weil schon bei kleinen Exzentrizitäten
der Momenteneinfluss bei der Spannungsermittlung gegenüber dem Einfluss
der Normalkraft überwiegt) Berechnungen anstellen zu können, setzen wir
bekanntlich das Ebenbleiben der Querschnitte auch nach Ueberschreiten der

dp- Grenze voraus. Unter dieser Annahme, d. h. bei linearem Verlauf der
Dehnungsänderungen, lässt sich der Spannungsverlauf über den Querschnitt
als ein Teil des Spannungs-Dehnungs-Diagrammes darstellen. Im Masstab i s

die Höhe des Querschnittes (in der Richtung der Ausbiegung) sinngemäss
der Differenz der Randfaserdehnungen zuzuordnen. Diese rechnerischen
Voraussetzungen treffen innerhalb gewisser Grenzen für Baustahl einiger-
massen zu.

Zwecks praktischer Durchführung der Rechnung nehmen wir für den

ganzen Stab, einen konstanten Elastizitätsmodul E an, dem ein linearer
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Verlauf der entsprechend reduzierten Spannungen entspricht. Um der wirklichen
Veränderlichkeit des Moduls von Faser zu Faser Rechnung zu tragen,

reduzieren wir die Querschnittsflächen so,
dass die wirklichen inneren Kräfte den aus den
reduzierten Werten ermittelten gleichwertig
sind. Beträgt an irgend einer Stelle die Breite
einer Faser byj und die zugehörige tatsächliche
Spannung ffyj, so entsprechen sich (siehe auch

Fig. 5) nach der Reduktion die reduzierte
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Gelenkig gelagerter Stab mit
exzentrischer Belastung im unelastischen

Bereich.

Barre articulee aux appuis avec
charge excentrique, travaillant
en dehors de la zone elastique.

Member with Hinged Bearings
with Eccentnc Loading in the
Inelastic Zone.
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Coupe
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Breite brrj und die reduzierte
Spannung <jrTr Es muss nun
hr\.Gr\ b'Vj arr) sein, woraus
sich die jeweilige reduzierte
Breite einer Quertschnitts-

faser b1'^ by) -^ ergibt.
<7lT)

An Stelle der ursprünglichen
Fläche F tritt eine reduzierte
Fläche F'.

Die Fig. 4 zeigt die Verhältnisse am exzentrisch belasteten und an beiden
Enden gelenkig gelagerten Stab, wenn dieser teilweise oder ganz unelastisch

Spannungen und Formänderungen eines Stabquer-chnittes
iui unelastischen Bereich.

Tensions et delormations dans un element travaillant
en dehors de la zone elastique.

Stresses and Delormations of the Cross-Section
of a Member in the Inelastic Zone.
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wird. Die für die rechnerische Untersuchung in Fragekommende statische
Stabachse geht durch die Schwerpunkte der reduzierten Querschnittsflächen.
Diese statische Stabachse weicht um den Betrag er von der geometrischen ab.

Unseren Betrachtungen legen wir wiederum den rechteckigen Querschnitt
zugrunde und für den Krümmungsradius führen wir abermals als Variable das
Bogenelement der statischen Stabachse c/sund den zugehörigen Neigungswinkel

<p ein. In der Fig. 5 sind über einen rechteckigen Querschnitt die
zusammengehörigen Dehnungs- und Spannungsdiagramme, sowie die reduzierte
Querschnittsfläche aufgetragen.

Nehmen wir nun zwei Randfaserdehnungen £d und sz an, so sind aus dem
Spannungs- Dehnungs- Diagramm die zugehörigen Randspannungen ad und <7Z

ebenso wie die reduzierten Spannungswerte graund arz gegeben. Wir bestimmen
die reduzierte Breite der einzelnen Querschnittsfasern und ermitteln für die
ganze reduzierte Querschnittsfläche deren Grösse Fr, die Lage des Schwerpunktes

Sr und das Trägheitsmoment Jsr der Fläche Fr in Bezug auf den
Schwerpunkt Sr. Ueber dem Schwerpunkt der reduzierten Fläche ergibt sich
die Dehnung en in der statischen Stabachse und die zugehörigen
Schwerpunktsspannungen <jn bezw. arn. Aus der Fig. 5 folgt weiters die Beziehung
für den Krümmungsradius

¦J-^ G1(16)

sodass wir auch die Nullinie des Querschnitte durch s= p. sn festlegen können.
Irgend eine Dehnung im Abstände rt vom Schwerpunkt rechnet sich zu

£rj Sn +^
Mit dem konstanten Modul E, den reduzierten Spannungen und der reduzierten

Fläche rechnen wir nun in üblicher Weise nach Navier und erhalten
die Beziehungen zu den auftretenden äusseren Kräften :

P=ffrnFr# Gl (17) undM 5JÜ5. Gl (18)
P

Der Lasthebelarm in Bezug auf die statische Stabachse ist schliesslich mit
y M : P gegeben. Ist für einen bestimmten Querschnitt der Lastangriffs-
punkt bekannt, so herrscht zwischen den inneren und äusseren Kräften
Gleichgewicht, wenn die aus den angenommenen Randfaserdehnungen sich

ergebende Kraft P mit der wirklichen Last, und y (er -| —,• mit dem

Abstand des Lastangriffpunktes von der statischen Stabachse übereinstimmt.
(Siehe Fig. 5.)

Für die genaue Ermittlung der Stabachsen müssen wir nunmehr analog
wie bei der Untersuchung mit elastischem Baustoff vorgehen, d. h. es ist die
Differentialgleichung

1 d g P cos© y

in der y fl ds sin bedeutet, zu integrieren. Dadurch dass auch das

Trägheitsmoment Jrs mit dem Winkel 9 veränderlich ist, können wir die

Integration nur graphisch ausführen.
Wir sind jetzt in der Lage, für ein gegebenes Spannungs-Dehnungs-Dia-
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giamm Gleichgew ichlsdiagramme zu entwickeln Für eine bestimmte Last
P

P (odei für eine entsprechende Schwerpunktsspannung <yn — nehmen wir
zunächst veischiedene Weite von s(| und s, an Diese müssen jedoch so gewählt
weiden, dass P sxn I' ist Fui jeden solchen Fall bestimmen wir e!s und

E J1
das Moment der inneien Kiafte M ——- (ed — e,)

Schliesslich erhalten w n den Hebelarm für die äussere Last P in Bezug

auf die statische Stabachse mit y — —— j£ (C(1 — C/)

Bei Annahme von endlichen Bogenelementen As ist che Änderung des

Winkels As As w< w woduich die stufenweise Bestimmung der

Stabachse und die damit verbundene Vndeiung von y ebenfalls gegeben ist
Es ist fui die pi aktische Rechnung am zweckmassigsten, fui bestimmte

Weite P (bezw crn) graphisch die einzelnen Grossen aufzutragen, um aus den
entstehenden Kuiven für die weiteten LTntersuchungen alle zusammengehon-
gen Zwischenwerte zu bekommen

Fui die gegebene Belastung eines gegebenen Stabes sei nun die Gleichge-
wichtslage zu bestimmen Wn stellen /unachst fest, ob die Stabmitte unelastisch

wird. Da wn bei unseren Voraussetzungen nur den Neigungswinkel der
Stabachse in Stabmitte mit cm 0 kennen, müssen wir mit der Aufzeichnung
dei Biegehnie hier beginnen W lr schat/en zuerst einen Lasthebelarm ym
(wobei wn nicht übersehen duifen, dass dieser Wert nicht nur die Ausbiegung
dei Stabachse, sondern auch die Vnfangsexzentnzilat enthalt) und bestimmen
fui ein endliches As aus der vorbei eimittelten giaphischen Zusammenstellung
die dazugehören Werte dei Änderung der Stabachsenneigung A© Dadurch
bekommen w n im Abstände As \on dei Stabmitte einen Punkt dei Stabachse
und die entsprechende Grosse y! des Hebelaimes Zu diesem neuen Hebelarm
bestimmen wir wiederum die zugehonge Änderung A<p fui ein weiteies Stuck
As, ei halten den Hebelarm?/" im Abstände 2 As, usw Kommen w n am
Endquerschnitt des Stabes an, so müssen wir dort den Wert y0 eihalten, der bei
bekanntem ex0 /u dem gegebenen Lastangnffspunkt des Endquerschnittes
fuhren muss Ist dies nicht der Fall, so muss die erste Annahme > on ym
erneuert weiden, bis das Resultat richtig ist In den praktischen Fallen wird
sich das unelastische Verhalten meist auf Querschnitte in dei Stabmitte
beschiauken und dann ist dei Rest 1 ein elastisch /u beiechnen

Sollen wn schliesslich die kutische Belastung für Instabilität unteisuchen,
dann hiben wir von den Gienz weiten fui das Moment in Stabmitte, be/w von
dem giosstmoghchsten Hebelarm, auszugehen und die Biegehnie ebenso /u
zeichnen wie vor Diese Stabbiegehnie ist dann missgebend für alle möglichen
Exzentii7itaten des Lastan^ntfes am Stabende Wir sind somit auch in der Lage,
die/u einer gegebenen Bei istung und beliebigen Anfangsex/entn/itat gehoi ige
kritische Stablange aus dei nui einmal zu zeichnenden Biegehnie abzulesen
und vei mögen so die genauen Gien/weite lui Instabilität /u bestimmen

Das im vorstehenden entwickelte Rechnungsverfahren schhesst ausser exzen-
ti isolier Belastung alle Falle mit /entnscher Last ein, bei denen aus lrgend-

3
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welchen Ursachen Ausbiegungen vorhanden sind, die zur Überschreitung von
ap geführt haben. Ist schliesslich in Stabmitte die Biegesteifigkeit erschöpft,
dann ist der Fall der Instabilität des zentrisch beanspruchten Stabes gegeben
(nicht mit Knicken zu verwechseln!). Unsere Rechnungsmethode berücksichtigt

auch den Fall des Knickens gedrungener Stäbe, wenn im Sinne unserer
Definition der Augenblick des Überganges von der geraden zur gebogenen
Stabachse, bei Berücksichtigung der Entlastung auf der Zugseite, der Rechnung
zugrunde gelegt wird.

Das Rechnungsverfahren im teilweise unelastischen Bereich schliesst sich

eng an die genaue Rechnung im elastischen Bereich an, bezw. enthält natürlich
letztere. Es gestattet ein genaues Verfolgen der auftretenden Deformationen und
Spannungen von Querschnitt zu Querschnitt auch in komplizierten Lastfällen.

V. Das Versuchswesen.
Wir sind bei unseren Betrachtungen dort angekommen, wo wir der

Überprüfung unserer Annahmen und Resultate bedürfen. Das Versuchswesen hat
zwei getrennte Aufgaben zu erfüllen, eine mehr theoretische und eine mehr
praktische. Letztere Aufgabe besteht darin, dass an Bauteilen, wie sie

praktisch vorkommen, die kritischen Belastungen festgestellt werden, um
Bemessungsformeln und Diagramme ableiten zu können.

Für den zentrisch belasteten Stab liegen weitaus am meisten Versuchser-
gebnisse vor. Sie haben zur Bestimmung von Knickspannungskurven geführt, die
diejenige kritische Schwerpunktsspannung angeben, für welche Knicken eintritt.

Praktische Versuche zur Untersuchung der Knickfestigkeit von Stegblechen
von Trägern, von abstehenden Flanschen usw., sind nicht in so grossem
Umfang vorliegend, um sie als brauchbare Stütze von theoretischen Untersuchungen

betrachten zu können.
Die Frage der Instabilität von exzentrisch gedrückten Stäben ist besonders

durch Ros an der Eidgenössischen Materialprüfungsanstalt in Zürich gefördert
worden. Aus zahlreichen Versuchen für verschiedene Exzentrizitätsmasse sind,
den Knickspannungskurven ähnliche, kritische Schwerpunktsspannungen
ermittelt worden. Die Sicherheit gegen Erreichen dieser kritischen Spannungen

werden gleich gross wie bei Knickuntersuchungen gewählt. Dieses
Verfahren ist praktisch, befriedigt aber insofern nicht ganz, als in demselben der
Momenteneinfluss, der für das Eintreten von Instabilität massgebend ist, nicht
zum Ausdruck kommt. Es ist nicht möglich festzustellen, wann eine
Instabilitätsrechnung erforderlich ist, und von welchem Verhältnis des Momentes zur
Kraft (Exzentrizität) an eine einfache Spannungsuntersuchung genügt. Nicht
zu übersehen ist ferner, dass die Fragen der Grösse der Sicherheit in beiden
Fällen praktisch aufeinander abgestimmt sein müssen.

Versuchsergebnisse über exzentrische Beanspruchung von Platten, Stegen
von Trägern, abstehenden Flanschen usw. liegen, (von zusammengesetzten
Lastfällen sehen wir ganz ab) für das praktische Bauwesen in nennenswertem
Umfang überhaupt nicht vor.

Wir konstatieren somit, dass auf dem wichtigen Gebiet der Stabilität und
Festigkeit von gedrückten und gebogenen Stäben und Platten dem praktischen
Versuchswesen noch ausserordentliche Aufgaben bevorstehen. Die Schwierig-
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keiten liegen einmal in den grossen Kosten, zum anderen mal darin, dass für
die Versuche selbst noch nicht die richtige Basis geschalfen ist, um einen
einheitlichen Weg zu einem einheitlichen Ziel beschreiten zu können.

Es besteht somit die Forderung, das mehr theoretisch-wissenschaftliche
Versuchswesen zunächst in den Vordergrund zu stellen, um die Grundlagen
abzuklären. Erst Versuche an Stäben, Platten usw. werden die Möglichkeit bieten,
einen besseren Einblick in das Verhalten im plastischen Bereich zu geben. Im
Zusammenhang damit dienen solche Versuche auch der Behandlung aller
derjenigen Fragen der Statik und Dynamik, bei welchen das Eintreten einzelner
Bauteile in ein plastisches Verhalten (Das Problem nicht vom Standpunkte
der Sicherheit gegen Erreichen eines solchen Zustandes gesehen) tatsächlich
erfolgt, um durch Umlagerung des statischen Systems wirtschaftlichere
Bauformen zu erzielen.

Für die Durchführung von solchen grundlegenden Versuchen mit Bauteilen
im plastischen Bereich bedarf es besonderer Einrichtungen. Je nach der Grösse
der Verformungsgeschwindigkeit, der Grösse der inneren Reibung, der Charakteristik

des Spannungs-Dehnungs-Diagrammes usw. treten im kritischen
Bereiche mehr oder weniger rasch erhebliche Deformationen auf, denen die Last
(bezw. die Prüfmaschine) ohne geringste Änderung ihrer Grösse, unbeeinflusst
durch die Ablenkungswinkel der Stabachsen und Schwerebenen der Platten,
folgen muss, um die gewünschten Verhältnisse genau prüfen zu können.

Bei solchen Versuchen spielt ferner die Möglichkeit geringster
Lastabstufungen sowriedie Zeit eine Rolle ; es ist beispielsweise wünschenswert prüfen
zu können, wie weit bei entsprechendem Spannungs-Dehnungsdiagrcmini nach
Überschreitung einer Zone der Instabilität neue Gleichgewichtslagen möglich
werden.

Es bedarf weiters der Prüfung des Einflusses wiederholter statischer Belastung
(bei jeweiligem Überschreiten der Proportionalitätsgrenze) und des Einflusses
dynamischer Belastungen auf Fragen der Instabilität.

Für die versuchstechnische Behandlung der nur andeutungsweise gegebenen
Aufgaben eignen sich zweckmässig Stäbe und Platten in Modellform aus
Baustoffen der Praxis oder aus anderen geeigneten Materialien mit charakteristischen

Spannungs-Dehnungs-Kurven.
Im Institut für Baustatik an der Eidgenössischen Technischen Hochschule in

Zürich sind vom Referenten besondere Maschinen und Einrichtungen geschaffen
worden, um systematisch an die Behandlung der oben angedeuteten wichtigen

Fragen der Baustatik herangehen zu können.
Schliesslich sollen einige Belastungsbeispiele ohne Zahlenangaben zu dem

bisher gesagten eine kurze Erläuterung bilden. In der Bilderreihe der Abbildung
G oben ist ein exzentrisch belasteter Stab für in 3 (aus einem besonderen
Versuchsmaterial), der sich bei steigernder Belastung deformiert, dargestellt.
Das vierte Bild von links zeigt noch eine typische Gleichgewichtslage bei
vollkommen elastischem Verhalten. Bei geringfügiger Laststeigerung (5. Bild)
tritt in Stabmitte eine stärkere Biegung ein, während sich die Stabenden zu
strecken beginnen. Es ist dies eine Gleichgewichtslage mit teilweise unelastischem

Verhalten in Stabmitte. Wird der Stab nach dieser Belastung entlastet,
so bleibt in der Mitte eine Krümmung zurück (6. Bild).
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Fig. (i. — Stabdefomiationen für sclilanke Stäbe.

Deformations des barres elaucees. — Deformations in the case of Slendcr Members.
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Die untere Reihe der Abbildung' 6 zeigt einen entsprechenden Stab aus
Baustahl, ebenfalls für m 3. Das i. Bild von links zeigt noch vollkommen
elastisches Verhalten. Im 5. Bild ist bei geringer Lastvermehrung der Augenblick

des Eintretens der Instabilität dargestellt. Wir sehen deutlich, dass,
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Fig. 7. — Stabdeformationen für gedrungene Stäbe
Delormations des barres trapues.

Deformations in the ease of Squat Members.

immer unter ein und derselben Last, die fortschreitende Verformung sich auf
die Stabmitte konzentriert, während die Stabenden sich strecken. (Da sich für
den Stab keine weitere Gleichgewichtslage mehr ergab, wurde er abgefangen.)
Im entlasteten Zustand bleibt die Formänderung in der Mitte zurück, während
die Stabenden wieder gerade geworden sind (6. Bild).
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In Abbildung 7 haben wir einen gedrungenen Stab aus Baustahl, ebenfalls
für m 3. Hier lassen sich die zuerst rein elastischen und dann teilweise
plastischen Gleichgewichtsformen wegen des Masstabes der Wiedergabe nicht
gut verfolgen. Das 2. Bild oben rechts ist die äusserste Gleichgewichtslage, für
die nach geringer Mehrbelastung der Stab ausweicht. Das folgende Bild links
unten zeigt, dass an der weiteren Verformung nur die Stabmitte Anteil hat,
während die Stabenden sich wiederum strecken. Das letzte Bild gilt schliesslich
dem Stab nach der Entlastung.

Einen schlanken und einen gedrungenen Stab nach erfolgter Entlastung
sehen wir schliesslich noch in der Figur 8, um die Art der Verformung nach
erfolgtem Überschreiten der Instabilitätsgrenze deutlicher zu veranschaulichen.

lug. 8.

Stabformen nach Überschreiten der kritischen Helaslung.
Etat des barres apres depassement de la Charge critique.

Shape of Members afler cxceeding Critical Loading.

Die vorliegenden Ausführungen haben den Zweck zu zeigen, dass die hier
behandelten Fälle der Instabilität sich für Stäbe, Platten und kombinierte
Bauformen und Belastungen immer und ausschliesslich im teilweise unelastischen

Gebiet abspielen. Es ist dringend erforderlich, das Verhalten der
Ingenieurkonstruktionen in diesem Bereich genauer zu studieren, schon mit
Rücksicht auf jene, noch als tragfähig zu bezeichnende Konstruktionen, bei
welchen teilweise unelastisches Verhalten absichtlich herbeigeführt wird, und
nicht mit Instabilität verbunden ist.
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TRADUCTION

I. Introduction

Le calcul des elements de construction travaillant simultanement ä la
compression et a la flexion est Tun des problemes les plus difficiles de la sta-
tique. Lorsque des charges exterieures creent, dans une membrure, des efforts
de compression soit seuls, soit combines ä des efforts iranchants et ä des

moments flechissants exteneurs, ll se produit des deformations perpendicu-
laires aux efforts axiaux, qui, a leur tour, determinent des moments addition-
nels et des efforts non negligeables.

Parmi les problemes les plus connus et les mieux etudies se trouve d'abord
le calcul des poteaux et des barres charges axialement. Les calculs deviennent
dejä compliques si la section d'un poteau ou d'une barre, au lieu d'etre pleine,
se compose de parties assemblees ; car^ dans ce dernier cas, on doit calculer
la stabilite de chaque element de la barre ainsi que son influence sur la
stabilite generale. Meme dans le cas de sections pleines, la question du flambage
joue un röle important pour les ailes non supportees sur de courtes longueurs,
ainsi que pour les ämes minces.

Dans la construction des ponts en acier, Temploi des poutres ä äme pleine
et de grande portee a fait, au cours de ces dernieres annees, des progres
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Zusammenfassung.

Werden Stäbe mit gerader Achse durch Druckkräfte, oder werden ebene
Platten durch Momente und Querkräfte in ihrer Schwerebene beansprucht
(Zentrische Belastung), dann bleiben die Stabachsen gerade und die Platten
eben, bis bei allmählichem, statischem Anwachsen die kritische Belastung,
die Knicklast, erreicht wird. Stäbe und Platten nehmen gebogene Formen an,
die neuen Gleichgewichtslagen entsprechen. Zu den ursprünglichen äusseren
Lasten treten noch Biegemomente und Querkräfte hinzu, die senkrecht zur
Stabachse oder senkrecht zur Plattenebene wirken. Aus der reinen Druckbelastung
des Stabes wird eine kombinierte Druck-Biegebeanspruchung, und aus dem
ebenen Spannungsproblem der Platte ein räumliches. Nach dem Wechsel
der Gleichgewichtslage verhalten sich ausgeknickte Bauglieder bei weiterer
Belastung wie solche mit anfänglichen Biegemomenten. Knicken ist somit nur
dann möglich, wenn die ursprüngliche Belastung bei gerader Stabachse oder
ebenen Platten zentrisch wirkt.

Sind Stabachsen oder Schwerebenen von Platten von Anfang an gekrümmt,
oder wirken ausser anderen Lasten Kräfte, die infolge von Deformationen
Biegemomente hervorrufen, so haben wir es mit kombinierter
Druck-Biegebeanspruchung zu tun. Hiehergehören : exzentrischer Druck, Druck mit Quer-
belastuug, zentrischer Druck nach Überschreiten der Knicklast usw.

Die Ausbiegungen, und Spannungen nehmen infolge der von den Deformationen

abhängigen Biegemomente schneller zu als die Last; jedoch entspricht
jeder Last eine Gleichgewichtslage, solange wir unbegrenzt elastisches Material

voraussetzen. Die Materialeigenschaften der Baustoffe bedingen, dass bei
Eintreten grösserer örtlicher Verformungen die Biegesteifigkeit erschöpft
wird und zunächst an der Stelle des ungünstigsten äusseren Momentes die
inneren Kräfte nicht mehr im Stande sind, Gleichgewicht mit der äusseren
Belastung herzustellen. Wir erhalten eine Änderung in der statischen Gliederung

des Bauteiles und damit eine Umlagerung des Spannungsverlaufes. Ist
nach der teilweisen oder gänzlichen Ausschaltung von Teilen des Tragsystems

eine neue Gleichgewichtsform möglich (kontinuierlicher Träger bei
Überschreitung der Fliessgrenze über einer Stütze, ausgesteifte Stegbleche von
Biegeträgern nach teilweisem Ausbeulen der Stege usw.), so ist diese bei der
Prüfung der Tragfähigkeit nach weiterer Laststeigerung den Untersuchungen zu
Grunde zu legen. Treten die Einschränkungen der Biegesteifigkeit jedoch an
Stellen auf, die nicht gestützt sind, beispielsweise die Mitte eines exzentrisch
gedrückten Stabes, und daher ausweichen können, so ist keine neue stabile
Gleichgewichtslage mehr möglich. Wir sprechen in diesem Falle von Instabilität;

der Bauteil ist gänzlich unbrauchbar geworden.
Instabilität von auf Druck und Biegung beanspruchten Bauteilen kann demnach

nur eintreten, wenn nach Überschreiten der Proportionalitätsgrenze in
einzelnen Teilen unelastisches Verhalten auftritt. Die Form des Spannungs-
Dehnungs-Diagrammes ist von grundlegendem Einfluss. Das Problem selbst
kann als Gleichgewichtsaufgabe oder als Spannungsuntersuchung behandelt
werden.
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Die genaue rechnerische Behandlung der geschilderten Belastungsfälle ist
im elastischen Gebiet ohne weiteres, im unelastischen nur nach gewissen
Annahmen möglich. Um der Praxis wirtschaftliches Dimensionieren von Baugliedern,

die auf Druck und Biegung beansprucht werden, zu ermöglichen und
um genügende Sicherheit gegen das Erreichen von Instabilität im unelastischen

Bereich zu gewährleisten, ist das Verhalten der Baustoffe im plastischen
Gebiet zunächst auf wissenschaftlich-versuchstechnischer Basis eingehend zu
erforschen. Über die speziellen Aufgaben der « Stabilität und Festigkeit von
auf Druck und Biegung beanspruchten Bauteilen » hinaus müssen die Grundlagen

geschaffen werden, die eine praktische Berechnung der Bauglieder im
unelastLschen Gebiet ermöglichen, um eine Reihe von wichtigen Fragen der
Statik und Dynamik ihrer Lösung entgegen führen zu können.

R6sumö.

Si l'on soumet des barres ä axe rectiligne ä des efforts de compression, ou
des dalles planes ä des moments et ä des efforts tranchants s'exercant dans le

plan du centre de gravite, les axes des barres restent rectilignes et les dalles
restent planes, jusqu'a ce que la charge, augmentee progressivement, atteigne
la valeur critique, c'est-ä-dire la charge de flambage. Les barres et les dalles
accusent ensuite des flechissements qui correspondent ä de nouvelles positions
d'equilibre. Aux charges exterieures initiales s'ajoutent encore des moments
flechissants et des efforts tranchants, qui s'exercent perpendiculairement ä

Taxe de la barre ou au plan de la dalle. A partir de la charge de compression
simple dela barre, prennent naissance des systemes combines d'efforts de

compression et de flexion. L'etude de la dalle devient un probleme interessant les
trois dimensions. Apres modification du Systeme d'equilibre, les elements
flechis se comportent, pour les nouvelles augmentations de la charge, comme
des elements soumis ä des moments flechissants initiaux. Le flambage n'est
ainsi possible que lorsque la charge initiale s'exerce axialement, tant dans les
barres rectilignes que dans les dalles planes.

Si les axes des barres ou les plans des dalles ont subi un flechissement
initial, ou si ces elements se trouvent, enoutre, soumis ä des charges qui se tra-
duisent, par suite des deformations initiales ci-dessus, par des moments flechissants,

nous aurons alors affaire a un Systeme combine d'efforts de compression
et de flexion. A ce cas appartiennent : les charges appliquees excentriquement,
les compressions avec efforts tranchants, les compressions axiales apres
depassement de la charge de flambage, etc..

Par suite de l'intervention des moments flechissants resultant des deformations,

les flechissements augmentent plus rapidement que les charges. Toutefois,
ä chaque charge correspond une position d'equilibre, tant qu'il s'agit de materiaux

ayant une elasticite illimitee. Les caracteristiques propres des materiaux
employes conditionnent le depassement de la resistance ä la flexion, lorsque
de plus grandes deformations locales entrent en jeu ; c'est d'elle que depend
la possibilite d'un equilibre entre les efforts internes et la charge exterieure, ä

Tendroit oü le moment s'exerce de la maniere la plus defavorable. II en resulte
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