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Premiére séance de travail

Participants & la discussion des questions I, et I..
Diskussionsteilnehmer an den Fragen I und I,.
Participants in the discussion of questions I, and I..

Dr. Friepricn HARTMANN 1,

Professor an der Technischen Hochschule, Wien.

Da im Laufe der letzten Jahre und besonders in jiingster Zeit Bedenken
gegen die bestehende Knicktheorie aufgetaucht sind und zuletzt sogar Verbes-
serungsvorschlige gemacht wurden, ist es notwendig einmal festtustellen
inwieweilt man die Er@ebmsse der I\mcktheome als gesichert ansehen darf.

1) Dass im elastis chen Bereich fiir den oeraden zentrisch belasteten Stab
die Euler'sche Formel die Knicklasten in sehr zuverlasswer Weise dar-
stellt, wurde schon durch zahlreiche Versuche bewiesen.

Die schirfere Fassung der Knicktheorie im elastischen Bereich mit der unge-
kiirzten Dl[ferentlalwlelchung der Biegelinie, die zuerst Lagrange, dann ange-
nihert Grashof und zuletzt in voller Scharfe auch fur den praktlechen Geblduch
geeignet, Schneider?® 1n Wien gebracht hat, zeigt, dass die Kuler’sche Last
EIO‘GDthCh nicht strenge die Knlckldst 1m Smne der tragbaren Last ist,
sondern nur als kritische Last aufzufassen ist, bei deren Errelchunw das blShE‘I‘
stabile Gleichgewicht des Stabes aufhort. Dle Eulerlast selbst vermag aber
noch keine endhche Ausbiegung zu erzeugen, sondern es ist dazu eine Lleme
Steigerung dieser Last erforderlmh Mit dleser geht der Stab in einen neuen
stabllen Glelchfrewwhtsmstand ither mit auSO‘ebotfener Achse, aber nur
solange, als d1e Randspannungen die Proportlonahtatswrenm op mcht iber-
schrelten Daraus ergibt sich, dass die Ueberschreitung der Eulerlast fir grosse
Schlankheiten grosser sein lxann als fiir kleine und an der P-Grenze schhesshch
Null wird. Hier ist die Eulerlast nicht nur die kritische sondern
gleichzeitig auch die Knicklast. Eine nennenswerte Ueberschreitung der
Euleilast kommt aber nur bei sehr grossen Schlankheiten vor (federartige
Stibe, Reisschiene), wihrend bei den im Bauwesen tiblichen Schlankheiten die
IBO"‘hchE‘ Ueberschreitung der Eulerlast sehr geringfigig ist, sodass sie prak-
tlsch car keine Rolle spielt. Fir die Praxis darf ddher die Buler’sche Last
immer auch als Knicklast angesehen werden und die Versuche bestiitigen dies.

2) Fur den unelastischen Berelch wurde im Jahre 1895 von Engesser die
heute geltende Kniclkformel durch Einfithrung des Knickmoduls T qbﬂelellet 3
Die Formel fir T wurde in allgemeinster FForm, also fiir jeden ])ehebwen Quer-
schnitt giillig, gegeben. \thrend niamlich im elastischen Bereich die Quer-
schnittform ohne Kinfluss auf die Knickspannung ist, 1st dies im unelastischen
Bereich nicht mehr der Fall. Engesser stand damqls leider noch keine rich-
tige Arbeitslinie fiir Baustahl zur Vurfuo“un(’, doch hat er schon in einer fri-
heren Veroffentlichung, in der Zeitschrift des Ing. u. Arch.-Vereines lan-

1. Da der Autor verhindert war, am Pariserkongress teilzanehmen, wurde das vorlie-
gende Referat vom Generalsekretiir, Hrn. Prof. Dr. L. Karner, vorgetragen.

2. Ztsch. d. osterr. Ing. u. Arch. V. 1901.

3. Schweizer. Bauzeitung 1895 vom 27. Juli.
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de
dfcl
den Zusammenhang zwischen Arbeitslinie und Linie der Knickspannun-
gen vollkommen einwandfrei dargestellt, die Bedeutung der Stauch-
grenze als oberste Grenze der Knickspannungen voll erkannt und
itberdies in seinem Buche « Zusatzkrifte und Nebenspannungen » 1892 bereits
ein Diagramm fiir den Verlauf der Knickspannungen gegeben, das sich fast
vollkommen mit jenem deckt, das heute die deutschen Reichsbahnen ihren
Berechnungen zugrunde legen. Diese Arbeiten Engessers wurden scheinbar
wenig beachtel und sind erst 1910 durch Kiarmdn zum Leben erweckt wor-
den, der die Herleitung etwas
ausfithrlicher als Engesser wie- @4
dergab, aber naturlich genau das- \
selbe erhielt. Dass die Formeln \
nunmehr siegreich in die Praxis [C; \
einzogen, ist auf die Versuche oS 5 X
ruriickzufithren, die Karman mit
grosser Genauigkeit anstellte und op T
die die Theorie fiir den gewithlten <
Baustahl bestitigten. Ein besonde- e
res Verdienst Karmans 1st es, zum
ersten Mal die Theorie des Ein-
flusses kleiner Exzentriziti-
ten gegeben zu haben. Er konnte 07 s

dadurch zeigen, dass der Einfluss st

selbst sehr kleiner Exzentrizititen Courbe d’Euler = Eulerkurve = KEuler curve.
im unelastischen Bereich eine

ungleich grossere Rolle spielt als im elastischen Bereich.

Karman konnte, nachdem er selbst genaue Arbeitslinien fiir Druck durch
den Versuch ermittelt hatte, den Verlauf der Knickspannungen als Funktion
der Schlankheit zum ersten Male theoretisch darstellen.

Seine Darstellung enthilt aber eine Unstimmigkeit und das ist die, gegen
die sich die Angriffe besonders in jungster Zeit richteten.

Die Engesser-Karman'sche Theorie ergibt namlich bei Anniherung der
Knickspannungen an die Stauchgrenze o, immer kleiner werdende Knickschlank-

heiten 7, = = \/— und fiir 5 = o, schliesslich 7, = 0, wofern die Arbeitslinie
ok
an der Stauchgrenze in die Wagrechte ibergeht (T =0). Nach Durchlaufen
des Stauchbereiches steigt aber die Arbeitslinie wieder an und damit auch die
Knickschlankheit. Daher ergibt die Linie der Knickspannungen einen ober-
halb s, liegenden Ast, dessen Verlauf aus Bild 1 zu ersehen ist. Die Folge
davon ist die sonderbare Erscheinung, dass fiir gewisse Schlankheiten %, sich
dreierlei verschiedene Knickspannungen o, s, o, ergeben, was als unmaoglich
erklirt wird. Karmén hat nun die nach » = 0 gehende Spitze im Verlaufe der
Linien der Knickspannungen nicht gezeichnet, sondern die Aeste unterhalb
und oberhalb der Stauchgrenze durch die im Bild 1 gestrichelt dargestellte
Linie verbunden, wodurch er einen stetigen Linienzug erhielt, der jedoch im

nover 1889, damals allerdings noch mit dem unrichligen Knickmodul T =
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Bereich der gestrichelten Linie unrichtig ist. Richtig im Sinne der Theorie
kann nur der vollgezeichnete Linienzug mit der Spitze bei A= 0 sein. Ich
glaube nun aber auch den scheinbaren Widerspruch aufkliren zu kénnen, dass
man fur %, drei verschiedene Werle auf der Kurve der ¢, erhilt.

Zunichst muss man die Vorstellung verlassen, dass die o, Knickspannungen
darstellen. Es sind auch wieder nur 1;1‘1t1sche Spannunoen die die Aen-
derung des Gleichgewichtszustandes erzeugen, da ja Engesser und Karman
bei der Herleitung der Formeln nur mit unendlich kleinen Ausbiegun-
gen rechneten. Es miissen also endliche Ausbiegungen ausgeschaltet bleiben.

Wir haben gesehen, dass an der P-Grenze die Euler’sche Last auch schon
gleich der Knicklast ist, (immer im Sinne der tragharen Last). Dies gilt um so

mehr fiir den nun folgenden unelastischen Bereich !, solange die Arbeitslinie
nach oben konvex ist (Bild 2).

- e

) g

Bild 3
és 65 6b 60

Fig. 2. Fig. 3.

Fir eine unendlich kleine oder angenithert fiir eine sehr kleine endliche
Ausbiegung des Stabes verlaufen die Biegedruckspannungen gy, nach der Tan-
gente T an die Arbeitslinie A. Die Biegedehnung ¢, ist dabei auch unendlich
klein oder niiherungsweise sehr klein zu denken, denn fir eine endliche Aus-
biegung folgt 5, nicht der Tangente T sondern der Arbeilslinie A selbst und
da die Arbeitslinie unterhalb T verlauft, erhilt man sozusagen einen kleineren
Knickmodul als far den bpannunosverlauf nach der Tangente und demgemaiss
auch eine kleinere Knickschlankheit oder fir die ursprunwhche I\mckschlank—
heit eine kleinere Tragkraft. Dies lisst sich auch rechnungsmissig unter
Annahme einer Sinuslinie als Biegelinie leicht nachweisen.

Wenn hingegen die Arbeitslinie oberhalb der Tangente T liegt, wie
am Begiun des Verfestigungsbereiches, dann wird der Knickmodul (in
tibertragenem Sinne) mit endlicher Ausbiegung grosser als bei unendlich kleiner
Ausbiegung, d. h. die Knickschlankheit oder die Tragkraft wichst bei endlicher
Ausbiegung mit der Ausbiegung an, erreicht ein Maximum (wirkliche Knick-
last und fallt dann wieder ab, ahnlich wie dies im elastischen Bereich streng
genommen der Fall ist; nur sind im unelastischen Bereich die Unterschiede
zwischen kritischer und Knick-Last wesentlich grosser als im elastischen
Bereich, wo sie rechnungsmissig durch die ganz geringfugige Differenz zwi-
schen den Lrgebnissen aus der genauen und der abgekiirzten Differentialglei-
chung erhalten werden, withrend sich hier wesentliche Dilferenzen auch nach der

1. Siehe den Diskussionsheitrag von Prof. Chwalla.
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gewdhnlichen Rechnungsweise ergeben (Annahme einer Sinuslinie). Im ela-
stischen Bereich ist die Arbeitslinie iiberhaupt eine Gerade, fillt also mit T
zusammen. Somit erhilt man hier nach dem eben Gesagten fiir endliche Aus-
biegungen genau dieselbe tragbare Lust wie fiir unendlich kleine Ausbiegun-
gen, also die Eulerlast. Man sollte aber eigentlich eine grossere traghbare Last
erhalten. Dass dies nicht der Fall ist, kommt eben daher, dass man bei der
Berechnung der tragbaren Last nur die gewohnliche Biegetheorie mit der
abgekiirzten Gleichung anwendet.

Nun ist die Dreiheit der Knickspannungen fir die Schlankheit %, erklirbar.
Bild 3 stellt das Stiick der Arbeitslinie an der Stauchgrenze o, dar. Erreicht
die Knickspannung den Wert o,, dem die Knickschlankheit %, entspricht
(=% \/% J, dann hort der gerade Stab auf stabil zu sein. Lr will sich

a
ausbiegen. Da aber die Engesser-Karman'sche Linie keine endlichen Aus-
biegungen berticksichtigt, miissen wir die Aushiegungen kinstlich ver-
hindern. Belasten wir nun weiter, so wird das Bestreben, seitlich aus-
zaweichen, noch zunehmen, da ja wachsenden Knickspannungen eine
immer kleinere Knickschankheit entspricht. Bei ¢, = o, wird das Bestre-
ben des Ausweichens am stirksten sein, daritber hinaus aber wieder
abnehmen, da nun auch die % wieder wachsen, wie dies Bild 1 zeigle.
Endlich kommt man zum Punkt b, dem auch wieder die Knickschlankheit
T \/l—l' entspricht. g, ist nun eine kritische Spannung, insoferne als hier
Gh

das labile Gleichgewicht wieder in ein stabiles Gleichgewicht tibergeht.
Denn wenn g = g, ist, liegt die Arbeitslinie schon oberhalb der Tangente T
und eine Ausbiegung kann jetzt nur durch eine Laststeigerung bewirkt wer-
den. Man kann also hier die seitliche IFesthaltung des Stabes entfernen, der
Stab ist im stabilen Gleichgewicht! Das ist natiirlich aul die inzwi-
schen vollzogene Verfestigung nach Durchlaufen des Stauchbereiches zuriick-
zuftihren und auf das daraullolgende Ansteigen der Arbeitslinie.

Nachdem das Gleichgewicht liir ¢y stabil ist, muss man offenbar die Bela-
stung weiter steigern konnen and das 1st méglich bis man den Punkt ¢ erreicht
mit der Knickspannung o, der abermals die Knickschlankeit 7,—= 1?0

C
entspricht. Jetzt aber ist die kritische Last auch Knicklast, weil die Arbeits-
linie schon unterhalb T liegt. Jetzt ist das Tragvermogen des Stabes endgiiltig
erschopft.

Diese Ercheinungen sind tbrigens durch Kéarmans Versuche erhiirtet, bei
denen sich bei Erreichung der Stauchgrenze eine Labilitiat zeigte, die nach der
Ausserung Karmins der Stab aber iiberwand, um dann eine grossere Belastung
aufnehmen zu konnen. s ist also ber Karmans Versuchen nicht einmal die
seitliche Festhaltung erforderlich gewesen. Das ist wohl darauf zurtckzufiih-
ren, dass die verschiedenen Punkte eines Stabes verschieden hohe
Stauchgrenzen haben. Es beginnt also an einer Stelle das Fliessen, withrend
an der anderen schon die Verfestigung erfolgt. Der Abstand zwischen a und b
im Bild 1 ist in Wirklichkeit so klein, dass die Schwankungen in der Hohe
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der Stauchgrenze im Stab wahrscheinlich meist grésser sein werden, was fiir
die Stabilitit forderlich ist. Dazu kommt im besonderen Falle der Karméan’-
schen Versuche, dass der von ihm verwendete Stahl einen ausserordentlich
kleinen Stauchbereich hat. Bild 4 zeigt die Arbeitslinie des Kirman’schen
Stahles im Vergleich zu der des normalen St. 37. Aus diesem Vergleich ist aber
noch etwas anderes zu entnehmen. Bei den Knickversuchen des Deutschen
Stahlbau-Verbandes, die bis imin = 20 durchgefithrt wurden, hat sich kein
Anstieg der Knickspannungen oberhalb der Stauchgrenze ergeben, wihrend bei
Kdrman die Knickspannungen bei % = 30 kriftig iiber ¢, anstiegen. Auch dieser

bin Hofom®
V2
#000 A
\3\@
¢
N
%\('b /
3000
i
2000
1000
o
4 p 2 3 Rl
Fig. 4. — Acier employé par Karman
— Stahl der Karman-Versuche = Steel of Karman tesl.

Umstand ist ein Grund gewesen, die Richtigkeit der Kiarman’schen Versuche
anzuzweifeln. Nun hingt der Anstieg der Knickspannnungen einzig vom Ver-
laul der Arbeitslinie im Verfestigungsbereich ab. Je steiler die Arbeitslinie
dort ansteigt, desto grosser ergeben sich die zugehorigen Knickschlankheiten .
Aus Bild 4 erkennt man aber, dass bei der Kirman'schen Arbeitslinie der
Anstieg nach Erreichen der Stauchgrenze sehr kraftic erfolgt, wie es bel
anderen Stahlarten nicht der Fallist. Bei der hier gezeichneten Arbeitslinie fir
St. 37 erhalt man die ansteigenden Knickspannungen erst fiir % = 151

Damit glaube ich nun allen Einwiirfen gegen den absonderlichen Verlauf
der Linie der Knickspannungen begegnet zu haben. Fiir die Praxis kommen
allerdings die oberhalb der Stauchgrenze liegenden Knickspannungen niemals
in Frage, da bei den Unregelmissigkeiten, wie sie bel einem Stab in einer
Konstruktion immer vorhanden sind, die Labilitit bei s, wohl kaum jemals
ilberwunden werden wird, sondern immer zum Ausknicken fithren durfte.
So wie iibrigens ein Zugstab in einem statisch bestimmten Fachwerk sofort
canz unzulissige Forméanderungen des Fachwerkes erzeugt, wenn er ins Flies-
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sen kommt, gilt dies in gleicher Weise fiir Druckstibe beim Erreichen der
Stauchgrenze. Diese ist also fiir die Praxis die grosstmogliche Knickspannung.

In diesem Sinne halte ich die Engesser -Karméan’sche Theorie mit ithren nach
7. = 0 verlaufenden Knickspannungen nach wie vor als die einzige fur die
praktische Berechnung in I'rage kommende Theorie fiir den unelastischen
Bereich. Was nun die Sicherheit anbelangt, so sollte diese eher im unela-
stischen Bereich grosser gewihlt werden als im elastischen. Nicht nur, dass
im unelastischen Bereich selbst kleinste Exzentrizititen die Knickspannungen
empfindlich herabdriicken, ist auch fir manche vom Rechteck abweichende
Querschnittsformen die Knickspannung im unelastischen Bereich etwas tiefer
gelegen als fir den Rechteckquerschnitt, fiir den allein die Knickspannungen
ja berechnet werden. Ferner setzen tiefer liegende Stauchgrenzen die Knick-
spannungen im plastischen Bereich
empfindlich herab. Oxl

Eine andere Frage ist, welchen
Verlauf der Arbeitslinie zwischen os
P- und S-Grenze man annehmen =
soll, da ja hievon der Verlauf der
Knickspannungen sehr abhingig /
ist. Die Versuche des Deutschen
Stahlbau-Verbandes hatten Bau- ;
stahle zur Grundlage, bei denen Or
die Arbeitslinie fast bis zur Stauch-
grenze der Hook’schen Geraden
folgte oder nur sehr wenig davon 2 s 75 A5 A
abwich. In einem solchen I‘alle
liegen die Knickspannungen bisin
unmittelbare Niahe der Stauch-
grenze auf der Eulerkurve oder weichen nur wenig davon ab. Naturhch
kommt dies auch bei Anwendung der Engesser-Karméan'schen Theorie zum
Ausdruck. Es wiire daher wichtig zu wissen, ob die Arbeitslinie fur Druck
bei unseren Baustihlen tatsichlich immer so verlauft und ob abweichende
Ergebnisse, wie man sie bisher sehr hiutig fand, nur [ir den Zugversuch gelten
oder auf zu wenig genaue Durchfithrung des Druckversuches zuriickzulihren
sind.

Bis duhin wiirde ich empfehlen, die Linie der Knickspannungen vorsichti-
gerweise als Ellipse mit geneigl liegenden Hauptachsen einzutragen, die die
Eulerkurve an der Stelle gp berithrt und deren wagrechte Tangente in der
Hohe der Stauchgrenze liegt mit der Berithrung ber 7 = 0. (Bild 5) Diese
Ellipse lisst sich aus einem Viertelkreis sehr rasch entwickeln.

Fiir die Berithrung der Rulerkurve braucht man die Tangente an diese 1m
Punkt sp die man sofort ziehen kann, da die Subtangente der Eulerkurve

gleich g ist. .
Die Versuche des deutschen Stahlbau-Verbandes haben fir Siliziumstahl
hohere Knickspannungen ergeben als man auf Grund der betreffenden Arbeits-

linie nach Engesser-Karman erhalten wiirde. Dieses Ergebnis scheint mir aber
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auf der sehr weit ausgebildeten Anwendung von Hebelarmen zu beruhen,
die in glinstigster Welse der unvermeldhchen kleinen Kriimmung der St.x])e
enlgegengesetzt wurden und diirfte mindestens vorldutig fiir die mem nicht
verwendet werden.

Es sei noch bemerkt, dass die scharfe Abzweigung der Engesser-Karman-
Linie von der Eulerlxurve, die man manchmal bei w1111\u1‘hcher Annahme
einer idealen Arbeitslinie erhiilt, darauf zuriickzufiihren ist, dass im IKnick-

ds . n 9 L .
moduld enthalten 1st. Wenn daher in der Arbeitslinie in der zweilen

Ableitung (Kritmmungshalbmesser) eine Unstetigkeit vorhanden ist, dann
ist in der Linie der Knickspannungen die Unstetigkeit schon in der ersten
Ableitung gegeben, und man erhiilt eine Abzweigung mit einem scharfen
Knick. Die Abweichung der Arbeitslinie von der Hook'schen Geraden muss
also nach einer Kurve angenommen werden, die im U)nvelwulwspunl\t den
Krimmungshalbmesser unendlich hat. Nur dann erhiilt man einen knickfreien
Anschluss an die Eulerkurve

Die Frage der Knickung ist gegenwirtig schon so zngespitzt, dass Versuche
mit kleinen Modellstaben, wie sie bisher verwendel wurden, nicht mehr aus-
reichen. Ich glaube, dass man viel stirkere Querschnitte als bisher verwenden
musste, um die unvermeidlichen Zentrierungsfehler herabzusetzen. Ganz
besonders aber wiire es erwiinscht, naturgrosse genietete Stibe zu driicken,
wobei auf maglichst gleiche Stauchgrenze aller Teile zu sehen
und der Querschnitt mit moglichst grossem Triigheitshalbmesser auszubilden
wire. Triger und U-Eisen sind wegen der starken Ungleichheit der Stauch-
grenze in Steg und Flansch nicht zweckmissig.

Ka%tenquerschnitte bestehend aus 4 geniigend starken Platten und

k. gleichschenkeligen Winkeleisen diirften geeigneter sein, wobei die Niet-
schw(lchunﬂ unter 10 °/, bleiben misste. Das Druck- Stduchungsdlagramm
sollte dann nicht nur mit Proben aus den einzelnen Teilen, sondern auch
mit 2 Endabschnitten des ganzen Profiles crmittelt werden, wobei es geniigt,
die Arbeitslinie bis zur Stauchgrenze zu bestimmen.

Traduction*.

Au cours de ces dernieres années et tout particulierement assez récemment,
des objections se sont élevées au sujet de la théorie du flambage telle qu'elle
se présente actuellement. Tout derniérement, certaines modifications ont été
proposées. Il parait donc indispensable de déterminer dans quelle mesure les
résultats fournis par cette théorie peuvent étre considérés comme stirs.

1. — La formule d’Euler traduit d'une maniere trées juste les efforts de
flambage, dans le domaine élastique, pour une barre rectiligne chargée
axialement ; ce point a été conlirmé par de nombreux essais.

La conception rigoureuse de la théorie du flambage, appuyée en particulier
sur l'équation différentielle du fléchissement, non simplifiée, établie tout

1. L’auleur ayant été empéché de présenter lui-méme son Mémoire au Congres de Paris,
celui-ci a été lu par M. le Prof. Dr. L. Karner, Secrétaire général.
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d'abord par Lagrange, précisée ensuite par Grasshof et développée entin dans
toute sa rigueur par Schneider ! qui I'a également adaptée aux besoins d’ordre
pratique, montre que la charge d'Euler ne doit pas étre considérée a propre-
ment parler comme représentant rigoureusement la charge de flambage,
dans le sens d'une charge admissible, mais seulement comme une charge
critique telle que lorsqu’elle est atteinte, 1'état d’équilibre, qui était jusque la
stable, cesse. La charge d’Euler peut trés bien encore ne provoquer aucun
fléchissement, un petit accroissement de cette charge étant encore nécessaire
pour le provoquer. Sous I'influence de cet accroissement, la barre prend
une nouvelle position d’équilibre stable, caractérisée par un fléchissement de
son axe, cecl pour autant que les efforts dans les fibres périphériques ne
dépassent pas la limite de proportionnalité ¢,. Il en résulte que le dépasse-
ment de la charge d'Euler peut étre plus important pour des degrés de finesse
élevés que pour des degrés de finesse plus faibles et qu’il est enfin nul & la
limite de proportionnalité. La charge d'Euler constitue alors non seu-
lement une charge critique, mais également la charge de flam-
bage elle-méme. On n'aura toutefois & envisager un dépassement notable
de la charge d'Euler que pour des degrés de finesse trés grands (barres élas-
tiques, tés), tandis que pour les degrés de finesse couramment adoptés dans
la construction, les possibilités de dépassement de la charge d'Euler sont treés
[aibles, et cette considération n'intervient pratiquement pas. Dans la pratique,
on peut done toujours considérer la charge d'Euler comme charge de flam-
hage, point de vue que l'expérience conlirme.

2. — En ce qui concerne le domaine plastique, Engesser a établi en 1895
une formule toujours valable, en introduisant le module de flambage T?. ILa
formule donnant T a été indiquée dans sa forme la plus générale ; elle est
valable pour une section quelconque. Si dans le domaine élastique, la forme
de la section n’exerce aucune influence sur la charge de flambage, par contre,
il n'en est plus de méme dans le domaine plastique. Malheureusement, & cette
époque, Engesser ne disposait d’aucun diagramme convenable pour l'acier de
construction; il avait toutefois, dans une communication publiée antérieure-
ment & cette date dans « Zeitschrift des Ing. und Arch. Vereines Hannover » de
1889, montré d'une maniére parfaitement nette, la relation entre le diagramme
et la courbe des contraintes de flambage, quoiqu’il ait d’ailleurs fait interve-
nir a cette époque la valeur inexacte

i e

d=<
pour le module de flambage. Il avait parfaitement reconnu I'importance de la
limite de compression en tant que limite supérieure des contraintes de flam-
bage et publié, dans son ouvrage « Zusatzkrifte und Nebenspannungen », dés
1892, un diagramme des efforts de flambage ; ce diagramme concorde presque
parfaitement avec celui que les chemins de fer allemands emploient actuelle-
ment pour leurs calculs. 11 semble que ces travaux d'Engesser aient peu attiré
I'attention jusqu’a 1910, époque & laquelle Karman les reprit, conduisant

1. Zeitschrift des osterr. Ing. und Arch. Ver., 1901.
2. Schweizer. Bauzeitung, 1895, 27 juillet.
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I'étude un peu plus loin; ses travaux eurent d'ailleurs le méme sort. Si ces
formules ont toutefois réussi 4 pénétrer dans le domaine de la pratique, c’est
précisément grace aux essais que Kirmdn effectua avec une grande précision
et qui confirment la théorie, pour les aciers de construction étudiés. lkarmén
a d'ailleurs eu le mérite de donner le premier la théorie de I'influence des
petites excentricités. Il a pu ainsi montrer que, dans le domaine plastique, I'in-
fluence d excentricités méme tres faibles est incomparablement plus forte que
dans le domaine élastique.

Aprés avoir déterminé lui-méme, par des essais, des diagrammes de com-
pression précis, ila pu traduire pour la premiére fois, d'une maniere théorique,
la variation des contraintes de flambage considérées comme fonction dela finesse.

Ses travaux contiennent toutefois un point douteux et c'est précisément a ce
sujet que des objections se sont élevées en particulier tout récemment (fig. i 1

Lorsque les contraintes de flambage se rapprochent de la limite de com-
pression gy, la théorie d’Engesser-Karman donne des degrés de finesse au flam-
bage Mk = = \/_F de plus en plus petits et I'on finit par avoir :

ok
n—"=0 pour o, = o5

en admettant que le diagramme vienne coincider avec I'horizontale & la limite
de compression (T = O). Toutefois, aprés le dépassement de la zone de com-
pression, le diagramme remonte a nouveau, ainsi que le degré de linesse. La
courbe des contraintes de flambage donne donc une branche située au-dessus
de o, et dont l'allure est indiquée par la figure 1. Il en résulte ce fait singulier
que pour certains degrés de finesse %, on obtient trois contraintes de flambage
dilférentes, ce qui constitue une impossibilité. Karmén n’a toutefois pas porté,
dans le tracé des courbes des contraintes de flambage, la branche condui-
sant & » = O; il a par contre relié les branches situées au-dessous et au-
dessus de la limite de compression par la ligne tracée en traits discontinus
sur la figure 1; il obtient ainsi un tracé continu, qui n’est cependant pas exact
dans la région qui correspond a la ligne en traits discontinus. Dans l'esprit
de la théorie, seul peut étre exact le tracé en traits pleins, avec la branche
correspondant & 7 = 0. Je crois toutefois pouvoir donner une explication
de cette contradiction apparente suivant laquelle on obtient pour un %, donné
trois valeurs différentes sur la courbe de .

Il importe tout d'abord de se rendre compte exactement de ce que repré-
sentent les contraintes de flambage .. Ce ne sont que des charges cri-
tiques qui provoquent une modification de l'état d’équilibre, car Engesser et
Karman cux-mémes en établissant leurs formules n’onl fait intervenir que des
fléchissements infiniment petits. Il faut donc écarter tout fléchissement
d’ordre fini.

Nous avons vu qu'd la limite de proportionnalité, la churge d'Euler est déja
égale a la charge de flambage (toujours dans le sens d'une charge admissible).
Ce point est d’autant plus valable pour le domaine plastique, qui vientimmédia-
tement aprés !, tant que le diagramme présente une convexité vers le haut(tig. 2).

1. Voir Contribution du Professeur Chwalla & la Discussion.
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Pour des fléchissements infiniment petits de la barre, ou 4 titre d’approxi-
mation, pour des fléchissements trés petits, les contraintes de compression et
flexion simultanées se confondent avec la tangente T au diagramme A. L’al-
longement de flexion ¢, doit donc étre considéré également comme infiniment
petit ou & titre d’approximation comme trés petit; en effet, pour un fléchisse-
ment fini, ¢, ne suit plus la tangente T, mais bien le diagramme A lui-méme
et comme ce diagramme passe au-dessous de la tangente T, on obtient, pour
ainsi dire, un module de flambage plus petit que si la courbe suivait la tan-
gente et par suite également un degré de finesse au flambage plus faible, ou,
pour le degré initial de finesse au flambage, une charge admissible plus faible.

On peut d’ailleurs arriver & ce méme résultat par le calcul en partant d'une
sinusoide comme courbe de déformation.

Si, par contre, le diagramme se trouve au-dessus de la tangente T,
comme c'est le cas au commencement de la zone d'écoulement, le
module de flambage (dans le sens considéré) est plus élevé pour un fléchisse-
ment fini que pour un fléchissement infiniment petit, c’est-a-dire que le degré
de finesse ou la charge admissible croit, pour un fléchissement fini, avec ce
fléchissement, pour passer par un maximum (charge de flambage elfective) et
décroit & nouveau, ainsi (ue c'est le cas, rigoureusement, dans le domaine
élastique ; toutefois, dans le domaine plastique, les différences entre la charge
critique et la charge de flambage sont sensiblement plus importantes que dans
le domaine élastique; dans ce dernier domaine, en effet, on assimile ces diffé-
rences aux dilférences tres faibles entre les résultats tirés des équations diffé-
rentielles exacte et simpliliée, tandis que dans le cas qui nous occupe on
obtient des dilférences notables méme avec la méthode courante de calcul
(hypothese d'une courbe sinusoidale). Dansle domaine élastique, le diagramme
est presque une droite et il se confond donc avec T. D’aprés ce que nous
venons de voir, on obtient donc alors, pour des fléchissements finis, exacte-
ment la méme charge admissible que pour des fléchissements infiniment petits,
c¢'est-a-dire la charge d’Euler. On devrait toutefois, en toute rigueur, obtenir
une charge admissible plus élevée. Ceci provient du fait que pour le calcul de
la charge admissible, on a eu recours a la théorie courante de la flexion en
adoptant I'équation simplifiée (fig. 3). .

On peut maintenant expliquer le fait que l'on obtient trois valeurs de la
charge de flambage pour un %, donné. La figure 3 représente la partie du dia-
gramme qul se trouve a la limite de compression g,. Si la contrainte de flam-
bage atteint la valeur o, & laquelle correspond un degré de finesse au flam-

bage », = = \/.J la barre rectiligne ne conserve plus sa stabilité : elle fléchit.
Ca

Comme toutefois le tracé d’Engesser-Karman n’envisage pas les fléchisse-
ments finis, nous sommes dans | obligation de les empécher artificiellement.
. Si nous continuons a charger la barre, la tendance au déversement latéral
augmentera encore, car effectivement a des charges de flambage croissantes
correspond un degré de finesse de flambage de plus en plus petit. Pour 5, = o
la tendance au déversement latéral est maximum, pour diminuer toutefois
ensuite, car 4 partir de ce moment, les J croissent & nouveau, ainsi que le
i
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montre la figure 1. On arrive finalement au point b, auquel correspond a nou-
veau le degré de finesse au flambage

mo
li)

Gl

&l

=

s, devient alors une lension critique, en ce sens que, ici, I'équilibre instable
se transforme 4 nouveau en un équilibre stable. Mais sl oy = ay, le dia-
gramme se trouve déja au-dessus de la tangente T et le fléchissement ne peut
étre maintenant provoqué que par une augmentation de la charge. On peut
done alors supprimer le dispositif de soutien de la barre, car cette derniére se
trouve en état d'équilibre stable. Ce fait doit étre évidemment attribué
au fait que la barre a cédé dans Iintervalle, aprés avoir traversé la zone de
compression et au mouvement vers le haut qui en est résulté pour le dia-
gramme.

L’équilibre étant devenu stable pour gy, on doit évidemment pouvoir faire
croitre & nouveau la charge ; ceci est possible jusqu’a ce que l'on atteigne le
point ¢ avec une conirainte de flambage ¢, & laquelle correspond & nouveau

le degré de finesse au flambage %, = = \/—C
Gc

Maintenant, toutefois, la charge critique est également charge de flambage,
car le diagramme passe au-dessous de la tangente T. La possibilité de résis-
tance de la barre est maintenant définitivement épuisée.

Ces considérations ont été confirmées par les essais de Karman, essails dans
lescuels se manifeste une instabilité lorsque la limite de compression est
atteinte ; suivant la propre expression de Karman, d’ailleurs, la barre domine
cette instabilité et arrive a pouvoir supporter une charge plus élevée. Done,
dans les essais de Karman, 'appui latéral de soutien de la barre ne s’est nul-
lement montré nécessaire. Ceci doit étre attribué au fait que les différents
points d’une barre accusent des limites de compression différentes.
A un endroit donné, le phénomene d’écoulement commence donc a4 se mani-
fester, tandis qu'en un autre point, on en arrive déja a la période de reprise
des possibilités de charge. L’écartement entre a et b dans la figure 1 est en
réalité si faible que les variations du niveau atteint par la limite de compres-
sion sont vraisemblablement, dans la plupart des cas, supérieures aux néces-
sités de la stabilité. Dans le cas particulier que constituent les essais de Kar-
méan, il convient en outre de remarquer que l'acier employé par lui possédait
une zone de compression extrémement faible. On trouvera dans la figure 4 le
diagramme de l'acier de Kirméan comparé avec le diagramme de l'acier de
construction normal St. 37. De cette comparaison on peut encore tirer une
autre conclusion. Au cours des essais qui ont été elfectués par le Deutscher
Stahlbau-Verband, et qui se sont étendus jusqu'a n min = 20, aucun accrois-
sement des contraintes de flambage ne s’est produit au-dessus de la limite de
compression, alors que dans les essais de Karman, pour » = 30, les contraintes
de flambage étaient montées substantiellement au-dessus de o,. Ce fait consti-
tue également une raison pour avoir quelque doute au sujet de l'exactitude
des essais de Karman. L’aceroissement des contraintes de flambage dépend
uniquement de 1'allure du diagramme dans la zone de reprise des possibilités
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de charge. Plus la montée du diagramme est rapide, plus les degrés d’élance-
ment A (finesse) correspondants sont élevés. On constate toutefois, sur la
figure 4, que dans le diagramme de Kirmén, la montée de la courbe, aprés
passage a la limite de compression, est trés rapide, ce qui n'est pas le cas
pour les autres sortes d’aciers. Sur le diagramme ici tracé pour l'acier St. 37,
on n'obtient des contraintes de flambage croissantes que pour » = 15.

Je crois avoir ainsi exposé toutes les objections qui s'élévent contre les sin-
gularités d’allure du diagramme des contraintles de flambage. Dans la pratique,
par ailleurs, on n'a jamais & prendre en considération les contraintes de flam-
bage qui se trouvent au-dessus de la limite de compression ; étant donné le
manque d'homogénéité que l'on rencontre toujours dans les éléments utilisés
dans la construction, on n’arrive presque jamais a surmonter l'instabilité cor-
respondant & ¢, mais toujours au flambage. Dans un ftreillis statiquement
détermind, il se produit immédiatement des déformations absolument inad-
missibles, des qu'un élément travaillant & la traction atteint 1'état d’écoule-
ment ; il en est de méme pour les éléments travaillant & la compression lors-
qu'ils atteignent la limite de compression. Cette derniére constitue donc, dans
la pratique, la limite extréme des contraintes de flambage.

Dans cet esprit, je considére toujours la théorie de Karman-Engesser, avec
les contraintes de flambage tendant vers iy = o0, comme la seule théorie
dont I'emploi puisse étre envisagé pour les calculs de la pratique, dans le
domaine plastique. In ce qui concerne la sécurité, il convient d’adopter une
valeur plutot plus élevée, dans ce domaine plastique, que dans le domaine
¢élastique. D'une part, en elfet, dans le domaine plastique, les plus petites
excentricités diminuent d'une maniéere sensible les charges de flambage ; il en
résulte que pour de nombreuses formes de sections qui s’écartent du rectangle,
la charge de Hambage est quelque peu inférieure i celle qui correspond a la
section rectangulaire elle-méme, pour laquelle seule les calculs de flambage
ont été etlectués. D’autre part, les limites de compression plus faibles réduisent
également les charges de flambage dans le domaine plastique.

Une question se pose encore; c’est de savoir quel tracé il convient d'ad-
mettre pour le diagramme, entre la limite de proportionnalité et la limite de
compression, car de ce tracé dépend élroitement celui de la courbe des
charges de flambage. Les essais du Deutscher Stahlbau-Verband ont porté sur
les aciers de construction dans lesquels le diagramme suit la loi de Hook
presque jusqu'a la limite de compression, ou tout au moins ne s'en écarte que
tres peu. Dans ces conditions, les charges de flambage se trouvent sur la
courbe d'Euler jusqu'au voisinage immédiat de la limite de compression, ou
ne s'en deartent également que tres peu. Ces considérations s’appliquent
évidemment aussi lorsque 1'on fait appel a la théorie d'Engesser-Karman. Il
serait donc intéressant de savoir si le diagramme de compression de nos
aciers de construction a un tracé semblable ou si les écarts que 1'on a pu cons-
tater trés fréquemment jusqu'a maintenant ne sont & prendre en considération
que pour l'essai de traction, & moins qu'il ne faille les attribuer & un manque
de précision dans l'exécution des essais de compression.

Dans U'expectative, j'estime qu'’il conviendrait de considérer la courbe des
charges de flambage comme une ellipse ayant ses axes principaux inclinés,
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tangente 2 la courbe d’Euler au point 5, et dont la tangente horizontale se
trouve au niveau de la limite de compression, le point de tangence corres-
pondant & X, = oo O (figure 5) Cette ellipse peut étre déduite tres rapidement
d'un quart de cercle (figure 5).

Pour déterminer la tangence a la courbe d'Euler, on part de la tangente &
cette courbe au pointas,, tangenle que I'on peut tracer immédiatement, puisque
la sous-tangente est égale a 7/2.

Les essais elfectués par le Deutscher Stahlbau-Verband pour I'acier au silicium
ont conduit & des charges de flambage plus élevées que celles que I’'on aurait
pu déduire du diagramme correspondant d’apres Engesser-Karman. Ce résul-
tat me semble toutefois devoir étre attribué a I'emploi tres large de bras de
levier s’opposant dans les conditions les plus favorables aux petites courbures
inévitables dans les barres; il conviendrait donc de ne pas en tenir compte
dans la pratiqne, tout au moins provisoirement.

11 faut encore remarquer que ’écart important entre le diagramme d'Enges-
ser-Karman et la courbe d'Euler, que 'on obtient souvent, en partant dun

] : i . 1
diagramme théorique, est di a I'introduction de ICT‘-J_ dans le module de flam-

<

bage. Par suite, s'il existe une scission dans la deuxiéme partie du diagramme
(rayon de courbure), cette scission existe déja dans la premiere partie de la
courbe des charges de flambage et la bifurcation présente un coude brusque.
Cette scission entre le diagramme et la loi de Hook doit donc étre considérée
comme une courbe ayant un rayon de courbure infini au point de raccorde-
ment. Dans ces conditions seulement, on obtient un raccordement sans coude
brusque sur la courbe d’'Euler.

La question du flambage a fait I'objet d'¢tudes déja assez poussées pour que
les essais que l'on a elfectués jusqu’a maintenant avec des barres d’essai de
dimensions réduites soient devenus insuflisants. Je pense que l'on devrait faire
porter les essais sur des sections beaucoup plus importantes si I'on veut pou-
voir réduire I'importance des erreurs de centrage que l'on ne peut pas éviter.
Il serait particulierement désirable que l'on fasse subir des essais de compres-
sion & des éléments rivés en grandeur naturelle, dans lesquels on s'elforcerait,
dans toute la mesure du possible, d’avoir des limites de compression identiques
pour toutes les pieces et des sections possédant un rayon d’'inertie aussi élevé
que possible. Il ne serait pas judicieux de choisir pour ces essais des poutres
ou des fers a U, & cause des inégalités trés marquées de la limite de compres-
sion dans les Ames et dans les ailes. Des sections en caisson, constituées par
quatre éléments suffisamment résistants et quatre cornicres & ailes égales
seraient plus indiquées, laffaiblissement d{ au rivetage devant toutefois rester
inférieur a 10 °¢/,. La détermination du diagramme de compression devrait
d’ailleurs étre effectuée non seulement sur des éprouvettes prélevées sur les
picces des assemblages mais également sur deux assemblages complets, étant
entendu qu'il suflit de pousser le tracé de ce diagramme jusqu'a la limite de
compression.
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Dr. Ing. E. CHWALLA I,

Professor an der Deutschen Technischen Hochschule, Briinn.

Im Anschluss an die theoretisch und baupraktisch bedeutungsvollen Refe-
rate der Herren Prof. Karner und Prof. Ros seien mir einige ergéin-
zende Bemerkungen gestattet. Den Inhalt dieser Ausfithrungen entnehme
ich meinem druckfertigen Manuskript « Druckstibe aus Baustahl, Theorie
thres Tragverhaltens und Tragvermdégens », das die theoretisch strengen
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Fig. 1.

Losungen [der verschiedenen Gleichgewichtsprobleme gedriickter Stibe aus
Baustahl enthdlt. Die im folgenden erwihnten Ergebnisse sind unter der
Voraussetzung ermittelt worden, dass der Stabquerschnitt ein Rechteck ist
und das Spannungs-Dehnungsdiagramm mit dem von Ros-Brunner verwen-
deten tibereinstimmt =,

I) Greift die Druckkraft P eines beiderseits gelenkig gelagerten, geraden
Stabes zentrisch an und werden die idealisierenden Voraussetzungen der
Stabilititstheorie zugrunde gelegt, dann biegt sich der Stab erst nach
Erreichen der Euler-Karman’schen Knicklast aus. Die in Fig. 1 darge-
stellten Kurven lassen erkennen, wie sich der in Richtung der Sehne aus-
geitbte Stabwiderstand (oder anders ausgedriickt, wie sich die zur

1. Da der Autor verhindert war, am Pariserkongress teilzunchmen, wurde das vorlie-
gende Referat vom Generalsekretir, Hrn. Prof, Dr. L. Karner vorgetragen.

2. Ros-Brun~erleglen die Proportionalitiitsgrenze in ihren fritheren Veroffentlichungen
durch die Koordinalen op == 1900 kg/em?, ¢p = 0, 86 9/4o fest; der damit bestimmie Elasti-
ziliitsmodul des Materials E=1,9 : 0,00086 — 2210 t/cm? stimmt mit dem im Referate
erwithnten Werl E == 2130 t/ cm?2 nicht iiberein.
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Erzielung des Gleichgewichtes jeweils erforderliche Druckkraft « Pg ») im
Zuge der Ausbiegung veriindert. Jede dieser Kurven bezieht sich auf den

: : ol . : :
beigeschriebenen Wert der Stabschlankheit - ; aul der Abszissenachse sind die
l

auf die Querschnittshohe 2 bezogenen seitlichen Ausbiegungen y, des Stab-
mittelpunktes aufgetragen, wihrend die Ordinaten der Kurvenpunkte die
durch die Querschnittsfliche I' = b. i dividierten Werte des Stabwiderstandes
angeben, Wir sehen, dass die Euler-Karmdan’sche Knicklast, unter der die
Ausbiegung beginnt, bei allen nicht sehr sltark gedrungenen Stiben die theo-
retisch oberste Grenze der Tragfihigkeit vorstellt. Der Abfall des Trag-

i , . ) { A
vermogens ist besonders bel Schlankheiten in der Umgebung von - = 60 sehr
i

ausgepriigt ; die Ausbiegung des knickenden Stabes erfolgt hier mit stark zunech-
mender Beschleunigung. Die Stibe mit sehr kleinem Schlankheitsgrad zeigen

ein eigenartiges Verhalten. So verlisst z. B. die Kurve fir - = 20 die Ordina-
i

tenachse in der Hohe der Karmdn’schen Knickspannung, (die hier schon knapp
unterhalb der Quetschgrenze 55==2700 kg/cm? gelegen 1st), fillt ein wenig ab
max P(‘}l

T = 2900 kg/em?

und steigt dann dber die Quetschgrenze bis zur Hohe

an, um hierauf erst endgiltig abzufallen.
: N : ; . "
Ein Stab der Schlankheit - = 20 wiirde sich somit nach Erreichen der Kar-
l

méan'schen Knicklast ein wenig ausbiegen, jedoch schon bei einer Ausbhiegung
Yo = 0,0%. A~ wieder zur Ruhe kommen und nun eine Lastsleigerung bis auf
max Pg = 2900, I' kg vertragen ; die oberste Grenze des Tragvermagens wird
also bei diesen stark gedrungenen Stiben nicht durch die Karman’sche Stabi-
litits grenze (die « Verzweigungsstelle » des Gleichgewichtes) sondern durch
die Grosse des sogenannten « sekundiiren Maximums » des Stabwiderstandes
festgelegt, das im geringfiigic ausgebogenen Zustand erreicht wird
und hier oberhalb der Quetschgrenze des Materials und damit auch oberhalb
des Verzweigungspunktes gelegen ist. Wir bezeichnen den Gleichge-
wichtszustand an dieser obersten Grenze der Tragfihigkeit als « kritischen
max P
Ik
des zentrisch gedriickten, stark gedrungenen Stabes.

IT) Greift die Druckkraft P exzentrisch mit dem sehr kleinen Hebelsarm

It :
T — gﬂ — 0,021 % an, dann erfihrt der Stab unter der anwachsenden Last eine

Zustand » und nennen g, =— die « kritische » mittlere Druckspannung

o

Ausbiegung und bildet Gleichgewichtszustinde aus, die durch die Kurven

Fig. 2 festgelegt werden. Diese (durch den beigeschriebenen Schlankheitsgrad

gekennzeichneten) Kurven weisen Extreme auf, deren Ordinaten wieder die
e . max Pg ,. ! .

« kritischen » mittleren Druckspannungen oy, = S liefernunddiegross-

ten vom Stabe getragenen Lasten festlegen. Wir unterscheiden nach der
Ausbildungsweise zwel Arten von Extremen, die Maxima « erster » und



La stabilité des barres comprimées par des forces excentrées 55

« zweiter » Ordoung, die in Fig. 2 bei der Kurve - = 24,5 in der gleichen
14

3 l :
Hohe liegen. Alle dargestellten Kurven fiir g = 40 bis G 180 =zeigen aus-

. . . . L 0 v l L
schliesslich Maxima erster Ordnung, withrend bei den Kurven fir - < 24, 5 das
] [4

Maximum erster Ordnung riickgebildet und das Maximum zweiter Ordnung
als das hoher liegende fiir die Grenze der Traglihigkeit massgebend wird;
das Auftreten dieser Maxima « zweiter » Ordnung hingt mit der rela-
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tiven Schwiichung des Stabwiderstandes zusammen, die sich bemerkbar
macht, wenn die Zugspannungen am Aussenrande des Stabscheitels den
Streckbereich durchlaufen, wihrend die Druckspannungen am Innenrande
schon tief im Verfestigungsbereich gelegen sind. Untersuchen wir z. B. das

Tragverhalten eines Stabes der sehr kleinen Schlankheit% = 18, dann ersehen
wir aus dem Verlaufe der zugeordneten Kurve in Fig. 2., dass der Stab unter
der Belastungsstufe PlfG = 2510 kg/em? (Maximum erster Ordnung) zwar
eine geringfigige Vermehrung seiner Ausbiegung erfihrt, dass er sich
jedoch sofort wieder « erholt » und nun eine Laststeigerung bis zur Hohe
Okr = IEFE}—l = 2820 kg/cm? ertragen kann. Erst unter dieser grossen Last,
die schon oberhalb der « Quetschlast » F. o gelegen ist, wird das Tragver-

mogen des Stabes endgiiltig erschopft ; die Ausbiegung betrigt in diesem
kritischen Zustande bloss y,= 0,12 h.
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Fig. 3 zeigt in gleicher Weise das Tragverhalten von Stiben, deren Druck-
: h . o :
kraft mit dem grossen Hebelarm p =2k = 3 exzentrisch angreift. Wir

konnen auch hier die Kurven-Extreme « erster » und « zweiter » Ordnung
scharf unterscheiden ; die ersteren liefern das Tragvermogen aller Stibe mit

[
der Schlankheit - > 28, wahrend durch die letzteren wieder die Tragfahigkeit

der stark «redrunggnen Stibe bestimmt wird. Die gestrichelte Linie, bis zu

der alle dargestellten Kurven gezeichnet wurden, legt die « Grenze des Unter-
suchungsberelcheq » fest und 1ist jenen (xleu:huewwhts/usldnden zugeordnet,
Va4

F
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in denen die griosste am Aussenrande des Stabes auftretende Zugspannung den
Wert ¢, = +40()0 kg/em? (d. 1. nahezu die statische Zugfestigkeit des zugrun-
degelegten Materials) erreicht. Ausserhalb dieser Grenzlinie wiirden die
Kurven stark abfallen und die Dehnungen auf der Aussenseite sich rasch den
grossen Werten der Bruchdehnung nihern ; das Tragverhalten der Stibe in
dlcbem Stadium ist praktisch und theoretlsch ohne bedeutuug

) Fig. & zeigt das Diagramm, das die gefundenen strengen L osungen fiir
das lraow crmogen e‘uentrlsch Oedlucktu Bdustdhlbtahe Zur Darstelluno
bringt und mit dem Ergebnis der guten Niherungstheorie von Ros-Brunner
(I*m 6 des Referates) zu vergleichen ist. Die eingetragenen Kurven bezichen

sich auf die beigeschriebenen Exzentrizitéitsmassel—des Kraftangriffes und
7 :

max Pg

. I

der aufgenommenen mittleren Druckspannung und dem Schlankheits-

legen den funktionalen Zusammenhang zwischen dem Grosstwert gy, =

grade —l.des Stabes fest. Jede dieser Kurven besteht aus zwei Aesten, die auf
i
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der gestrichelt gezeichneten Linie eine LEcke bilden; der lingere, schwach
geneigte Ast ist jenen kritischen Zustanden zugeordnet, die durch das Errei-
chen eines Maximums « erster » Ordnung bedingt sind, wihrend der kurze,
stell aufwiirts strebende Kurvenast den Maxima « zweiter » Ordnung zuge-
hort. Der Punktbereich dieser Maxima zweiter Ordnung durchbricht, wie wir
sehen, das Niveau der Quetschgrenze g, = oo = 2700 kg/em?® und legt
daher auch kritische Zustinde fest, die bei Laststufen oberhalb der Quetsch-
last ausgebildet werden. Je mehr sich diese steil verlaufenden IKurveniiste
der strichpunktiert eingezeichneten Grenzlinie des Untersuchungsbereiches

Gir
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nihern, umso schwiicher sind die Extreme des Stabwiderstandes ausgepriigt
und umso grosser werden die im kritischen Zustand auftretenden Biegespan-
nungen ; alle Punkte links ausserhalb dieser Grenzlinie sind Stiben zugeord-
net, die unter der anwachsenden exzentrischen Belastung bis zur Erreichung
einer Zugspannung o, = -+ 4000 kg/cm? am Aussenrand des Stabes keinen
kritischen Zustand, also kein ausgepriigtes Maximum des Widerstandes zeigen
und daher hinsichtlich ihres Tragverhaltens einem durch Querlasten gebo-
genen Baustahlstab dhneln,

Die in Fig. 4 fiir die verschiedenen Exzentrizititsmasse dargestellten Kur-
ven sind unter Voraussetzung von Normalspannungsverteilungen entwickelt
worden, die aflin verwandt sind mit der Formiinderungskurve des Baustahls.
Es lisst sich nachweisen, dass diese Spannungsverteilungen bis zum Erreichen
des kritischen Zustandes vom linearen « Entlastungsgesetz» unbeeinflusst blei-
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ben !, wenn das Exzentrizititsmass nicht kleiner ist als L~ uynd die Druck-

T

kraft in ihrer exzentrischen Lage von Nullanwiichst. Werden diese entlastungs-

freien Spannungsverteilungen rein formell auch 1m Falle-i-) = 0 in Rechnung
T

gestellt, dann wird die strichpunktiert gezeichnete, den Namen « Engesser »
tragende Kurve erhallen, die bloss als obere Grenzkurve der Schar von
Bedeutung ist. Die theoretisch in Geltung stehende, dem zentrischen Kraft-

% = 0 zugeordnete Kurve wurde in Fig. 4 voll ausgezogen und be-

angrifl
: : vl ;
steht im Schlankheitsbereich = 107,1 aus der Eulerhyperbel, im Bereiche

l i .
ARt : < 107, 1 aus der Karman-Linie und im Bereiche l < 23, 8 aus der
l

steil aufwiirts strebenden, den Maxima « zweiter » Ordnung des Stabwider-
standes zugeordneten Kurve; die beiden letzten Kurveniste sind isoliert aus-
serhalb der Schar gelegen, da bei ihrer Herleitung eine veriinderte, durch
das Entlastungsgesetz beeinflusste Normalspannungsverteilung zugrunde
gelegt werden musste. Beziiglich des Tragverhaltens jener Stibe, die bloss im
Sinn des Entwurfes « zentrisch » gedriickt sind, ohne aber die idealisieren-
den Voraussetzungen der Stabilitatstheorie zu befriedigen, muss ich auf mein
Manuskript verweisen.

IV) Zur Bemessung exzentrisch gedriickter Stibe aus Baustahl schlage
ich das sogenannte « 3-Verfahren » vor. Wir beziehen die Ordinaten der ein-
zelnen in Fig. 4 dargestellten Kurven auf die Ordinaten der Euler-Karman’-
schen Knickspannungslinie und dricken die kritische mittlere Druckspannung

) ’ ol :
des exzentrisch gedrﬁckten Stabes als Bruchteil - der Knickspannung (Ver-
vl

)
zweigungsstelle des Gleichgewichts) aus, die fiir denselben Stab bel zen-
trisch gedachtem Angriff in Geltung steht. Die auf diese Weise aus den stren-
= ; somp ot il : ;
gen Losungen abgeleiteten Verhiltniszahlen § = — sind in der im Anschluss
Okr
gezeigten Tabelle zusammengestellt worden. Wird nun der Bemessung des
exzentrisch gedriickten Stabes eine v -fache Sicherheit zugrunde gelegt,
dann unterliegt die grosste im Stab auftretende Druckkraft der Bedingung

P Ckr P o7 . ~ o :
T 2 ="nden 7 £ — , die nach Einfithrung der bekannten sog. « Knickzahl »
v (VI
GEE ) P ; X .
o — die einfache IFForm 3. w. F £ Oml annimmt. Der Beiwert « & »
oK

bringt hier die Abminderung zum Ausdruck, die die Tragfihigkeit zufolge

der Bxzentrizitat des Kraftangriffes erfihrt; wenn fir lfi > 24 das Exzen-

1. Bei der von Prof. Ro% im Bericht der II. Int. Briickenbautagung in Wien (S. 344,
Abb. 48) gemachten Feststellung diirfte ein Versehen unterlaufen sein; die Druckspan-
nungen am Aussenrand des Stabes werden im angefithrten Beispiel schon abgebaut, bevor
sie noch die Elastizititsgrenze erreicht haben, so dass wohl eine Spannungsumkehr, jedoch
keine Entlastung unelastisch gestauchter Fasern eintritt.
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trizititsmass verschwindet, wird § — 1. Die Sicherheitszahl v stimmt
bei diesem Bemessungsverfahren mit der Knicksicherheitszahl {iberein und
kommt zilfernmiissig nicht zur Geltung ; sie ist ebenso wie die dem Verfahren
zugrundegelegte Knickspannung oy in der amtlich vorgeschriebenen Knickzahl
w enthalten. Die 3-Tabellen sind wie die w-Tabellen far alle genormten
Baustahlsorten festzulegen; fiir den St 37 und etwas vergiitete Sorten dart
unmittelbar die angegebene Tabelle Verwendung finden. Soll das Bemessungs-
verfahren, wie Prof. Karner in seinem einleitenden Referate (Vorbericht

S. 34) mit Recht fordert, einen formell belriedigenden Uebergang zu der bei

ge-

gedrungenen Stiben tiblichen Randspannungsbedingung % - 3—,{/_ 2 o

D

withrleisten, dann diirfen die amtlich vorgeschriebenen 3-Werte im Bereiche klei-

ner Schlankheitsgrade die Griosse min § = (4 -+ /B . w nicht unterschreiten.
: ;

Bei Zugrundelegung der deutschen w-Werte miissten dann beispielsweise die

i unserer Tabelle ftr % = 0,5, 2,0 und 4,0 angegebenen g-Werte im Schlank-
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, ) [ { , [
heitsbereich F < 40 bezw. F < 57,5 bezw. - < 65 durch dieses mun
{
ersetzt werden.
V) Die in I'ig. 4 niedergelegte « Standardlosung » des Problems selzt einen
rechteckigen Stabquerschnitt, beiderseits gleich grosse Hebelarme und eine
Lagerung der Stabenden in reibungsfreien Gelenken voraus. Um den Einfluss

der Querschnittsform auf die Grosse der kritischen Last zu untersuchen,
habe ich die wichtigsten im Stahlbau vorkommenden Stabquerschnitte in

Y A y2412-20Y
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Fig. 5.

finf « Profilklassen » zusammengefasst und fiir jede dieser Klassen die strenge
Losung des Problems fiir die Laststufen o = 1000 und 1900 kg/em? entwik-
kelt. Es zeigle sich, dass wir unsere « Standardlésung » mit guter Anniherung
auch bei der Berechnung von Stidben beliebiger Querschnittsform verwerten
dirfen, wenn wir als Bezugsgrosse fiir den Angriffshebel p nicht ausschliess-
lich die « verschrinkt » gemessene Kernweite k, sondern je nach der Profil-

L+ k
2

klasse k oder1odera—

verwenden. Lassen wir grossere, praktisch aber

noch ertrigliche Abweichungen zu, dann konnen wir einheitlich 17 als Exzen-
5

trizititsmass fir Vollstibe aller Querschnittsformen verwenden. Auch die
Falle verschieden grosser oder wechselseilig liegender A ngriffshebel wur-
den einer strengen Losung zugetithrt; sofern p, === — p, ist, dirfen wir derar-
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tige Stibe niaherungsweise so wie Druckstibe mit den beiderseits gleich gros-

sen Hebelarmen p, = _PL__'Q__R;Z_ behandeln. Weiters habe ich die strenge
Theorie exzentrisch gedriickter Baustahlstibe enlwickelt, deren Iinden eine
elastische Einspannung erfahren. Wir denken uns den gegebenen Stab beider-

seits verlingert und als dreifeldrigen Durchlauftrager gelagert; die Linge ¢

) ’ ) ) | IR
der so entstehenden lastfreien Seitenfelder gibt dann in der Form 7 ein bau-
cli
praktisch leicht abschitzbares Mass fiir den Grad der elastischen Einspannung
eines im Tragwerk eingebauten Druckstabes. In Fig. 5 wird gezeigt, wie der

. l : :
Schlankheitsgrad - des Stabes bei wachsendem Einspannungsgrad ! zunehmen
i ¢

darf, wenn der Stab unter der Laststufe g, = r*P(,l = 1500 kg/em? sein
Tragvermogen einbiissen soll; die einzelnen Kurven beziehen sich auf das
beigeschriebene, in der Form p/i eingefithrte Fxzentrizititsmass.

VI) Ist die Achse eines zentrisch gedriickten Stabes im spannungslosen
Anfangszustand angenihert nach einer Sinushalbwelle mit der Pfeilhohe
7o gekriimmt, dann unterliegt der Stab gleichfalls einem « kritischen » Zu-
stand ; das Problem ist streng behandelbar, wenn wir hinsichtlich des genauen

Oir A
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Iig. 6.

Verlaufes der primiren Achsenform eine einschrinkende, praktisch jedoch
bedeutungslose Voraussetzung zulassen. In Fig. 6 ist die gefundene Lésung
dargestellt worden ; die einzelnen Kurven, die ebenso wiein Fig. 4 den Zusam-
menhang zwischen dem Schlankheitsgrad des Stabes und der grosstmoglichen
(kritischen) mittleren Druckspannung festlegen, beziehen sich auf die beige-
4

-2 Wenden
h

wir diese Losung bei der Berechnung der Tragfihigkeit schlanker, stihlerner
Dreigelenk-Bogentriger mit kleiner Pfeilhohe an, dann zeigt sich, dass die
Einhaltung der zulissigen Inanspruchnahme bei der iiblichen Bemessung des
Bogens nicht ausreicht, um auch die geforderte Sicherheit gegen Erreichen des

schriebenen Werte der primir vorhandenen Scheitelausbiegung
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« kritischen Zustandes » unter halbseitiger Belastung zu gewihrleisten.

VII) Wird ein prismatischer Baustahlstab untersucht, der ausser einer zen
trischen Druckkraft noch eine angeniihert sinusformig verteilte Querbelastung
von der Gesamtgrosse () zu tragen hat, dann kann das Gleichgewichtsproblem,
soferne tiiber die genaue Intensititsverteilung dieser Querbelastung eine ein-
schrinkende Voraussetzung zugelassen wird, einer strengen Losung zugefiithrt
werden. In Iig, 7 sind, dhnlich wie in Fig, 4 und 6, die Kurven dargestellt,
die den gefundenen Zusammenhang zwischen der kritischen Druckspannung

und dem Schlankheitsgrad festlegen ; die Grosse der Querbelastung () wird

A g, 3 : : M
hiebei durch die ideelle, nach Navier berechnete Biegerandspannung ¢, = \—\?
zum Ausdruck gebracht, die in der Stabmitte bei ausschliesslicher Wirkung
A
Gy
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\ l 4
1200
\ h=iViz
e ~— ﬁ_
'\
%\
400 ﬁ%
50 70 50 o B0 0 i o 210 230 [T

Fig. 7.

der Querbelastung entstehen wiirde. Bei der Bemessung derartiger Stabe muss
in jedem Einzelfalle wohl erwogen werden, ob die auftretende Achsiallkraft
oder die Querbelastung oder beide Wirkungsgriossen gemeinsam mit der
Sicherheitszahl multipliziert werden miissen.

Im Anschluss an diese Ausfithrungen sei mir eine Bemerkung zu der von
Ros-Brunner angegebenen Losung (IFig. 30 des Referates) erlaubt. Das Ros-
Brunner’sche Verfahren setzt hier implicite voraus, dass die Querbelastung
die gleiche Momentenverteilung hervorruft wie die achsiale Druckkraft, dass
somit der Biegemomentenverlauf der Querbelastung Q ein sinusformiger ist.
Das ideelle, bei der Herleitung der Losung als Parameler dienende Biegemo-

o . i : :
ment in Stabmitte betrigt dann M = 2(— , so dass sich die gefundenen Iirgebh-
=
] . : . ; ] 4 M
nisse, genau genommen, nicht aul den IFall einer Einzellast I = e sondern
e : oL : 3 2z M
auf den Iall einer sinusf6rmig verteilten Querbelastung der Grosse () = AT

beziehen. Die in I'ig. 30 des Referates eingezeichneten Kurven sind dann der

BJ
Reihe nach mit Q = 1‘12); 5 6}?31{7 : 3}lk‘i ' f:jkt) zu beschreiben und die Kur-
3 ’ 25 2yt
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ven, die den Querlasten Q = 2—%‘6—, ’11)_01(() . %und 3% zugeordnet sind, liegen
dementsprechend hoher.

VIII) Das durch die Kurven Fig. 1-3 dargestellte Tragverhalten gedriick-
ter Baustahlstibe kann die Grosse der Traglihigkeit statisch unbestimmter
Tragwerke aus Baustahl grundlegend beeinflussen. Die wertvollen Ergeb-
nisse, auf die die theoretische Untersuchung derartiger Systeme bel Beriick-
sichtigung der Plastizitit des Werkstoffes fithrte, sind an die Voraussetzung
gebunden, dass der Widerstand der im Tragwerk vorkommenden Druckstibe
nach Erreichen der Knicklast konstant bleibt, wie dies bel einem gezogenen
oder gebogenen Stab aus ideal-plastischem Material der Full ist. Demgegeniiber
zeigen jedoch die Baustahlstibe der tblichen Schlankheitsgrade schon bei
geringfiigigen Verkiirzungen der Stabsehne einen ungemein starken Abfall
des achsialen Widerstandes, der eine ganz erhebliche Ueberbeanspruchung
des « stitzenden Grundsy-
stems » und damit 1n der éjlﬂi& |

Mehrzahlderpraktischen Iille £ } U ‘

ein vorzeitiges Versagen des 06,0357 [--—t— /ngrl@—aé@— R
1 L — 50—

letzteren zur IFolge hat. Die / B

im Rahmen der angefiihrten 06308\l oz

Theorie ermittelten « tragha-

ren» Lasten konnenausdiesem

Grunde u. U. um 40 °/, zu

gross sein,

Abschliessend sei noch er-  pggm
wihnt, dass ich im angefiihr- :
ten Manuskript auch das Sta-
bilititsproblem des Rahmen- Y3
stabes einer exakten, (die 2 < ¢ - ke
Nachgiebigkeit der Quer- Fig. 8.
verbindungen  berticksichti-
genden) Losung zugelithrt und ein Verfahren zur Bemessung der QQuerver-
bindungen entwickelt habe, das im Wesen dem von Prof. Ros geschilderten
Verfahren gleicht.

In Fig. 8 ist der gefundene Zusammenhang zwischen der gréssten, vor dem
Zusammenbruch des Stabes auftretenden Querkraft, dem Schlankheitsgrad
und dem Exzentrizititsmass fur Stibe mit Rechtecksquerschnitt dargestellt.
Wir erkennen, dass Qu. nur bei Stiaben, deren Tragvermdigen durch ein
« Maximum zweiler Ordnung » begrenzt ist, wesentlich tiber den Krohn’schen
Wert ansteigt. Um von der Baustahlsorte unabhingig zu sein, konnen
wir (da Qua im allg. nicht mehr als im Mass der Quetschgrenze s wiichst)
anstelle der Krohnformel allgemeiner z. B. Quua = %(j:) . F schreiben und die

Querverbindungen, sofern fiir sie nicht die Bruch- sondern die Fliessgrenze als

0020

¥

<o
~

: s w Gzul a Al
massgebend angesehen wird, unmittelbar fir Qu.. = == - I auf « zulissige

Spannung » bemessen.
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Traduction .

Qull me soit permis d’ajouter quelques remarques complémentaires aux
rapports de MM. les Professeurs Karner et Ro$, rapports d’ailleurs si impor-
tants, tant du point de vue théorique que du point de vue pratique. Ces con-
sidérations sont extraites du manusecrit, actuellement prét a étre imprimé, que
je consacre aux « Barres comprimées en acier de construction, Théorie de leur
comportement en charge et de leurs possibilités », ce manuscrit contenant les
solutions théoriques rigoureuses des différents problemes d’équilibre que posent
les barres comprimées en acier de construction. Les résultats qui sont indi-
qués dans les lignes qui suivent ont été déterminés en partant de cette hypo-
thése que la section de la barre est rectangulaire et que le diagramme tensions-
allongements concorde avec celui qui a été employé par Ros-Brunner?.

[. — Sileffort de compression P est appliquée axialement a une barre repo-
sant & ses deux extrémités, sur articulations, sur des appuis et si I'on part des
hypotheses de la théorie de la stabilité, qui nous ramenent & des conditions
idéales, on peut dire alors que la barre ne se déforme qu’apres avoir atteint la
charge de flambage d'Euler-Karman. Les courbes de la figure 1 permettent de
se rendre compte comment la résistance de la barre dans la direction axiale
(ou autrement dit, comment l'effort de compression « Pg » nécessaire pour
réaliser I'équilibre, dans chaque cas) varie avec la déformation de la barre.
Chacune de ces courbes se rapporte & une valeur indiquée du degré d’élan-
cement {/i; en abscisses, on a porté les déformations latérales y, du milieu de
la barre, rapportées a la hauteur % de la section, tandis que les ordonnées
indiquent les quotients des valeurs de la résistance de la barre par la surface
de sa seclion F = h. h. Nous constatons que pour toules les barres qui ne pré-
sentent pas un caractére trop massif, trop trapu, la charge de flambage d’Euler-
Karman, pour laquelle commence la déformation, représente la limite supé-
rieure théorique de la capacité de charge. La chute de la capacité de charge
est tout particulierement accusée pour les degrés de finesse voisins de {/i=—==60;
le fléchissement de la barre en cours de flambage se produit ici avec une accé-
lération nettement croissante. Les barres qui accusent un degré d’élancement
trés petit se comportent d'une maniére particuliere. Cest ainsi que la courbe cor-
respondant, par exemple, & [/i =20 quitte l'axe des ordonnées a la hauteur de
la tension de flambage de Karman (qui se trouve déja ici juste au-dessous de la
limite d’écoulement 5, = — 2700 kg/em?); elle descend quelque peu, puis monte
au-dessus de la limite de compression jusqu'a la valeur :

max Pg;,
I

pour retomber ensuite définitivement.

= 2900 kg /ecm?2

1. L’auteur ayant été6 empéché de présenter lui-méme son Mémoire au Congres de Paris,
celui-ci a é1é lu par M. le Prof. Dr. L. Karner, Secrétaire général. ‘

2. Dans les travaux qu'ils ont déja publiés antérieurement, Ros-Brunner définissent la
limite de proportionnalité par les coordonnées o, = 1900 kg/em?, ¢, = 0,086 ¢/,. Le module
d’élasticité ainsi déterminé pour le matériau considéré K= 1,9/0,00086 = 2210 t/cm? ne
concorde pas avec la valeur E = 2130 t/em? indiquée dans le rapport.
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Une barre ayant un degré de finesse [/i = 20 accuserait donc une légere défor-
mation aprés avoir atteint la charge de flambage de Karman, pour revenir tou-
tefois &4 un état de repos apreés une déformation y, = 0, 04 4 ; elle supporterait
alors une augmentation de charge pouvant aller jusqu’a

max Pg = 2900 F

Pour des barres présentant un caractére trapu aussi nettement prononcé, la
limite supérieure de la capacité de charge n’est donc pas définie par la limite
de stabilité de Karman (point de bifurcation de I'état d’équilibre), mais par la
valeur de la résistance de la barre ainsi désignée sous le terme de « maximum
secondaire », qui est atteinte pour un état de déformation peu accusée et qui se
trouve iciau-dessus de la limite d’écoulement du matériau et par suite égale-
ment au-dessus du point de bifurcation. Nous désignerons l'état d’équilibre
pour cette limite supérieure de capacité de charge comme « état critique » et la
valeur
max PGI

le. — F

comme tension de compression moyenne « critique » pour la barre trapue
soumise & une compression axiale.

II. — Si l'effort de compression P est appliqué excentriquementavec une
excentricité tres faible

ng_o 021 f

la barre subit un fléchissement sous l'action de la charge croissante et consti-
tue un état d’équilibre que traduisent les courbes de la figure 2. Ces courbes,
qui sont caractérisées par le degré de finesse indiqué, accusent des maxima
dont les ordonnées donnent les contraintes de compression moyennes critiques

max Pgi
Oy — ——

F

et permettent de déterminer les valeurs maxima des contraintes supportées par
la barre. Suivant l'allure de ces courbes, nous distinguons deux sortes de
maxima, que nous désignons comme de « premier ordre » et de « second
ordre » et qui, pour la courbe correspondant a l/i—= 24,5, sur la fig. 2, se

] l l
trouvent au méme niveau. Toutes les courbes tracées pour - = 40 a = 180

accusent exclusivement des maxima de premier ordre, tandis que sur les
! l : :
courbes qui correspondent él-, < 24,5 le maximum de premier ordre accuse

un recul ; le maximum de second ordre, étant le plus élevé, 1nte1v1entpmnc1pa—
lement pour la détermination de la hmlte de capacité de char@e ce maximum
de second ordre coincide avec l'affaiblissement relatif de la 1'e51st'1nce de la
barre, affaiblissement qui se manifeste lorsque les contraintes de tension dans
les fibres périphériques au sommet de la barre traversent la zone d’écoule-
ment, tandis que les contraintes de compression sur les fibres internes se
trouvent déja largement engagées dans la zone de reprise des possibilités de
résistance. Si nous recherchons, par exemple, de quelle maniére se comporte
5
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une barre accusant le tres faible degré de finesse de I/ i = 18, nous consta-

tons, sur la courbe correspondante de la figure 2, que pour le régime de
charge :

— 9510 &k 2

T = 2510 kg/em

(maximum de premier ordre), la barre subit un faible accroissement de [é-
chissement, mais qu'elle se rétablit immédiatement et est alors susceptible
de supporter un accroissement de charge allant jusqu’a

Par
*'1

max Pgy
F

Ce n’est que sous l'influence de cette charge élevée, qui se trouve déja au-
dessus de la charge de compression . 55 que la capacité de charge de la barre
s'effondre définitivement ; la déformation atteint seulement, a cet instant cri-
tique, la valeur de y, =0,12 h.

La figure 3 représente de méme la maniére dont se comportent les barres
lorsque leffort de compression est appliqué par l'intermédiaire d’'un bras de
levier important p=2 k =h/3. Nous pouvons, ici encore, distinguer nette-
ment les maxima de « premier » et de « second » ordre: les premiers indiquent
les possibilités de charge pour toutes les barres dent le degré de finesse est

Gkr =—

= 2820 kg/cm?

- > 28 tandis que les deuxiémes donnent les capacités de charge des barres
i

trés massives ou trapues. La courbe en traits discontinus, jusqu'a laquelle
toutes les courbes indiquées ont été tracées, définit la limite des recherches
effectuées et correspond a tous les états d'équilibre pour lesquels la con-
trainte de tension maximum & la périphérie de la barre atteint la valeur de
o, = + 4000 kg/cm? (on se trouve alors au voisinage de la résistance statique
a la traction pour le matériau étudié). En dehors de la limite ainsi définie, les
courbes accuseraient une chute trés accentuée et les allongements sur le coté
extérieur arrivent rapidement au voisinage des valeurs correspondant a la
rupture ; la maniere dont les barres se comportent dans cette région est pra-
tiquement et théoriquement sans intérét.

III. — Le diagramme de la figure 4 indique les possibilités de charge,
telles qu'elles ont été déterminées rigoureusement, pour les barres en acier de
construction soumises & une compression excentrique ; il est & comparer avec
le résultat que donne l'excellente théorie d’approximation de Ros-Brunner
(figure 6 de leur rapport). Les courbes qu'il comporte se rapportent au degré
d’excentricité indiqué p/k de 'application de l'effort et déterminent la relation

) : max Pgp s
fonetionnelle entrela valeur maximum ¢, = =0 de la contrainte moyenne
de compression supportée et le degré de finesse /i de la barre. Chacune des
courbes se compose de deux branches, qui se raccordent sur la courbe tracée
en traits discontinus; la branche la plus longue, qui est faiblement inclinée,
correspond a tous les états critiques qui sont conditionnés par l'arrivée a un
maximum de premier ordre, tandis que la branche courte, se relevant trés
rapidement, correspond aux maxima de second ordre. La zone ainsi définie par
ces maxima de second ordre coupe, ainsi qu'on le voit, le niveau correspondant
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a la limite d’écoulement sy, = oo = — 2700 kg/cm? et définit done également
des états critiques correspondant a des régimes de charge qui se (rouvent au-
dessus de la charge limite de compression. Plus ces branches inclinées se
rapprochent de la ligne de démarcation des essais elfectués, plus faibles sont
les valeurs extrémes de la résistance de la barre et plus élevées sont les con-
traintes se manifestant a U'état critique ; tous les points situés a gauche et en
dehors de cette ligne de démarcation correspondent a des barres qui ne mani-
festent aucun état critique, c'est-a-dire aucun maximum accusé de résistance,
sous l'influence de charges appliquées excentriquement et croissantes jusqu’a
une contrainte de traction s, = 4 4000 kg/em? sur la périphérie de la barre ;
ces barres se rapprochent, en ce qui concerne la maniére dont elles se com-
portent, de barres en acier de construction qui seraient soumises a des {lexions
par charges transversales.

Les courbes de la figure &, qui correspondent a différents degrés d’excen-
tricité, ont ¢été établies en supposant une répartition des tensions, paral-
lelement 2 la courbe de déformation de lacier de construction. On peut
remarquer que ces répartitions des contraintes restent non influencées
par la loi de décharge linéaire jusqu’a ce que l'on arrive a l'état critique !

B

lorsque le degré d’excentricité n'est pas plus faible que 7 = env. 1/8 et que

la force de compression croit, 4 sa position d’excentricité, & partir de zéro. Si
I'on reporte ces conditions de répartition de conlraintes sans décharge, pure-

ment et simplement, dans le cas de%:O on obtient la courbe tracée en

traits discontinus, qui porte le nom de courbe d’Engesser et qui ne présente
une importance quautant qu’elle constitue la courbe limite supéricure de la
famille. La courbe valable du point de vue théorique et correspondant 4 une
application axiale de la charge p/k = O a été tracée en entier sur la figure 4 ;
elle se compose, dans la zone /i =107, 1 de I'hyperbole d’Euler, dans la zone
23,8 2 1)i << 107,1 de la courbe de Karman et dans la zone /i <C 23, 8 de la
courbe correspondant aux maxima de deuxiéme ordre de la résistance de la
barre, qui posséde une allure ascendante rapide; les deux dernicres branches
de la courbe se trouvent d’ailleurs isolées de la famille elle-méme, car pour
leur détermination, il faut partir d'une répartition modifiée des contraintes,
répartition influencée par la loi de décharge. En ce qui concerne la maniére
dont se comportent les barres qui sont seulement chargées axialement dans
I'acception proposée, sans toutefois satisfaire aux conditions idéales de la
théorie de la stabilité, je renverrai & mon manuscrit.

IV. — Pour le calcul des barres soumises & une charge de compression
excentrique, en acier de construction, je propose I'adoption de la méthode dite
« méthode ¢ ». On rapporte les ordonnées des différentes courbes représentées

1. Dans son Rapport A la deuxiéme Réunion Internationale de Vienne (page 344, fig. 48)
1e Professeur Ros arrive a une conclusion opposée, probablement par suite d'une erreur ;
les contraintes de compression a la périphérie de la barre sont déja déchargées, avanl que
la limite d’élasticité soit atteinte, de sorte qu'il se produit bien une inversion des con-
traintes, mais aucune « décharge des fibres » apres passage & I'état plastique.
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sur la figure 4 aux ordonnées de la courbe des contraintes de flambage d’Eu-
ler-Karmén et on exprime la contrainte de compression critique moyenne de
la barre comprimée excentriquement comme constituant une fraction 1/ de
la contrainte de flambage (point de bifurcation de l'état d’équilibre), valable
pour la méme barre en supposant une application axiale de la charge. Les
Sl e e 8 N ’ . :
valeurs du rapport § = — ainsi déterminées a partir de la solution rigoureuse
Gkr
ont été rassemblées dans le tableau annexé au présent Rapport. Si maintenant
on applique au calcul de la barre comprimée excentriquement un coefficient v
de sécurité, 'effort de compression maximum qui se manifeste dans la barre
répond a la condition :
P Ckr P Ok
= < =0 ou R
F ™5 F gy
relation qui prend la forme simple suivante, aprés introduction du coefficient

; Y. Gzul
de flambage bien connu w = —%F:

Gk

|

S \< Grul

B.w. -

p—

Le coeflicient 3 exprime alors la diminution que subit la capacité de la barre
par suite de l'application excentrée de la charge; si pour /i = 24, le degré
d’excentricité de I'application de la charge disparait, ¢ tend vers 1. Le coeffi-
cient de sécurité v concorde, dans cette méthode de calcul, avec le coeflicient
de sécurité au flambage et ne s'exprime pas directement par un chiffre ; de
méme que la contrainte de flambage o, qui sert de base a l'application de
la méthode, il est compris implicitement dans la valeur du coefficient de
flambage » qui répond aux prescriptions officielles. Les tables donnant
doivent, de méme que celles qui donnent «, étre établies pour toutes les
sortes d'aciers de construction normalisés; pour 'acier St. 37 et pour les
sortes quelque peu supérieures, on peut se servir directement de la table ci-
jointe. Si, ainsi que le Professeur Karner le préconise a juste titre dans son
Rapport d’Introduction (Voir Publication Préliminaire, page 51) la méthode
de calcul doit permettre de satisfaire dans les conditions rigoureuses aux
conditions de contrainte périphérique courantes des barres trapues :

P M
F +W<qul

les valeurs officiellement prescrites pour § ne doivent alors pas descendre au-
dessous de la valeur suivante :

min@:(i-{—%) o

\ E

dans la zone des faibles degrés de finesse. Dans la détermination des valeurs
de o prévues en Allemagne, les valeurs de § indiquées dans notre tableau

pour?£ =0,5—2,0—et4,0 dans la zone des degrés de finesse {/i << 40 ou

1Ji << 57,5 oul/i < 65 doivent étre remplacées par ce minimum de §.
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V. — La solution « standard » du probléme, telle qu'elle fait 'objet de la
figure 4, suppose une section rectangulaire de la barre, des bras de levier égaux
des deux cotés et une articulation libre de frottement aux deux extrémités de
la barre. Afin d'étudier l'influence de la forme de la section sur la valeur de
la charge critique, j'ai rassemblé les sections que l'on peut considérer comme
les plus intéressantes en construction métallique en 5 groupes et pour chacun
de ces groupes, j'ai développé la solution rigoureuse du probleme pour les cas
de charge g, = 1000 et 1900 kg/cm?2. J’ai pu constater que notre solulion
« standard » pouvait étre appliquée avec une bonne approximation, méme dans
le calcul des barres ayant une section de forme arbitraire, a condition de
prendre comme terme de comparaison pour le bras de levier d’application de
la charge non pas exclusivement I'inverse du rayon mesuré du noyau & mais,
i+ k

2

admettons une tolérance plus large et a condition qu'elle soit encore acceptable

sutvant le groupe auquel appartient la section, k, i, ou a = . S1 nous

du point de vue pratique, nous pourrons adopter uniformément la valeur ¥

L

comme mesure du degré d’'excentricité pour des barres pleines de toutes sec-
tions. Il a été également apporté une solution rigoureuse au cas comportant
I'application de la charge parl’intermédiaire de bras de levier dilférents soit en
erandeur soit en direction ; pour p, = — p; nous pouvons considérer, & titre
d’approximation, les barres correspondantes comme des barres comprimées com-

portant deux bras de levier de méme valeur des deux cotés avec py, mBl—_IQ:BQ

En outre, j'ai étendu la théorie rigoureuse aux barres d’acier soumises a4 une
compression excentrée et dont les extrémités comportent un encastrement
¢lastique. Nous supposons la barre prolongée des deux cotés et répondant
aux conditions d’appui d’une poutre continue a trois panneaux ; la longueur ¢

du panneau latéral exempt de charge donne alors, sous forme du rapport C—/]H
une mesure, facile a évaluer dans la pratique de la construction, du degr:é
d’encastrement élastique d'une barre comprimée formant un élément de la
charpente. La figure 5 montre dans quelle mesure peut augmenter le degré de
finesse de la barre [/i, lorsque le degré d’encastrement i/c croit, si la barre
doit perdre sa capacité de charge pour le degré de charge

max PGl

I

Glri=—

—1.500 kg/em?

Les courbes particuliéres se rapportent au degré d'excentricité indiqué,

/2

introduit sous la forme & .
l

VI. — Si l'axe d'une barre soumise & une compression centrée est déja
courbé, A 1’état initial, en l'absence de toute charge, suivant une forme se
rapprochant d'une demi-sinusoide admettant une fleche ,, la barre peut for-
mer alors également un état « critique » ; le probleme peut étre résolu d'une

maniére rigoureuse, grdce 4 une hypothese limitative, ne tirant toute-
fois pas a conséquence du point de vue pratique, en ce qui concerne
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I'allure exacte de la forme initiale de cet axe. La solution obtenue est
représentée sur la figure 6, les courbes particuliéres, de méme que dans la
figure 4, traduisent la relation entre le degré de finesse de la barre et la con-
trainte de compression moyenne la plus élevée possible (critique); ces courbes
se rapportent aux valeurs indiquies pour la déformation initiale au sommet

f‘];’ . Si nous appliquons cette solution au calcul de la capacité de charge des
poutres en arc en acier, élancées, a trois articulations et comportant de
faibles fleches, nous constatons que I'observation des exigences normales dans
le cas du calcul des arcs ne suffit pas i assurer la sécurité voulue contre les
possibilités d’arriver a « I'élat critique » sous I'influence d’une charge s’exer-
cant sur un demi-coté.

VII. — Considérons maintenant une barre en acier de construction de forme
prismatique, ayant & supporter outre une charge de compression centrée, une
charge transversale répartie dune maniére a4 peu prés sinusoidale et ayant une
valeur totale () ; le probleme d’équilibre correspondant peut recevoir une solu-
tion rigoureuse, pour autant que la répartition exacte de I'intensité de la charge
transversale est susceptible de se préter a une hypothése initiale limitalive.
De méme que dans les figures & et 6, on a représenté sur la fig. T, les courbes
qui déterminent la relation établie entre la contrainte de compression critique
et le degré de tinesse; I'importance de la charge transversale Q est exprimée
par la contrainte de flexion idéale périphérique, calculée d’apres Navier :

M,
Gh:W

et qui existerait effectivement au milieu de la barre si cetle influence trans-
versale agissait seule. Dans le calcul de ce type de barres, il importe de
déterminer avec certitude, dans chaque cas particulier, sila contrainte axiale
seule, ou bien la charge transversale seule doit étre multipliée par le coeffi-
cient de sécurité, ou éventuellement les deux grandeurs ensemble.

Qu’il me soit permis d’ajouter icl une remarque au sujet de la solution indi-
quée par Ros-Brunner (figure 30 de leur rapport). La méthode de Ros-Brun-
ner suppose ici implicitement que la charge transversale provoque une méme
répartition des moments que la contrainte de compression axiale, de telle
sorte que la courbe des moments de flexion, de méme que la courbe de répar-
tition de la charge transversale Q, sont toutes deux des sinusoides. Le
moment fléchissant idéal au milieu de la barre, intervenant dans la solution

¥ Q! .
comme paramétre, atteint alors M = o de telle sorte que, rigoureusement

i

parlant, les résultats obtenus ne se rapportent pas au cas d'une charge unique

i

H = - mais au cas d'une charge sinusoidalement répartie et ayant la valeur
2 dent donc, d

0— T Les courbes de la figure 30 du rapport correspondent donc, dans

I'ordre, &

Y- Pk Pk Pk Pk
Q=173 3,1 30,8 T5,9
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et les courbes correspondant aux charges transversales :

e Py 1o e R
~— 300 100 B0 25
sont respectivement situées au-dessus.

VIII. — La manicre dont se comportent les barres d’acier de construction
comprimées, qui est représentée par les figures 1 & 3, peut exercer une
influence primordiale sur la valeur de la capacité de charge des char-
pentes statiquement indéterminées en acier de construction.
Les résultats remarquables auxquels conduisit I’étude théorique de ces sys-
temes en faisant intervenir la plasticité du matériau, sont basés sur cette
hypothése que la résistance des barres comprimées de la charpente reste cons-
tante lorsque l'on a atteint la charge de flambage, ainsi que c’est le cas pour
une barre tendue qui serait constituée par un matériau idéalement plastique.
Par contre, les barres en aciers de construction présentant les degrés de finesse
courants accusent une diminution considérable de la résistance axiale,
méme pour de faibles raccourcissements de la corde de la barre, ce qui a pour
conséquence une majoration tres notable de la contrainte du systéme de « ren-
forcement », et, en pratique, dans la majoration des cas, une mise hors ser-
vice prématurée de ce dernier. Les charges « possibles » telles qu’elles sont
déterminées dans le cadre de la théorie proposée peuvent donc, pour cette rai-
son, ¢étre dans certains cas trop fortes de plus de 40 °/,.

Signalons encore pour terminer que dans le manuserit auquel a1 fait allu-
sion, j'ai apporlé également au probleme de la stabilité des barres en chés-
sis une solution exacte, tenant compte de la flexibilité des assemblages trans-
versaux ; j'ai également développé une méthode de calcul des assemblages
transversaux, qui présente une similitude de principe avec celle qui a été indi-
quée par le Professeur Ros.

La figure 8 indique la relation trouvée entre la charge transversale maxi-
mum mise en jeu avant la mise hors service de la barre, le degré de finesse et
le degré d’excentricité, pour des barres de section rectangulaire. Nous remar-
quons que Quax ne s'élove au-dessus de la valeur de Krohn d’une maniére sen-
sible que pour les barres dont la capacité de charge est limitée par un « maxi-
mum de second ordre ». Pour rendre la question indépendante de la catégorie
d'acier de construction (et comme en général, Q. ne subit pas un accrois-
sement relatif plus important que la limite d’écoulement a la compression sq)
nous pouvons substituer d’'une manicre générale & la formule de Krohn, par

; G0 S
exemple, la relation Quax= 75 I' et calculer les conditions transversales
3]
: Gl i ; pie
directement pour Quax = =5 - I' d'aprés la « contrainte admissible ».

5
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M. BROSZKO,

Professor an der Technischen Hochschule, Warschau.

1. — Der vom Generalsekretariat der Internationalen Vereinigung fiir Briik-
kenbau und Hochbau anlasslich der Pariser Tagung herausgegebene Vorbe-
richt! enthilt zwei Referate ?, in denen auf das Knicken prismatischer Stibe
bei zentrischem Lastangriff niaher eingegangen wird. Das gleiche Thema bildete
bekanntlich auch auf dem vor vier Jahren in Wien abgehaltenen Briickenbau-
kongress den Gegenstand der Verhandlungen, Mit Ricksicht auf die sehr
erheblichen Meinungsverschiedenheiten, die im Verlaufe dieser Verhandlungen
zu Tage getreten, und im Wiener Kongressbericht * zum Ausdruck gekommen
sind, musste die Einstellung der beiden vorangefithrten Referate zu den in
Wien aufgerollten strittigen IFragen von vornherein ein ganz besonderes Inte-
resse erwecken. Line klare Stellungnahme zu den letzterwiithnten Fragen durfte
dabeirumso mehr erwartet werden, als die Wiener Diskussion iitber das Knick-
problem von dem damaligen Referenten mit einem Gutachten* tber die
erzielten Diskussionsergebnisse abgeschlossen wurde, dessen Inhalt kaum
geeignet ist zur Klarung des umstrittenen Problems beizutragen. Denn die,
den Kernpunkt dieses Gutachtens bildende mathematische Begriindung® der
Engesser-v. Karman'schen Knicktheoriet ist infolge eines offenkun-
digen Versehens, mit Rechenfehlern behaftet 7 und weist tiberdies die Eigen-
timlichkeit auf, dass nach der Beseitigung der Rechenfehler ein Ergebnis
erhalten wird, welches sich in direktem Widerspruch mit der zu beweisenden
These befindet.

In dem Pariser Vorbericht vermisst man indessen eine Berichtigung der
vorerwiithnten, unbestreitbar unrichtigen Beweisfuhrung, sowie der Folge-
rungen, welche aus der letzteren von dem Wiener Referenten gezogen wur-
den. Diese Unterlassung, im Verein mit der Nichtberiicksichtigung der
neuesten Ergebnisse der experimentellen ® und der theoretischen ® Forschung,

1. Internationale Vereinigung fiir Briickenbau und Hochbau. Erster Kongress. Paris,
1932. 19. Mai-25. Mai. Vorbericht.

2. L. Kar~er, « Stabilitdt und Festigkeit von auf Druck und Biegung beanspruchten
Bauteilen ». Einleitendes Referat. Vorbericht S. 17/39.

M. Ros, « La stabilité des barres comprimées. par des forces excentrées ». Vorbericht
S, 57/93.

3. Bericht tber die II. Inlernationale Tagung fiir Briickenbau und Hochbau. Wien,
J. Springer, 1929. S, 282/346.

4. Ebenda. S. 338/346.

5. Ebenda. S, 338/340.

6. Th. v. Kirmi~n, Untersuchungen tiber Knickfestigkeit. Mitt. @ib. Forschungsarbeiten
a. d. Geb. d. Ingenieurwesens. Ieft 81. Berlin, 1910.

7. Bericht iiber die II. Internationale Tagung fiir Briickenbau und Hochbau. Wien,
J. Springer, 1929. S. 340. Zeile 11. sowie Zeile 17. von oben. Der Fehler besteht in der
irrtiimlichen Einfiihrung des Kirminschen Knickmoduls Ty an Stelle des von ihm stels
verschiedenen Excesserschen Knickmoduls T,

8. W. Rriv, Versuche zur Ermittlung der Knickspannungen fiir verschiedene Baustiihle.
Berlin, J. Springer, 1930.

9 4. M. Broszko, « Ueber die allgemeine Losung des grundlegenden Knickproblems ».
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kann irrefihrend wirken. Denn der Leser des Pariser Vorberichtes konnte
unter den gegebenen Umstinden den Eindruck gewinnen, dass sidmtliche
gegen die Engesser-v. Karman’sche Theorie vorgebrachten Einwiinde
durch die Darlegungen des Wiener Referenten widerlegt worden seien'. Ein
erneutes Eingehen auf diese Einwiinde erscheint daher durchaus erforderlich,
zumal die letzteren einer genaueren und ausfithrlicheren Begriindung bediir-
fen 2.

2. — Der Engesser-v. Karman’'schen Knicktheorie liegen drei physika-
lische Annahmen zugrunde, und die Unhaltbarkeit dieser Theorie ist dadurch
bedingt, dass eine von den vorerwédhnten Grundannahmen sich im Wider-
spruch mit den gesichertsten Erfahrungstatsachen befindet.

In den beiden ersten Engesser-v. Karman’schen Grundannahmen wird
die Behauptung ausgesprochen, dass sowohl im Gebiet der elastischen, als
auch in demjenigen der plastischen Forminderungen

I) die ebenen Querschnitte des nicht ausgebogenen Druckstabes nach dessen
unendlich schwacher Ausbiegung eben bleiben,

II) der funktionale Zusammenhang zwischen den durch Biegung verur-
sachten spezifischen Lingenanderungen der Stabfaserelemente und den zugeho-
rigen Spannungen der gleiche 1st wie beim reinen Druck-Zugversuch.

Das Zutretfen dieser Annahmen unterliegt keinem Zweifel 3. Zur eindeu-
tigen Losung des Problems reichen aber dieselben nicht aus, weil die zweite
Grundannahme keine eindeutige Angaben iiber die Form des funktiona-
len Zusammenhanges enthilt, der zwischen den spezifischen Lidngeninderun-
gen und den zugehorigen Spannungen im Querschnitt eines ausgebogenen
Druckstabes besteht. Zwecls Herstellung einer eindeutigen Form des letzter-
withnten funktionalen Zusammenhanges wurde von Engesser zuerst ange-
nommen %, dass dieselbe durch den Verlauf des Druckstauchungsdiagramms
gegeben sei. Auf einendiesbeziiglichen Einwand Jasinski's ? wurde aber von

Verhandlungen des 3. Internationalen Kongresses fiir Technische Mechanik. Stockholm,
1930. Band III. S. 51/59.

9 B. M. Broszro, « Beitrag zur allgemeinen Ldsung des Knickproblems ». Abhandlungen
der Internationalen Vereinigung fiir Briickenbau und Hochbau. Ziirich, 1932. Erster Band.
S.1/8.

1. Von der Ueberzeugung geleitet. dass die Richtigkeit der Encesser-v. Kinminschen
Theorie durch den letzterwihnten Beweis erwiesen sei, hat Prof. F. Harrmaxn, Wien
unliingst an mehreren Beispielen darzulegen versucht, dass die mit den Vorstellungen
dieser Theorie unverlriglichen Forschungsergebnisse eo ipso unrichtig sein missen
(s. Z. d. Oesterr. Ing.- u. Arch.-Ver. 8%, 1932, S. 165.). Die kleine Schrift Harrman~s ge-
withrt einen so klaren Einblick in den Ideenkreis und in die Gedankengiinge eines iiber-
zeugten Verfechters der Engisser-v. Kirminschen Theorie, dass das Durchlesen derselben
allen sich mit dem Knickproblem niiher bhefassenden Ingenieuren wirmstens empfohlen
werden kann. (Anm. b. d. Drucklegung).

2. Diese Einwinde sollen ausserdem dadurch eingeschriinkt werden, dass die formelle
Richtigkeit der mathematischen Herleitung der Kirminschen Knickformel vorbehaltslos
zugegeben wird.

3. Das genaue Zutreffen der ersten Grundannahme auch im Falle der plastischen Ver-
formung ist von Gri~inc und Domxe aul theoretischem Wege exakt bewiesen worden.
Die zweite Grundannahme ist aber an und fiir sich einleuchtend.

4. 7. d. Hannoverschen Ing.- u. Arch. -Ver. 38/1889/S. 453,

5. Schweiz. Bauztg. 25/1895/S, 172,
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Engesser seine urspriingliche dritte Grundannahme spater durch den fol-
cgenden Ansatz ersetzt !, der daraufhin auch von v. Kdrmén iitbernommen
wurde :

I[II) Die Form des funktionalen Zusammenhanges ¢ = I' (¢), welcher wih-
rend der Ausbiegung des Druckstabes zwischen der in einem Querschnitts-
punkte wirkenden Spannung ¢ und der zugehorigen spezifischen Verkiirzung
¢ besteht, 1st an der Biegedruckseite durch den Ast ca des Druckstauchungs-
diagrammes Abb. 1, an der Biegezugseite dagegen durch die Gerade cb
gegeben, die zu dem geradlimigen Teil Op des vorerwihnten Diagramms
parallel verliuft. Der funktionale Zusammenhang ¢ = @ (<), welcher die

o] | ]
3000 —
ol
2000 1 e

1000

= | | |

A&
r

ig.

+A é : Qor Qoz & 0,&3
il

Fig. 2.

Abhiingigkeit der in verschiedenen Querschnittspunkten gleichzeitig
wirkenden Spannungen s von den zugehorigen spezifischen Verkiirzungen e
angibt, ist infolgedessen wihrend der Ausbiegung des Druckstabes jederzeit
durch den Linienzug bca bestimmt.

Durch die Einfithrung dieses Ansatzes wurde zwar das den Urhebern der
Engesser-v. Karmanschen Theorie 2 vorschwebende Ziel erreicht. Denn
der ergiinzende Ansatz (III) reicht im Verein mit der Grundannahme (I) zur
eindeutigen Beslimmung der Spannungsverteilung vollkommen aus. s wurde
aber von Engesser und v. Karméan bei der Linfithrung dieses Ansatzes
ausser Acht gelassen, dass er mit der richligen Annahme (1I) unvereinbar ist.

Die Ursache der Unvereinbarkeit des Ansatzes (II1) mit der Grundannahme
(1) wird sofort klar, wenn man die in der Abb. 2 dargestellten Ewingschen
Versuchsergebnisse # ins Auge fasst. Denn aus dieser Abbildung ist ersicht-

1. Schweiz. Bauztg. 26/1895/S. 26.

2. Als eigentlicher Urheber der Encesser-v. Kinminschen Knicklheorie ist neben
Encrsser in erster Linie JasiNskri zu nennen.

3. I. A. Ewing, The strength of materials. Cambridge, 1914, S. 42.
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lich, dass die Form des funktionalen Zusammenhanges, welcher zwischen
der Spannung und der spezifischen Lingenanderung eines achsial belasteten
Stabes besteht, in hohem Grade von dem Werte der spezifischen Verformungs-
geschwindigkeit abhingt !. Die letztere nimmt nun, bei der Ausbiegung
des Druckstzbes, im Bereiche einer Querschnittsebene fiir jede zur Biegungs-
ebene senkrechte Faserschicht, gemiss der ersten Grundannahme, einen
anderen Wert an. Infolgedessen muss die Form des funktionalen Zusammen-
hanges ¢ — I' (¢) im Bereiche einer (Querschnittsebene des ausgebogenen
Stabes fir jede zur Biegungsebene senkrechle Faserschicht, gemiss der
sweiten Grundannahme, verschieden sein. Die den Zusammenhang ¢ = I (¢}
darstellenden Diagrammlinien miissen daher fur verschiedene FFaserschichten

O

einen verschiedenen Verlauf aufweisen, und ihre Form muss sich beim Ueber-
gang von einer Faserschicht zu der benachbarten in stetiger Weise indern,
weil ja die Verformungsgeschwindigkeit bei einem derartigen Uebergang
sich in stetiger Weise indert. An der Biegedruckseite verlaufen diese Dia-
grammlinien, Abb. 3. zwischen dem Diagramm ch der fiussersten FFaserschicht
des Biegedruckraumes und dem Diagramm ¢d der neutralen Schicht, d. h.
derjenigen Faserschicht, deren Belastungsinderung bei der Ausbiegung des
Druckstabes mit der Geschwindigkeit Null vor sich geht. Diejenigen Dia-
grammlinien, welche den an der Biegezugseite liegenden Faserschichten
zugeordnet sind, verlaufen dagegen, Abb. %4, zwischen dem Diagramm ed
der neutralen Schicht und dem durch den abfallenden Zweig ¢f einer Hyste-
resisschleife gegebenen Diagramm der an der konvexen Stabseite liegenden
sussersten Faserschicht. Die Gesamtheit der, den einzelnen Faserschichten im
Bereich einer Querschnittsebene zugeordneten Diagrammlinien bildet daher

1. Das Verhiltnis der mittleren spezifischen Verformungsgeschwindigkeiten betrug bei
den Ewinaschen Versuchen 1:5000.
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eine Schar unendlich vieler, in Bezug auf ihren Verlauf unter einander
verschiedener Kurven, welche den durch die Linienziige ch und cf, s. Abb. 3
und 4, begrenzten Flichenausschnitt in stetiger Reihenfolge ausfiillen. Diese
aus den Grundannahmen (I) und (II) sich ergebende Folgerung ist aber mit
dem Inhalt des Ansatzes (III) unvereinbar, weil in dem letzteren nur von
zwel verschiedenen Formen des funktionalen Zusammenhanges ¢ = F (<) die
Rede ist, und zwar von einer an der Biegedruckseite und von einer an der
Biegezugseite geltenden Form. Infolge der Unvertriglichkeit mit der zutreffen-
den Grundannahme (II) muss daher der Ansatz (III) undebingt unrichtig
sein I. Das gleiche gilt naturgemass auch von der Knicktheorie, die aus der
richtigen Grundannahme (1) und aus dem unrichtigen Ansatz (III) abgeleitet
wurde.

3. — Aus den vorstehenden Ausfilhrungen geht zur Geniige klar hervor, dass
die wirkliche Form des funktionalen Zusammenhanges ¢ = @ (¢), welcher
nach der Ausbiegung des Druckstabes zwischen den im Stabquerschnitt
gleichzeitig wirkenden Spannungen s und den zugehorigen spezifischen Ver-
kiirzungen ¢ besteht, auf keinen Fall mit der durch den Linienzug b ¢ a, Abb. 1,
bestimmten Form identisch sein kann. Denn die diesen Zusammenhang
darstellende Kurve (welche im Folgenden mit dem Namen einer « Isochrone »
bezeichnet werden soll) muss allenfalls in jedem Zeitmoment je einen Punkt
einer jeden Entlastungs- und Mehrbelastungscharakteristik, Abb. 4 und 3, in
sich enthalten, und ausserdem muss sie ihre Gestalt mit der Zeit andern.

Der Zusammenhang s = ® (:) entzieht sich der exakten Wiedergabe durch
eine mathematische Gleichung, und es ist nicht moglich seinen Verlauf durch
eine dem Engesser-v. Karmanschen Linienzug b ca, Abb. 1, analoge Kurve
genau abzubilden. Trotz der Unkenntnis des genauen Verlaufes der Isochrone
konnen jedoch aus den bekannten Erfahrungstatsachen gewisse ganz allge-
meine Eigenschaften dieser Kurve abgeleitet werden ? B: Seite 73) - deren Kenntnis
cine hinreichende Grundlage fiir die eindeutige allgemeine Lisung des grundle-
genden Knickproblems abgibt. Diese Eigenschaften lassen sich zu den fol-
genden beiden Aussagen zusammenfassen :

I a) Im Gegensatz zu dem Engesser-v. Kdrmanschen gebrochenen
Linienzug bea, Abb. 1, weist die Isochrone keine Unstetighkeitsstelle ihrer
Krimmung auf. ‘

HI b) Im Einklang mit dem Verlauf des Engesser-v. Karmianschen
Linienzuges b ¢ a zeichnet sich der Verlauf der Isochrone dadurch aus, dass
die den einzelnen Querschnittspunkten im Augenblick des Ausknickens

. = T S . = Ok .
zugeordneten Werte der Grosse K= = ihr Maximum E, — 2 in der neutralen
€ €x

Schicht aufweisen, und mit der wachsenden Entfernung von der letzteren
abnehmen *

Die auf Grund der Annahmen (I), (IIl1 a) und (IIT b) fiir den Fall der

1. Die Unrichtigkeit des Ansatzes (III) macht sich schon im Verlauf des Linienzuges
beca. Abb. 1, bemerkbar, welch letzterer im Punkte ¢ einen unwahrscheinlichen, dem
Stetigkeitsgeliihl widersprechenden Knick aufweist.

2. Mit o und ¢, wurden die der Knicklast Py zugeordneten Werte der Spannung, bezw.
der spezifischen Verkiirzung bezeichnet.
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drehbar gelagerten Stabenden abgeleitete !, sowohl im elastischen als auch im
plastischen Bereich gultige Knickbedingung wird durch die Gleichung

(1 e 51{) EK J
P, = 2 T3 (1)

ausgedriickt, in welcher J, das kleinste Trigheitsmoment der Querschnitts-
flache im Augenblick des Ausknickens und [, die Stablinge im gleichen
Augenblick bezeichnet. Diese Gleichung kann nach Kinfithrung des auf den
vorerwihnten Augenblick bezogenen Schlankheitsgrades i, auf die viel einfa-
chere Form

2

™

w32 = )\1;2 (2>

E—
gebracht werden. Wird aber die durch die Knicklast verursachte Aenderung

der Stababmessungen in der tblichen Weise vernachlissigt, so nehmen die
vorstehenden Gleichungen die Form

E.J
I)K — 'ﬁ2 T (/1 a)
bezw.
Tz
Eg = )Té (2 a)
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Fig. 5. — Kssai = Probe = Test. =

Fig. 6. — Essai — Probe — Test.

an, wobei [ die Linge des nicht belasteten Stabes bezeichnet, und die Grissen
J und % dem unbelasteten Zustand des letzteren zugeordnet sind.

k. — Die uberaus gute Uebereinstimmung der auf Grund der Gleichung (2 a)
ermittelten theoretischen Knickspannungslinie mit den Ergebnissen der z. Zt.
zuverlissigsten Dahlemer Knickversuche? kann aus der Abb. 5 ersehen wer-
den, wogegen aus den Abbildungen 6 und 7 ersichtlich ist, dass die aus der
Engesser-v. Karmanschen®, und in noch héherem Grade die aus der

1. M. Broszro, « Sur le Nambage des barres prismaliques comprimées axialement ».

C. R. Acad. Sci. Paris 186/1928/S. 1041 .
2. Siehe Fussnote 8, Seite 72.
3. W » 6, » G2
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urspriinglichen Engesserschen! Knicktheorie abgeleiteten Knickspannungs-
linien mit den vorerwithnten Versuchsresultaten sich im augenfilligen Wider-
spruch befinden. Die nicht unbetrichtliche Streuung der in diese Abbildungen
zwecks Ueberpriifung der einschl. Knickformeln eingetragenen Versuchs-
punkte ist dadurch bedingt, dass Prufstibe aus nominell gleichartigem Mate-
rial in Bezug aul ihre elastomechanischen Eigenschaften untereinander stets
differieren. Der nachteilige, die Ueberpriifungsschiirfe stark herabsetzende
Einfluss der letzterwihnten Unterschiedlichkeit der Priifstibe kann einiger-
massen dadurch abgeschwiicht werden, dass man zur Ueberpriifung des Ver-
laufes der theoretischen Knickspannungslinien die Mittelwerte der aus mehre-
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Fig. 7. — Essai = Probe = Test. Fig. 8.

ren Knickversuchen erhaltenen Knickspannungen verwendet. Das Ergebnis
einer zweckdienlichen Umordnung der in die Abb. 5 eingetragenen Versuchs-
punkte 1ist als Beispiel einer derartigen Massnahme in der Abb. 8 dargestellt
worden, in welche die Gruppenschwerpunkte geeignet zusammengefasster
Wertepaare (&, o) zwecks schiirferer und tbersichtlicherer Ueberpriifung der
theoretischen Knickspannungslinie eingetragen wurden. Der Einfluss der
stofMlichen Unterschiedlichkeit der Priifstibe auf das Ergebnis der Ueberpriifung
der neuen Knicktheorie kiime aber vollstindig in Fortfall, wenn man, unter
Ausschaltung der Druckversuche, das unmittelbare Ueberpriifungsverfahren
anwenden, d. h. die Werle der in die Gleichung (2) eingehenden Grossen <
und 7. an Probestiben verschiedenen Schlankheitsgrades unmittelbar durch
Messung bestimmen wiirde. Eine unmittelbare Ueberpriifung der durch die
Gleichung (2) ausgedriickten Knickbedingung an Hand der vorhandenen Ver-
suchsergebnisse ist indessen z. Zt. nicht durchfihrbar, weil die bisherigen
genaueren Versuche durchgiingig auf den von Kngesser und v. Karman
gegebenen Grundlagen aufgebaut waren und in den Berichten iiber diese Ver-
suche, infolge deren Einstellung, die zur unmittelbaren Ueberpriiffung der
Gleichung (2) erforderlichen Zahlenangaben leider nicht zu finden sind 2.

1. Siehe Fussnote 5, Seite 73.
2. Umfangreiche, auf die unmittelbare Ueberpriffung der Gleichung (2) abzielenden
Versuche diirften im nichsten Jahre zum Abschlusse gelangen.
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In den Abbildungen 9, 10 und 11 ist schliesslich gezeigt worden, dass bei
gegehbenem Druckstauchungsdiagramm, Abb. 10, die Knickspannungs-Schlank-
heitslinie, Abb. 11, ohne jede Rechnung aus dem letzterwiihnten Diagramm
auf Grund der Gleichung (2 a) abgeleitet werden kann, sofern nur die durch

T

Fig. 10.

diese Gleichung bestimmte funktionale Abhéngigkeit in graphischer masslib-
licher Darstellung, Abb. 9 gegeben vorliegt.

5. — Fir die Anwendung einer Knicktheorie ist die Kenntnis mehrerer
Schlankheitsgrad-Knickspannungscharakteristiken erforderlich, die aus den
Druckstauchungsdiagrammen der in Betracht kommenden Baustolfe abzuleiten
sind. Ls ist dabei einleuchtend, dass fiir einen Ingenieur, der eine in bestimmter
Weise (z. B. statisch) belastete Konstruktion zu berechnen hat, die letzter-

withnten Charalkteristiken von einem recht problematischen Wert wiiren, wenn
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man dieselben, der bisherigen Gepflogenheit folgend, aus mit der tblichen,
verhiltnismiissig grossen Belastungsgeschwindigkeit aufgenommenen Druck-
stauchungsdiagrammen ableiten wiirde. Denn der geometrische Verlauf des
Druckstauchungsdiagramms, und daher auch der aus ihm abgeleiteten Schlank-
heitsgrad-Knickspannungscharakteristik hiingt in hohem Grade von dem zeit-
lichen Verlauf der Lastaufbringung beim einschlagigen Druckversuch ab.
Und zwar fussert sich der Einfluss der Zeit bei den tblichen Druckversuchen
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in der Weise, dass den kleineren Belastungsgeschwindigkeiten tiefer verlau-
fende Druckstauchungsdiagramme entsprechen. Den tiefer verlaufenden Druck-
stauchungsdiagrammen sind aber tiefer verlaufende Schlankheitsgrad-Knick-
spannungscharakteristiken zugeoranet. Dass der Einfluss der Zeit aul den Ver-
lauf der letzteren recht erheblich sein kann, ist aus der Abb. 12 ersichtlich,
in welcher zwei Schlankheitsgrad-Knickspannungscharakteristiken abgebildet
sind, die aul Grund der Gleichung (2 a) aus den beiden, in der Abb. 2 dar-
cestellten, mit verschiedener Belastungsgeschwindigkeit aufgenommenen
Druckstauchungsdiagrammen des gleichen Versuchsstolfes abgeleitet wurden.

Aus den vorstehenden Erorterungen folgt, dass die Schlankheitsgrad-
Knickspannungscharalkteristiken nur dann den Bedirfnissen der Praxis ent-
sprechen konnen, wenn sie aus Druckstauchungsdiagrammen abgeleitet worden
sind, bei deren Aufnahme ungefithr der gleiche zeitliche Verlauf der Stauchung
eingehalten wurde, wie in dem zu berechnenden Konstruktionselement.
Daraus ist aber ersichtlich, dass zur Gewinnung eines der letzterwiihnten
Anforderung entsprechenden Druckstauchungsdiagramms die Durchfithrung
eines normalen Druckversuchs im Allgemeinen selbst dann nicht hinreichen
wiirde, wenn dieser Druckversuch ein Dauerversuch wiire. Um zu einem funktio-
nalen Zusammenhange ¢ = I’ (¢) zu gelangen, der sich als Grundlage zur
Ableitung einer fir die Berechnung der statischen Konstruktionen brauchba-
ren Schlankheitsgrad-Knickspannungscharakteristik eignen wiirde, miisste
vielmehr firr jeden Baustoff eine ganze [Reihe von Druckdauerversuchen an
Druckstiben von gleichen Abmessungen und aus moglichst gleichartigem
Material durchgefithrt werden. Jeder dieser Druckstibe wiirde dabei einer
anderen, mit der normalen Geschwindigkeit aufgebrachten, und in der Folge
konstant zu haltenden Dauerbelastung zu unterwerfen sein. Nach versuchs-
missiger Ermittelung des zeitlichen Verlaufes der Stauchung wiithrend eines
gentigend langen Zeitintervalls wiirde dann fir jeden dieser Druckstiibe derje-
nige Wert ¢, der spezifischen Verkiirzung durch Extrapolation zu bestimmen
sein, der sich nach Ablaul einer unbeschriinkt langen Belastungsdauer unter
der einschligigen Belastung einstellen wiirde. Durch die derart ermittelten
Wertepaare (s, emax) Wiire ein Druckstauchungsdiagramm besonderer Art be-
stimmt, das sichals Grundlage zur Ableitung einer einwandfreien « statischen »
Schlankheitsgrad-Knickspannungscharakteristik eignen wirde.

6. — Unter Bezugnahme auf die Wiener Diskussion tiber die Knickfrage soll
zum Schluss folgendes festgestellt werden :

a) Die Einwiinde, welche gegen die mathematische Herleitung der Glei-
chung (1) vorgebracht wurden, erweisen sich im Hinblick auf den Inhalt der
Annahmen (Il a) und (IIl b) als unhaltbar.

b) Diese Einwiinde sind wohl der Ueberzeugung entsprungen, dass die
Annahme eines geknickten Verlaufes der Isochrone ein unantastbares Axiom

bilde .

1. Der Glaube an das strenge Zutreffen der v. KArminschen Grundannahme (I1I) erscheint
umso sonderbarer, als selbst von den Verfechtern der Excesser-v. KinmAnschen Theorie
der Geraden b ¢, Abb. I, die Bedeutung einer nur angeniherten Abbildungdes unteren
Teiles der Spannungsverteilungskurve zugesprochen wird. Denn es ist nicht einzusehen,
weshalb diese angeniiherte Abbildung eben in der unmittelbaren Umgebung des
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c) Das Unzutreffen der v. Karmanschen Grundannahme (III) ist an mehre-
ren Stellen meines Wiener Diskussionsbeitrags mit Nachdruck hervorgehoben
worden,

Traduction.

1. — La Publication Préliminaire ! publide par le Secrétariat Général de
I’Association Internationale des Ponts et Charpentes, & I'occasion du Congres
de Paris, renferme deux Rapports 2 qui traitent d'une maniére détaillée de la
question du flambage des barres prismatiques sous I'influence d'une charge
centrée. Le méme sujet a été, comme on le sait, également traité, il y a quatre
ans, au cours du Congreés de Vienne. De trés notables divergences d’opinion se
sont manifestées au cours des discussions el ont été exprimées dailleurs dans
le Compte Rendu du Congrés de Vienne 3. Les points de vue exprimés dans
ces deux Rapports relativement aux questions litigieuses, traitées a Vienne,
devalent ainsi éveiller un intérét particulier. On devait d'ailleurs d’autant plus
s'attendre a une attitude nette par rapport & ces questions, que le Rapporteur
de ce probleme & Vienne a clos les débats sur la question du flambage par un
résumé des résultats de la discussion % qu'on ne saurait considérer comme
pouvant élucider le probléme litigieux. En effet, la démonstration mathéma-
tique ® du Rapporteur sur la théorie de flambage d’Engesser-Karman ¢, qui
forme la partie essentielle de ce Résumsé, contient, par mégarde évidente, des
erreurs de calcul 7 ; elle présente d'ailleurs, en outre, ce caractére particulier que
méme en éliminant ces erreurs de calcul on arrive & un résultat qui se trouve
en opposition directe avec la thése & confirmer.

Cependant dans la Publication Préliminaire au Congres de Paris on ne trouve
de rectification ni de la démonstration en question, indiscutablement erronée,
ni des conclusions que le Rapporteur a Vienne a tirées de cette démonstration.
Cette omission, a laquelle s'ajoute la non-considération des plus récents résul-

Punktles C die Spannungsverteilung genau darstellen sollte, wie dies in der ENGEsSEn-
v. Kirminschen Theorie vorausgesetzl wird. (Anm. : Man beachte die in das Figurenma-
lerial des Ros “schen Referates eingelragene Bezeichnung : « Cours approximatif de la
courbe tension-allongemenl i la décharge »).

1. Association Internationale des Ponts et Charpentes, Premier Congres, Paris, 1932,
19-25 mai. Publication Préliminaire,

2. L. Karner, « Stabilitit uad Festigkeit von auf Druck und Biegung beanspruchten
Bauteilen ». Rapport d’'Introduction, Publication Préliminaire, pages 17-39.

M. Ro$, « La stabilité des barres comprimées par des forces excentrées ». Publication
Préliminaire, pages 57-93.

3. Compte Rendu du 2¢ Congres International de Construction des Ponts et Charpentes.
Vienne, Julius Springer, éditeur, 1929, pages 282-346.

4. 1b., pages 338-346.

5. Ib., pages 338-340.

6. Th. v. Kirmin, « Untersuchungen iiber Knickfestigkeit ». Mitteil. iib. Forschungs-
arbeiten a. d. Geb, d. Ingenieurwesens, n° 81, Berlin, 1910.

7. Comple Rendu du 2¢ Congres International de Construction des Ponts et Charpentes.
Vienne, Julius Springer, éditeur, 1929, page 340, ligne 11 et 17. L’erreur consiste dans
Iintroduction du module de flambage T, de Karman, au lieu du module T d’Engesser,
qui est toujours différent du précédent,

6
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tats qu'ont donnés la recherche expérimentale ! et I'étude théorique *-?,peut don-
ner une impression erronée. En effet, le Lecteur de la Publication Préliminaire
au Congrés de Paris pourrait, en I’état actuel des choses, avoir 'impression que
toutes les objections soulevées contre la théorie d’Engesser-Karman ont éte
réfutées dans 'exposé du Rapporteur a Vienne *. Il semble donc absolument
indispensable de revenir encore une fois sur ces objections, d’autant plus qu’il
est désirable de les asseoir sur une base plus précise et plus développée .

2. — La théorie du flambage d'Engesser-Karman repose sur trois hypothéses
d'ordre physique, et le caractére non délendable de cette théorie résulte néces-
sairement du fait que I'une de ces hypotheéses de base se trouve en contradic-
tion avec les faits d'ordre expérimental les plus certains.

Dans les deux premiéres hypothéses de base d'Engesser-Karman, sont
exprimées, aussi bien pour le domaine des déformations ¢lastiques, que pour
le domaine des déformations plastiques, les conceptions suivantes :

I. — Les sections planes de la barre comprimée non fléchie restent planes
aprés une flexion infiniment faible de cette barre ;
II. — La relation fonctionnelle entre les modifications de longueur spécifiques

provoquées dans les fibres élémentaires de la barre par la flexion et les con-
traintes correspondantes est la méme que lors de l'essal de traction-compres-
sion pure.

La légitimité de ces hypotheses ne fait ancun doute °. Elles ne suffisent toute-
fois pas a permettre une solution nettement déterminée, car la deuxieme hypo-
these ne contient aucune indication parfaitement définie en ce qui concerne l&
forme de la relation fonctionnelle qui existe entre les modificalions spéciliques
de longueur et les contraintes correspondantes dans la section d'une barre
comprimée fléchie. Dans le but d'arriver & une forme nettement déterminée
pour cette relation fonctionnelle, Engesser a tout d’abord supposé ’ quelle

1. W. Rev, « Versuche zur Ermittlung der Knickspannungen fir verschiedene Bau-
stihle ». Berlin, Julius Springer, éditeur, 1930.

2. M. Broszko, « Ueber die allgemeine Losung des grundlegenden Knickproblems ».
Comptes Rendus du 3¢ Congrés International de Mécanique Appliquée, Stockholm, 1930,
vol. 111, pages 51-59.

3. M. Broszko, « Beitrag zur allgemeinen Losung des Knickproblems ». Mémoires de
I'Association Internationale des Ponts et Charpentes, Zurich, 1932, 1¢* volume, pages 1-8.

4. Convaincu que l'exactitude de la théorie d’Engesser-Karmén élait confirmée par la
démonstration mathématique ci-dessus apportée, le Professeur F. Hartmaun, de Vienne,
a tenté récemment de montrer, sur plusicurs exemples, que les résultats des recherches
qui se trouvaient en désaccord avec les conceplions de cette théorie élaient ipso faclo
inexacts (voir Zeit, d. Oesterr. Ing.- u. Arch.-Ver, 8%, 1932, page 163). La courle étude
de Hartmann permet de se rendre compte d'une maniére si nelte des idées et des raison-
nements d’un protagoniste convaincu de la théorie d’Engesser-Karméan que l'on ne peut
qu'en recommander chaudement la lecture compléte a tous les Ingénieurs qui s’inté-
ressent au probléme du flambage. Remarque faite sur épreuve).

5. Ces objections doivent &tre d’ailleurs limitées en tenant compte de ce fait que 'exac-
titude de I'exposé mathématique de la formule du flambage de Karman ne peut faire l'objet
d’aucune contestation.

6. La validité de la premiére hypothése, méme dans le cas de la déformation plastique,
a été démontrée par des voies théoriques, par Griining et Domke. La deuxieme hypothese
est évidente par elle-méme.

7. Zeit. d. Hannoverschen Ing.-u. Arch.-Ver., 35, 1889, page 455 .
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était donnée par l'allure du diagramme de compression-contraction. Sur une
objection formulée & ce sujet par Jasinski!, Engesser substitua a sa troisieme
hypothése initiale de base la conception suivante * qui fut également adoptée
par Karman.

III. — La forme de la relation fonctionnelle ¢ — (), qui existe, pendant
la flexion de la barre comprimée, entre la contrainte g se manifestant en un
point de la section transversale et le raccourcissement e spécilique corres-
pondant, est donnée, pour le coté correspondant & la compression par flexion,
par la branche ca du diagramme de compression-contraction (fig. 1), et pour
le coté correspondant & la traction par flexion, par la droite ch, qui est paral-
lele & la partie rectiligne op de ce méme diagramme. La relation fonctionnelle
¢ =P (¢), qui exprime la dépendance entre les contraintes o qui se mani-
festent simultanément en différents points de la section transversale et les
raccourcissements = spécifiques correspondants est par suite déterminde, &
tout moment, par le tracé bea.

Par suite de l'introduction de cette conception, le but que se proposaient les
promoteurs de la théorie d'Engesser-Karmin 3 était atteint. Fn effet, la pro-
position complémentaire III permet d’arriver parfaitement, en liaison avec
I'hypothese de base I, a une détermination sans ambiguité de la répartition des
contraintes. Par contre, Engesser et Karméan ne se sont pas rendu compte que
I'introduction de cette conception est incompatible avec 'hypothése exacte I1.

La cause de cette incompatibilité de la proposition III avec I'hypothese de
base II devient trés nette si l'on considere les résultats expérimentaux *
d’Ewing, que représente la figure 2 ; on voit en effet nettement sur celte figure
que la forme de la relation fonctionnelle qui existe entre la contrainte et la
modification de longueur spéeifique d'une barre soumise a une charge axiale
dépend, dans une large mesure, de la vitesse de déformation spécifique ©.
Suivant la premi¢re hypothese, cette derniere admet une valeur différente, sur
un méme plan de la section transversale, pour chaque couche de fibres per-
pendiculaire au plan de flexion. Par suite, la forme de la relation fonction-
nelle s = f (¢}, dans le domaine de la section transversale de la barre fléchie
et pour chaque couche de fibres perpendiculaire au plan de flexion, doit étre
différente, d’aprés la deuxiéme hypothése. Les courbes qui traduisent la rela-
tion o = f (<) pour différentes couches de fibres doivent donc suivre des par-
cours différents et leur allure doit subir une modification continue, au passage
d’une couche de fibres a la couche voisine, élant donné que la vitesse de
déformation varie elle-méme d'une maniére continue d’une couche i I'autre.
Du coté surchargé par flexion, ces courbes (figure 3) passent entre le dia-
gramme ¢ du plan le plus extréme de la zone surchargée et le diagramme

1. Schweizerische Bauzeitung, 25, 1895, page 172,

2. Schweizerische Bauzeilung, 26, 1895, page 26.

3. Il faul citer Jasinski, en tout premier lieu, a cHté d’Engesser, comme promoteur de
la théorie d’Engesser-Karmén.

k. J. A. Ewing, The strength of materials. Cambridge, 1914, p. 42.

5. Au cours des essais d'Ewing, le rapport entre les vitesses de déformation spécifiques
moyennes était de 1/5000.
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¢d de la région neutre, c’est-a-dire de la couche de fibres sur lequel la varia-
tion de charge au cours de la déformation de la barre se produit suivant une
vitesse nulle. Les courbes qui correspondent aux couches de fibres qui se
trouvent du coté souschargé par flexion (fig. &), passent par contre entre le
diagramme cd des fibres neutres et le diagramme constitué par la branche
tombante ¢f dun cycle d’hystérésis et qui correspond a la couche de fibres
extrémes du coté convexe de la barre. L'ensemble des courbes correspon-
dantes aux différentes couches de fibres constitue par suite une famille de
courbes différentes les unes des autres, en nombre infini et qui remplissent '
d’une maniére continue 1’espace délimité par les lignes ch et cf (figures 3 et 4).
Cette conclusion déduite des hypothéses I et 11 est toutefois incompatible
avec 'énoncé de la proposition 111, car dans cette derniére, il n’est question,
pour la relation fonctionnelle s = f (¢, que de deux formes différentes, l'une
d’elles étant applicable au coté comprimé par flexion, I'autre au coté tendu
par flexion. Par suite de cette incompatibilité avec I'hypothése légitime II, 11
faut donc nécessairement que la proposition ITI soit inexacte!. Il en est natu-
rellement de méme en ce qui concerne la théorie du flambage qui a été
déduite de 'hypothése exacte 1 et de la proposition inexacte I11.

3. — 1l résulte suffisamment nettement des indications qui précedent que
la forme réelle de la relation fonctionnelle ¢ = @ (&), qui existe entre les con-
traintes ¢ qui se manifestent simultanément dans la section de la barre com-
primée apres sa flexion et les contractions e spécifiques correspondantes, ne
peut en aucun cas élre identique a la forme déterminée par le tracé hea
(figure 1). En effet, la courbe qui représente cette relation (et qui, dans ce qui
suit, sera désignée sous le mom d’ « isochrone ») doit dans tous les cas et &
tout moment contenir un point de chaque caractéristique d’augmentation et
de diminution de charge (figures 4 et 3); en outre, sa forme doit varier avec
le temps.

La relation ¢ = @ (¢) se déduit de I'expression exacte au moyen d’une
équation mathématique et 1l n’est pas possible de représenter exactement sa
variation par une courbe analogue au tracé heca d’Engesser-Karman (figure 1).
Quoique 'on ne connaisse pas d’une maniére exacte l'allure précise de l'iso-
chrone, on peut toutefois déterminer d’apres les faits expérimentaux connus
les caractéristiques tout @ fait générales de cette courbe (3 page 82). Leur
connaissance donne une base suflisante pour résoudre d'une maniére géndrale
et sans ambiguité le probleme du flambage. Ces caractéristiques peuvent se
résumer dans les deux énoncés suivants :

Il a. — Contrairement au tracé bea brisé d Engesser-Karmén (figure 1), I'iso-
chrone n’accuse aucune discontinuité dans sa courbure.
IIIb. — En conformité avec le tracé beca d’Engesser-Karman, 'allure de
G

l'isochrone est caractérisée par ce fait que les valeurs de la grandeur E =—
13

qui correspondent aux différents points de la section transversale au moment

1. L’inexaclitude de la proposition 11l se remarque déja dans Pallure du tracé bca,
figure 1, ce tracé accusant au point G un coude invraisemblable, contraire a toute concep-
tion de continuité.
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du flambage atteignent leur maximum Ek :?‘-dans la couche neutre et
£k
diminuent lorsque 1'on s'éloigne de cette derniére !.

La condition de flambage déterminée sur la base des hypothéses I, IIT a et
[II'b dans le cas ot les extrémités de la barre comportent un appui mobile ?,
valable aussi bien dans le domaine élastique que dans le domaine plastique,
est exprimée par l'équation suivante :

e S R (1)
Ly
relation dans laquelle on désigne par :
Ji le plus petit moment d'inertie de la surface de la section transversale au
moment du flambage,
Iy la longueur de la barre au méme moment.
Cette équation peut étre ramenée a la forme plus simple ci-apres, en intro-
duisant le degré de finesse 7, rapporté au moment considéré :

)

2

B ———— T A g s 2

< 75'2 + )\E ( )

Si toutefois la modification des dimensions de la barre sous l'action de la

charge de flambage est négligée comme on le fait généralement, les équations
quli précedent prennent alors les formes suivantes :

B, J \
Pk TQT ......... -0 O I 10 T 0T e B (la)
=2
GRS =T e St (P

dans lesquelles [ désigne la longueur de la barre non chargée, les valeurs de J
et % correspondant a I'état non chargé de cette barre.

4. — La concordance trés satisfaisante entre la courbe théorique des con-
traintes de flambage déterminée & partir de I'équation (2a) et les résultats des
essais de flambage extrémement séricux de Dahlem (! page 82) peut étre cons-
tatée sur la figure 3; par contre, les figures 6 et 7 montrent que les courbes
des contraintes de flambage déduites de la théorie du flambage d'Engesser-Kar-
mén ( page 81) et, plus encore, celles qui avaient été déduites de la théorie ini-
tiale du flambage d’Engesser (? page 83) sont nettement en discordance avec les
résultats expérimentaux mentionnés. La dispersion non négligeable des points
expérimentaux introduits dans ces figures, dans un but de contrdle des for-
mules de flambage correspondantes, résulte du fait que des éprouvettes qui sont
censées étre constituées par le méme métal ont des caractéristiques élas-
tiques et platiques qui accusent toujours quelques écarts. On peut remédier
dans une certaine mesure a linfluence défavorable des écarts ci-dessus
signalés, qui ne vont pas sans nuire & la rigueur du contréle, en ayant recours,
pour ce controle de l'allure des courbes théoriques de contraintes de flam-

L. ok et ¢ désignent respectivement les valeurs de la contrainte el de la contraction
spécifique qui correspondent & la charge de flambage Py.

2. M. Broszro, « Sur le flambage des barres prismatiques comprimées axialement v.
Comptes Rendus de I'Académie des Sciences, Paris, 186, 1928, page 1041 .
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bage, & des valeurs moyennes de contraintes de flambage obtenues au cours
de nombreux essais. Le résultat obtenu par un regroupement motivé des
points d'origine expérimentale portés sur la figure 5 est mis en évidence,
a titre d’exemple, sur la figure 8, dans laquelle on a porté les points moyens
de couples de valeurs (%, o) afin de permettre un contréle plus précis et plus
aisé de la courbe théorique des contraintes de flambage. L’influence des
écarts entre les caractéristiques des matériaux constituant les différentes
éprouveltes d'essai, sur le résultat de ce controle de la nouvelle théorie du
flambage, serait toutefois complétement éliminée en ayant recours non plus
aux essais de compression, mais & la méthode directe de controle, c’est-a-dire
en déterminant par la mesure directe les valeurs des grandeurs ¢ et Ak dans
I'équation (2) sur des éprouvettes accusant différents degrés de finesse. Le
contrdle direct de la condition de flambage exprimée par l'équation (2),
par les résultats des essais dont on dispose actuellement, n'est toutefols pas
possible, car les essais précis qui ont été effectués jusqu'a maintenant ont été
basés sur les principes établis par Engesser et Karman et I'on ne peut, parsuite,
pas trouver, dans les compte rendus de ces essais, les indications numériques
qui seraient précisément nécessaires pour le controle direct de I'équation (2L,

Les figures 9, 10 et 11 montrent enfin que pour un diagramme de compres-
sion-contraction donné, figure 10, la courbe degré de finesse-contrainte de
flambage, figure 11, peut étre déduite sans aucun caleul de ce dernier dia-
gramme, en se basant sur I’équation (2a), & condition de disposer d’une repré-
sentation graphique, & 'échelle, de la relation fonctionnelle déterminée par
cette équation (figure 9).

5. — L’application d'une théorie du flambage nécessite la connaissance de
plusieurs caractéristiques degré de linesse-contrainte de flambage, ces carac-
téristiques devant étre déduites du diagramme de compression-contraction
des matériaux envisagés. Il est par suite évident que pour un ingénieur qui a
a calculer un ouvrage ayant & supporter une charge déterminée (statique par
exemple), ces caractéristiques seraient d'une valeur tout & fait problématique si
on les déduisait, suivant I'habitude antérieure, des diagrammes de compression-
contraction relevés avec des vitesses de mise en charge ordinaires, (ui sont
relativement trés fortes. En effet, le parcours géométrique du diagramme de
compression-contraction et par suite également celui de la caractéristique
finesse-contrainte de flambage qui en est déduite, dépendent, dans une large
mesure, de 'allure dans le temps de la mise en charge au cours des essais de
compression correspondants. Iit en fait, l'influence du temps dans les essals
de compression courants se manifeste dans ce sens, que pour de plus faibles
vitesses de mise en charge, les diagrammes de compression-contraction des-
cendent plus bas. Aux diagrammes inférieurs de compression-contraction
correspondent pourtant les diagrammes inférieurs de la contrainte de flam-
bage en fonction du degré de finesse. La figure 12 montre que l'influence du
temps sur l'allure de ces derniers diagrammes peut étre notable ; cette figure
représente deux caractéristiques degré de finesse-contrainte de flambage qui

1. Des essais trés étendus, ayant pour but la vérification directe de I'équation (2),
doivent se terminer 'année prochaine.
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ont ¢té déterminées, d’apres I'équation (2 a), et pour le méme matériau
d’épreuve, & partir des deux diagrammes compression-contraction qui sont
représentés sur la figure 2 et qui ont été relevés avec des vitesses de mise
en charge dilférentes.

Des considérations qui précedent, il résulte que les caractéristiques degré de
finesse-conlrainte de flimbage ne peuvent répondre aux nécessités de la pra-
tique que si elles sont déduites de diagrammes de compression-contraction qui
ont été relevés & peu prés avec les mémes vitesses de contraction que celles
avee lesquelles il faut compter lorsqu'il s’agit d’éléments de construction effec-
tifs. Il est clair, par suite, que pour obtenir un diagramme de compression-con-
traction répondant a cette derniere exigence, il ne suffirait pas d'un diagramme
de compression normal, méme si l'essai de compression consistait en un essai
de durée. Pour aboutir & une relation fonctionnelle s = f (c) qui soit suscep-
tible de servir de point de départ pour l'obtention d'une caractéristique degré
de finesse-contrainte de flambage qui soit elle-méme utilisable pour le calcul
statique d'un ouvrage, il est nécessaire de procéder, pour chaque matériau, a
toute une série d'essais de compression de durée, sur des éprouvettes de mémes
dimensions, constitués avec un métal accusant des caractéristiques aussi
uniformes que possible. Chacune de ces éprouvettes devrait étre soumise
une charge permanente, appliquée & la vitesse normale puis maintenue con-
stante. Aprés détermination expérimentale de l'allure de la variation de la
contraction en fonction du temps, pendant un temps suffisamment long, il y
aurait alors lieu de déterminer, pour chacune de ces éprouvettes, la valeur
correspondante de ¢ ., de la contraction spécifique obtenue par extrapola-
tion pour une durée d'application indéfinie de la charge correspondante. Au
moyen des couples de valeurs (s, = ) ainsi déterminés, on obtiendrait un
diagramme de compression-contraction particulier qui serait susceptible de
servir de point de départ & la détermination d'une caractéristique « statique »
parfaite degré de finesse-contrainte de flambage.

6. — En ce qui concerne la discussion de Vienne au sujet de la question du
flambage, on en arrive en résumé aux conclusions suivantes :
a. — Les objections qui ont été faites a la déduction mathématique de

I'équation (1) se montrent insoutenables, du point de vue des hypothéses 111

aetIllb.

bh. — Ces objections sont nées de la conviction que le tracé brisé de l'iso-
chrone constituait un dogme intangible i
¢. — L’inexactitude de I'hypothése de base de K4armén a été mise trés nette-

ment en évidence a plusieurs reprises au cours de ma contribution a la discus-
sion de Vienne.

1. Le crédil accordé a la validité de I'hypothése III de Karméan parait d’autant plus sur-
prenant que les protagonistes de la théorie d’Engesser-Karman eux-mémes n’accordent a
la droite bc, figure 1, que la valeur d'une représentation approchée de la partie inférieure
de la courbe de répartition des efforts. Il est de fait que I'on ne voit pas pourquoi cette
représentation approchée pourrail représenter la répartition des efforts avec exactitude
uniquement aux environs du point ¢, ainsi que le suppose la (héorie d’Engesser-Karman.
(Noter 4 ce sujet l'indication introduite sur les diagrammes dans le Rapport du Professeur
Ro$ : « Cours approximalil de la courbe tension-allongement a la décharge »).
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Dr. G. SPIEGEL,
Wien-Prag.

1. — Die verschiedenen Aulfassungen in der Stabilititsuntersuchung
zentrisch belasteter Bauteile legen den Versuch einer prinzipiellen Klirung
dringend nahe. Die Schwierigkeit liegt in der Verwickeltheit des Problems im
unelastischen Bereich. Den Bauingenieur interessiert jedoch letzten Endes nicht
der genaue Verlauf der Knickspannungen um dessen selbst willen, sondern nur
als Grundlage zur Ermittlung einer gleichmissigen Sicherheit gegen Knickge-
fahr. Dass dieser (Gesichtspunkt bisher nicht gentigend beachtet wurde und
die Einheitlichkeit der Behandlung damit verloren gegangen ist, hat seinen
besonderen Grund darin, dass die im allgemeinen grundverschiedenen Werte
fur die theoretisch genaue Knicklast (im erweiterten Sinne) einerseits und den
dieser Last unendlich benachbarten Lastangnf andrerseits in den am weitesten
ausgebauten Stabilititsproblemen der Elastizititstheorie infolge der Unverin-
derlichkeit des Ii-Moduls mit dem Eulerfall der betreffenden Stabschlankheit
zusammenfallen. :

2. — Theoretisch 1st der IFall der zentrischen Knickung durch die Berech-
nungsformeln von Euler und Engesser-Karman im elastischen bzw. unela-
stischen Bereich in einwandfreier Weise gegeben. Handelt es sich aber in der
Untersuchung auf Knickung um den konkreten Ifall der Wirklichkeit, dann
darf wegen der ausserordentlichen Empfindlichkeit bei Labilititserscheinungen
gegen die geringsten, praktisch kaum zu vermeidenden storenden Finflisse die
zentrische Knickung (im strengsten Sinne des Wortes), bei welcher es sich
lediglich um die Untersuchung der moglichen Gleichgewichtslagen handelt,
nicht in den Mittelpunkt der Betrachtung gestellt werden, wie dies gewohn-
lich geschieht. Denn diese ist nur ein (rein geometrischer, nicht technisch-phy-
sikalischer) Sonderfall des viel weiter gefassten Begriffes der « ideellen »
Knickbelastung.

Bei schlanken Stiben (og < op) ist die kritische Last auf alle Iille durch

. > TT2E J 5 TC? E
die Hulerlast (K = i—; bzw. og = X

) gegeben, welche — wie Zimmer-

mann! eingehend nachgewiesen hat — auch hei schwacher Anfangskrimmung
immer erreicht wird, wenn die Last an entsprechenden Fehlerhebeln («ideelle »
Belastung) angreift. Erfolgt aber der Uebergang in den labilen Zustand im
unelastischen Bereich, dann muss erst die Grosse der Hochstlast gesucht
werden, die ein wirklicher, d. h. im Sinne der neueren Knicktheorie
« moglichst » gerader Stab ertragen kann.

Vom baustatischen Standpunkteist aber auch die beim Stabilitiitswechsel
durch eine ausgesprochene Unstetigkeitsstélle gekennzeichnete ideelle Knick-
belastung selbst (Fig. 1) als eine praktisch kaum zu erreichende Grenz-
lage noch auseinanderzuhalten von der unendlich benachbarten Gleich-

1. Sitzungsberichte d. preuss. Akad. d. Wissensch. phys. math. Klasse 1923, H. XXl u.
XXV ; ferner : « Lehre vom Knicken auf neuer Grundlage », Berlin, 1930, W. Verlag, Ernst
u. Sohn,
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gewichtslinie mit emnem noch allmihlichen Uebergang in den labilen
Zustand ; diese erscheint zur Beurteilung eines zentrisch gedriickten Bauteiles
massgebender und muss deshalb den weiteren Untersuchungen zugrunde
gelegt werden.

Von der Richtigkeit dieses Sachverhaltes kann schon eine einfache Rechnung
auf Grund der bestehenden Formeln fiir den vollkommen geraden und gleichbe-
schaffenen Stab Aufschluss geben. Bei einer unendlich kleinen Abweichung
vom zentrischen Lastangrilf gilt fir die kritische Last der urspriingliche Enges-
sersche Modul vom J. 1889 : T = E’, = —g—? , und dieser ist wesentlich gerin-

< n
ger als der Knickmodul fiir rein zentrische Belastung.
Z. B. ergibt sich fur den rechteckigen Querschnitt bei 3f
E’ = 0,6 und gleichem % schon eine tiber 20 9 ige Ver- “ =~ —
ringerung des letzteren.

3. — Diese ausserordentliche, namentlich im unelasti-
schen Bereich sich geltend machende Empfindlichkeit wird
sich in der Grosse der Knicklasten dahin auswirken,
dass im Sinne der von Zimmermann erstmalig in exak-
ter Weise formulierten Aufgabe (Nr. 2) der durch seit-
liche Ausbiegungen und damit verbundenen zusiitzlichen
Biegungsspannungen allmihlich sich vorbereitende
kritische Zustand wesentlich durch die allmihliche Ab-
nahme des verinderlichen Ii" — Moduls bedingt 1st. Far
die ideelle Knicklast ist demnach nicht nur die un-
mittelbare Umgebung von ok sondern der gesamte Ver-
lauf der s-: Linie bis zu dieser Grenze von EKin-
fluss.

Unter Zugrundelegung einer der vollkommenen Gerad-
heit nahekommenden Systemlinie des Stabes und unter
Beruicksichtigung der in gemeinsamer Wirkung erfol-
genden Zusammendriickung und Verbiegung ergibt sich

)

—
i

in der allg. Gl. ox = in dem nach Nr. 2 fir uns in

32
Belastungsfall der Modul
n—1
rn b V l /l Y% 8
l:El]—i—;Eg(el-—{—s,.Jrl) (I*AI.—E.‘JFI) ............ (1)
1
der auf Grund der abgeleiteten FForminderungslinie (E' — : — Linie) des betrel-

fenden Werkstoffes zu berechnen ist. (I"ig. 2} v ist ein mit ¢, veriinderlicher
Beiwert.

Durch Uebergang zum Integral folgt aus 1) die unmittelbare Berech-
nung der Knickschlankheiten g und der dazu gehérigen s -Werte mittels
der einfachen Beziehung :

i

AKX = %K \/_—'
K

Der Beiwert » 1st aus der 1m allgemeinen ohne Schwierigkeit analytisch
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anniherungsweise bis nahe zur oberen Fliessgrenze festlegharen I'-Linie in
einfacher Weise zu bestimmen !,

Der weitere Verlauf von s, namentlich im Bereich der kiirzeren Schlankhei-
ten hat vorwiegend theoretisches Interesse und ist nur auf Grund bypotheti-
scher Annahmen zu ermitteln.

k. — Die praktische Bedeutung der hier gestreiften Fragen liegt in der
Erfassung und Bemessung des Sicherheitsgrades gegen Knicken auf ratio-
neller Grundlage. Auch hierin bestehen noch vielfach irrige Vorstellungen, so
dass diese Frage eine niihere Erorterung angezeigt macht. Beim Knicken selbst
handelt es sich um eine Labilititserscheinung, bei der Bemessung jedoch um

G

& & ‘5’-/—/ 'Er 57,, Ener En

Fig. 2. Fig. 3.

eine Inanspruchnahme aul Druck und Biegung*®. Soweit die Aufgabe einer
exakten Fassung zugiinglich ist, gibt die erweiterte Knicktheorie die Anhalts-
punkte zu ihrer vollstindigen Behandlung, die in der Hauptsache folgender-
massen liegt : Bel einem zentrisch belasteten Bauteil ist der giinstigste Fall
durch die in Nr. 2 nither definierte massgebende Last K mit der kritischen
Spannung gegeben (Fig. 3 a). Vom praklisch erreichbaren Standpunkt wird
aber auch die dadurch erhaltene og-Linie mit der Anndherung an den Fliessbe-
reich noch eine entsprechende Abriickung erfahren, wobei als massgebende
Grenzlage fiir den Bereich der mittleren und kiirzeren Schlankheiten die obere
I'liessgrenze anzunehmen ist. Der ungiinstigste Belastungsfall ist durch eine
Verschiebung des Fehlerhebels / (I'ig. 3 b) gekennzeichnet. wobei f und y,,
entsprechend einzuschiitzen sind, etwa am einfachsten in der linearen Abhin-
aigkeit f = v. h und y,, = 8. . Diese Belastung ergibt fiir eine bestimmte
Laststufe S als hochste Randspannung s,,,. Der Sicherheitsgrad ist dann
gegeben durch n = Ig :

1. Die nithere Begritndung dieser Rechnungsergebnisse soll in einem demnéchst erschei-
nenden Aufsatz nachfolgen. Desgl. auch in einer anderen Arbeit der im folgenden nur ange-
deulete Weg zur Ermittlung der Knicksicherheit.

2. Vgl. hiezu auch die Ausfithrungen von M, T. Huber, Warschau : Bericht der II.
Briickenbautagung, Wien, 1928, S. 310 {f. Wien, 1930 : J. Springer.
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Die Berechnung im besonderen geht von der durch Zimmermann! (Seite
88) um den Einfluss des Biegungspfeils #,, ergiinzten Durchbiegungsgl.
Ym =0 (f, yom) der Stabilititstheorie aus, die mit Buckswht darauf, dass op.y
noch im elastischen Bereich liegen muss, auch 1m I"alle der unelastischen
Knickung anwendbar ist. Mit Hilfe der obigen Ansitze fiir fund v, und der

Momentengl. M.y = S. (/4 Yom + ¥m) gewinnt man eine allgemeine Bezie-
hung zwischen % und n von der Form :

n? — 2pn — xq

Welche die unmittelbare und bequeme Berechnung von n fir jede Stab-
schlankheit ermoglicht.

Durch vergleichende Gegentiberstellung der Ergebnisse fiir verschiedene
Stabquerschnittsformen und urspr uno'hche Stdbmlttellmlen kann der richtige
Mittelwert von n festgelegt Werden wobel noch ein prozentualer Zuschlaw
fiir rechnerisch nicht ertassbare Emﬂusse zu berticksichtigen ist.

5. — Mehr als auf irgend einem anderen Gebiete hat sich in der Knick-
theorie die vielfach gewonnene Erfahrung bestitigt, dass die Mannigfaltigkeit
der Erscheinungen der Wirklichkeit auf deduktivem oder spekulativem Wege
allein nicht geklirt werden kann. Es mag wuns heute selbstverstindlich
erscheinen, dass die Euler-Formel vom J. 1744 nur so lange zutrellen kann, als
die ihr zugrunde liegenden Voraussetzungen (konstanter Ii-Modul) erfiillt sind,
und doch waren es erst die bahnbrechenden Versuche Tetmajers, welche der
bereits tberkaupt in Abrede gestellten IFormel die Grenze ihres Geltungsbe-
reichs zuwiesen. Auf der nun endgiltig geschalfenen Grundlage fanden die
Arbeiten Engessers! ithre weitere Erginzung durch die qutelen Versuche
Karmans? dxe wieder eine Reihe themetlscher Erkenntnisse zeitigten, aber
auch deren Mangel und die Notwendigkeit ihrer Weiterbildung erkennen lies-
sen. Dies ergab sich einerseits in einer Krweiterung dieser Versuche auf die
[illle exzentirischen Lastangrilfs durch die Schweizer Versuche?, die ausser
den unmittelbaren Ergebnissen noch als weitere I‘rucht das « T.-K.-V.-S.-
B.-Verfahren » von Ros und Brunner zur Bemessung exzentrisch gedriick-
ter Stiabe brachten. HEs fussen aber auch uberdies darauf die grundlegenden
Untersuchungen von E. Chwalla’, die zum ersten Male das Gleichgewichts-
problem gedriickter Stibe aus Baustahl in seinem Zusammenhang erfassten.
Anderseits stellte sich aber auch die Notwendigkeit heraus, die Versuche Kir-
mans, namentlich in Anbetracht der grésseren Streuungen ausserhalb des
Eulerbereichs zu vervollkommnen, um iber den genaueren Verlauf der Knicl-
spannungen in diesem, gerade fiir die Baupraxis so wichtigen Gebiet Klarheit
zu erlangen. Hier selzten die Versuche des Deutschen Stahlbau-Ver-

1. Zeitschrift d. hann. Arch. u. Ing. Verein 1889, S. 435 ; Schweiz. Bauztg, 1893, S. 24

2. Untersuchungen iiber Knick[estlgkmt, Fo1schungsheft 81 des V.D.I. Berlin, 1910.

3. M. Ro$ und J. Brux~er : Die Knicksicherheit von an beiden Enden gelenkig gelager-
ten Stiben aus Konstruktionsstahl. Bericht Nr, 13 d. Eidg. Materialpriifungsanstalt Ziirich,
1926,

4. Die Stabilitit zentrisch und exzenlirisch gedriickter Stiibe aus Baustahl. Silzungshe-
richte d. Akad. d. Wissensch. math. naturw. Klasse, S. 469 ff., Wien, 1928.
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bandes (W. Rein)! ein, und in den héoher als bei Karman errcichten Knick-
lasten war auch der Anstoss zur weiteren Klirung des Knickproblems gewie-
sen. Die richtige Deutung des Beobachtungsmaterials ergab die erweiterte
Knicktheorie Zimmermanns ! (Seite 88 ) und als deren weitere I'olge die in
der vorliegenden Abhandlung angeschnittenen I'ragen 1n ihrer Anwendung
1m uneclastischen Bereich.

Man ersieht, dass es immer der richtig eingeleitete Versuch ist, der gleich-
zeitig auch berufen ist, neues Licht in unsere theoretischen Erkenntnisse zu
bringen, und so diirften auch die letztgenannten Versuche! zum weiteren

Ausbau der Knicktheorie in einer Weise beitragen, wie es auf anderem Wege
kaum moglich wiire.

Traduction.

1. — Les différentes interprétations auxquelles donnent lieu les recherches
concernant la stabilité conduisent & la nécessité impérieuse de tenter une mise
au point de principe. La difficulté de la question réside dans la complexité que
prend le probléme dans le domaine plastique. En fin de compte, I'ingénieur
chargé d’une construction ne se préoccupe pas de l'allure de la variation des
contraintes de flambage, en elles-mémes, mais uniquement a titre de point de
départ pour la détermination d'un degré de sécurité uniforme contre les risques
de flambage. Cette maniére de voir n’a pas été suffisamment prise en considé-
ration jusqu'a maintenant et 1l en est résulté une certaine divergence dans les
conceptions. La raison en est tout particulierement que les valeurs fonciére-
ment différentes, en général, pour la charge de flambage théorique exacte
(dans son sens large), d'une part, et pour les contraintes pratiques infiniment
voisines de cette charge, d’autre part, arrivent a coincider dans les problemes
de stabilité les plus étendus que pose la théorie de I'élasticité, par suite du
caractere invariable du module E suivant Euler pour le degré de finesse consi-
déré.

2. — Théoriquement, la question du flambage sous l'action des charges
axiales se trouve traitée d'une maniére parfaite, dans les domaines élastique
et plastique, avec les formules d’BEuler et d’ngesser. Lorsqu'il s’agit toute-
fois d’étudier le flambage dans un cas concret correspondant a la réalité, et
étant donnée l'extréme sensibilité des phénoménes d’instabilité vis-a-vis des
influences perturbatrices les plus faibles, qu'il est d’ailleurs pres¢u’impossible
d’éviter dans la pratique, il ne faut pas considérer le flambage axial (au
sens le plus rigoureux de terme), dans I'étude duquel on n’envisage que la
recherche des positions d'équilibre possibles, comme constituant le coeur de la
question, ainsi qu'on le fait couramment. Il ne constitue en elfet qu'un cas
particulier (purement géométrique et non pas physique) de la question beau-
coup plus large que pose la notion de la charge de flambage dans son sens
intégral (idéal).

1. Versuche zur Ermittlung der Knickspannungen fiir versch. Baustihle, Ausg. B H. 4 d.
Berichte d. Ausschusses f. Versuche im Stahlbau. Berlin, 1930, J. Springer.
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Pour les barres de finesse élevée (ox <C op), la charge critique correspond,
dans tous les cas, a la charge d'Euler

=211 o )

K= e e

qui, ainsi que Zimmermann! 1'a montré d’'une maniére trés appronfondie, se
trouve toujours atteinte, méme en cas de faibles courbures initiales, lorsque la
charge est appliquée avec intervention du bras de levier correspondant (charge
de flambage dans son sens intégral). 51l en résulte toutefois un passage a 1’état
d’instabilité dans le domaine plastique, il faut alors chercher la valeur de la
charge maximum que peut supporter une barre réelle, c’est-a-dire « aussi rec-
tiligne que possible », dans l'esprit de la nouvelle théorie du flambage.

Dupoint de vue de la statique de la construction, cependant, la charge idéale
de flambage, caractérisée, pour le changement de stabilité, par une disconti-
nuité trées nette, doit elle-méme étre considérée comme une limite qu'il est
pratiquement impossible d’atteindre (figure 1) et doit étre distinguée de la ligne
d’équilibre infiniment voisine, que caractérise un passage progressif a l'état
instable. Cette derniére semble jouer un role prépondérant dans la maniére
dont se comporte un élément de construction soumis & une compression axiale
et il importe par suite qu'elle fasse l'objet de recherches ultérieures.

Un calcul simple, basé sur les formules existantes, peut déja donner quelques
indications sur la légitimité de cette manicre de voir en ce qui concerne une
barre parfaitement rectiligne et de constitution homogéne. lorsque le mode
d'application de la charge cesse, & un degré infiniment petit, d'étre axial, le
module initial d’Engesser (1889) est applicable a la charge critique :

7
e E’n == (ic'j

dsn

ce module est sensiblement plus faible que le module de flambage correspon-
dant & une charge purement axiale. Par exemple, pour un méme % et pour une
section rectangulaire telle que E’= 0,6 on constate déja une réduction de
plus de 20 °/,.

3. — Cette sensibilité extréme, qui se fait sentir tout particulierement dans
le domaine plastique, se manifeste, en ce qui concerne la valeur des charges
de flambage, dans le sens indiqué pour la premiére fois, avec exactitude, par
Zimmermann (voir 2) : I'état critique qui s’établit progressivement par suite
du fléchissement latéral et de I'apparition corrélative de contraintes de flexion
additionnelles est largement conditionné par la diminution progressive du
module variable E’. En ce qui concerne la charge de flambage idéale, inter-
viennent donc, non seulement le voisinage immédiat de o mais également le
parcours tout entier de la courbe s-¢ jusqu'a cette limile.

En se basant, pour la barre, sur une ligne voisine de la rectitude parfaite et

1. Rapports de Séance de la Preuss. Akad. d. Wissensch. phys. math. Klasse 1923,
fasc. XXIII et XXV ; en outre « Lehre vom Knicken auf neuer Grundlage », Berlin, 1930,
Verlag W. Ernst u. Sohn, éditeur.
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en faisant intervenir la compression et la flexion combindes, qui se traduisent
par une action d'ensemble, on obtient, pour le module T de I'équation générale
72T

'\\2

oK =

dans le cas de charge correspondant au n° 2 ci-dessus, qul nous occupe :

n—1

. 8 , 1 : -
.[‘:Iﬂn-}-c—}Z'Q(Ep‘l_ir—l—l)(Er—Er-{—i) (1)

qui doit étre déterminé sur la base de la courbe de déformation (E'-¢) du
matériau correspondant (figure 2). v désigne un coeflicient variable avec «,.
En passant & I'intégrale, on peut calculer directement a partir de I’équation

(1) les degrés de finesse de flambage %k et les valeurs correspondantes de o, au
moyen de la relation simple :

M
Ve
Le coefticient » peut étre déterminé d'une maniére simple & partir de la courbe
de T¥', courbe qui peut étre tracée analyliquement et généralement sans dilli-
culté, d'une maniére suffisamment approximative, jusqu'au voisinage de la
limite supérieure d’écoulement !.

L’allure ultérieure de ok en particulier dans la zone des plus petits degrés
de finesse, présente surtout intérét du point de vue théorique et ne peut étre
déterminée que sur la base de données hypothétiques.

k. — Les questions qui viennent d’étre exposées trouvent toute leur impor-
tance pratique dans I'étude et la détermination, sur des bases rationnelles, du
degré de sécurité contre le flambage. Dans cet ordre d'idées également, on se
trouve encore fréquemment en face de conceptions erronées; il n’est donc pas
inutile d’entrer dans le vif du sujet. Dans le flambage lui-méme, il s’agit dune
question d'instabilité, tandis que le calcul des piéces proprement dit pose une
question de contrainte & la compression et & la flexion ?. Pour autant que la
question du flambage elle-méme soit accessible &4 une conception exacte, la
théorie du flambage élargie constitue un point d’appui pour son étude com-
pléete, sur la base suivante : Dans un élément de construction soumis & une
charge axiale, le cas le plus favorable correspond & une charge K, telle qu'elle
est définie dans le n° 2 ci-dessus et correspondant & la contrainte critique
(fig. 3 a). Du point de vue pratique, toutefois, la courbe de g ainsi obtenue
subit encore un certain décalage, par suite de I'approximation sur la limite
d’écoulement ; il en résulte qu’il faut adopter comme limite de base, pour la
gamme des degrés de finesse moyens et faibles, la limite supérieure d’écoule-
ment. Le cas le plus défavorable est caractérisé par une déformation du bras

AR = %K

L. Une justification plus délaillée de ces calculs sera publiée dans une prochaine étude.
La sécurité au flambage, dont la détermination n’est qu’indiquée dans ce qui suit, fera éga-
lement 'objet d'un prochain travail,

2. Voir également & ce sujet les conclusions de M. T. Huber, Varsovie : Bericht der II.
Briickenbautagung, Vienne, 1928, pages 310 et suivantes, Vienne, 1930, J. Springer, éditeur.
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de levier / (figure 3 b), [ et y,n étant définis pa rallelement par une relation
linéaire simple telle que :

[=xh You = B1

Pour un degré de charge S déterminé, cette disposition conduit & une contrainte

périphérique maximum oy,,. Le degré de sécurité est alors donné par la rela-
tion :

) K

S
Le calcul se fait, en particulier, & partir de l'équation du fléchissement
Ym — o ([, yom) de la théorie de la stabilité, équation complétée par Zim-

mermann ! (page 93) pour tenir compte de l'influence de la fleche yom, et que
I'on emploiera en tenant compte de ce que o,,, doit se trouver encore dans le
domaine élastique, méme dans le cas de flambage inélastique. A T'aide des
relations précédentes concernant f et y, et de I’équation des moments :

1\{max == (f+ Yom + ym)

on obtient une relation entre % et n. On arrive ainsi a4 une équation ayant
la forme générale suivante :

n—2pn==zq

En comparant les résultats obtenus pour dilférentes formes de section de
la barre et pour différentes positions de la [ibre moyenne, on peut détermi-
ner la valeur moyenne exacte de n; il faut en outre tenir compte d'urie cer-
taine marge en pourcent correspondant aux influences dans lesquelles il n’est
pas possible de faire intervenir le calcul.

5. — La multiplicité des phénomeénes qui se présentent dans la réalité
elfective ne peut pas étre expliquée uniquement par des moyens déductifs ou
spéeulatifs purs; ¢’est la un fait d’expérience fréquente que l'on constate d’ail-
leurs encore plus nettement qu'ailleurs dans le domaine du flambage. Il peut
nous paraitre parfaitement naturel aujourd’hui que la formule d'Euler, qui date
de 1744, ne puisse se trouver justifiée que lorsque les hypotheses sur lesquelles
elle est basée sont effectivement remplies (constance du module ) ; el cepen-
dant ce n'est qu'a la suite des essais de Tetmajer que celte formule, déja géné-
ralement contestée, put recevoir une limite de validilé effective. Sur cetle
base délinitivement acquise, Engesser ! publia ses travaux, qui furent complé-
tés ultérieurement par Karman ? ; les travaux de Karman, d'ailleurs, tout en
¢largissant largement le champ de nos connaissances théoriques, étalent encore
insuffisants, la nécessité d'un développement ultérieur se faisant nettement
sentir. A cette nécessité, répondirent les travaux suisses ® concernant
les charges excentrées, ces dernlers travaux aboutissant, outre les résultats
directs qu’ils purent fournir, & la méthode du T. K. V. 5. B., de Ros et Brun-
ner, pour le calcul des barres soumises & des charges excentrées. Sur ces

1. Zeitschrift d. hann. Arch. u. Ing. Verein 1889, page 455, Schweiz. Bauzlg., 18935, page 24.

2. Untersuchungen iiber Knickfestigkeit, Forschungsheft n® 81 du V. D. 1., Berlin, 1910.

3. M. Ros et J. Bruxner, Die Knicksicherheit von an beiden Enden gelenkig gelagerten
Stiben aus Konstruktionsstahl, Rapport n° 13, Laboraloire Fédéral d'Essai des Matériaux,
Zurich, 1926.
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recherches, se grefferent également les travaux de base d’E. Chwalla ! qui
aborda, pour la premiere fois, dans son ensemble, le probleme de 'équilibre
des barres comprimées en acier de construction. Par ailleurs, la nécessité se
fit sentir de pousser les essais dec Karméan, particuliérement en ce qui concerne
les grandes divergences constatées en dehors du domaine d’Euler, afin d’ob-
tenir des données plus précises sur l'allure des contraintes de flambage dans
cette région, qui présente une telle importance pour la pratique. Clest ic1 que
viennent se placer les essais effectués par le Deutscher Stahlbau-Verband
(W. Rein)?, les elforts pour arriver i une meilleure compréhension du pro-
bleme du flambage portant méme sur des charges de flambage plus élevées que
celles qu'avait atteintes Karman. L'importance du role que joue le matériau
soumis a l'observation conduisit Zimmermann a publier sa théorie développée
du flambage ' (v. p. 93), puis a pousser I'étude des questions abordées par
cette étude dans le domaine plastique.

On voit que les essais judicieusement entrepris nous permettent toujours de
développer nos connaissances dans le domaine théorique et c’est ainsi que les
derniéres séries de lravaux expérimentaux que nous venons de citer * doivent
contribuer eux aussi a4 faire progresser la théorie du flambage dans des condi-
tions qu’il aurait été a peine possible de réaliser différemment.

Zusammenfassung.

Auf Grund der Versuchsergebnisse des Deutschen Stahlbau-Verbandes und
der daraus hervorgegangenen erweiterten Knicktheorie Zimmermanns wird
die Frage einer prinzipiellen Klirung unserer bisherigen Berechnungsgrundla-
gen aufgeworfen.

Die gewohnlich in den Mittelpunkt der Betrachtung gestellte zentrische
Knickbelastung (Euler und Engesser-Karman) ist nur ein Sonderfall des wei-
ter gefassten Begrilfes der « 1deellen » Knickbelastung ; die der letzteren unend-
lich benachbarte Belastung K mit noch stetigem Uebergang in den labilen
Zustand ist massgebend zur Ermittlung einer gleichmissigen Sicherheit und
im allgemeinen vom ganzen Verlauf der Arbeitslinie unterhalb s abhangig. Der
Sicherheitsgrad n = g-ist durch die Randspannung o, infolge der entspre-
chend einzulegenden Last S bedingt; n = f (%) kann analytisch festgelegt
werden.

Résumsé.

L’auteur pose la question d'une justification de principe des bases de calcul
adoptées jusqu'a maintenant, justification s’appuyant sur les résultats des
essais elfectués par le Deutscher Stahlbau-Verband et sur la théorie du flam-
bage telle qu’elle a été étendue par Zimmermann.

1. Die Stabilitiit zentrisch und exzentrisch gedriickter Stitbe aus Baustahl, Rapports de
Séance, Akad. d. Wissensch. math. naturw. Klasse, page 469, Vienne, 1928.

9. Versuche zur Ermittlung der Knickspannungen fiir versch. Baustihle, Ausg. B I1. 4 d.
Ausschusses f, Versuche im Stahlbau. Berlin, 1930, J. Springer, édileur.
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La charge de flambage axiale, généralement considérée comme constituant
le coeur de la question (Euler et Engesser-Karman) n’est qu'un cas particulier
de la notion plus générale de la charge de flambage idéale; la charge K, infi-
niment voisine de celte derniere joue, avec le passage encore continu i I'étal
labile, un role capital pour 'obtention d’un degré de sécurité uniforme ; elle
dépend, en général, de l'allure de toute la courbe elle-méme au-dessous de GK.

Le degré de sécurité n = g est conditionné par les contraintes périphériques

Tmax Tésultant de la charge S| la fonction n = f (%) peut 8tre étudiée analyti-
quement.

Summary.

Based on the results of tests by the German Stahlbau Verband and the
extended buckling theory of Zimmermann resulting from them, the question
1s raised of a clearing-up in principle of the bases hitherto used for our cal-
culations.

The central buckling loading, usually regarded as the most important to be
considered ([Kuler and Engesser-Karman), is only aspecial case of the extend-
ed conception of the « ideal » buckling loading ; the loading K, infinitely
close to the latter, still steadily passing over into the instabile state, is deci-
sive for determining a uniform safety and depends in general on the whole run

of the line of work below g, . The factor of safety n — %— conditioned by the

stress al the edge, omax, in consequence of the corresponding load S that
has to be applied ; n = /(1) can be found analytically.

" Dr. Ing. K. HOOST,

Reg.- und Baurat, Dozent der Technischen Hochschule, Danzig.

In seinem einleitenden Referat itber Stabilitit und Festigkeit von auf Druck
und Biegung beanspruchten Bauteilen sucht Herr Professor Dr. L. Karner
u. a. das sehr schwierige, unelastische Gebiet des Knickvorganges tiefer zu
erforschen. Wie er gzmi richtig angibt, kann dieser Teil des Knickproblems
nur allein auf die Prifungsergebnisse von Druckversuchen der verschiedenen
Materialien aufgebaut werden. Dadurch, dass er die gekritmmte Druck-
stauchungslinie far Stahl geradlinig verlaufen lasst, ergeben sich mit den fir
diesen Zweck abgeinderten Querschnittsgrossen F* und J¢ sehr einfache
Bezichungen fiir die Spannungsermittlung. Die Flichenwerte werden ohne
Schwierigkeiten aus der Bezichung der geraden Druckstauchungslinie zum
wirklichen Kurvenverlauf erhalten. Hierbei ergibt sich fiir die abgeinderte
Querschnittsgrosse I'* eine Lage des Schwerpunktes, die um eine Exzentrizitit
e’ von der normalen Lage entfernt ist. Die statische Stabachse weicht um den
Betrag e" von der geometrischen ab. Eine gleiche Exzentrizitit ist bereits in

7
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den Ableitungen zu der exakten Knickgleichung von Krohn in seiner
Abhandlung « Knickfestigkeit » enthalten. Er kommt zu folgendem Wert :

1 Pk4+M

2 K
Hierin bedeutet p den Kriimmungshalbmesser P und M die dusseren Krafte,
k die Exzentrizitat, welche infolge der variablen Stauchungszahl in jedem
Querschnitt verschieden gross auftritt, J das Trigheitsmoment des Quer-

schnittes bezogen auf seine Schwerpunktsachse und K eine mittlere Stau-
chungszahl :

Nach der Integration der Gleichung

I dtyes By
o J.K

unter der Annahme, dass & und K unveridnderlich sind und weiteren
Vereinfachungen erhilt Krohn folgenden Wert :

cos oy /=
2 Dk e Ok (d D\)
k

1—0052\ E—Dk &
2 Dy

Diese Losung stellt die Knickgleichung fiir den allgemeinen Fall dar unter
Beriicksichtigung, dass die Stauchungszahl D mit der Spannung verinderlich
1st.

Da die Forminderungs- und Spannungsverhiltnisse eines Stabes im mittle-
ren, dem meist gefihrdeten Querschnitt fast stets massgebend sind, halte ich
es [iir zuliissig, in der Gleichung

dEyie s R )

dez2 ~ J.K
fiar die beiden Grossen k& und K diejenigen Werte einzusetzen, die dem
mittleren Querschnitt entsprechen und dann diese Grossen fiir den ganzen
Stab als unverinderlich anzunehmen. Unter Berucksxchtlgunﬂ dieser Annah—
men habe ich die allgemeine Knickgleichung auf einem anderen Wege
ermittelt. Ein Stab, de1 in der Entfernung % exzentrisch belastet wird, lneO‘L
sich um die Grosse 3 aus. Durch Auflésung einer Differentialgleichung und
verschiedene Vereinfachungen erhalte ich :

07[ o

arccos == arccos

2
SR = 2+ k T —
\/‘ﬁ \/B ‘+'a'

Die exakte Losung nach Krohn zeigt hingegen folgendes Ergebnis :

Tk ((]D
2 Dy )k

= ————= arccos

o I ey
[)k l)k d k
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Aus diesen beiden Gleichungen ist zu folgern :
ff o (dD
s D\ds )k |
: g ; dD :
Setze ich D = E, dem Elastizititsmodul, so wird T h = 0 und damit k= 0.

g
2
oder ¢ = =

=
TE 12
E

Bei konstanter Stauchungszahl D=E oder einem Exzentrizititsmass %k — 0
erhilt man somit die Euler’sche Gleichune,

"

Dann ergibt sich arccos 0 = -~ und % =

no| 21

8
Setze ich ¢= IP—;und é‘éﬁ =~y so wird :
[ D-(
P = Ll—zj (arccos +)2
4D.) /= 1 s 2
-2 G-t

Das erste Glied dieser Reihenbildung ist die Karman’sche Formel :
szD.J
/2
Demnach liefert dieser Nidherungsausdruck zu grosse Werte, wie auch ein

Vergleich mit den Versuchsergebnissen zeigt.
Bezeichne ich in der Gleichung

P:

4D / E \2
i arccos ——
e
I ¢ : ‘ :
den Wert arccos “—ljk mit dem Ausdrucke «, so wird die Knickspannung
STk
allgemein :
AD
g = _/\2 e
Im elastischen Bereich ergibt sich mit o = % aresin 5 y firk =0 der Wert
o T

0= % und D dem Stauchungsmass gleich dem Elastizititsmodul E die Euler’-

sche Gleichung
A =2 Ex2

~
—— = = — oy
722 4 32 E

fop —_—
“Fuler

Nehme ich diese Gleichung als Grundlage des Knickspannungswertes, so
kann ich schreiben :

R
[
=~

D
— oy 0,083 1 . o® =05 8
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s dD

Setze ich die Werte fur D, o = D da und 7 in die Gleichung ein, so ergeben
g

sich die Werte 3 der Knickspannungsgleichung.

Trage ich diese Werte als Ordinaten der zugehorigen % Werte aul s. Tig.,
so erhalte ich zwischen 7= 33,5 und » =92,6 d. h. bis zum Anschluss an die
Ilulerhyperbel angenahert eine gerade Linie, ebenso zwischen %—=3.7 und
7.— 16,5, Dazwischen d. h. zwischen % =16.5 und % =35,5 ist die § Linie
eine Kurve vom n' Grad, wobel n ermittelt werden muss. ‘

Als Knickspannungsgleichungen habe ich nunmehr fur den elastischen und
unelastischen Bereich folgende Werte errechnet :

Ak
10 70
09 ' ya
a8 A
a7 W
25 / 0660

/’(2/.97

‘ 5
90021 | 1 Besn |, A

0% 1 657 B8 30 ¥ g 50 60 %7 80 90 928
Fig. 1.

Gl

B > 92,6

s o, [0,0042 7 — 0,318 it x = 92,6 bis 35,5

o o1[0,00393 (1. — 16,5).1,22— 0,041 ) fiirx = 35,5 bis 16,5
s — 5 10,00305 % —0,00018] firs, — 16,5 bis 3,7

c e G]*: —_—

Da in der Stahlbautechnik Stabglieder unter einem Schlankheitsgrad von
%= 35,5 nur sehr selten oder garnicht vorkommen, kann ich folgenden Wert
als die genaueste und einfachste Knickgleichung im unelastischen Bereich
bezeichnen :

o =0, [0,0142 A —0,318]

Dicse Funktion vom ersten Grade ist fiir die Anwendung in der Praxis
unbedingt zu empfehlen.

Traduction.

Dans son Rapport d'Introduction sur la stabilité et la résistance des picces
{ravaillant & la compression et a la flexion, M. le Professeur Dr. L. Karner a
¢tudié le processus du flambage en s'efforgant de pénétrer plus avant dans le
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domaine, Lrés difficilement accessible, de la plasticité. Ainsi qu'il 'indique
tres judicieusement, cette partie du probleme du flambage ne peut étre explo-
rée avec succes qu'en se basant sur des résultats d’essais de compression effec-
tuds sur des matériaux divers. Le fait qu'il assimile & une droite, pour l'acier,
le diagramme incurvé de la compression, permet, avec les valeurs modifices de
I et de J{ pour la section, d'arriver & des relations trés simples en ce qui
concerne la détermination des efforts. Les valeurs de la section peuvent étre
déduites sans difficulté de la relation entre le diagramme rectiligne et le dia-
gramme incurvé effectif. On obtient ainsi, pour la section I’ modifiée, une
position du centre de gravité qui présente par rapport a la position normale un
¢cart d’excentricité e, L'axe statique de la barre s’écarte de cette valeur er de
son axe géométrique. On retrouve déja une méme excentricité dans les tra-
vaux de Krohn & partir de I'équation exacte du flambage, dans son traité sur
la « Résistance au Flambage ». Il arrive & la valeur suivante :

1 P.k4+M
g Tk
dans laquelle il désigne par
o le rayon de courbure,
P et M les charges extérieures,
k U'excentricité, qui présente d'ailleurs des valeurs variables, par suite des J
variations du coeflicient de compression d'une section a 'autre,
J le moment d’inertie de la section rapporté a son axe de gravité,
Kun coelfficient de compression moyen.

Aprés intégration de I'équation
Eddy L By
o dx J.K
en admettant que %k et K soient invariables et en introduisant dilférentes
simplifications, IKrohn arrive au résultat suivant :

z\/Dk o fdD
?k_ Dk dc)
2 Dk

Cette sclution représente I'équation du flambage dans le cas général, en
tenant compte de ce fait que le coefficient de compression D e‘;t vamable avec
la contrainte.

Comme ce sont toujours les conditions de déformation et de contrainte dans
la section du milieu, la plus exposée, qui jouent le role capital, j'estime qu’il
convient, dans 1'équation

1—005

d?y  P(k4y)

de? J.K
d’'introduire pour & et K les deux valeurs qui correspondent précisément a cette
section du milieu de la barre et d’admettre que ces valeurs sont invariables

pour toute la barre. En partant de cette hypothese, jal délerminé d'une autre
maniére 1'équation générale du flambage. '
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Une barre qui est soumise & une charge appliquée avec une excentricité k,
fléchit de la quantité 3. Par résolution d'une équation dillérentielle et au prix
de différentes simplifications, j'obtiens le résultat suivant :

2

7 cos i = arc cos

L = — arc — —_—

; 7 Stk : ol
D D 3

La résolution exacte suivant Krohn aboutit au résultat suivant :

&)il =

g [dD
gl 5 (%),
= /—Gkarccos i —

T =l
De ces deux équations, on peut déduire :
k o /d D
s D <7§)k

Si je pose D = E module d’élasticité, j'obtiens :

D
(—d) =0ethk=20
k

do
L .
on en déduit : (arc cos ) = 5 )
) T =2 K
— e ou g=

G I8 ~
L

Pour un coefficient de compression constant D = E, ou un degré d’excentri-
cité k= 0 on obtient I'équation d'Euler.

i B . ke o
11'on pose ¢ = Fe ST R —
on obtient :
AD.J :
— 7 (arc cos ¥)
4DJ /= 1 5 s
T (5 T )
Le premier terme de ce développement en série donne la formule de Karméan :
m2D.J
P = B

Par suite cette valeur approchée donne donc des chiffres trop forts, ainsi que
I'on peut d’ailleurs s’en rendre compte par comparaison avec les résultats
fournis par les essais.

Si dans l'équation :

4D e S
o= arccosa_*_k
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k
s+ k
on obtient d'une maniére générale pour la contrainte de flambage I'expression :
4D

G= T .G
2

on désigne par « la valeur arc cos

2

Dans la zone élastique, avee
k
5+ k

o= aresin

el A

pour k= 0, on obtient o =

2 = |

D coefficient de compression élant égal & E module d’élaslicilé, on retombe .
sur l'équation d'LEuler :
AE #2 Ex?

G, T = 3
Euler /\2 4 ,\2 E

Si j'adopte celte équation comme équation de base de la valeur de la con-
trainle de flambage, je puis écrire :

D «2.4 E
6= op. 3 - ““_Lz — 0. 0,053 5 . o2 = op. §
. 5 : ¢ dD . i : IR :
Si j'introduis les valeurs de D, o= D ds et % dans I'équation, j'obtiendrai
g

la valeur de  de1’équation de la contrainte de flambage.

Sil'on considére ces valeurs comme ordonnées en fonction des valeurs cor-
respondantes de % (voir figure), on obtient entre x = 35,5 et » = 92,6, c’est-
a-dire jusqu'au raccordement avec I'hyperbole d’Euler, approximativement une
ligne droite; il en est de méme entre A = 3,7 et A = 16,5. Dans l'intervalle,
¢’est-a-dire entre » = 16,5 et » = 35,5 la courbe de § est une courbe de degré
n, n devant étre a déterminer.

Comme équations de la contrainte de flambage, j'ai ensuite établi les rela-
tions suivantes, pour les domaines élastique et plasiique :

E =2
72
6 =gy (0,0142% —0,318) pour compris entre 92,6 et 35,5
5= 5,(0,00393 (h—16,5). 1,22 —0,0411] pour x compris entre 35,5 et
16,5
5 =0, (0,00305 1 —0,00918) pour x compris entre 16,5 et 3,7

¢=0p =

pour» > 92,6

En construction métallique, les barres ne présentent que trés rarement, ou
méme jamals, un degré de finesse inférieur a % = 35,5; on peut donc considé-
rer que dans le domaine plastique, la forme la plus simple et la plus exacte de
I’équation du flambage est la suivante :

o= (0,01423% —0,318)

Cette relation du premier degré est a recommander le plus largement pour
les besoins de la pratique.
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Zusammenfassung.

Der variable Druck-Elastizititsmodul wird durch eine variable Exzentrizitit
der dusseren Kraft ersetzt (angenithert die Exzentrizitit in bezug auf den
Schwerpunkt der reduzierten Fliche I', im Bericht von Herrn Prof. Dr. Kar-
ner). Dank der Einfithrung dieser Exzentrizitit erhalte ich durch einfache
Rechnung die allgemeine Gleichung des Knickzustandes, und als Spezialfall
den Wert von Euler und Kirmén. Schliesslich stelle ich eine Knickgleichung
auf, die sich auf die genaue Gleichung stiitzt und die eine einfache, aber in den
praktischen Grenzen des Schlankheitsgrades genaue Form annimmt.

Summary.

The variable coeflicient of compression is replaced by a variable eccentri-
city of the external force (approximately the eccentricity of the centre of gra-
vity of the modified section F, in Prof. Karner’s report). Owing to the intro-
duction of this eccentricily, the general equation of buckling is obtained by a
simple calculation and, as a particular case, the value of Euler and Karman.
Finally an equation of buckling is established, based on the exact equation and

presuming a shape wich is simple but accurate within the practical limits of
slenderness 7.

Dr. Ing. F. SCHLEICHER,

Professor an der Technischen Hochschule Hannover.

Bel exzentrisch gedriickten Stiben entspricht im allgemeinen jeder Bela-
stung ein bestimmter Gleichgewichtsfall und Instabilitat kommt nicht in Frage.
Aut den Ausnahmefall haben Zimmermann?® und Chwalla 2 unabhingig
voneinander hingewiesen.

Ein im spannungslosen Zustand prismatischer Stab werde in der Ebene der
kleinsten Steifigkeit mit P = ¢ Py exzentrisch gedrickt (P = Eulerknick-
last). Die Exzentrizitaten an den beiden Stabenden seien gleich gross, aber
von entgegengeselztem Vorzeichen. Der Mittelpunkt des Stabes liegt auf der
Kraftangriffsgeraden und erleidet keine Ausbiegung. Die Biegungslinien sind
fiir & < 1 beziiglich dieses Punktes spiegelsymmetrisch und stabil. Wird ¢
= 1, dann ist das Gleichgewicht labil und w ({) = w, cos ={ 4+ C sin =,
wo G beliebige Werte besitzen kann. Vgl. Tig. 1.

Fir ungleiche Exzentrizititen w,; bezw. w, ist die Durchbiegung in Stab-
mitte

w, -+ W,

2 cos (%\/F>

1. I. Zinmermann, Lehre vom Knicken auf neuer Grundlage. Berlin, 1930, S. 41.
2. E. Cnwarra, Eine Grenze elastischer Stabilitiit unter exzentrischem Druck. Z. angew.,
Math. Mech. 10 (1930) und Losungstypen elastostaticher Probleme. Desgl. 11 (1931).

WM =
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Der Zusammenhang zwischen wy und ¢ ist in I'ig. 2 fiir verschiedene Ver-
haltnisse w, 1 w, dargestellt. Far w, = — w,ist wy = o, solange ¢ kleiner als
1 bleibt. Mit ¢ = 1 ergibt sich nach der ersten Stufe der Genauigkeit der

§
" S S
N =~ "~ "~
Oy Wy Q + S Q\ Ql |Q
2
5 - -
/&‘M =0 s7061/
By =Q707 /¢ :
e ‘ w-7
Py =0
0 99
TR ¥=7
= rajperent =100
' = 7 5 .
1By = 0CHOIG 0 05 70
Fig. 1. — Désignations et figures d’¢quilibre. Eig: 2. -
Bezeichnungen und Gleichgewichtsfiguren. Déformation au milieu de la barre
Symbols and figures of equilibrium, Ausbiegung im Miltelpunkt.
Stabil = thl)ll = Stable. Bending at middle of bar.

Arbitraire = Beliebig = Arbilrary.

Rechnung ein indilferenter Gleichgewichtszustand. In diesem IFall ist wy kein
Mass de1 Verbiegung. In Fig. 3 ist die Ausbiegung im Viertelpunkt des

Stabes wy damestellt und zwar fiir w, = — 0,99 w; und fir den Grenzfall
/Z}V.'/Z"
70 ,’
975 \ Verzroeigungs-
LUkt
95 \
9+ ;
Qs 10 ¥
Fig. 3. — Déformation au quart de la barre.
Ausbiegung im Viertelpunkt.
Bending at quarter length of bar.
Wy = — w,. Sie nithert sich mit steigender Belastung & —- 1 dem Grenzwert
Wy — 0,'101 w;. Fur die Eulerlast hdt man einen Vewwewun«rqpunkt des

elaslischen Gleichgewwhts. Es ist demnach eine Grenze der Stabilitit vorhan-
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den, im Gegensatz zu dem IFall der Biegung durch Druckkrifte von verschie-
dener Exzentrizitit.

Fig. 2 gilt fiir die erste Anniherung, d. h. wenn die Steigung der Biegungs-
linieim Vergleich zu 1 vernachlissigt wird !. Die genauere Rechnung gibt keine
wesentliche Aenderung, ausgenommen in der Nidhe des Verzweigungspunktes,
wie in Fig. 3 schematisch angedeutet ist. Die Abbildungen setzen eine genii-
gend hohe Proportionalititsgrenze voraus. Bei begrenzter Elastizitiat ergeben
sich analoge Zusammenhinge von weniger einfacher Form. Man vergleiche

die Rechnungen von L. Karner? und E, Chwalla 3 fiir den Sonderfall
We — Wy.

Traduction.

Dans les barres soumises & une compression centrée, & chaque charge cor-
respond en général un état d’équilibre déterminé et la question de I'instabilité
ne se pose pas. L'étude du cas d’exception a fait I'objet de travaux, effectués
d’ailleurs indépendamment, de Zimmermann* et de Chwalla >,

Supposons une barre prismatique, ne supportant aucun effort, que I’on sou-
met, dans le plan de rigidité minimum, & une charge de compression appli-
quée excentriquement ;

P —¢Pg

(Pg = charge de flamblage d’Euler). Supposons que les excentricités aux deux
extrémités de la barre soient de méme importance, mais de signes contraires.
Le milieu de la barre se trouve sur la droite qui joint les points d’application
des efforts et ne subit aucune flexion. Les courbes de déformation par flexion
pour ¢ <1 sont symétriques par rapport & ce point et stables. Si ¢ = 1, I'équi-
libre est alors labile et 1'on a :

w (¢) = wy cos zf 4 Csin z{

le coeflicienl C pouvant prendre des valeurs arbitraires (Voir figure 1).

Pour des excentricités inégales w, et w,la déformation par flexion au milieu
de la barre est donnée par :

W, + W,
2 cos (g\/d’>

La relation entre wy et ¢ est indiquée sur la figure 2 pour dilférentes
valeurs du coeflicient w,/w,. Pour

WM =

W, = — W,

1. K. von Saxpex und F. ToLke, Ueber Stabilititsprobleme diinner, kreiszylindrischer
Schalen. Ingenieur-Archiv 3 (1932).

2. L. Kanner, Vorbericht S, 20.

3. E. Cawarra, Die Stabilitit zentrisch und exzentrisch gedriickter Stibe aus Baustahl.
Sitzungsberichte der Wiener Akademie, Wien, 1928.

4. II. Zimmermany, Lehre vom Knicken auf neuer Grundlage, Berlin, 1930, page 41.

5. E. Cawarra, Eine Grenze elastischer Stabilitiit unter exzentrischem Druck. Z. angew.,
Math. Mech. 10 (1930) et : Losungstypen elastostatischer Probleme. Dito 11 (1931).
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on a .
WMZO

tant que ¢ reste inférieur & 1. Pour ¢ = 1, on oblient, suivant la premiére
approximation du calcul, un élat d’équilibre indifférent. Dans ce cas, wy ne
peut nullement conslituer une mesure de la déformation. La figure 3 représente
la déformation au quart de la barre wy, en fait pour

wy = — 0,99 w,
et pour le cas limite :
W, = — W,

Cette déformation tend vers la valeur limite wy = 0,707 w, lorsque la charge
augmente, & — 1.

Pour la charge d’Euler elle-méme, on arrive i un point de bifurcation des
conditions d'équilibre élastique. Il existe par suite une limite de stabilité, par
opposition au cas de la flexion par suite de contraintes de compression sui-
vant des excentricités différentes.

La figure 2 se rapporte & la premiére approximation, suivant laquelle on
neglme I’accentuation de la courbe de flexion par rapport a 11, Un calcul plus
précis n'accuse aucune modification sensible, si ce n ‘est au voisinage du point
de bifurcation, ainsi qu’il est représenté dune maniére schématique sur la
figure 3, Ces figures sont établies en supposant une limite de proportionnalité
suffisamment élevée. Lorsque 1'élasticité est limitée, on obtient des relations
analogues sous une forme moins simple. Voir a ce sujet les calculs de L. Kar-
ner? et de Chwalla? pour le cas particulier correspondant & w, = wy.

De. Ing. h. e. M. ROS,
Professor an der Eidgendssischen Technischen Hochschule und Direktor
der Eidgendssischen Materialpriifungsanstalt, Ziirich.

Zu den Diskussionsbeitragen der Herren Professoren M. Broszko (War-
schau), . Hartmann (Wien), E. Chwalla (Brno), L. Baes (Bruxelles) und
A. Mesnager (Paris) beehre ich mich, auch namens der wissenschaftlichen
Mitarbeiter der E.M.P.A., Dr. Ing. J. Brunner und Dipl. Ing. A. Eichin-
g er, mich wie folgt zu dussern.

Zu Prof. M. Broszko. Alle bisherigen Verolfentlichungen des Herrn
Broszko die « Allgemeine Losung des Knickproblems » betreffend, sowie die
Behauptungen in den Diskussionsbeitrigen der Kongresse Wien (1928) und
Paris (1932) beruhen auf mathematisch unrichtigen Ableitungen und physi-
kalisch nicht zutreffenden Annahmen.

Im Schlusswort des Wiener Berichtes (Verlag Julius Springer Wien, 1929),

1. K. von Sanpen et F. Térke, Uber Stabilititsprobleme diinner kreiszylindrischer Scha-
len. — Ingenieur-Archiv 3, 1932,

2. L. KarxER, Premier Conmes Rapport Préliminaire, 1932.

3. E. (JIIWALLA Die Stabililit /entnsch und exzentrisch gedriickter Stibe aus Baustahl
Wien. Akad. Vienne, 1928.
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Seiten 338-343, ist die Unrichtigkeit der mathematischen Ableitung Broszkos,
welcher damalb die genau (Plel(,hen physikalischen Ansiitze Lu(rlunde lagen,
wie der chktheorle von EHDE“,S@,[ Jasinski-Karman, nachO*eWLesen Im Mal
1931 berreichten wir Herrn Mesnager Membre de lIn%tltut de Irance, die
mathematisch genaue Integration der Broszko'schen Grundgleichung (Compte
rendus des séances de lAcademze des Sciences, 1928, vol. 186, p. 1041), auf
welche er seine Theorie stiitzt, und erbmchten den Beweis, dass Broszkos
Losung infolge eines mathematlschen Fehlers unrichtig ist und dass die rich-
tige Losung mit derjenigen von Engesser-Jasinski-Karman genau uberein-
st1mmt Dle mathematische Unrichtig Lelt der von Broszko @egebenen Auflésung
der Grundgleichung wurde auch von Dr. J. Fritsche, Prag, nachgewiesen. —
Siehe « Der Baulngemeul » 1930, Heft 17, Seiten 298- 300 « 7ur Berechnung der
Knicklast eines geraden Stabes ausser halb des Giiltigleitsbereiches der E uler—
Formel ». Ebenso wurde die Theorie Broszko's von Prof. Dr. . Chwalla und
Prof. Ing. Dr. P. Fillunger abgelehnt (Bericht tiber die II. Inter. Tagung fir
Bluckenbau und Hochbau \/Vlen 1928, S. 613 & 330).

Die urspringlichen physxkahschen Annahmen von Broszko in der Pariser
Verolfentlichung sind mit denjenigen von Engesser-Jasinski-Karman identisch.
Aber bereits im Diskussionsbeitrage zum Wiener Kongress (192Y) bemiingelt
Broszko den physikalischen Ansatz der Enoesser‘ Jasinski-K4arman’schen
Knickungstheorie, indem er die Gultigkeit des F Gesetzes fiir die entlastete
Zone der dem chhzuqtande entsprechenden Spannungsverteilung des virtuell
ausgebogenen Stabes als fehlerhaft bezeichnete und spiater am Pariser Kon-
gress (19‘32) auch die Betrachtungen tiber die Abhiingigkeit der Grosse der
Verformung von der Geschwindigkeit der Verformung anstellt. Broszko stiitzt
sich dabei auf die an sich richtigen "Ewingschen Versuchsergebnisse, zieht
jedoch fir die Beweisfithrung der Richtigkeit seiner Knicktheorie Grenzwerte
der Verformungsgeschwindigkeiten heran, welche bei der statischen Knick-
stabilitat, von welcher allein die Rede ist und welche die Konstruktionspraxis
in erster Linie interessiert, weder fir die Belastungs- noch Entlastungszonen
in Frage kommen. Zur ersten Bemingelung ist zu sagen, dass das
Verformungs-Spannungs-Gesetz fiir wirklich eintretende Entlastungen, welche
sich mit den in Frage stehenden Verformungsgeschwindickeiten vollziehen,
in Wirklichkeit dem E-Gesetz folgt. Das Material behiilt seinen elastischen
Kern, wie dies Versuche einwandfrei beweisen.

Die Einflisse der Dauer und Geschwindigkeit von Verformungen sind
nachtriglich hineingelegte Interpretationen von Broszko, die auch in seinen
mathematischen Ansitzen in keiner Weise enthalten sind.

Die Ableitung der Broszko’schen Knicklast Py fiir zentrisches Knicken

Pk ZTCZ (1

beruht auf einer mathematisch falschen Ableitung und physikalisch unzu-
treffenden Annahme. Diese Theorie liefert fur I]men zufillig zahlenmiissig
brauchbare Werte ; fiir andere Baustoife, z.B. Lelchtmetdlle steht sie auch
mit den Versuchsergebnissen in Widerspruch. — Abb. 1.
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Prof. M. Broszko zieht zur Beweisfuhrung der Richtigkeit seiner Knicktheo-
vie die Versuche zur Ermittlung der Knickspannungen far verschiedene Bau-
stible (Bericht des Ausschusses fiir Versuche im Stahlbau des D.St.V., Ver-
lag Julius Springer, Berlin 1930) heran, iiber welche Prof. W. Rein Bericht
erstattet. Wir haben uns bereits in der Wiener Diskussion — Seite 345 — zu
den damaligen Ausfihrungen von Prof. Memmler geidussert und denselben
zugestimmt. Die Berliner Versuchsergebnisse stimmen, bei sinngemiisser Ausle-
gung, mit den Ziircher theoretischen Ableitungen und Ergebnissen gut iiberein.

Nicht ganz einverstanden sind wir
mit den theoretischen Ableitungen von I
Prof. Rein. Die Zimmermann’sche I'eh-
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durch streng nicht zutreffende Annah-
men iberwunden werden konnen.
Die Berichtigung, welche Rein der

Knicktheorie angedeihen lisst und 7 LR W e
schliesslich in Form eines Zusatz- Jc/;/ankﬁe,}&yfad_ e
gliedes A T zu dem Knickmodul T nach  rig

Apnticorodst

o Valeurs dlessals
\ £-7sotenm® ~ Versuchswerte
N Jest valves

Mittlere Kichspsnavng

Medium buckling siness
Tenston moyenne de Flambage
T

TTTT

3

<
Lo

g. 1. — Essais avec des barres d’anticorodal.
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1 Buckling stress curves according Lo Broszko

bei der « genaueren Entwicklung des and T.K.V.5.B.
Spfmnuncrq- und Verfounungqblldes
beim Knickvorgang » — Abb. 3 seines Berichtes — berulht auf unzutreffender

Annahme der Eutlastuu oszonen an der konvexen Seite anfanglich schwach
gelriimmeter, mit lemermann schen Fehlerhebeln behafteter Stibe, was el
mcht zu krummen Stiben bis zur Knicklast nicht erfolgt. Fur den Grenzfuall
z.B. der Rein'schen Betrachtung, fiir den genau geraden, zentrisch belasteten
Stalb treten bis zum Iirreichen der Knicklast olfensichtlich keine solchen
Rein'schen Spannungsentwicklungen auf, sondern die Spannungen lagern
sich fiir die verschiedenen Spannungsstulen iiber den Quer schnitt crlelchmdc.—
sig und linear. Wird dies beriicksichtigt, so ergibt sich, dass auch im Sinne
7nnmennanns die Knicklast nach EII”‘G:’;S@[—J&‘%ID%]U I&drmcm einem Maximum
entspricht, somit A T kleiner als Null oder im Grenzfall = O sein muss, im
Gegensatz zu Rein, welcher im unelastichen Bereich A T grosser als Null
findet. '

Diz Kunicktheorie nach Engesser-Jasinski-Karman setzt ideale Verhilinisse
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voraus. Zweck der Versuche ist, die Richtigkeit dieser idealen Voraussetzun-
gen zu tberpriifen.

Die Niohtbeachtung der angefithrten Umstinde fithrte zur nicht zutreffenden
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Fig. 2.
Comparaison des courbes de E. Chwalla (lignes grosse) et de Ro$-Brunner (lignes fines)
Vergleich der Kurven nach E. Chwalla (dicke Linien) und nach Ros-Brunner (diinne Linien)
Comparison of curves according to E. Chwalla (thick lines) and Ro¢-Brunner (thin lines)

Slenderness ralio

.

Verallgemeinerung der Korrektur des Knickmoduls T fiir zentrisches Knicken
— Abb. 42 des Rein’schen Berichtes.

b a

stness

=

Lompression

Druckspannung — Compression

Compressron ]
Druckspannung — Compression stress

p.y A
Raccouncrssement specifigue Raceouncissernent specifique
Bezogepe Verkirzung Bezogene Verkdrzung
Jpecific Shartening Jpecific  Shorfening
Fig. 3. — A = Différence des raccourcissecments des fibres extrémes.
A = Unterschied der Verkiirzungen der Raudfasern.

A = Difference in shortening of the outer fibres.

Zu Prof. Dr. F. Hartmann.

Dem von Herrn Prof. F. Hartmann bezogenen Standpunkte zu den Aus-
fihrungen von Prof. M. Broszko und Prof. W. Rein, das Knickproblem
betreffend, stimmen wir zu, da sich seine grundsitzliche Stellungnahme mit
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der von uns zuerst im Jahre 1922 schriftlich niedergelegten Auffassung in
dem an die Technische Kommission des Verbandes Schweiz. Briickenbau-
und Eisenhochbau-Fabriken unterbreiteten Berichte « Ueber das Problem der
Knickung », sowie in den Auslihrungen der spiteren, an den Internationalen
Kongressen in Wien (1928) und Paris (1932) unterbreiteten Berichte deckt.

Zu Prof. Dr. E. Chwalla.

Das fiir die Praxis wichtigste Ergebnis der sehr eingehenden theoretischen
Untersuchungen von Chwalla, welche auf Grund des Ziircher Druck-Stau-
chungsdiagrammes fiirnormalen Bauslahl abgeleitet wurden, sind in der Abb. 2
graphisch zur Darstellung gebracht. Die von Chwalla abgeleiteten Knick-
spannungslinien fir zentrisches und exzentrisches Knicken stimmen mit den
von Ros$-Brunner zugeordneten, theoretisch abgeleiteten und versuchstechnisch
uberpriiften Kurven sehr gut iiberein. — Abb. 2 — Auch beim Niherungs-
verfahren nach Ros$-Brunner ist diese Uebereinstimmung eine gute.

Chwalla legt seinen Ableitungen den jeweiligen Zweig des Druck-Stau-
chungs-Diagrammes, ohne Entlastungsbereich zugrunde — Fall a — Abb. 3,
wihrend wir far die Aufstellung unserer Knickspannungslinien fir exzen-
trisches Knicken zuerst das Anwachsen der zentrisch wirkenden Knickkraft
mit nachtriglichem Hivzutritt der Exzentrizitit (Biegungsmoment) voraus-
setzten, Fall b — Abb. 3 —.

Beide Annahmen sind nicht streng richtig. Ueber den sich daraus ergeben-
den Unterschied wurde anlisslich der Wiener Diskussion berichtet. Fir
Grundspannungen (Schwerpunktspannungen) bis zur Proportionalititsgrenze
sind die Knickspannungen fir beide Fiille a und b einander genau gleich ; fir
Grundspannungen zwischen der Proportionalitits- und TFliessgrenze sind
die Unterschiede belanglos und erst beim Ueberschreiten des Fliesshereiches
wird dieser Unlerschied merklich. Fur geringere Exzentrizititen ist dem Ver-
fahren von Ros-Brunner (T.K.V.S.B.-Verfahren) der Vorzug einzuridumen.
[Im Sonderfall des zentrischen Knickens eines urspriinglich geraden Stabes ist
das Verfahren Engesser-Jasinski-Karman genau. Fir grossere Exzentrizititen
dagegen ist die Annahme von Chwalla zutreffender. Zwischen diesen beiden
Grenzfillen liegt die Wirklichkeit.

Zu Prof. L. Baes.

Die Ausfihrungen von Prof. L. Baes betreffend den logischen Zusammen-
hang zwischen der Unstetigkeit der Engesser-Jasinski-Karman'schen Knick-
spannungslinie und der Labilitit des Druck-Stauchungsdiagrammes beim
Erreichen der Fliessgrenze sowie beim Durchschreiten des Fliessbereiches bei
Konstruktionsstihlen, fanden unsere Zustimmung bereits durch das Schluss-
wort an der Wiener Diskussion — Seite 342 —.

Herr Prof. Mesnager lenkt die Aufmerksamkeit auf die theoretische Studie
von R. Chambaud, Paris « Le flambement des pieces rectilignes a charge
excentrée » Congreés international de Liége 1930. Die theoretischen Werte
der Knicklasten von I-Triigern No 22 und 32 nach Chambaud fiir drei ver-
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. ; [ :
schiedene Schlankheitsgrade - 65, 120 und 160 stimmen mit den Versuchs-

werten von Ziirich sehr gut iberein. Fir den Bereich der Proportionalitiit
sp = 1,9 t/em?  fiir welchen die Betrachtungen von Chambaud gelten, ist
diese Uebereinstimmung eine sehr gute. Die Abweichungen zwischen Theorie
und Versuch bewegen sich zwischen 3 °/, und 8 °/,.

Durch die theoretischen Untersuchungen von Chambaud haben die theore-
tischen T.K.V.S5.B. Kurven eine weitere Bestitigung ihrer technischen
Richtigkeit erhalten.

Abschliessend seien die Grundlagen des T.K.V.S.B. — Verfahrens von
Ros-Brunner zusammengefasst.

Die Voraussetzungen, welche den theoretischen Ableitungen zugrunde lie-

gen, sind im Pariser Vorbericht ausdriicklich hervorgehoben -— Seiten 57 und
58 —. Nicht berticksichtigt wurden der Grasshof’sche Effekt und der Einfluss
P
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der Querkrifte, in klarer Erkenutnis deren praktischer Belanglosigkeit auf die
Iindergebnisse fur Stibe der Konstruktionspraxis.

Die unter diesen Voraussetzungen abgeleiteten theoretischen Ergebnisse
sind nicht als die mathematisch strenge, genaue Lésung des Knickproblems
zu werten. Es kommt ihnen die Bedeutung eines fiir die Zwecke der Technik
ausreichend genauen, in seinem Aufbau klaren Niherungsverfahrens zu.

Line strengere Losung des Knickproblems, in weilestem Sinne, wurde
von uns bereits im ersten Berichte « Ueber das Problem der Knickung »
der T.K.V.S.B. Kommission im Jahre 1926 unterbreitet, angewandt und in
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den Kongressberichten von Zirich (1926) und Paris (1932) nochmals hervor-
gehoben. Die Integration der Dilferentialgleichung der Biegelinie
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Fig. 5. — Comparaison des trois courbes : sinusoide, segment de la sinusoide et ligne de flexion
effective déterminée d'aprés la méthode de Mohr-Vianello.

Vergleich der drei Kurven : Sinuslinie, Zweig der Sinuslinie und effeklive Biegelinie, bestimmt-
nach dem Verfahren von Mohr-Vianello.

GComparison of the three curves : sine curve, part of sine curve and actual bending curve, deter
mined by the method of Mohr-Vianello.

nach dem Verfahren von Mohr-Vianello, d. h. die Erfallung der durch die

Differentialgleichung ausgedriicklen Gleichgewichts- und Verformungsbedin-

gungen, gibt die strenge Losung des Knickproblems. Dieses genauere

Verfahren ist nur aul dem Wege der graphischen Integration, wie sie

auch Karman fir den Fall sehr geringer KExzentrizitit (Exzentrizitatsmass
el T

m = ~ — — —— ) durchfithrte, moglich. In klarer Erkenntnis der Umstind-
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lichkeit, mit welcher das genaue Verfahren behaftet ist, wurden die vorer-
withnten, die Losung des Problems vereinfachenden, technisch zulissigen
Annahmen gemacht, inshesondere die Biegelinie als Sinuslinie vorausgesetzt.

Auf Grund der nach diesem Niherungsverfahren (T.K.V.S.B.- Verfah-
ren) gewonnenen Ergebnisse, welches mit dem genaueren Verfahren sehr gur
itbereinstimmende Resultate ergibt — Abb. 2 —, wurde das unter Punkt 5
der Schlussfolgerungen des Pariser-Berichtes angegebene, abgekiirzie, verein-
fachte Verfahren abgeleitet. — Siche auch Abh. 7 des Hauptberichtes.

Sowohl das umstindliche, genaue Verfahren als auch das einfachere Niihe-
rungsverfahren ermoglichen nicht nur die Knickstabilitat einzelner Konstruk-
tionsglieder, sondern auch ganzer Tragsysteme zu ermitteln.

Bei allen unseren Untersuchungen wahrten wir das Wesen des Knickens
als Stabilititsproblem und legten grossten Wert auf Einfachheit und Klarheit,
sowie auf eine physikalisch richtige Darstellung des Knickvorganges, um
namentlich auch der Konstruktionspraxis in Fragen der Tragfihigkeit und

Verformung gedriickter Stibe 1m elastischen und plastischen Gebiet niitzlich
zu dienen.

Der Fall des zentrischen Knickens ist von uns auch als Sonderfall des exzen-
trischen aufgefasst worden. Als eindeutiges Kriterium fiir die Knicklast gel-
ten die auf der Abb. 4 dargestellten Beziehungen M, = M; und A M, =AM,
welche das fiir den Knickzustand charakteristische indifferente Gleichgewicht
fir sehr kleine Pfeilverinderungen A/ der Biegelinie zum Ausdruck bringen.
Die Erfiillung dieser beiden Bedingungen ist das einzig richtige Kriterium der
Knickstabilitat. — Abb. 4. Andere Erscheinungen, wie Lrstes Auftreten blei-
bender plastischer Verformungen, oder Beginn von Entlastungen an der kon-
vexen Stabseite, konnen, weil unzutreffend, nicht als Charakteristiken fur den
Grenzzustand der Knickstabilitdl gewertet werden.

Prof. Th. v. KArman gab wohl als erster die Losung des Knickproblems
bei exzentrischem Kraftangrifl, wobei er den die Knicklragkraft vermindernden

Einfluss dusserst geringer Exzentrizititen (m ~ 1—17 hisl—;ﬂ— der Stab-Kernweite)
im Zusammenhange mit dem zentrischen Knicken verfolgte. Unser Ziel war
aber, neben erkenntnistheorelischer Iorschung namentlich das Problem der
Knickstabilitat bei ausgesprochenen, stirkeren exzenlrischen Kraftangrilfen,
wie sie in der Konstruktionspraxis vorkommen, zu losen, angeregt durch die
in der Schweiz. Bauzeitung bereits im Jahre 1899 — Bd. XXXIII, Seite 159 —
erfolgte Verslfentlichung @iber die « Berechnung eines auf exzentrischen Druck
beanspruchten Stabes » von René Koechlin (Paris), sowie durch die Ein-
fithrung der Koechlin'schen Graphikons in die Konstruktionspraxis durch
Herrn Oberingenieur . Ackermann, Kriens-Luzern.

Traduction.

En réponse aux observalions de MM. M. Broszko (Varsovie), F. Hartmann
(Vienne), E. Chwalla (Brno), L.. Baes (Bruxelles) et A. Mesnager (Paris), con-
cernant la discussion de notre mémoire, j'ai 'honneur de présenter, en mon
nom personnel ainsi qu'au nom des collaboraleurs scientifiques du L. I. E. M.,
MM. J. Brunner et A. Eichinger, les remarques suivantes :
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Prof. M. Broszko.

Toutes les publications de M. Broszko parues jusqu’a ce jour sur la « Solu-
tion générale du probleme du flambage », ainsi que ses affirmations lors des
discussions des congrés de Vienne (1928) et Paris (1932), se basent sur des

déductions mqthemathueq erronées et sur des suppos1t10ns fausses au point
de vue physique.

Dans la conclusion de notre rapport pour le congrés de Vienne (Iidition
Julius Springer, Vienne 1929), aux pages 338-343, nous avons prouvé 'erreur des
déductions mathématiques de M. Broszko, qui se basaient alors sur les mémes
principes physiques de la théorie d'Engesser-Jasinski-Karman. En mai 1931,
nous remettions & M. Mesnager, membre de I'Institut de France, l'intégra-
tion mathémalique exacte de 'équation initiale de Broszko sur laquelle repose
sa théorie (Comptes rendus des séances de I’Académie des Sciences 1923 —
vol. 186, page 1041 —), et nous apportions la preuve que la solution de
Broszko, du fait d'une erreur mathématique, était fausse, tandis que la solu-
tion exacte correspondait parfaitement a celle d’Engesser-Jasinski-Karman.
L'inexactitude de la résolution que donne Broszko de 1'équation initiale a été
également prouvée par le D' J. Fritsche de Prague — voir le « Bauingenieur »
1930, cahier 17, pages 298-300 —. « Le calcul de la charge de flambage d'une
barre rectiligne dans le cas ot la formule d’Euler n’est pas valable ». D’autre
part la théorie de Broszko a été réfutée par les prof. E. Chwalla et P. Fillun-
ger (Rapport du 2¢ Congrés international des Ponts et Charpentes, Vienne
1928, pages 613 et 630). Les principes physiques sur lesquels s’appuie Broszko
dans sa publication de Paris sont identiques & ceux d’Engesser-Jasinski-Kar-
man, mais Broszko critique déjé\ dans sa contribution a4 la discussion du Con-
gres de Vienne (1929) les principes physiques de la théorie du flambage d'Enges-
ser-Jasinski-IKarman en déclarant que la loi du module d’ elastlclte n'est pas
valable pour la répartition des tensions dans la zone allégée (au moment du flam-
bage) de la barre subissant un fléchissement virtuel; il fait de méme plus tard au
Congrés de Paris (1932), en présenlant ses considérations sur la déppndance
entre la grandeur des déformations et leur vitesse. Broszko s’appuie pour cela
sur les ref;ultats expérimentaux, dailleurs exacts, d’Ewing, en prenant, pour
prouver la justesse de sa théorie, les valeurs hmites des vitesses de déformation
qui n'entrent absolument pas en considération, ni pour les zones chargées, ni
pour les zones allegees dans la stabilité statique du flambage dont il est unique-
ment question ici et qui intéresse en tout premier lieu la prathue de la cons-
truction. En réponse & la premiére critique, on peut dire qu’en réalité la loi
des déformations et tensions suit la loi de D'élasticité pour les allégements
réels qui se produisent avec les vitesses de déformation en questlon Le maté—
viau conserve son noyau élastique, comme le prouvent les essais d'une facon
indubitable.

[influence de la durée et de la vitesse des déformations n’a été introduite que
postérieurement par Broszko et n’est renfermée en aucune fagcon dans ses équa-
tions mathématiques fondamentales.

La formule de Broszko donnant la charge de flambage Py pour la compres-
sion centrée :
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repose sur des déductions mathématiques fausses et sur des principes phy-
siques inexacts. Cette théorie donne, par hasard, pour le fer, des valeurs uti-
lisables : pour d'autres matériaux, par exemple les métaux légers, elle est en
contradiction avec les résultats des essais (fig. 1).

Le prof. Broszko, pour prouver I'exactitude de sa théorie du flambage, cite
les essais faits pour déterminer les tensions de flambage pour dillérents aciers
de construction, essais sur la base desquels le prof. W. Rein a rédigé un
mémoire (Rapport de la Commission des essais de constructions métalliques
du D. St. V., édition J. Springer, Berlin, 1930). Nous avons déja, dans le livre du
Congres de Vienne, page 345, exprimé notre opinion & propos des observations
du prof. Memmler en nous déclarant d’accord avec elles. Les résultats des
essais de Berlin s’accordent bien, lorsqu’on les interpréte logiquement, avec
les déductions théoriques et les essais de Zurich.

Nous ne sommes par contre pas tout a fait d'accord avec les déductions théo-
riques du prof. Rein. La théorie du bras de levier compensateur (théorie de
Zimmermann) pour les barres & faible courbure initiale, est exacte dans le
domaine élastique ; dans le domaine plastique, la solution exacte olfre des dil-
ficultés qui ne peuvent étre surmontees qu'a 'aide de suppositions qui ne sont
pas rigoureusement justes.

La correction que Rein apporte i la théorie du flambage et qu’il exprime
sous forme d'un terme additionnel AT pour le coefficient de flambage d'En-
gesser-Jasinski-Kdarman (correction appliquée lors du « développement exact
des figures de tension-déformation dans le processus de flambage », page 8
de son rapport),

D=
lk——-’ﬁz

n—1

AT = E T B

e
1

=

repose sur la supposition inexacte des zones allégées sur le colé convexe de
barres a faible courbure initiale et pourvues de leviers-compensateurs selon
Zimmermann ; pour les barres dont la courbure n’est pas trop prononcée, cetle
supposition ne répond pas a une réalité jusqu’au moment ot on atteint la charge
de flambage. Par exemple, pour le cas limite, ¢'est-a-dire pour la barre parfai-
tement rectiligne comprimée par des forces centrées, on ne conslale, jusqu'au
moment ott la charge de flambage est atteinte, aucune répartition des tensions
d’apres Rein, mais pour tous les degrés de charge les tensions se répartissent
uniformément et linéairement sur la section. En tenant compte de ces faits, il
résulte. que méme dans le sens ol le comprend Zimmermann, la charge de
flambage déterminée d'aprés Engesser-Jasinski-Karman correspond & un
maximum, c'est-a-dire que A T est plus petit que 0 ou, au plus, égal a 0,
contrairement a ce qu'indique Rein, qui trouve que A T est plus grand que 0
dans le domaine 1nélastique.

La théorie du flambage d’Engesser—Jasinski-l(al'mén suppose l'existence de
conditions idéales. Le but des essais doit étre de controler I'exactitude de ces
suppositions.
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[ inobservation des conditions indiquées conduisit & une géndralisation
non fondée de la correction du module de flambement T pour des charges
centrées. Iig. 42 du mémoire de Rein.

Prof. IF'. Hartmann.

Nous approuvons le point de vue que prend le prof. I'. Hartmann V1$-8-V1s
des théories du prof. M. Broszko et du prol. W. Rein concernant le flambage,
étanl donné que le principe adopté par M. Hartmann correspond a la concep-
tion que nous avons déja exprimée par éerit en 1922 dans notre rapport a la
Commission Technique de I’Association Suisse des Ponts et des Charpentes
Métalliques, « Contribution & I'litude du Probleme du Flambage », puis, plus
tard, dans nos mémoires présentés aux Congres internationaux de Vienne (1928)

et de Paris (1932).

Prof. E. Chwalla.

Les résultats si importants des recherches théoriques tres complétes de
Chwalla, découlant du diagramme compression-déformation proposé par Zurich
pour l'acier doux de construction, sont reportés graphiquement sur la fig. 2.
Les tensions de flambage que Chwalla a trouvées pour le flambage sous charge
cenlrée et excentrée, correspondent trés bien aux courbes théoriques de Ros-
Brunner, controlées expérimentalement (fig. 2). En utilisant la méthode dap-
proximation de Ros-Brunner, la concordance des résultats est aussi satis-
faisante. Chwalla base ses calculs sur le segment correspondant du diagramme
compression-déformation, sans tenir compte de l'allégement — cas a, fig. 3 —;
nous supposons par contre, lors de I'établissement des courbes des tensions
de flambage sous charge excentrée, que laccroissement de la force de flam-
bage agissant centriquement intervient d’abord, tandis que l'apparition de
1'excentricité (moment de flexion) n'a lieu que plus tard — cas b, fig. 3 —.

Aucune des deux suppositions n'est parfaitement exacte; nous avons exa-
miné, lors de la discussion du Congrés de Vienne, les dillérences qui en
résultent. Pour les tensions initiales (tensions au centre de gravité) Jusqu'a la
limite de proportionnalité, les tensions de flambage sont exactement les mémes
dans les deux cas a) et b); pour les tensions initiales comprises entre la limite
de proportionnalité et la limite d’écoulement, les différences sont sans impor-
tance ; ce n’est qu'aprés avoir dépassé la limite d’écoulement que les dilférences
deviennent sensibles. Pour de faibles excentricités, on donnera la préférence a
la méthode de Ros-Brunner (Méthode T.K. V.S. B.). Dans le cas particulier du
flambage par charge centrée d'une barre rectiligne, la mdéthode d'lingesser-
Jasinski-Karméan est exacte. Pour des excentricités plus grandes, la supposition
de Chwalla est, par contre, plus juste. Entre ces deux cas limites se trouve la
réalité.

Prof. L. Baes.

Les remarques du prof. L. Baes, concernant la corrélation logique entre la
discontinuité de la courbe des tensions de flambage d'Engesser-Jasinskl—Kér—
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man et l'instabilité du diagramme compression-déformation lorsqu’on atteint
ou qu'on dépasse la limite d’écoulement des aciers de construction, ont déja
trouvé notre approbation dans les conclusions de la discussion de Vienne
— page 342.

M. Mesnager a attiré notre attention sur I'étude théorique de R. Chambaud,
Paris, « Le flambement des piéces rectilignes a charge excentrée », Congres
international de Liége, 1930. Les valeurs théoriques des charges de flambage

des poutres I NP 22 et 32 selon Chambaud, pour les degrés d’élancement g ==

65, 120 et 160, correspondent parfaitement aux valeurs expérimentales de
Zurich. Jusqu'a la limite de proportionalité ¢, = 1,9 t/em?2, limite pour laquelle
les valeurs de Chambaud sont valables, la concordance est excellente. Les
éearts constatés entre la théorie et I'expérience varient de 3 a 8 °/,.

Grice aux recherches théoriques de Chambaud, les courbes théoriques de la
T. K. V. S. B. obtiennent une fois de plus confirmation de leur exactitude
technique.

Pour terminer, nous résumerons les principes de la méthode de Ro$-Brun-
ner (méthode T. K. V. 5. B.).

Les suppositions sur lesquelles s’appuient les calculs théoriques sont for-
mellement exprimées dans le rapport de Paris (pages 57 et 58). On n'a
pas tenu compte de l'effet de Grashof et de 'influence des efforts tranchants,
en parfaite connaissance de leur peu d'importance pratique sur les résultats
finaux, pour les barres utilisées en construction.

Les résultats théoriques découlant de ces suppositions ne donnent pas la
solution mathématique exacte du probleme du flambage. Ils représentent une
méthode d'approximation dont la conception nous semble parfaitement
claire et dont 'exactitude suffit aux buts de la techmque

Nous avons déja présenté dans le premier mémoire « Contribution & letude
du probléme du flambage » de la Commission Technique du V. S. B. en 1926,
une solution plus rigoureuse du probléme du flambage; cette
solution a été communiquée en outre dans les mémoires des Congres de Zurich
(1926) et de Paris (1932). L'intégration de l'équation différentielle de la ligne
de flexion :

d?y M
de? T J

selon la méthode de Mohr-Vianello, c¢’est-a-dire le fait de satisfaire aux con-
ditions d’équilibre et de déformations exprimées par cette équation différen-
tielle, fournit une solution plus rigoureuse du probleme du flambage. Cette
solution n'est possible, comme I'a démontré Karman pour le cas de trés faibles
il 1

=17 170

nement conscients des difficultés que présente lapplication de la méthode
exacte, nous avons introduit des suppositions admissibles au point de vue tech-
nique pour simplifier la résolution du probléeme, en considérant en particulier
la ligne de flexion comme une sinusoide. Etant donné que les résultats obte-
nus 4 'aide de cette méthode d’approximation {méthode T. K. V. S. B.) corres-

excentricités (m qu’au moyen d’une intégration graphique. Plei-
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pondent tres bien aux résultats qu'on obtient avec la méthode exacte “(fig. 2),
nous avons introduit la méthode simplifiée et rapide commentée sous
chiffre 5 des conclusions du mémoire de Paris (voir aussi fig. 7 de ce
mémoire). Les deux méthodes, méthode exacte et méthode d’approxima-
tion, permettent de calculer non seulement la stabilité au flambage d’élé-
ments de construction isolés mais aussi celle de systémes entiers.

Au cours de toutes nos recherches, nous sommes partis du principe que le
flambage est un probléme de stabibilité el nous avons recherché la simplicité,
la clarté et une représentation fidéle, au point de vue physique, du processus
du flambage ; nous espérons de cette facon avoir pu servir utilement le cons-
tructeur lorsqu’il a & s’occuper de la résistance et de la déformation de barres
comprimées, sollicitées jusqu'a la limite d’élasticité ou au-dessus.

Nous avons considéré le flambage par charge centrée comme un cas parti-
culier du flambage par charge excenltrée. Les relations M, = M;et A M, = A M;
(fig. &) représentent un critérium indiscutable pour la charge de flambage ; ces
relations expriment I'état d’équilibre indifférent, caractérislique de 'état de
flambage, pour une augmentation trés petite A f des fleches de la ligne élas-
tique. En satisfaisanl & ces deux conditions, on a un critérium parfait, le seul
exact de la stabilité au flambage (fig. 4). D'autres phénoménes tels que
la premicre apparition des déformations plastiques permanentes ou le début de
I'allégement surle coté convexe de la barre, ne peuvent étre considérés comme
caractéristiques pour I'état limite de la stabilité au flambage.

Le prof. Th. v. Karman a ete le premier & présenter une solution du pro-
bleme du flambage sous charge excentrée en étudiant la diminution de la force

de flambage sous linfluence d’excentricités tres faibles (m oo T7 jusqu’a T%
de la grandeur du noyau). Notre but a été en outre la recherche théorique, la
résolution du probleme de la stabilité de flambage dans le cas ou la force pré-
sente une excentricité plus grande et bien caractérisée, telle qu'on en rencontre
en construction. Nous avons élé attirés dans cette voie par le mémoire de
René Koechlin (Paris), « Le calcul d'une barre sollicitée par des efforts de
compression excenlrée », paru dans la Schweiz. Bauzeitung des I'année 1899 —
Vol. XXXIII, page 159, et du fait de l'introduction du graphique de Koechlin
dans la pratique par M. I. Ackermann, ingénieur en chef & Kriens-Lucerne.
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I3

LA STABILITE DE L'AME ET DES AILES DES BARRES COMPRIMEES.
DIE STABILITAT DUNNER _WA'NDE GEDRUCKTER STARBE.
STABILITY OF THE WEBS AND THE FLANGES OF COMPRESSED BARS.

Dr. Ing. F. BLEICH, Baurat, Wien.

Voir aussi « Publicalion Préliminaire », p. 107. — Siehe auch « Vorbericht », S. 107.
; See also ‘¢ Preliminary Publication ", p. 107,

Dr. F.. BLEICH !,

Baurat h. ¢., Wien.

Die in meinem Bericht in der Zusammenstellung angefiihrten Bemessungs-
regeln sind aus einer Differentialgleichung gewonnen, die der Voraussetzung
Rechnung trigt, dass eine in einer Richtung iiber die Elastizitiatsgrenze gezo-
gene oder gedriickte Platte sich orthotrop verhalt. Die bekaunten Versuche
von Ros und Eichinger weisen auf quasiisolropes Verhalten auch bei Ueber-
schreiten der Elastizitatsgrenze hin. Neuere Versuche, auf die Hohenemser 2 auf-
merksam macht, lassen in gewissen Fallen auf ein Abweichen von der Isotro-
pie schliessen. Nimmt man die Quasi-Isotropie als feststehend an, so bietet die
von den Herren Lichinger und Ros mitgeteilte Differentialgleichung mit dem
vorangestellten Plattenknickmodul eine einwandfreie wissenschaftliche Grund-
lage fiir die Losung des Stabilititsproblems der Platte. Ersetzt man nach dem
Vorschlage des I[lerrn Schleicher den Plattenknickmodul durch den Iingesser-
Karman-Modul, so erhilt man eine nur einige Hundertteile geringere Tragfi-
higkeit der Platte im unelastischen Bereich, so dass diesem Vorschlage vom
Standpunkt der Gewinnung einfacher Bemessungsformeln nur zuzustimmen
1st. Iis darl aber nicht tibersehen werden, dass bei sehr kurzen Stiben, wie sie
im Briickenbau hiutig genug vorkommen, bei Schlankheiten zwisclien 20
und 40 die Formel des Herrn Schleicher bei IForderung gleicher Sicherheit
gegen Ausbeulen wie gegen Ausknicken des ganzen Stabes fir das Verhiltnis

b : i : : : .
< Ergebnisse liefert, die bei abstehenden Winkelschenkeln bei = —= 30 2. B.
3 i
s S el R geg o L ]
das Verhiltnis — = 6, bei - = 40 das Verhaltnis= — 8 ergibt. Die gleichen
) ! S

Zahlen gelten auch fir die Stege von T —f(',')rmigen Gurtquerschnitten. Tat-

siichlich liegen die Verhaltnisse aber so, dass bei kurzen Stiben auch die wirkli-
chen Randbedingungen an den schmalen gedriickten Seiten der Platte nicht
ganz ohne Linfluss auf die Tragfihigkeit der Platte sind und diese nicht unwe-
sentlich erhohen.

L. Die hier wiedergegebenen Ausfihrungen beziehen sich zum Teil auf noch folgende
Referate.

2. Hohenemser u. W, Prager, Beitrag zur Mechanik des bildsamen Verhaltens von

Flusstahl. Z. A. M. M. 1932, S. 1.
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Diese Ueberlegungen waren es, die mich veranlassten, iiber die unter
Annahme der Orthotropie abgeleiteten Formeln zu berichten, obwohl ich die
Einwinde kannte, die auf Grund der Versuche von Ro$ und Eichinger gegen
die die Grundlage bildende Differentialgleichung erhoben wurden 1.

Ich habe mich in meinem Bericht auf die Versuche bezogen, die anlisslich
des Baues der Quebecbhriicke durchgefithrt wurden. Herr Schleicher bezwei-
felt die Beweiskraft dieser Versuche, mit dem Hinweis, dass fur die Versuchs-
stibe stahlartiges Material von 4,79 t/cm? Festigkeit mit einer Streckgrenze
von rd. 3,0 t/em? verwendet wurde, wihrend meine Formeln fiir tibliches

Flusseisen von o = 4.5 t/cm? gelten. Das Material, das Tetmajer liir seine
Versuche beniitzte, wies Iestigkeilen zwischen 3,74 t/em? und 4,28 t/cm?
und Streckgrenzen zwischen 2,82 t/fem2und 3,07 t/cm? mit o5 = 2,99 t/cm?

im Mittel auf. Beide hier erwihnten Werkstofle zeigen sehr nahe beieinander
liegende Streckgrenzen, sodass ich mich wohl berechtigt glaubte, die ameri-
kanischen Versuche zum Vergleich mit den in meinem Bericht angelithrten
Formeln heranzuziehen. Der Hinweis des Herrn Schleicher, dass der Elaslizi-
titsmodul X des amerikanischen Materiales 2000 t/cm?2 betrug, wihrend Tet-
majer diesen Modul i. M. mit 2150 t/em 2 festgestellt hat, ist ohne Bedeulung,
da die Formeln fiir den unelastischen Bereich unabhingig vom Modul I sind
und dieser Modul nur ihren Geltungsbereich begrenzt. Im tbrigen bin ich der
Meinung, dass die in der Diskussion angeschnittenen Fragen nur durch
auslithrliche Plattenversuche endgiltig geklirt werden konnen.

Zum Schlusse mochte ich auf ein Versehen in meinem Berichte aufmerksam
machen. Die Ausgangsgleichung (2) gilt bei den angegebenen Randbedingungen
nur {ir eine ungerade Anzahl von Halbwellen, d. i. fiir n =— 1,3,5,... Sie
liefert daher nur die eine Hilfte der moglichen Knickspannungen. Die andere
Hallte die den spiegelsymmetrischen Verformungen entspricht, gewinnt man aus
dem ergiinzenden Ansatz

(2') w = sin Ilﬁ =

[

lA cosh k; y 4+ Ccosk, y]

Die Rechnungsergebnisse sind (rolzdem richlig, da die [ir den Ansalz (2)

giillige Beschrinkung im Laufe der Rechnung stillschweigend fallen gelassen
und beliebige Wellenzahlen n = 1,2,3,. .. zugelassen wurden.
Traduction?.

Les regles de calcul que contient le tableau figurant dans mon rapport sont
déduites d’'une équation dilférentielle dans laquelle 1l est tenu compte de cette
hypothése que la plaque se comporte d'une maniere orthotrope sous l'influence
des elforts de traction ou de compression s’exer¢ant dans une direction déter-
minée au-dessus de la limite d’élasticité. Les essais bien connus de Ros el
d'lichinger mettent en évidence un comportement quasi isotrope méme en cas
de dépassement de la limite d’'¢lasticité. De récents essais, sur lesquels Hohen-

. Siehe: E. Chwalla, Bericht iiber die II. Intern. Tagung fiir Briickenbau und Hochbau.
Wien, 1929. 5. 322.

2. Les observations ci-dessus se référent en partie & des mémoires publi¢s plus loin.
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emser attire l'attention?, permettent d’ailleurs de constater, dans certains cas,
des écarts par rapport a lisotropie. Si l'on admet la quasi-isotropie, I'équa-
tion dilférentielle établie par Ros et Kichinger constitue un point de départ
parfaitement scientifique pour la solution du probléme de la stabilité des plaques,
cette éruation faisant intervenir le module de flambage des plaques, tel qu'il
a été établi. Si Pon remplace le module de flambage des plaques par le module
de Karman-Engesser, ainsi que M. Schleicher I'a proposé, on obtient pour la
plaque, dans le domaine plastique, une capacité de charge inférieure de quelques
centiemes seulement ; on ne peut donc que se rallier & cette proposition, qui
permet d’'aboutir & des formules de calcul plus simples.

Il ne faut toutefois pas perdre de vue que pour des éléments de tres faible
longueur, tels que ceux que 'on emploie assez fréquemment dans la construc-
tion des ponts et pour des degrés d'élancement compris entre 20 et 40, la for-
mule de M. Schleicher qui implique la méme sécurité contre le voilement que
contre le flambage de I'élément dans son ensemble, conduit lorsque les ailes

b [ 3
sont écartées a des rapports < tels que pour - == 30 par exemple, - = b et
3 i 3
pour - = 40, l: — 8. On obtient les mémes chiffres pour les &mes des sections
i 3

de membrures ayant une forme en T. En fait, pour des éléments de faible lon-
gueur, les conditions effectives d la périphérie, sur les petits cotés comprimés
de la plaque, ne sont pas sans exercer une certaine influence sur la capacité
de charge de cette plaque, qu’elles améliorent dans des proportions appré-
ciables.

Ce sont ces considérations qui m’ont conduit & étudier les formules établies
en se basant sur 'hypothése de l'orthotropie; je n’ignore pas cependant I'ob-
jection qui s’est élevée contre I'équation différentielle qui en constitue la base,
objection qui repose sur les résultats des essais de Ros et d’Eichinger 2.

Je me suis basé, dans mon rapport, sur les résultats d’essais qui onl été
effectués a l'occasion de la construction du Pont de Québec. M. Schleicher émet
quelque doute sur la légitimité des conclusions que l'vn peut en tirer; il con-
sidere en effet que l'on a utilisé pour la constitution des éprouvettes destinées
4 ces essais un métal accusant une charge de rupture de 47,9 kg par mm?* et
une limite d’écoulement de 30 kg par mm? environ, tandis que les formules
que j'indique s’appliquent & un acier ordinaire accusant un op = 45 kg par
mm?2, Le métal que Tetmajer a employé pour ses essais accusait les caractéris-
tiques suivantes :

Charge de rupture entre 37,4 et 42,8 kg par mm?;

Limite d écoulement entre 28,2 et 30,7 kg par mm?;
avee o, = 29,9 kg par mm?, en moyenne. Les deux limites d’'écoulement indi-
quées ci-dessus sont trés voisines; ¢’est pourquol je me suis ciu fondé a établir
une comparaison entre les résultats des essais américains et les formules indi-

I. K. HoueNemser et W . Pracer, Beitrag zur Mechanik des bildsamen Verhaltens von
Flusstahl, —Z, A M .M., 1932, p. L.

2. Voir a ce sujet : E. CuwarLa, Compte Rendu du deuxicme Congrés International
des Ponts et Charpentes, Vienne, 1929, p. 322.
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quées dans mon rapport. M. Schleicher signale que le module d’élasticité E du
métal utilisé en Ameérique atteignait 20.000 kg par mm2, alors que Tetmayer
est arrivé, en moyenne, pour ce module & une valeur de 21.500 kg par mm?2,
Ceci est toutelois sans importance, car les formules qui s’appliquent & la zone
plastique ne dépendent pas du module d’élasticité I et ce module n’intervient
que pour limiter leur zone d'application. D’ailleurs, j'estime (ue les questions
soulevées dans la discussion ne sont susceptibles d’étre définitivement éclair-
cies que par des essais de plaques trés poussés,

Pour terminer, j'attirerai 'attention sur une erreur contenue dans mon rap-
port. L’équation de départ (2) n’est valable, dans les conditions indiquées pour
les bords de la plaque, que pour un nombre impair de demi-ondulations, c¢’est-
a-dire pour n = 1, 3, 5, ... Elle ne donne donc que la moitié des contraintes
de flambage possibles. On obtient 'autre moitié, qui correspond a des déforma-
tions svmt,tuque par l'opération comp]ementalr

D m X
W = sin [Acosh k; y 4+ Ccos k, y]
= 9}
Les résultats des calculs n’en sont pas moins exacts, car la restriction valable
pour la mise en équation de (2} a été implicitement laissée de coté dans le cours
du calcul et on aadmis des nombres d’ondulations arbitraires n = 1, 2, 3

Participants & la discussion.
Diskussionsteilnehmer.

Participants in the discussion.

Dr.-Ing. IF. SCHLEICHER,

Professor an der Technischen Iochschule Hannover.

[. — Weitere Versuche iber die Knickung von gleichmiissig
gedriickten Stahlplatten.

Eine interessante Versuchsreihe ist gelegentlich des Baues der Hangebriicke
zwischen Philadelphia und Camden durchgefihrt worden 1, 2.

Es handelt sich um mit Winkeln gesiumte Rechteckplatten von /= 88,9 cm
Gesamtbreite, bzw. 5 = 58,5 em zwischen den Saumwinkeln, a = 305 cm
Linge und Blechdicken 7 = 0,93 bis 3,80 cm. Die Platten waren an den
Langsrandern lose gefiithrt, das Material war Silizium-Mangan-Stahl von
s = 3,165 t/em? Quetschgrenze und g = 5,6 bis 6,7 t/cm? Zerreissfestigkeit.

Mit E = 2100 t/cm2, m = 10/3 ergibt sich die Knickspannung ox fir das

Seitenverhaltnis o« = 3,43 und mit n = 3 Halbwellen zu

1) oK = 7150(—5) n t/em?.

W. Scuacuesmeier, Die Delaware-River-Briicke zwischen Philadelphia und Camden.
Dm Bautechnik 1927, ‘selte 513.

. Clement E. Cuase, Research and experimental tests in connection with the design of
the l)udge over the Delaware Rlver between Philadelphia and Camden. Journal of the Frank-
lin Institute, Vol. 200, Oct. 1925, p. 417.



124 Premicre séance de travail

Far /) = 88,9 em erhilt man danach die folgenden Werle von oi. Die einge-
klammerten Spannungswerte liegen tiber der Proportionalititsgrenze und
bediirfen deshalb einer Reduktion.

Aus dem Bericht ? (S.123) sind die Werte « beohachtet o » entnommen.

h blh oK oK Bemerkung
theoretisch  beobachtet
958 U3 T 0,88 X knickt vorzeitig aus
il ATERRR T | 1,58 X » » »
15595610 2,47 X schon besser
1,90 46,8  (3,53) o, 20 s Querschnitt knickt als Ganzes.
AL it sl (6,30) (3,28 3.17) :
{ 3’09 371 \ » » »

330 235 M/l,]) 5,23 d 27 » ”» »
cm — t/em? t/cm?

Bei 14 Versuchen wurde die Durchbiegung w = w () als I'unktion der

Langsspannung gemessen. Bel den mit z bezeichneten Versuchen konnte keine
ausgepragte Stabilititsgrenze beobachtet werden, da die Platten schlecht gerich-
tet waren. Die Hochstlasten entsprachen fir 2 = 0,95 bis 1,59 em Spannun-
gen von etwa 2,8 t/em?, wobel die Ausbiegungen bereits ein mehrfaches der
Plattendicke betrugen. Abb. 1 zeigt zwei Versuche. Bei der diinnen Platte Gl

= nahm die Ausbiegung mit der Druck-
S kralt stetig zu, von einer Stabilitits-
' S grenze kann nicht die Rede sein. Dage-
i v ~ v/\ % | gen blieb sie bei den Platten von mehr
G ' i als 1,9 em Dicke, die besser gerichtet
7 h=09scm (3 0 Ve/j waren, klein und erreichte erst unfter
6 der gut ausgeprigten Knicklast grossere
Werte. Abb. 1 zeigt als Beispiel hie-
3 I

I fir den Versuch G7A mit einer Platte,
I die aus zwei 3/4 7 starken Blechen
}' | zusammengenietet wurde. Die Platten
G7A  h-3socm(2%) g MW mit h = 1,9 bis 3,8 cm knickten ohne
Fig. 1. — Ussais de Chase. Ddéformation des lr)‘ﬁCkSiCht aul die Plattendicke an der
plaquesen fouction de la charge = Versuche Que tSCth‘EI]Ze. Auszwel Platten zusam-
von ()'ha:c. Ausbiegung d'c‘r Pl‘tlue!l als mengenietete SteU'e erreichten die

Funklion der Belastung = Test by Chase. ¥ S A :

Bending of the slabs as afunetion of the load. glchhe hn]CkSP(lnnun‘r wie einzelne

Bleche von der doppelten Dicke.

Die anflanglichen Ausbiegungen hatten bet den Versuchen sluarken Einfluss.
Eine Bestimmung der Knickspannungen der Platten mit 2 << 1,90 cm war
besonders aus diesem Grunde nicht moglich. Es ist auch nicht bekannt, wie
weit sich die Stegbleche auf Kosten der vier Saumwinkel entlasteten. Dies
gilt besonders fu1 die ditnnen Bleche. Von Chase wird weiter bemerkt, dass
die Festiglkeitszahlen ftr die ditnnen Bleche hoher lagen, als fur die dlckeren
Platten.

Aus den Beobachtungen an den diinneren Platten kénnen also keine Schliisse
rezogen werden. Die Kurven fiic w = w (s) beweisen jedoch, dass die Ver-
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suche fir die dickeren Platten einwandfrei sind. Ein Vergleich mit der Theo-
rie des Herrn Bleich far die Knickung im unelastischen Bereich ist somit
zulassig. Bei den diinnen Blechen stellen sich die Ausbiegungen als Vergrésse-
rung der von vornherein vorhandenen Unebenheiten dar. Die dicken Platten
hatten eine gut ausgepriagte Knickgrenze und nach dem Ausbeulen 4 oder 5
Halbwellen. Eine Veriinderlichkeit der Wellenzahl mit der Plattendicke ist
nicht zu erkennen.

Nach der Theorie der 1sotropen Platte wirden o — \/FZ = 3,46 sowohl
3 als auch 4 Halbwellen auftreten konnen, und zwar fiir die gleiche Knick-
spannung. Die untersuchten Platten (« = 3,43) sind also gerade an der
Grenze. Wenn die Verallgemeinerung der Dilferentialgleichung fir den un-
elastischen Bereich zutreffen wiirde, (Vorbericht, S. 108)

: Qi w DE 2)4 w s. D2
2) ( 2 5esaVst )'*‘ﬁﬁZ“
misste ! die Anzahl n der Halbwellen mit ox zunehmen und die Beulenlinge
jedenfalls viel kleiner als die Plattenbreite sein. Dies ist aber nach Oblgem
nicht der Fall. Auch bei den Versuchen fir die Quebecbriicke ist die zu
erwartende Verkleinerung der Beulenldnge nicht zu beobachten?, sondern die
Wellenlinge stimmt im Wesentlichen mit der Plattenbreite tiberein.

Beniitzt man far die Berechnung der Knickzahl < die Gleichung von Tetma-
jer

3) ox = 3,1 — 0,014 (I/i)?, in t/em?,

die auch Bleich als Grundlage seines Vorschlags fir die Dimensionierungs-
formeln gebraucht, dann er“ehen sich Ixmckspannunoen die mit abnehmen-
dem b/l ansteigen. IMiir Platten aus normalem Stahl wire danach z. B. fur
die Werte b/h = 46,8 bzw. 23,5 ein Unterschied von rd. 20 °/, in den Knick-
spannungen zu erwarten.

Die Versuche von Chase gaben fiir alle Platten, die dicker waren als 1/50
der ganzen Plattenbreite, die Quetschgrenze als Knickspannung, ein Anwach-
sen mit der Plattendicke konnte far i > 5/50 nicht beobachtet werden. Aus
den obigen Versuchen muss also die Folgerung gezogen werden, dass die Tet-
majer- l*ormul bzw. eine ihr entsprechende (ﬂeichung, verbunden mit der
vemllgememerten Theorie von Bleich, keine geniigend genaue Ermittlung
der Knickspannung gestattet.

Zum Schlusse noch eine Bemerkung tiber die Randbedingungen an den Lings-
seiten der Platten. I'iir die Versuche von Chase 1st es unzulissig, die freie
Plattenbreite b etwa nur zwischen den Nietreihen oder den Winkelschenkeln
zu messen. Beim dritten Versuch wird mit 5’ = 58,5 cm Breite o8l = 5,75 t/cm?,
withrend der Versuch einen weit unter der Quetschgrenze hegenden Wert
ergab.

In der Abbildung eines der ausgeknickten Bleche (Chase, p. 420 oder

1. Man vergl. : II. Die Beulenlinge bei Knickung im unclastischen Bereich.
2. Man vergl. : Abb. 8 auf Seite 117 des Vorberichts oder R. Mayer, Die Knick(estigkeit,
Abb. 212 auf Seite 425 und Abb. 215 aul Seile 427
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Schachenmeier, S. 514) ist zu erkennen, dass die Beulen nicht durch die
Saumwinkel begrenzt sind. Eine nennenswerte Einspannung des Stegbleches
in den Saumwinkel war also nicht vorhanden. Diese Beobachtung entspricht
dem Vorschlag von Bleich (Vorbericht, S. 112, Tig. 3¢ und d). die ganze
Plattenbreite in die Rechnung einzufiihren.

Eine wirksame elastische Einspannung an den Réndern ist nur vorhanden,
wenn die einspannenden Konstruktionsteile nicht gleichzeitic mit der Platte
ausbeulen konnen. Im Normalfall sind gelenkig gelagerte Riander anzunehmen
und in die Rechnung ist die ganze Plattenbreite ohne Abziige einzufiihren.

II. — Die Beulenlinge bei Knickung im unelastischen Bereich.

Fiir eine an allen Randern frei aufliegende Rechteckplatte mit gleichmiissi-
gen Druckspannungen erhdlt man nach Bleich die Knickspannung cpl m
unelastischen Bereich zu 2

. e \/T( . A

oty ) {/_- PR
Darin bedeutet
: i [De e :
2) ool — 373 (]-)) , mit m — 10/3,

die Knickspannung einer Platte aus Material von unbegrenzt hoher Proportio-
nalititsgrenze bei quadratischen Beulen (n = «). Sie ist ebenso gross, wie die

Euler-Knickspannung eines Stabes aus dem gleichen Material mit der
Schlankheit

3) (bjh).
Die Knickzahl
olt
Ol Gl‘]uler

ist von Knickversuchen mit geraden Stiben zu entnehmen. Sieht man in er-
ster Anndherung davon ab, dass = nach der Theorie von K ngesser-Karman
von der Querschmttsform abhdngt so ergibt sich 1 als emdeutlge Funktion der
Knickspannung b, bzw. der zugeordneten Euler-Knickspannung o pyicr.

Das Minimum der Knickspannung im unelastischen Bereich

/I') min GD = l\l \/‘E
tritt ein, wenn die Beulenzahl n gleich

5) n = afi/:

1st 1. Die Beulenlanwe [ = a/n der ausgeknickten Platten ist also mit der Hohe

der Kmekspfmnunfren verinderlich, u nd zwar nimmt sie mit wachsender Plat-
tendicke ab.

1. Die Beulenzahl ist hier als stetig verinlerlich vorausgesetzt, wihrend sie in Wirklich-
keit nur ganzzahlige Werte annehmen kann. Das a])solute Minimum nach Gl. 4 tritt nur
ein, wenn « ein ganzzahliges Vielfaches der vierten Wurzel aus < ist. Ist das nicht der Fall,

dann sind die beiden henachbarten Werle n zu untersuchen und ch ist etwas grosser als

min O'Rl. Der Unterschied ist jedoch bei mehr als zwei Beulen praktisch ohne Bedeutung.
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Der Zusammenhang zwischen Beulenlinge und Plattendicke soll nachste-
hend niher verfolgt werden.

a) Legt man fir weichen Flusstahl zur Berechnung von = die Tetmajer-
Formel
6) of = 3,1 — 0,0044 3, m §/em?,

zugrunde, dann ist nach Engesser

op! /3,1 — oPI\2
7) = e I ( K) .

E \=. 0,011k

Beschrinkt man sich auf den Kleinstwert der Knickspannung, dann ist fir
Plattendicken h > bH/6%

8) wnofl = 3,1 1 2,282.10° (lﬁ) 2 \/ } 3.1 - 2,282.10-% (?)
13

L»

/i’2

)

in t/em?

2 b 4
9) v = 1,685 108 (min G})(l> : (T> Ll b/em?
v

AN

— 9,61,

In diesen Gleichungen ist nach dem Vorgang von Tetmajer und Bleich
I = 2150 t/em? gesetzt '. Die Anzahl n der Beulen ergibt sich damit zu

10) n = —8_%’1_u ,-L S, gk In tlem?
\/nin ob! b
! K
gegenitber n = « im elastischen Bereich (h << b/64). Fur verschiedene Plat-

tendicken ergeben sich nach Obigem die in Tabelle 1 zusamimengestellten
Werte.

Tabelle 1.

b = R A R B 10 o
min o)l == 2,202 9884 2,779 2,874 2,953 3,017 3,063 t/em

i 0,544 0,276 01041 0,0533 0,0232 0,00755 0,00152 —
i L T L e R G S G ol

b) Fiir Material mit ausgeprigter Quetschgrenze o.s, fiir das die Knickspan-
nung bei Stiben in einem grosseren Bereich der Schlankheit 7 mit s_g zusam-
menfillt, erhalt man folgende Zusammenhinge.

Ist die Knickspannung als Funktion der Stabschlankheit gegeben (Abb. 2),

11) cfg = GF{I (7),
so kann man die Knickzahl t aus
12) GP( — 7. GEuler

berechnen. Man erhilt

pl T2
13) Al CK 'S
' E&\=
1. Vergl. Breica, Theorie und Berechnung der eisernen Briicken, Berlin, 1924, S. 131,
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oder wenn man % durch Umkehrung der Gl. 11 ermittelt und in Gl. 13 ein-
setzt

ok |
G = 32 ([
Fiir die in Abb. 2 dargestellte off -Kurve sind einige Ergénzungen notwen-
dig. Wenn % > %p ist, gilt o = spuler und 1 = 1. In dem Bereich 7, < &

< kp, 1 < 1, in dem sich die Knickspannungen c‘I’{' < o.g mit % iindern, kann

‘man Gl. 11 umkehren und < als einwertige Funktion von P! berechnen.

Ik
Gleiches gilt fiir das Gebiet 7 < 1, bei Knickspannungen, die iiber der Quetsch-

grenze liegen,

\
N, 1
i \ sk > o.s.
\ - .
\ An den Grenzen %, und %, des mittle-
- 3 . . S e
& L) ren Bereichs stimmt die Knickspannung
: . . L
% mit der Quetschgrenze iiberein, ok =s.5.
Die zugehérigen Knickzahlen 7, und ¢
; o te] 1 2
ergeben sich zu
G.S )\1 3 2
14 Tg == = | —
) e E T ;
Die entsprechenden Plattendicken sind
e (/LB DB
5 - = —— ¢/ ==
T A b1z v/t 5
oz ‘ S Vo .
t ‘ . 1
o Fiiralle Werle 7, < © <<=, ist 6k = o.g.
1y ¢
= o i Da'n— = (ok)ifur z < = und'c >,
0 : M
' A1 Ae f\F _ A" bekannt ist, kann die Knickspannung
Fig. 2. — Représentation schémalique de la . Platt nittelbar &
relation entre la contrainte de flambage el le SELSH WSS BB LD
coefficient de flambage = Schemaltische | -~ =2 B /h\,
Darstellung des Zusammenhangs zwischen 16) i 5% e T "__(_ (_ 2
Knickspannung und Knickzahl = Diagrarm- 2,73\ b

matic representation of connectionbetween i :
- . s C < > \re
buckling stress and buckling coefficient, berechnet werden. Iir den Bereich

7 < < 1y kann man somit schliessen :
Wenn h, > h > I, ist, liegt die Knickspannung wegen =, <{t < 7, an der
Quetschgrenze, oP! = o5, und es gilt

K
243 ol e n b
Insbesondere fiir St 37 ergibt sich mit o5 = 2,4 t/em? und! E = 2150 t/em?®
.
18) =9 53 40 (%) und
19) S (’1)
Y b’
b/h = 36,9 wiirde dem Grenzfall = =— 1 der elastischen Beulung entspre-

1. Dieser hohe Wert wird eingesetzl, damit ein. Vergleich mit a) moglich ist.
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chen, wenn op mit o5 zusammenfallen kénnte, Fiir b/h = 28,4 wiire im Ver-
gleich zu der elastischen Knickung bereits die doppelte Beulenzahl zu erwar-

ten. Fiir dieselben Plattendicken wie in Tabelle 1 ergeben sich die nachstehen-
den Zahlen.

Tabelle 2.

bjh = 50 &0 30 95 20 15 10 I
oin off = 2,40 2,40 240 2,40 240 240 240 t/ems
. = 0,597 0,244 0,0773 0,0373 0,01526 0,00483 0,000953 —
pjai RO R olgs = 9 5T s L

Vergleicht man Tabelle 1 und 2, so erkennt man, dass sich die Werte n/x nur
wenig unterscheiden. Die Annahmen iiber die Knickspannungen beim Stal
sind also in weiten Grenzen von geringem Kinfluss auf die Beulenzahl. Diese
Zunahme der Beulenzahl mit steigender Plattendicke miisste aber bej Versu-
chen mit dicken Platten deutlich festzustellen sein. Die bisherigen Versuche
(mit bh/h = 23,5) lassen eine solche Abhiingigkeit nicht erkennen 1,

Bei der Beulung von ebenen Platten durch Schubspannungen liegen fiir
k> tp = 0,58 5p ithnliche Verhiltnisse vor, wie bei der Knickung durch gleich-
miissige Druckspannungen. Versuche von Bollenrath zur Bestimmung der
kritischen Schu])spannungen zeigten ebenfalls keinen Unterschied in der Beu-
lenlidnge fir elastische und unelastische Knickung. Bollenrath 2 sagt dariiber :
« Ein Unterschied in der Wellenlinge fiir elastische und unelastische Ausbeu-
lung war nicht festzustellen » und « Die Wellenlinge der Ausbeulung steht
in einem konstanten Verhiltnis zur Plattenbreite und erweist sich als unabhin-
gig von der Plattendicke und dem Werkstolfe ».

Der nach der Theorie von Bleich bestehende Zusammenhang
zwilischen Knickspannungen und Beulenlange im unelastischen
Bereich wird durch die Versuche nicht bestatigt.

Die hier angeschnittene Frage ist von grundlegender Bedeutung fir die

richtige Anordnung der Aussteifungen. Eine Klarung der Verhiltnisse ist
deshalb dringend notwendig.

HL == Beulung vou Platten im unelastischen Bereich.

Die Nachrechnung auf S. 118 des Vofberichts ist mit E = 2150 t/cm? durch-
gefithrt, wihrend fiir das betr. Malerial im Mittel nur E — 2000 t/ecm? ange-

1. Fiir den Grenzfall der sehr breiten Platte (@ - 0) geht die Knickspannung in
pl. _ el _
°Ko = °Ko- *
itber, worin Gfilu bis auf einen von der Querkontraktion abhiingenden Faklor die bekannte
Euler-Knickspannung eines Stabes von der Knicklinge a bedeutet. Dicse Uebereinstim-

mung ist jedoch kein Beweis dafiir, dass die Reduktion im unelastischen Bereich auch im
allgemeinen Fall zutrifft. :

2. I. Borrexnratu, Ausbeulerscheinungen an ebenen auf Schub beanspruchten Plalten,
Dissertation Technische Hochschule Aachen, 1928, Seite 11 bezw. 16.

9
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geben wird, Die Zerreissfestigkeit betrug ! 5,79 t/cm? Da die Gilligkeit der
Tetmajer-Formel auf Material mit weniger als 4,5 t/em? Zugfestighkeit be-
schrinkt ist 2, wiare mit der « Tetmajer-Formel fur Flusseisen von Stahlcharak-
ter » 3 zu rechnen. Beriicksichtigt man diese Umstinde, dann erhialt man eine
weniger gute Uebereinstimmung. Die von Bleich fiir den unelastischen Bereich
zugrunde gelegte Differentialgleichung entspricht orthotropen Platten. Diese
Voraussetzung « steht jedoch mit der Erfahrung in Widerspruch und fihrt zu
fehlerhaften, auf der Seite der Unsicherheit liegenden Ergebnissen » . 7
Schliesslich ist darauf hinzuwei-

3,5 \ sen, dass eine Verallgemeinerung
Yerm| Sk Ereats :
£ fir unelastische Beulung durch
i o]
) Schubspannungen  bisher fehlt,
30 = —\Q ebenso far alle anderen Bela-
\& “3*_ o ~ . r
\ > : stungsfalle.l< tr praktische Zwecke
\\ “{g ist man jedoch bereits heute ge-
25 = B T zwungen, die Abminderung der
Ye A S, Knicklasten im unelastischen
= Y £ . p
- \ \ Bereich in Rechnung zu
20 ’ stellen. Bis Theorie und
Versuchswesen weitere
Fortschritte gemacht ha-
15 ben, ist ein Weg zu su-
chen, um diese Wirkung,
4/ moglichst fir alle Tille
70 von Instabilitat, auf die
0 20 40 60 gleiche einfache Weise
Fig. 3. — Contraintes de flambage sur des plaques rectangu- 7y beriicksichtigen. Es
laires soumises a une comprcssion uniformément répartie, h lafi bf ] d
dans le domaine inélaslique = Knickspannungen gleich- ste el gt Olgcnat
miissig gedriickter Rechteckplatten im unelastischen Berecich M(’jghchkelten offen :
‘=RecLangulars!absundel‘uniformpressure;buckling stresses a) Entsprechend Gl 6
in the non-elastic zone. d :
Voile ¢lastique = Elast. Beulung = Elast. buckling. auf S.110 des Vorberichts

LR pl 7
1) min 0K = OKi \/T'
konnte man die unter Annahme unbegrenzt elastischen Materials berech-

neten Knickspannungen allgemein mit \/= reduzieren®. Die Abb 3 zeigt den
Verlauf der Knickspannungen nach Gl. 1, fiir eine gleichmissig gedriickte

1. R. Maver, Die Knickfestigkeit, Tabelle 39. S. 423.

2. L.v. Tervaser, Die Geselze der Knickungs- und der zusammengesetzien Druckfestig-
keit der technisch wichtigsten Baustoffe, 3. Aull. Leipzig und Wien, 1903.

3. R. Maver, Die Knickfestigkeit, S. 61, Formel fiir Flusseisen von mehr als 4, 5 t/em?
Zuglestigkeit.

k. E. CnwaLrra, Die Stabilitit zentrisch und exzentrisch gedriickter Stithe aus Baustahl.
Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathem .-naturw. Klasse,
Abt. Ila, 137. Band, 8. Heft, Wien, 1928.

5. Die Bezeichnung t fiir die « Knickzahl » kann zu Verwechslungen Anlass geben, wenn
sich die Stabilititsuntersuchung auf Belastungen durch Schubspannungen t bezieht. Es

empfiehlt sich, die Bezeichnung < fiir die Knickzahl zu vermeiden und nur-mit T =< E bzw
T/E zu rechnen.
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Rechteckplatte aus Flusstahl (St 37), als Funktion der Plattendicke
Die Kurve a, gilt, wenn /< aus der Tetmajer-Formel berechnet wird (Gl 8
von I, a), Kurve a, fiir eine den Reichsbahnvorschriften fiir St 37 entspre-
chende Knickspannungslinie, mit (b/h), = 45,3 (vgl. I1, b).

h) Man kénnte analog dem Vorschlag von Timoshenko firr den unela-
stischen Bereich der Kippspannungen von Balken (vgl. S. 134 des Vorberichts,
bzw. Abb. 3 auf S. 133) auch bei Platten einen geradlinigen Zusammenhang
zwischen « Schlankheit » h/h und Knickspannungen bl annehmen. Die Gerade
1st bestimmt durch die Elastizititsgrenze oy (besser Pr0portionalitiitsgrenze op)
und die Druckfestigkeit op, letztere vielleicht mit einem etwas ermissigten
fiktiven Betrag. Die Kurve 4 in Abb. 3 zeigt diese Gerade mit den Tetm ajer’-
schen Grenzwerten der Spannungen.

¢) Wenn die sk -Linie fiir Stibe  bekannt ist, kann man die unter Voraus-
setzung unbegrenzt elastischen Materials berechneten Spannungen ¢! bei Plat-

ten und Schalen im gleichen Verhaltnis wie die Euler—Knickspan—
nung bei Stiben reduzieren.

Dl el
2) o) = 1.0%.

Iur diesen Zweck braucht man nur die der gleichgrossen Euler—Spannung
entsprechende Vergleichsschlankheit

E
3) =7 e
Sk
zu berechnen und in die als bekannt vorausgesetzte Gl. 4 einzuselzen.
it
4) of = of (M)

Z. B. bei der gleichmissig gedriickten Rechteckplatte ist die Ersatzschlankheit 2
gleich
o)

&) %= 1,652 (b/h).

Die Kurve c¢in abb. 3 zeigt die Knickspannungen, wenn die Knickspannungs-
linie fir St 37 der Reichshahnvorschriften zugrunde gelegt wird.,

Fiir andere Spannungszustinde ist die Tohe der Beanspruchung nach der
Plastizititsbedingung 3 zu messen. 7. B. fiir Plattenknickung durch Schub-
spannungen oder Instabilitit von Zylinderschalen unter Torsionsbheanspru-
chung gilt bet dehnbaren Metallen

5) T8 — O,E)S oS bzw. Tp = 0,08 Gp.

1. Fir den vorliegenden Zweck ist o und < fiir Stibe von Rechteckquerschnitt zu benut-
zen. Ueber den Einfluss der Querschnitisform vergl. man F. Bleich, Theorie und Berech-
nung der eisernen Briicken, Berlin, 1929, Ne 35,

2. Man vergl. den Vorschlag von E. Cuwarra (S. 322 des Berichls tiber die II. inlernat.
Tagung fiir Britickenbau und Hochbau, Wien, 1928, fiir gleichmiissig gedriickle Platten
den Knickmodul allen drei Gliedern der Differentialgleichung zuzuordnen, bei Vernachlissi-
gung der Aenderungen der Poisson’schen Zahl m. Man erkennt, dass dieser Vorschlag
mit der Reduktion nach ¢) ibereinstimmt.

3. Man vgl. F. Scureicner, Ueber die Sicherheit gezen Ueberschreiten der Fliessgrenze
bei stalischer Beanspruchung, Der Bauingenieur (9), 1928, Heft 15.
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Bei allgemeinen kritischen Spannungszustinden ist anstatt Gl. 5 die Plastizi-
titsbedingung zu benutzen. Die Vergleichsspannung ogk, welche die Platte als
einfache Druckspannung ebenso hoch beansprucht, wie der gegebene allge-
meine Spannungszustand, tritt an die Stelle der Euler-Knickspannung ot
sodass die reduzierte Knickspannung wird

6) Bl = ob (o5k) = ok (g)-

Diese Art der Reduktion entspricht der Tatsache, dass die Quasi-Isotropie
des Stahls auch im unelastischen Bereich der Spannungen erhalten bleibt ™.
Aus diesem Grunde tritt nur eine Abminderung in der Hohe der Knickspannun-
gen ein, withrend die Beulenform wie bei der elastischen Knickung bleibt.

Die Abminderung nach c¢) lisst sich ohne Weiteres bei beliebiger Knick-
spannungslinie anwenden. Sie wurde in neuerer Zeit z. B. fir die Stabililits-
untersuchungen bei der « Dreirosenbriicke » iiber den Rhein in Basel (konti-
nuierlicher Blechbalken mit 75 4 105 4 75 m Stiitzweite) angewendet, die
von der M.A.N., Werk Gustavsburg, und der Buss A.G., Basel, erbaut wird.

Wenn die Plattensteifigkeit gleichmissig abgemindert wird (sog. homogene
Spunnungszusté‘mde), so sind die Gleichungen genau zutreffend. Ist dage-
gen der Spannungszustand veranderlich, dann variiert = D mit der Stelle und
die nach ¢) reduzierten Spannungen sind zu klein, wenn die Reduktion fir
die grosste Beanspruchung durchgefithrt wird.

Bei nicht homogenen Spannungszustinden ist nach Ueberschreitung der
Proportionalititsgrenze in der Regel mit einem Spannungsausgleich zu rechnen.
Um in solchen Fillen eine genauere Berechnung durchfithren zu konnen, musste
man, bekannte Spannungsverteilung vorausgesetzt, die Plattensteifigkeit in der
Plattenbiegungsgleichung als Funktion der Hohe der Beanspruchung einfithren.

h.o (y) 2% w
D. = (y) LD a2

T) viw +

Sehliesslich wire noch zu untersuchen, wie sich der Umstand auswirkt,
dass die bleibenden Forménderungen ohne Volumdehnung erfolgen 2. Den
Werten m = 10/3 im elastischen, bzw. m = 2 im plaslischen Bereich
wiirde ein Unterschied von 21 ¢/, in den Plattensteifigkeiten D entsprechen.

Wir fassen unseve Meinung iiber die Reduktion der kritischen Spannungs-
zustande fiir allgemeine Stabilititsgrenzen zusammen !

1. Man vergl. : M. Ros und A. EicHINGER, Versuche zur Klirung der Frage der Bruch-
gefahr. 1) Verhandlungen des zweiten internat. Kongresses fiir technische Mechanik,
Ziirich 1926.2) Mitteilungen des schweizer. Verbandes fiir die Materialpriifungen der Tech-
nik, Ziirich, September 1926. 3) Diskussionsbericht No 34 der eidgen. Malerialpriifungsan-
slalt in Zirich, Februar 1929, _

W. Lopoe, Der Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle.
Disserlation Goilingen, 1926 (Heft 303 der Forsch. Arbeiten auf dem Gebiete des Inge-
nieurwesens, Berlin, 1928).

Neue Versuche weisen allerdings darauf hin, dass unter gewissen Umstinden auch ein
von der Isotropie abweichendes Verhalten eintreten kann. Man vgl. K. Hohenemser und
W. Puacges, Beitrag zur Mechanik des bildsamen Verhaltens von Flusstahl. Z. A. M. M.
(12), 1932,

9. Man vergl. die in 1) genannten Arbeiten von Ro% und EicainGer, und zwar Abb. 12
von Ne. 2 und Abb. &%, 65, 66 von Ne. 3.
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Die Reduktion nach a) ist nicht zu empfehlen, da sie durch die Beobachtun-
gen nicht bestatigt wird und zu hoch liegende Knickspannungen gibt.

Nach 5) erhilt man fir den Bereich op << o < o5 i. a. genugend genau
zutrelfende Werte, sodass diese Art der Reduktion z. B. dann brauchbar sein
diirfte, wenn die Knickspannungslinie nicht bekannt ist. Fir dicke Platten
wird die Stabilitit danach jedoch iiberschiitzt, sodass es sich empfiehlt, Werte
ok > o.g (bzw. die der Plastizitatsbedingung entsprechende Beanspruchung)
durch s.g zu ersetzen.

Die Abminderung nach ¢) entspricht dem heutigen Stande unserer Kenntnisse
am besten. Sie kann allgemein empfohlen werden; sowohl fir homogene, als
fitr nicht homogene Spannungszustinde. Far die letzteren bleibt man auf der
sicheren Seite, wenn man die Reduktion firr die am starksten beanspruchte
Stelle durchtiithrt.

Traduction.

I. — Autres essais sur le flambage des plaques d’acier uni-
formément comprimées,

Une série d'essais treés intéressants a été effectuée a l'occasion de la cons-
truction du pont suspendu reliant Philadelphie & Camden !+ 2,

Il s’agit ici de plaques rectangulaires, bordées avec des corniéres et accusant
les dimensions suivantes : largeur totale b = 88,9 em. ; largeur entre les cor-
nieres b’ = 58,5 em. ; longueura = 3035 cm.; épaisseurs h = 0,95 em. & 3,80 cm.

Les plaques ne comportaient aucun encastrement sur les bords longitudinaux
ot étaient constituées en acier au silicium-manganése, accusant les caractéris-
tiques suivantes : limite de compression o.g = 3,165 t/ecm?; charge de rupture
o= 5,6 & 6,7 t/cm?2.

Pour E — 2100 t/cm?2, m = 10/3, on obtient la charge de flambage ok,
pour un rapport entre les cotés égal A a = 3,43 et en tenant compte d'un
nombre de demi-ondulations n = 3 : par la relation suivante :

h\ 2
1) og = 1150 (E) en t/cm?2.

Pour 5 — 88,9 cm., on obtient les valeurs de ox indiquées dans le tableau
suivant. Les valeurs indiquées entre parenthéses se trouvent au-dessus de la
limite de proportionnalité el doivent done subir une diminution. Les « g obser-
vés » ont été tirées du Rapport.

Au cours de 14 essais, la déformation w = w (¢) a eté déterminée en fonec-
tion de la contrainte longitudinale. Dans les essais marqués « x », on n'a pu
observer aucune limite de stabilité nettement accusée, car les plaques étatent
mises en place d'une maniére défectueuse, Les charges les plus élevées corres-

1. W. Scuacuenveier, Die Delaware River Briicke zwischen Philadelphia und Camden.
Die Bautechnik, 1927, p. 543.

9. Clement E. Cuase, Research and experimental tests in connection with the design of
the bridge over the Delaware River between Philadelphia and Camdem, Journal of the
Franklin Institute, vol. 200, oct. 1925, p. 417.
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pondaient, pour /o = 0,95 & 1,59 ecm., a des contraintes d’environ 2,8 t/cm?,
les déformations correspondantes atteignant déja une valeur multiple de
I'épaisseur de la plaque. La figure 1 se rapporte a deux de ces essais. Pour la
plaque mince G 1 la déformation augmenta régulierement avec l'effort de com-
pression et il ne peut pas dans ce cas étre question d’une limite de stabilité. Par
contre, pour les plaques dont I'épaisseur était supérieure a 1,9 em., la défor-
mation est restée faible, car ces plaques étaient fixées dans de meilleures
conditions ; elle n'a atteint des valeurs élevées que sous l'influence d'une
charge de flambage nettement accusée. On trouvera sur la figure 1, a titre
d’exemple, l'essai GTA, elfectué avec une plaque constituée par deux téles
fortes de 3/4” (19,05 mm.) rivées ensemble. Les plaques ayant une épaisseur
de h=1,9 & 3,8 cm. ont flambé & la limite de compression sans que 1'épaisseur
elle-méme de la plaque intervienne. Sur les picces constituées par deux plaques
rivées, on a atteint la méme contrainte de flambage que sur des toles simples
d’épaisseur double.

Les déformations initiales ont exercé, au cours de ces essais, une influence
trées marquée. Pour cette raison principalement, il ne fut pas possible de déter-
miner les contraintes de flambage des plaques dont I'épaisseur était inférieure
a 1,90 em. On ignore également dans quelle mesure les toles constituant en
quelque sorte I'dme ont pu étre soulagées par la présence des quatre corniéres
de bordure ; ceci d’ailleurs particuliérement en ce qui concerne les téles minces.
Chase a remarqué ultérieurement que les chiffres de résistance des tdles

minces étaient relativement plus élevés que ceux des toles de plus forte
épaisseur.

L L/ théocrl;que 0});:;1"‘1(% Observations

cm t/cm? t/cm?
0,95 93,7 0,88 X flambage anticipé
1,27 70,1 1,58 & flainbage anticipé
1,59 56 2,47 - X comportement meilleur
1,90 46,8 (3,53) 3,23 3,17 la section flambe dans

son ensemble

2,54 35,1 (6,3) ggg ?;i;g ”
3,80 23,3 (14,1) 303 s oy 5

Aucune conclusion n'a pu non plus étre tirée des observations effectuées
sur les toles minces, Les courbes pour w = w (s) montrent toutefois que les
essais effectués sur les toles épaisses sont remarquablement bons. Ils per-
mettent une comparaison avec la théorie établie par M. Bleich pour le flam-
bage dans le domaine inélastique. Pour les téles minces les déformations ne
constituent, en somme, que les accentuations des gauchissements inifiaux
dont il a déja été fait mention. Les toles épaisses ont accusé une limite de



La stabilité de I'ame et des ailes des barres comprimées 135

flambage trés nette, et, apres apparition du voile, 4 ou 5 demi-ondulations se
sont manifestées. On n'a pas pu constater de modifications dans le nomhre des
ondulations en fonction de 1'épaisseur des plaques.

D’apres la théorie des dalles 1sotropes, pour o = \/4_2 = 3,46, 1l pourrait
se produire aussi bien 3 que 4 demi-ondulations ; cela pour la méme contrainte
de flambage. Les plaques étudiées se trouvaient donc & la limite, puisque
2= 3,43. S'il est légitime de géndraliser I'équation dilférentielle de déforma-
tion des plaques minces dans le domaine inélastique (voir Publication Prélimi-
naire, page 120) :

ot w

¢ o & = Rt o h
2) ax4 L—‘_zaxZ 8132\/L—|’_ ayt} +6_

le nombre n des demi-ondulations devrait 1 augmenter avec ok et la longueur
intéressée par le voile devrait dans tous les cas étre beaucoup plus faible que
la largeur des plaques. D’aprés ce qui précede, ce n'est toulefols pas le cas.
La diminulion que l'on pouvait escompter sur la longueur intéressée par le
voile n'a pas été observée non plus au cours des essals sur le pont de Québec 2,
la longueur d’onde coincidant sensiblement avec la largeur des plaques.

Si l'on fait appel, pour le calcul du coefficient de flambage =, & I'équation de
Tetmajer :

d2 w
D

—0

N2

3) : ok = 3,1 — 0,0114% (—i) en t/cm?

qui est également a la base de I'étude de Bleich concernant le calcul des
dimensions des plaques, on obtient alors des contraintes de flambage qui
s’élevent lorsque le rapport h/h diminue. Pour des plaques en acier normal,
on arrive par exemple, pour des valeurs de b/h égales & 6,8 et 23,5, a des
écarts de 20 °/, environ sur les contraintes de flambage, par rapport aux
valeurs escomptées.

Les essais de Chase ont donné comme contrainte de flambage, pour toutes
les plaques dont I'épaisseur est supérieure au 1/50 de la largeur totale, la
limite de compression elle-méme ; pour h > b/50, on n'a pas pu observer de
valeurs supérieures pour une augmentation de I'épaisseur de la plaque. Les
essais qui précédent permettent done de conclure que la formule de Tetmajer,
ou toute autre relation correspondante, en liaison avec la théorie généralisée de
Bleich, ne permettent pas de déterminer d'une maniére suffisamment précise
la contrainte de flambage.

Faisons encore une remarque, pour conclure, au sujet des conditions régnant
aux bords de la plaque, sur les grands cotés. Il n’est pas admissible de mesurer,
pour l'interprétation des essais de Chase, la largeur libre b de la plaque entre
les rangées de rivets ou entre les arétes des cornléres seulement. Dans le

troisieme essai, avec b’ = 58,5 on obtient :
el o ol 2
¢¢l == 5,75 t/em

1. Voir : Die Beulenliinge bei Knickung im elastischen Bereich.
2. Voir : Fig. 8, p. 117 de la Publication Préliminaire, ou R, Mayer, Die Knickfestigkeit,
fig. 212, p. &25 et fig. 215, p. 427.
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tandis que l'essai donne une valeur qui se trouve trés nettement au-dessous
de la limite de compression.

La photographie d'une des toles ayant subi le flambage montre (Chase,
p. 420, ou Schachenmeier, p. 514) que le voile n’est pas limité par les corniéres
de bordure. On ne peut done pas dire qu’il y ait eu effectivement un encastre-
ment de la tdle par la corniere de bordure. Cette observation correspond au
projet de Bleich (Publication Préliminaire, p. 112, fig. 3 ¢ et d) d'introduire la
largeur entiére de la plaque dans le calcul.

Il n’y a effectivement un encastrement ¢élastique sur les bords de la plaque
que lorsque les pieces qui sont susceptibles de constituer cel encastrement ne
peuvent pas simultanément participer au voile de la plaque elle-méme. Dans
le cas général, il faut admettre que les bords de la plaque comportent un

appul articulé et la largeur totale de la plaque doit é&tre introduite dans les
calculs sans aucune réduction.

II. —Importance du voile par flambage dans ledomaine plastique.

Pour une plaque rectangulaire reposant librement sur ses quatre bords, et
soumise & des contraintes uniformément réparties, on obtient la contrainte de
flambage, suivant Bleich, dans le domaine inélastique, pav la relation :

i e
| e e I
) ok K 4 (nl{/t 5 a

/

relation dans laquelle :

2 R 2
2) — ;—7}; (%) avec m = 10/3
i

représente la charge de flambage d'une plaque constituée par un matériau pré-
sentant une limite de proportionnalité infiniment élevée pour le voile rectan-
gulaire (n = ). Cette contrainte de flambage a la méme valeur que la con-
trainte de flambage d'BEuler pour une barre constituée avec le méme matériau
et ayant un degré de finesse :

b
3) n=1,652. 7
Le coelficient de flambage
sk
-
GEuler

est fourni par les essais de flambage sur barre rectilignes.

Si, a titre de premiére approximation, on fait abstraction du falt’qu? 5
dépend de la forme de la section, suivant la théorie dEngesser—K_annan,
on obtient t en le considérant comme fonction détinie de la contrainte de

flambage oP! ou de la contrainte de flambage d’Euler correspondante sgyer.

On atteint le minimum de la contrainte de flambage dans le domaine plas-
tique :

i e 1 =
4) min 0})( == U[C(l \/T.
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lorsque le nombre de demi-ondulations n est égal at:
o
5) n =g =
Ve
: a :
La longueur du voile [ = = de la plaque ayant subi le flambage est donc

variable suivant le niveau des contraintes de flambage ; en pralique, elle
diminue d’ailleurs lorsque I'épaisseur de la plaque augmente. ‘

Il est intéressant d’étudier d'une maniere plus approfondie la relation qui
existe entre la longueur du voile et I’épaisseur de la plaque.

a) Sil'on se base sur la formule de Tetmajer pour le calcul de < dans le cas
de l'acier doux :

b) ol = 3,1 — 0,0114 % en t/cm?
on obtient, d’apres Engesser :
7 o e

' E \z0,0114

Si I'on se limite a la plus faible valeur de la contrainte de flambage, on
obtient alors, pour une épaisseur de plaque h > b/64:

; B\ ¢ NS GE .
8) in oBl = 3,1 - 2,282,103 (7) —\/ (3,1 i 2,282.10-8< ) ) — 961

h
enst/em® et
P : & Dk
9) r— 1,685,110+ (m;n cli){‘) . (7;) en t/em?2.
Dans les équations, suivant la méthode de Tetmajer et de Bleich, on pose
E = 2150 t/cm? 2. Le nombre n des voiles est défini par la relation :

881 h

] e i NN i pl 2
10) n _\/ _ 51;1' 7 ¢ (GK en t/cm?)
min < p
alors que n = « dans le domaine plastique (A < b/64). On trouvera dans le

tableau 2 ci-contre les valeurs obtenues pour différentes valeurs de 1'épaisseur
des plaques.

# l 50 40 30 25 20 13 10
2
o 2,292 2,554 2,779 2,874 2,953 | 3,017 3,063
T 0,544 | 0,276 0,404 | 0,0533 | 0,0232 | 0,00755 | 0,00152
n/a 1,16 1,38 1,76 2,08 2,56 3,30 5,06

1. Le nombre d’ondulations est ici supposé variable d'une maniére continue, tandis qu’en
réalité il ne peut prendre que des valeurs entiéres. Le minimum absolu suivant la relation
(4) ne se produit que lorsque @ est un multiple entier de la racine quatrieme de t. Si ce

nest pas le cas, il fant rechercher les deux valeurs voisines de n et cr?‘l est un peu plus
élevé que pin cll’{l. La différence est toutefois sans importance lorsqu’il s’agit de plus de
deux ondulations.

2. Voir Breicu, Theorie und Berechnung der eisernen Briicken, Berlin, 1924, page 131.
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b) Pour un matériau admettant une limite de compression trés nette o.g
pour lequel la contrainte de flambage & 1'état de barre concorde avec o.g pour

une large marge de variation du degré de finesse %, on obtient les relations qui
suivent :

St la contrainte de flambage est donnée en fonction du degré de finesse a
I'état de barre (figure 2) :
1) o — ch(A)

K K

on peut alors calculer le coefficient de flambage © en partant de la relation :

12) GF(I = 7. G(Euler)

et on obtient :

p 7~
. =3 ()

ou, en déterminant A par inversion de l'équation (11) et en la remplagant par
sa valeur dans I’équation (13) :

1

T =z (cf’g)

Quelques commentaires sont nécessaires au sujet de la courbe de oP! repré-
sentée sur la figure 2.

Si x> hp alors 6§l = opuler €t 1= 1. Dans la zone définie par : %, << A <ip,
t << 1, dans laquelle les contraintes de flambage of! < o5 varient avec %, on

peut inverser 'équation (11) et calculer = comme une fonction définie de abt.

Il en est de méme pour la zone A << 3, pour des contraintes de flambage qui se
trouvent au-dessus de la limite de compression.

Pour les limites %, et %, de la zone moyenne, la contrainte de flambage
coincide avec la limite de compression :

c})(l = oran

Les coeflicients de {flambage correspondants 7, et 1, peuvent étre déduits de
la relation suivante :

3 N\ 2
o A2
1!1') T1,2 — '—g .
! E ™

Les épaisseurs correspondantes des plaques sont données par la relation :

(@) 0,527 /og
b/ig Vs V E

Pour toutes les valeurs de < telles que : 7y < 7 < 7yona:

c§1 — g5

Comme 1 =1 (cf}) est connu pour t <7, et > <, la charge de flambage
d’une plaque peut étre calculée directement & partir de la relation :
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2K /h\?2
; e /i i
%) min ok = /. e (b> :

Pour la zone %, <{ i <%, on peut donc conclure :
Si hy > h > h, la contrainte de flambage coincide avec la limite de résistance
a la compression : crlf(l — g5 canmy= i v el lonial:

: 2,73 s.5\2 /h\4
17) (e
w2 I N
En particulier, pour l'acier St. 37, on obtient avec g5 = 2,4 t/cm? et !
E = 2150 t/ecm?
b\ 4
18) e — 9,53.10° <*> ot
h
19) . TR (1) 2 % s
b/l = 56,9 correspondrait & la limite t = 1 du voile dans le domaine élas-
tique, si op pouvait coincider avec s.g. Pour b/h = 28 4 on pourrait déja

escompter un nombre d’ondulations double, par rapport au flambage dans
le domaine élastique. Pour les mémes épaisseurs de plaque que dans le
tableau 2 précédent, on arrive aux chiffres du tableau 3 ci-contre.

b
7 50 40 30 25 20 15 10
i cli{l 2,40 2,40 2,40 2,40 2,40 2,40 2,40
T 0,597 0,244 0,0773 0,0373 | 0,01526 | 0,00483 | 0,000953
njo 1,14 1,42 1,90 2,28 2,85 3,80 5,70

Sil'on compare les tableaux 2 et 3, on constate que les valeurs de n/x différent
trés peu. Les hypothéses concernant les contraintes de flambage de la barre
sont done, dans de larges limites, sans influence sensible sur le coefficient n.
Cette augmentation du nombre de voiles lorsque 'épaisseur de la placue
augmente demande toutefois & étre établie en toute certitude, par des essais,
pour les plaques épaisses. Les essais qui ont été effectués jusqu'a maintenant,
avec b/h = 23,5 ne permettent pas de mettre en évidence une telle relation 2.

1. Cette valeur élevée est adoptée ici afin de permettre la comparaison avec le cas a
précédent.
2. Dans le cas limite d’une plaque trés large (x = 0), la contrainte de flambage devient :
1 el

p

%Ko = %Ko
relation dans laquelle cf{lo désigne la contrainte de ftambage connue d'Euler pour une barre
ayanl une longueur de flambage a et sous réserve de I'introduction d’un facteur dépendant

de la contraction transversale. Cette concordance ne prouve toutefois nullement que la
réduction se présénte également, dans le domaine plastique, dans le cas général.
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Dans le cas du voile de plaques planes par suite de contraintes de cisaille-
ment et pour :

1x > 1 = 0,58 op

on se trouve en présence de conditions semblables a celles que présente le
flambage sous 1’action de contraintes de compression uniformément réparties.
Les essais effectués par Bollenrath en vue de la détermination des contraintes
critiques de cisaillement n’ont également mis en évidence aucune différence
pour les longueurs de voile, entre les flambages élastique et plastique.
Bollenrath * dit, & ce sujet : « Il n'y a pas a mettre en évidence une différence
entre les flambages élastique el plastique » et « Les longueurs d'onde au voile
sont dans un rapport constant avec la largeur des plaques et se montrent
indépendantes de 1'épaisseur des plaques et du matériau utilisé ».

La relation qui, suivant la théorie de Bleich, existe entre : la
contrainte de flambage et la longueur du voile, dans le domaine
plastique, n’est pas confirmée par les essais.

La question étudiée ici est d’une importance capitale pour la disposition
judicieuse des éléments de renforcement. Il est absolument nécessaire, par
conséquent, d’aboutir & une notion trés nette des conditions elfectives.

III. — Le voile des plaques dans le domaine plastique.

Le calcul de la page 126 de la Publication Préliminaire est exécuté avec
E=2130 t/cm2, tandis que pour le métal considéré, on n’a environ, en moyenne,
que If = 2000 t/cm?2, La résistance & la traction a atteint 4,79 t/em?2. Comme
la validité de la formule de Tetmajer est limitée & un métal accusant une
résistance 2 la traction inférieure & 4,5 t/cin23, le calcul devrait étre effectué
avec la « formule de Tetmajer pour fontes présentant les caractéristiques de
I'acier » 4.

Si I'on tient compte de ceite remarque, on obtient alors une concordance
moins bonne. L'équation différentielle sur Jaquelle se base Bleich pour le
domaine plastique correspond aux plaques orthotropes. Cette hypothése « est
toutefois en contradiction avee les faits expérimentaux et conduit a des résultats
erronés, tendant a4 provoquer une certaine insécurité » °.

Enfin, il faut attirer I'attention sur le fait que jusqu'a maintenant, il n'existe
pas de généralisation pour I'étude du flambage dans le domaine plastique, sous
I'influence de contraintes de cisaillement, pas plus d’ailleurs que pour tous

1. F. Boreexratn, Ausbeulerscheinungen an ebenen auf Schub beanspruchten Platten.
Dissertation, Ecole Polytechnique d’Aix-la-Chapelle, 1928, p. 11 et 16.

2. R. Maveg, Die Knickfestigkeit, tableau 39, p. 423.

3. L. v. Termaser, Die Gesetze der Knickungs- und der zusammengesetzten Druckfestig-
keit der technich wichtigsten Baustoffe, 3¢ édilion, Leipzig et Vienne, 1903.

k. R. Maver, Die Knickfestigkeit, page 61, Formule pour aciers accusant une résistance
i la traction de plus de 4,5 t/cm?2.

5. E. Cowacrra, Die Stabilitit zentrisch und exzentrisch gedriickter Stéibe aus Baustahl.
Rapport de Séance de I’Académie des Sciences de Vienne, Mathématiques-Sc. Naturelles,
Sec. Ila, Vol. 137, fasc. 8, Vienne, 1928.
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autres cas de charges ; en pratique, on est toutefois obligé de faire entrer en
ligne de compte une réduction de la charge de flambage dans le domaine plas-
tique. Tant que la théorie et la recherche expérimentale n’auront pas accompli
de nouveaux progres, il importe de chercher un moyen permettant de tenir
compte de cette influence, s’appliquant, dans toute la mesure du possible,
A tous les cas d'instabilité d'une maniére également simple. On se trouve, a ce
sujet, en présence des possibilités suivantes :
a) Suivant I'équation (6) de la page 121 de la Publication Préliminaire,

| - 1 =
,1) min 5& = GF{‘ \/1

on pourrait réduire dans le rapport \/;, d’une maniére générale, les contraintes
de flambage calculées dans I'hypothese d'un matériau possédant une élasticité
illimitée 1. La figure 3 représente la variation des contraintes de flambage
suivant U'équation (1) pour une plaque rectangulaire soumise & une compres-
sion uniformément répartie en acier St. 37, en fonction de I'épaisseur de cette
plaque. La courbe a, s’applique au cas ou \/: est calculé & partir de la formule
de Tetmajer (équation (8) de la partie 11, a); la courbe a, s’applique & une
courbe de flambage correspondant aux prescriptions des Chemins de Fer
Allemands pour l'acier St. 37, avec (b/h), = k5.3 (voir 11, b).

b) On pourrait également, suivant le projet de Timoshenko concernant les
tensions critiques des poutres dans le domaine plastique (voir figure 3,
page 133 et page 152 de la Publication Préliminaire), admettre une relation
linéaire, méme en ce qui concerne les plaques, entre le degré de finesse b/h
et les contraintes de flambage of). Cette droite est déterminée par la limite
d’¢lasticité (ou mieux par la limite de proportionnalité) et par la résistance a
la compression, cette derniére étant représentée ici d'une maniére fictive avee
une certaine réduction. Cette droite est représentée par la courbe b de la
figure 3, avec les valeurs limites des contraintes suivant Tetmajer.

¢} Si l'on connait la courbe ok pour les barres 2 on peut réduire les con-
traintes calculées dans I'hypothése d'un matériau infiniment élastique ¢ pour
les plaques et les parois minces, dans le méme rapport que l'on
réduit la contrainte d'Euler pour les barres.

2) cll’(‘ = t.c‘f(l.

Il suffit pour cela de calculer le degré de finesse relalif correspondant & la

contrainte d’Euler équivalente :

| =

3)

c

el
oK

1. L’appellation t adoptée pour le coelficient de flambage peut donner lieu & des confu-
sions, si le probléme de stabilité envisagé se rapporle & des charges de cisaillement <. I
est done & recommander d’éviter 'emploi de la désignation t pour le coefficient de flam-
bage et de ne faire intervenir que T — < E ou T/E.

2. Dans le cas présent, il faut faire intervenir ok et © pour des barres de section reclan-
gulaire. En ce qui concerne l'influence de la forme de la section, voir F. Bleich, Theorie und
Berechnung der eisernen Briicken, Berlin, 1929, n° 35.
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et de le reporter dans I'équation (4) supposée connue :
I 3l

&) ol = O,

Par exemple, pour la plaque rectangulaire soumise 4 une compression
uniformément répartie, le degré de finesse équivalent est égal a1

¥) n=1,652 (b/h).

La courbe ¢ de la figure 3 représente les contraintes de flambage obtenues

lorsque I'on adopte la courbe de flambage prévue dans les prescriptions des
Ghemins de Ier Allemands pour I'acier St. 37.

Pour d'autres régimes de charge, la valeur de la contrainte doit étre calculée
d’aprés les considérations de plasticité 2. Par exemple, pour le flambage des
plaques par contraintes de cisaillement ou l'instabilité des parois cylindriques

minces sous I'influence de contraintes de torsion, on a, pour des métaux suscep-
tibles d’accuser un allongement :

5) T8 = 0,58 og et Tp = 0,58 opP.

Pour tous les régimes critiques en général, on utilisera la condition de plas-
ticité au lieu de 'équalion 5. La contrainte de comparaison e,k ui correspond
pour la plaque, a titre de compression simple, 2 la méme contrainte que le
régime de charge général indiqué, intervient a la place de la contrainte de
flambage d’'Euler, de telle sorte que la contrainte de flambage devient, aprés
réduction :

6) GSIK == "gl[{ ("'gﬂ = o} (Ag)-

Ce mode de réduction correspond au fait que la quasi-isotropie de l'acier se
conserve méme dans le domaine inélastique des charges 3.

Par suite, il ne se manifeste qu'une diminution dans la valeur des contraintes

de flambage, la forme que prend le voile restant la méme que dans le cas
du flambage élastique.

La méthode de réduction suivant ¢ peut étre utilisée sans dispositions spé-

1. Voir la proposition de E. Cuwarra {p. 322 du Rapport sur la 2° Conférence Internatio-
nale des Ponts et Charpentes, Vienne, 1929) tendant a rapporter le module de flambage,
pour les plaques soumises 4 une compression uniformément répartie, aux trois termes de
I'équation différenticlle, en négligeant les variations du coelficient de Poisson m. On voit
que celte proposilion concorde avec la réduction indiquée en e. :

2. Voir Scuveicuer, Ueber die Sicherheit gegen Ueberschreiten der Fliessgrenze bei
stalischer Beanspruchuug. Bauingenieur, 9, 1928 no 15,

3. Voir : M. Ros et A. Eicuinger, Versuche zur Erklirung der IFrage der Bruchgefahr.
1. Communications an 2¢ Congrés International de Mécanique Industrielle, Zurich, 1926,
2. Communications de I'Association Suisse pour I'Essai des Matériaux, Zurich, seplembre
1926. 3. Discussion, n° 3%, Laboratoire Fédéral pour I'Essai des Malériaux, Zurich,
février 1929,

W. Lopg, Der Einfluss der mitileren Hauptspanaung aufl das Fliessen der Mclalle. Dis-
serlation, Gotlingen, 1926, Fasc. 303 der Forsch. Arbeiten auf dem Gebiete des Ingenieur-
wesens, Berlin, 1928.

De récenls essais moutrent d’ailleurs que dans certains cas on peut constater un com-
portement s’écartant de Pisotropie (voir Hohenemser et Prager: Beitrag zur Mechanik des
bildsamen Verhaltens von Flussstahl. Z.A M. M., 12, 1932,
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ciales pour une courbe de contraintes de flambage arbitraire. Elle a été d’ailleurs
employée récemment par exemple, pour les recherches de stabilité concernant
le Pont des Trois Roses, sur le Rhin, a Bale (poutres continues en toles avec
portées de T5 4 105 -+ 75 metres), pont qui a 6té construit par la M.A.N.,
les Ateliers de Gustavsburg et la Buss A . G., de Bile.

Lorsque la rigidité de la plaque se trouve uniformement réduite (état
de contrainte dit homogéne), les équations s’appliquent exactement. Si, par
contre, 1'élat de conlrainte n'est pas uniforme, =p varie alors avec le point
considéré et les contraintes réduites suivant ¢ sont alors trop faibles lorsque
la réduction porte sur la contrainte maximum.

Dans le cas d'un régime de charge non homogene, et aprés le dépassement
de la limite de proportionnalité, il faut en regle générale, compter sur une
certaine compensation des contraintes. Pour pouvoir, en pareil cas, effectuer
un caleul plus préeis, il faudrait, en supposant connue la répartition des
contraintes, introduire la rigidité de la plaque dans I'équation de déformation
de cette plaque, & titre de fonction de la valeur de la contrainte.

i

\
¥

hicy(y) 92w
v4lU—-l—— lj:-T(‘y—)_ 3 (I/‘z —

Il conviendrait enfin de rechercher également comment il se fait que les
déformations permanentes s’accomplissent sans augmentation de volume 1.
Aux valeurs m = 10/3 dans le domaine élastique el m = 2 dans le domaine
plastique, il devrait correspondre une différence de 21 °/, dans la rigidité des
plaques.

Résumons maintenant notre maniére de voir au sujet de la réduction du
régime critique de charge dans le cas des limites générales de stabilité :

La réduction suivant a n’est pas a préconiser, car elle ne se trouve pas
confirmée par les observations effectives et elle conduit a des contraintes
de flambage {rop élevées ;

Suivant 5, et pour la zone sp < 5 < o3 on obtient en général des valeurs
suffisamment précises, de sorte que ce mode de réduction pourrait par exemple
étre appliqué lorsque les courbes des contraintes de flambage ne sont pas
connues. Pour les plaques épaisses, la stabilité est toulefois ainsi surestimée,
de sorte qu’il est a recommander de remplacer les valeurs de o supérieures a
s.g par o.s (ou la contrainte correspondant aux conditions de plasticité).

[.a réduction suivant ¢ correspond au mieux a I'état actuel de nos connais-
sances. Elle est a recommander d'une maniére générale, tant pour les régimes
de charge homogénes que pour les régimes non homogenes. Pour ces derniers,
on conservera une marge de sécurité, en elfectuant la réduction pour les points
qui sont soumis aux contraintes les plus élevées.

1. Voir les travaux de Rog et Eichinger mentionnés en (3) et, en particulier, la figure 12
du ne 2 et les figures 4%, 65 et 66 du no 3.
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Dr. Ing. h. ¢c. M. ROS,

Professor an der Eidgendssischen Technischen Hochschule
und Direktor der Eidg. Materialpriifungsanstalt, Ziirich,

und

A. EICHINGER,

Wissenschaftlicher Mitarbeiter der Eidg. Materialpriifungsanstalt, Ziirich.

A]lgemeine Betrachtungen :

Durch die Versuche, welche in der Eidg. Materialprifungsanstalt in den
Jahren 1926-1929 durchgefihrt worden sind ! ist erbracht, dass das Mass der
plastischen Gestaltanderung : 2, in ebenso einfacher Weise von der Vergleich-
spannung : o} abhéngig ist, wie bekannterweise das Mass der elastischen
Gestaltinderung : e, durch dieselbe bedingt ist, namlich :

)

9 9 3
e St e — Cxby — €y €z — €y ex‘i_z(f]iy i (]3/4"!/3\)

N

=2 (14 )

N

elastisch : ¢, =

: 2 2 :
worin : g, =\/ of -k op d- o ox oy — 6y u— mox + Sl1L, T+ o)

2 | o2
und plastisch: 2 _V:X + 37

i e 3 2 79 2
y %2 — %z Sx +[I xy+\>’z+\7ZX)

sowie gesamt : ¢, = e, + 3, = o, > % (1 + i—]\) + ll) (1 - 7;\):

Es sind : elastisch : plastisch : total :

o= & Gx—%(c),—l—c,){ e,:%scx—%@ﬁm)% e
c=qle —ml el a=gla—je e =g+
e,z%}czm%((—l—”)g az-—%(‘sl—;(wrc\){ e
isites 2;3“ (1 A ,%) sz’ o QDT\'Y (\1 + %) Ty oy Vi

1. M. Ro$ u. A. Eicainger, Versuche zur Klirung der Frage der Bruchgefahr : I IFluss-
stahl, 1926, IIl Metalle, 1929 E.M.P A,

M. Ros$ u. A. Eicuincer, Kongress f. techn. Mechanik. Stockholm, 1930. « Weitere
Versuche zur Klirung der Frage der Bruchgefahr. »
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e ( 1 S 1
= Y - e : ! = e — ., +V e
.(/.‘i lﬂ \l + H’l) V.‘f. 1) (1 T 2> W Y2 g)ﬂ YZ
i i ; D 1 -
—— o ey ey - — AX 1 -I—— — ~Max = (4x + \/ X
gu E (\/1 + ]n) \ 7X D ( 2) 'R c.(/

Iibenso wurde damit erbracht, dass die plastische Volumeninderung ziemlich
genau gleich Null ist : 3, 43, + 3, =0, weil m = 2; die mittlere Normal-

spannung g, = Gli;—‘i—ﬂ ohne Finfluss aul die plastische Forminderung ;
£7 & &g
A A A <
S,
¥ g Ve
- Fs / &g ) I

kb"y *6‘9 6\9

SO 6\9% 6:9 Lé-~5\9' —

Fig. 1.

sowle dass die Quasiisotropie auch nach dem Ueberschreiten der E-Grenze
bewahrt bleibt, da der Plastizititsmodul D in allen Richtungen derselbe ist.
In bestimmten Idllen ist es giinstiger, mit der Tangente an das ¢, — 3, —

3

Diagramm I'ig. 1. zu operieren, statt mit dem D-Modul bezw. mit der plas-

;i : 2 s
tischen Dehnungszahl « = 5=
. Co

D 3
Das Letztere ist namentlich der Fall bei
den Knickproblemen der Platten, von /
welchen wir beispielsweise dierechteckige 1
Platte behandeln wollen : Gl /880

Wird die Platte in ebenem Zustand
zentrisch durch o und c’; bis zur Knick-
last gebracht, wobei die Elastizitits-
grenze Uberschritten ist, so treten bei einer
virtuellen Verbiegung der Platte folgende y Qpr28x
Krifteinderungen unter der Voraussetzung
des Ebenbleibens der QQuerschnitte auf.

Weil : A cy— A e, + Ad— (Acx-——é—c—}> +18‘Q-§, (N _A“Y)
2
3

Knicken rechteckiger Platten : E

105 m

1 A o,
A E—Ae = Nor— E(Ac)— An \> + g d.

Axuy=RAgy+ AV, =2+,

ist, konnen A s, A ¢, Aty daraus ermittelt werden.
10
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Die konkave Seite folgt, was die Spannungsverteilung im Schnitt betriflt,
der Tangente an dasg, — s, — Diagramm (tg o -} tg ¥), die konvexe Seite dem

tg o des Cp — € — Dlagramme% d. h. E-Gesetz., Daraus erhalt man den
A])qtand der neutralen Fliche von der Mittelfliiche :

\/ terio— \/t“‘
2\/tgw +Vige
Nun ist leicht, M, My, und M, zu ermitteln, namlich :

worin lg v = tg o 4 tg ¢

M. E.J.c ?izw 1_3N2_W
1 Ex® m 3y
1=
m
(22w 32
Wl EJ.c 2w +1_o w|
! e m :x2|
1____ o
e
{ 22
Mt I J.c1 8, TVV
X 2y
1 o
m
kg ¢

T h3 A
\VOP]?TI — 12 undac = Ez\/t (0+\/tg?;

Bezeichnet man dhnlich wie beim Knicken zentrisch gedriickter Stibe das

Produkt E.¢c = Ty = Knickmodul, so konimt man zu :
1
T bEtgo b 18 tg v
k J— = —— e
P Vigo +v/tgel2 B
f tg o tg w

Fiir m = 2o der elastischen, sowie plastischen Deformationen geht der T, —
Modul fiir plattenférmige Kt‘)rper in denjenigen far Stabe iiber.

Die Differentialgleichung der in beiden Axenrichtungen iiber die Ii-Grenze
zentrisch gedriickten, rechteckigen Platte lautet bei einer v1rtuellen Verbiegung :

il dhw Mt w ok w
jonc i ozt T % 3oy T 3y

m2

g

B 3 0l i 02 )
.1 G\ \

s ergibt sich daraus, dass die Durchbiegungsfliche ihre FForm auch im
Gebiet ausserhalb der E-Grenze nicht dndert, z. B. bei allseitig gefuhrter
Platte :

X o my

o =—"f.sin — sin
a b

womit alles gegeben ist, um Knickprobleme rechteckiger Platten auch ausser-
halb der E-Grenze bei Verschiedenen Rf\ndbedmgunfren losen zu konnen.
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Traduction.
Considérations générales.
Au cours des essais qui ont été effectués entre les années 1926 et 1929 au
Laboratoire Fédéral pour 1'Essai des Matériaux on a pu établir que le degré

de déformation plasthue 3, est relié ala contrainte s, envisagée par une I‘el‘l“

Lion aussi simple que celle qui conditionne le degru de defmmatlon élastique
e, par rapport a la contrainte considérée !. On a en effet :

Cas de l'élasticité :

o=\ Gt dite—en—ee—eet (g bl = B4 1)

S\ 57 2 9 ‘ 9
ou : cgz\/cx 0y f 0, —0y0y—0y0—0,5; 3 (TE,—[—- rygz—[— ‘r,"x)
Cas de la plasticité :

™ N ™ ™~ oy d lI\
g“VA“‘+°—%% 35 —85+ ¢ (Vi + V5 +Vi)= D(ikﬂ
. El 1 1
et:egzeg—}—cg:cgE i—{——’— + 14 - )]
On a
Elasticité Plasticité Au total
5 ; 1T 1 5 .
By == L[ g (6y+a.) S = T)[cx“ B (oy 4+ o) gx = €x + 34
1 | | 1 g
Bo= E[GY— = (62 + oy) S=plo—3 (6.4 54) cl— i
1r 1 8 A { 5
e, — E[GZ_H<JX+GY)_ OZ:—)[GI—E(GX—FG})g g, = (3,—""87‘
o 2 1 _21-“(, 1 k. b
gxy'— E (1 +;;_l> ny”— —')'*' \1 + Q) Y\_\ —,{/xy “{“\x\
2o 1 A 4
= — — e — IR e— /.,
Iz m(1+nJ Vi D(1+2> (=gt Vo
2./ 1" 2T,x( 1 3
— e e f o= — = i
,(/zx l‘: (1- + nl) \lx l) \1 —[— 2) 1IX f/m“‘\n

On a pu établir également que la variation plastique de volume est assez
sensiblement nulle :

S 0
car m = 2 ; la contrainle normale moyenne

Ox +G_\;‘+GZ

Om = 3
L. M. Ros et A. Ercuinger, Contribution a I'étude des possibililés de ruplure. — I. Acier
(1926). — 1I. Métaux divers (1929). — L. F . E.M,
M. Ros et A. Eicimincer, Congreés de Mcécanique Industrielle, Stockholm, 1930, — Nou-

velles contribulions & I’élude des possibilités de rupture.
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est sans influence sur la déformation plastique. De méme, la quasi-isotropie
reste assurée, méme apres le dépassement de la limite élastique, car le module
de plasticité D est le méme dans toutes les directions.

Dans certains cas déterminés, il est plus indigué plutot que de faire interve-
nir le module D ou le coefticient d’allongement plastique
1 2
b 3
de travailler avec la tangente au diagramme ¢, — 2, ci-contre.

Clest précisément le cas pour les probleémes de flambage des plaques, parmi
lesquels nous traiterons a titre d’exemple le cas de la plaque rectangulaire.

(& ¥

o
o

Q

o
o

Flambage des plaques rectangulaires.

Si une plaque plane est soumise axialement & des contraintes sk et gy
jusqu'a la charge de flambage, la limite d’élasticité se trouvant dépassée, on
obtient, pour une déformation virtuelle de cette plaque, les variations suivantes

des elforts, en se basant sur I'hypothése de la conservation de la section :

comme ; As=de.+ 4% = pf An— %)*w- %(A—AT>
1 A 2 N
Agy=A4e + A%y = E(Acy— ijx>+59‘?- “;(AU.\“‘ —2“*)

ik 1 B
Ay =Agy + AV, = 21*"[‘13(1 o)ty

on peut en déduires A, Aoy, A

La répavtition des contraintes sur le ¢oté concave est déterminée par la

tangente au diagramme oz —z,, (£ 9 + (g 4); sur le coté convexe, par tg o du

diagramme g, — e, ¢’est-a-dire par la loi de I'élasticité. On en déduit U'intervalle
entre la surface neutre et la surface médiane :

b Vigo—\lgs
(’:&;\2 \//gj.oil:lgz.):lg?—{—lgap
2 Vigo+\Vigs

Il est maintenant facile de déterminer M, M, et M, :

‘ EJec [22w 1 2w
M,=—— —
1 a2 m - Dy
m2
EJe Jo2w 1 D2 w’
1L\'I\. = — < —_— . £
: 1 1 La. y? m D a
m2
ElJe d2w
e v Tos dy
LT ¢
1 S :
= m
h3
ou : J= —
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blgg

ko Cl— — .
E(Vigo+Vigs)

g

De méme (ue dans le cas du flambage d'une barre soumise a une compression

axiale, si I'on adopte la désignation
E.c = Ty = module de flambage, on obtienl :

LE.
- 4B lgo ; Lg v
ISt P e
t{/C‘D \/ [g(;)

Pour m= « (déformations élastiques aussi bien que déformations plastiques),
le module Ty des éléments plans vient se confondre avec celui des barres.

Pour une déformation virtuelle, I'équation différenticlle de la plaque rectan-
gulaire soumise & une compression axiale suivant les deux directions de ses

axes, au-dessus de la limite d'élasticité, devient :

i L *tw ) L Ofw 2w
1 At ek e o 2 Sy 2 O
{ oL g pnan Eoar sy AR
m2

Il en résulte que la surface de flexion n’est modiliée ni dans sa position, ni
dans sa forme, méme dans la zone située au-dessus de la limite d’élasticité ; on

a par exemple, pour une plaque maintenue sur tous ses cotés :

On est donc en possession de tous les éléments pour pouvoir résoudre le
probleme du flambage des plaques rectangulaires méme au-dessus de la limite
d’élasticité, et pour dillérentes conditions aux bords.
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I4

LA STABILITE DE L'AME DES POUTRES SOLLICITEES A LA FLEXION
DIE STABILITAT DER STEGBLECHE VON BIEGUNGSTRAGERN
STABILITY OF PLATE GIRDERS SUBJECTED TO BENDING

S. TIMOSHENKO,
Professor of Engineering, Universily of Michigan,
Ann Arbor.

Voir aussi « Publicalion Préliminaire », p. 129. — Siehe auch « Vorbericht », S. 129. —
See also ‘¢ Preliminary Publication ”, p. 129. '

S. TIMOSHENKO,
Prof. Universily of Michigan, kEngineering Mechanics,
Ann Arbor (Michigan).

In discussing the elastic stability of the web of a plate girder we have to
consider two extreme cases : 1) the pure bending and 2) the pure shear of a
rectangular plate.

At the middle of the span the bending stresses in the web are of primary
importance and a portion of the web belween the two stiffeners should be
considered as a rectangular plate submitted to pure bending in its plane. In
a plate girder of usual proportions, the distances belween the stilfeners are such
that the stiffeners do not alfect substantially the critical value of maximum
bending stress. This critical stress must be taken as a basis for calculating the
thickness of the web. Considering the web as a rectangular plate with simply
supported edges and neglecting the effect of stilfeners, the critical value of
maximum bending stress will be larger than the usual working stress (16,000
Ibs. per sq. in.) it we satisfy the relation :

h depth of the web

L wh < 200 (1)

{  thickness of the web

When the thickness of the web has been determined by using equation (1)
the distance between the stiffeners can be calculated by considering a portion
of the web near the support as a rectangular plate submitted to the action of
pure shear. The curves in figure 9 of the paper can be used for calculating the
necessary distance between the stiffeners such that the desired factor of safety
will be realised.

Table 10 of the paper gives the necessary data for proper dimensioning of
the stiffeners.

Traduction.

Dans 1'étude de la stabilité ¢lastique de I'ame d'une poutre, deux cas extrémes
doivent étre pris en considération :
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1. la flexion simple;

2. le cisaillement simple ;
ces cas étant appliqués a une plaque rectangulaire.

Au milieu de la portée, les efforts de flexion dans 'dme exercent une
influence capitale et une portion de I'ame comprise entre deux éléments de
renforcement doit étre considérée comme une plaque rectangulaire soumise
dans son plan & une flexion simple. Dans une poutre a parois pleines de
dimensions courantes, les intervalles entre les éléments de renforcement suc-
cessifs sont tels que ces éléments n’exercent pas une influence notable sur la
valeur critique de 'elffort maximum de flexion. Cette valeur critique doit étre
considérée comme constituant la base du calcul de 'épaisseur de 'ame. Si l'on
considére I'ame de la poutre comme une plaque rectangulaire dont les bords
sont simplement posés et si 'on néglige I'influence des éléments de renforce-
ment, la valeur critique de I'effort maximum de flexion sera plus élevée que
la contrainte ordinaire de travail (11,2 kg par mm?) si 'inégalité suivante est
saftisfaite : '

h hauteur de 1'dme

2= < 200 (1)

t épaisseur de I'ame — :

Si I'épaisseur de 'ame a été déterminée en faisant appel & I'équation (1),
I'écartement entre les éléments de renforcement peut étre calculé en considé-
rant une partie de I'dme située pres de l'encastrement comme une plaque rec-
tangulaire soumise a un cisaillement simple. Les courbes de la figure 9 du
Rapport_ (page 146) peuvent étre utilisées pour caleuler 'écartement nécessaire
entre les éléments de renforcement de telle sorte que le coefficient de sécurité
convenable soit effectivement assuré.

La table 10 du méme Rapport (page 164) donne tous les éléments nécessaires
pour le calcul des éléments de renforcement.

Participants & la discussion
Diskussionsteilnehmer

Participants in the discussion :

Dr.-Ing. I'. SCHLEICHER,

Professor an der Technischen Hochschule Hannover.

I. — Die im Vorbericht erwithnten Versuche von Lilly sind fiir einen Ver-
gleich mit den theoretischen Werten nicht brauchbar. Die Dicken von 0,038
bis 0,122 cm sind bei handelsiiblichen Blechen zu klein, um eine Kontrolle
der Rechnung zu ermoglichen. Die Abweichungen von der Ebene stérten zu
stark, ferner diirfte neben der Schubknickung auch die Beulung durch Bie-
gungsdruckspannungen mitgewirkt haben. Trotzdem zeigen die Versuche deut-
lich, wie eng vertikale Steifen geselzt werden miissen, wenn sie die Knick-
spannung T, nennenswert heben sollen. Bei Seitenverhiltnissen 2 der einzel-
nen Plattenfelder
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o = 3,30 1,65 1,10 0,55 betrugen die kritischen Schubspannungen
w = <11 495 620 T42 Lkg/em? ber h = 0,038 cm Plattendicke
- = 381 B28 T00 848 » » b= 0,056 cm »
. = 538 830 1170 1610 » » h = 0,122 em »

Wichtigist, dass sich die Beulenlinge von der Blechdicke unabhingig zeigte.

Hinsichtlich der bei Versuchen zu verwendenden Mindestblechstirken ist
auf die Ausfithrungen von K. v. Sanden! und T. Tokugawa? zu verweisen.
Danach sollte bei baumiissigen Stahlblechmodellen die Wanddicke nicht unter
4 mm betragen, weil sonst die Stérungen zu grossen Einfluss haben. Selbst-
verstindlich kann man auch mit dinnen Plaiten gute Ergebnisse erzielen.
Daftir sind jedoch besonders genau gearbeitete Modelle notwendig.

I1.— Sorgfiltige Modellversuche uber die Schubknickung von Platten enthilt
eine Aachener Dissertation 3. Diese Versuche zeiglen die Schwierigkeiten, die
sich der Verwirklichung der Randbedingungen entgegenstellen. Da ein Seiten-
paar frei war, mussten auch Biegungsspannungen auftreten. Spannungen und
Randbedingungen lassen sich also nicht unmittelbar mit den theoretischen
Verhiltnissen vergleichen, weiter wiiren die Spannungserhohungen in der Nihe
der freien Rinder zu beachten. Schliesslich deuten die beobachteten Biegungs-
flichen darauf hin, dass die Einspannung nicht vollkomn.en war. Bollenrath
selbst bemerkt, dass « die Giite der Annitherung an die theoretische Knicklast
so ziemlich eine I'rage der Kinspannung ist ».

Die Versuche wurden mit Platten aus Zelluloid, Duralumin und Messing
durchgefihrt, wobei der Elastizititsmodul zwischen 16 und 943 t/cm? va-
riterte.

Die Ausbeulung ging immer vom freien Rande aus. Die Knickspannungen
ergaben sich fir den elastischen Bereich zu

(1) o = B0 2

Der Zahlenkoeffizient wurde zwischen 47 und 56 gefunden, wobei die theo-
retische Breite zwischen den Klemmbacken eingesetzt wurde. Die Theorie lie-
fert fur die sehr lange Platte mit freiaufliegenden bzw. eingespannten Riin-
dern
¥ D
(2) hte = 53 bzw. 89

ETj

Die ganze Beulenlinge wurde im Mittel aller Versuche zu & = 1,97 b gefun-
den. Die Theorie gibt % = 2,66 b fiir freiaufliegende Rinder und % = 1,60 5
bei Kinspannung. Da die Breite nur 0,8 bis 2,0 cm betrug, bei den Metallstrei-

1. K. von Sanpey und K. Giintuer, Ueber das Festigkeitsproblem querversteifter Hohl-
zylinder unter gleichmiissigem Aussendruck, Werft und Reederei 1920 und 1921.

2. V. Taxesapa Toxuacawa, Model experiments on the elastic stability of closed and
cross-stiffened circular cylinders under uniform external pressure. Paper N 631 der japan.
Schiffbautechn. Gesellschaft, 1929.

3. F. BorLenraTtH, Ausbeulerscheinungen an ebenen auf Schub beanspruchten Platten,
Muanchen, 1928.
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fen bis 3,5 em, bei 0,5 ¢cm breiten Einspannkanten, muss jede kleine Korrektur
der Plattenbreite wesentlichen Einfluss auf das Ergebnis haben. Z. B. fir b'/h
= 2.4/2,0 wirde der Koeffizient in Gl. 1 statt 50 gleich 72, die Beulenlinge
W =1,64 b

Die Gleichung von Bollenrath gilt nur [tir Schubspannungenunter der Pro-
portionalititsgrenze <p, die deutlich ausgeprigt war. Sie wurde, zugleich als
Grenze zwischen der elastischen und unelastischen Ausbeulung, bei den folgen-
den Verhiltnissen b/h gefunden : 3% bei Zelluloid, 50 bei Duralumin und 70
bei Messing. Kin Unterschied in der Beulenlinge fur elastische und unela-
stische Ausbeulung war nicht festzustellen.

Fig. 2.

I11. — Zwei schone Beispiele von durch Schubspannungen ausgebeulten Ble-
chen zeigen die Fig. 1 und 2, die einem Versuchsbericht von H. I'. Moore
und W. M. Wilson entnommen sind ).

IV. — Stabilitat der Stegbleche von Blechtrigerbriicken, insbe-
sondere aus hochwertigen Baustahlen.

Die Sicherung der Stegbleche von Vollwandbalken gegen die Ausbeulung
durch Biegungsdruckspannungen ist schwieriger durchzufithren, als die gegen
Schubspannungen. Die grossten Schubspannungen hat man im allgemeinen
nur in der Nihe der Stiitzen, dagegen sind z. B. beim Parallelbalken die Bie-
gungsdruckspannungen praktisch auf der ganzen Linge von konstanter Grosse.

1. IL. F. Mooxre and I. M. WiLsox, the strength of webs of I-beams and girders. Uni-
versity of Illinois, Engineering experiment station Bulletin N° 86, May 1916.
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Besondere Schwierigkeiten sind bei kontinuierlichen Trigern zu iberwinden,
doch ist es auch da in den meisten Fillen moglich, konstruktiv und dsthetisch
befriedigende Losungen zu finden. Ein Beispiel einer Briicke, bei deren Lnt-
wurl alle Erfahrungen iiber die Stabilitit von versteiften Platten beriick-
sichtigt werden konnten, ist die im Bau befindliche « Dreirosenbriicke » iber
den Rbein in Basel !.

Die bekannten Erfahrungsregeln fir die Bemessung der Stegbleche gelten
fiir Stahl von Normalgiite (St 37).

Wir betrachten eine bestimmte Konstruktion. Das Stegblech soll im elasti-
schen Bereich knicken und andere Stabilitatsgrenzen als die des Stegblechs
sollen nicht in Frage kommen. Wenn diese Konstruktion aus St 37 1,7-fache
Sicherheil gegen Ausbeulen besitzt, so wiirde sie aus St 52 und unter der 1,5-
fachen Belastung, die an sich zulissig wire, nur noch 1 ,1-fache Knicksicherheit
haben. Bei sonst gleichen Verhiltnissen und gentigend hoher Proportionalitits-
grenze miusste das Stegblech einer Konstruktion aus St 52 im Vergleich zu
St 37 um 1,22-mal dicker sein. Allgemein miissten sich die Blechdicken wie
die Wurzeln aus den Spannungen verhalten.

Lin Beispiel soll die Notwendigkeit besonderer Massnahmen zur Ausstei-
fung hoher Blechtriger illustrieren. Das unversteifte Stegblech eines Tragers

aus St 52 soll eine kritische Biegungsbeanspruchung von og = 0,85.
2,1. 1,75 = 3,12 t/cm? besitzen, entsprechend der tublichen Sicherheit gegen

Erreichen der Streckgrenze, bezogen auf die mittlere Spannung ohne Nietab-

ziige Die Proportionalititsgrenze liege mindestens ebenso hoch. Nach Timo-
shenko i1st dann :

3) o = 24.1895 (h/h)? = 45500 (h/b)2, in t/em?,

oder wenn ¢, = 3,12 t/em 2 sein soll

k) bh =120 h.

7.. B. fur einen Triger von b = 480 cm Hohe wire eine Stegblechstiirke von

I = 4,0 em notwendig. Vertikale Steifen in 240 cm Abstand wiirden 2 die
Knickspannungen nur um 6°/, heben. Vertikale Steifen sind also kein geeignetes
Mittel, um die Stabilitit unter Biegungsdruckspannungen zu verbessern. Bei
steifen, gegen Verdrehung gesicherten Gurten liegen die Verhiltnisse infolge
der Randeinspannung etwas giinstiger. Wieviel dieser Einfluss ausmacht, kann
jedoch nur von Fall zu Fall geschiitzt werden.

Vo T experimentellen Bestimmung der Knicl;spannungen
1m elastischen Bereich.

Fire die Un.tersuchung der Stabilitat sollte mehr als bisher die Beobachtung
der Schwingungszahlen mit heran gezogen werden, Wird das stabile Gleich-

1. L. Kan~er, Internat. Wettbewerb zar Erlangung von Entwiirfen fiir eine Strassen-
briicke iiber den Rhein in Basel (Dreirosenbriicke). Die Bautechnik, 1931. Ferner : Wetl-
bewerb Dreirosenbriicke Basel. Ein Markstein in der Entwicklung der Balkenbriicken. Der
Bauingenieur, 1931.

2. 5. Tmmosuenko, Tafel 8, Vorbericht, S. 143,



La stabilité de I'ame des poutres sollicitées i la flexion 155

gewicht eines elastischen Systems gestort, so zeigt das System das Bestreben,
in die frithere Lage zuriickzukehren. Das System schwingt um die stabile
Gleichgewichtslage, die Frequenz dndert sich mit dem Spannungszustand. Bei
jedem elaslischen System, das unter einem bestimmten Spannungszustand
instabil wird, sinkt die Frequenz bei Annéherung der Spannungen an die kri-
tischen Werte. Auf der anderen Seite steigt sie mit Spannungen, die die Sta-
bilitit vergrossern. An der Stabilititsgrenze wird die Irequenz null, das Sy-
stem zeigt keine Tendenz, in die alte Gleichgewichtslage zuriickzukehren.

FFiir einen Stab mit der Druckspannung ¢ und der Euler-Knickspannung
o 1st die Frequenz

])21)0\/’1—£

worin p, die Frequenz des unbelasteten Stabes bedeutet !. Dabel 1st voraus-
gesetzt, dass ¢x < o, und die Stérungsausbiegung gentigend klein bleibt.
Man erhiilt die folgenden Werte :

s toe — 0,00 050 0,75 0,90 0,950 0,990 0,999 1,000
p i pe = 1,00 0,707 0,500 0,316 0,224 0,100 0,032 0,000

Ahnliche Zusammenhiinge gelten fiir Platten und Schalen. Die Beobachtung
der I'requenzen diirfte auch noch dann brauchbare Lirgebnisse liefern, wenn
die theoretische Form etwas gestort ist.

Traduction.

I. — Les essais de Lilly, dont il est fait mention dans la Publication prélimi-
naire, ne peuvent pas étre utilisés pour établir une comparaison avec les résul-
tats théoriques. Les épaisseurs de 0,038 a 0,122 cmsont trop pelites, pour les
toles du commerce, pour permettre d’effectuer un controle du caleul. Les défor-
mations par rapport au plan initial sont trop importantes ; en outre, il aurait
fallu faire intervenir, a coté du flambage s'exercant transversalement par cisail-
lement, le voile sous l'influence de contraintes simultanées de compression et
de flexion. Quoi qu'il en soit, ces essais montrent quels écartements on doit
admettre entre les éléments de renforcement verticaux pour leur permettre de
parer aux contraintes de flambage <. On trouvera dans le tableau ci-dessous

Rapport 3,3 1,65 1,4 0,55
<k en kg /mm?
h = 0,038 cm. 3,71 4,95 6,2 7,42
h =— 0,056 cm. 3,81 5,28 7,0 8,48
h = 0,122 cm. 5,38 8,3 1,7 16,1

1. Vgl. Handbuch der Physik, Band VI, Berlin, 1928, 5. 365.
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les charges transversales critiques 1, correspondant & divers rapports « entre
les dimensions des cotés des plaques élémentaires, pour différentes épaisseurs
h des toles constituant ces plaques. 11 est intéressant de remarquer que les
longueurs de voile se sont révélées indépendantes de I’épaisseur des toles.

Iin ce qui concerne les épaisseurs minima des toles qu’il convient d’adopter
pour les essais, on se reportera aux travaux de K. v. Sanden ! et de T. Toku-
gawa . Dans des modéles en tdle d’acier destinés a reproduire exactement les
conditions de la construction pratique, 'épaisseur des parois ne doit pas des-
cendre au-dessous de 4 millimétres, faute de quot les influences qui provoquent
les déformations sont trop fortes. On peut naturellement obtenir également de

bons résultats avec des plaques minces ; toutelois, les modéles doivent alors
étre étudiés avec un soin particulier.

[I.—Desessais trés soignés, surmodéles, ont été effectudsi Aix-la-Chapelle,
sur le flambage des plaques par contrainte latérale 3. Ces essais ont permis de
mettre en évidence les difficullés que présente la réalisation de conditions
déterminées en ce qui concerne les bords des plaques. Deux des cotés étant
libres, des contraintes de flexion se sont également manifestées. On ne peut
donc pas comparer d'une maniére directe les contraintes et les conditions des
bords des plaques avec les résultats correspondants obtenus du point de
vue théorique ; en outre, il faudrait également tenir compte des accroissements
que subissent les contraintes au voisinage des bords libres. Enfin, les surfaces
de déformation qui ont été observées montrent que l'encastrement réalisé
n'était pas parfait, Bollenrath lui-méme fait remarquer que la valeur de
l'approximation par rapport & la charge théorique de flambage est presqu’exclu-
sivement une question d’encastrement,

Les essais ont été effectués sur des plaques de celluloid, de duralumin et de
laiton ; le module d’élasticité variait ainsi entre 160 et 9.430 kg par mm?.

Le voile s'est toujours amorcé sur les bords libres. On a atteint, pour les
efforts de flambage dans le domaine élastique :

h,f,{:sob% (1)

Le coefficient numérique a atteint des valeurs comprises entre 47 et 56, ce
coefficient tenant compte de 1'écartement théorique entre les machoires de

serrage. La théorie donne pour les pluques trés longues reposant en appul libre
ou avec bords encastrés :

: D :
h v, = 53 ou 89 7 (2)
Pour tous les essais, la valeur moyenne de la longueur de voile a été

1. K.v. Sanpen et K. Giintuer, Ueber das Festigkeitproblem querversteifter Hohlzylinder
unter gleichmissigem Aussendruck, Werft und Reederei, 1920 et 1921,

2. V. Taxesapa Tokucawa, Model experiments on the elastic stability of closed and cross.
stiffened circular cylinders under uniform external pressure. Rapport n° 651 de la Sociélé
de Constructions Navales Japonaise, 1929.

3. F. BorLeNratn, Ausbeulerscheinungen an ebenen auf Schub beanspruchlen Platlen-
Munich, 1928,
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7% = 1,97 b. La théorie donne . = 2,66 b, pour des plaques reposant librement
sur leurs bords et % == 1,60 5 dans le cas de I'encastrement. La largeur n’attei-
gnant que 0,8 & 2 em, pour des bandes métalliques allant jusqu'a 3,5 em, avec
des encastrements de 0,5 cm de large, une correction si faible soit-elle sur Ia
largeur de la plaque doit exercer une influence sensible sur le résultat obtenu.
(est ainsi que pour b'/b = 2,4/2,0 on atteindrait pour le coefficient de I’équa-
tion (1) une valeur de 72 au lieu de 50, la longueur de voile étant alors 1/ =
1,64 b'.

[’équation de Bollenrath n’est valable que pour les efforts transversaux infé-
rieurs 4 la limite de proportionnalité <, qui fut nettement accusée. Elle a
coincidé avec la limite de séparation entre les voiles élastique et plastique
pour les rapports de dimensions suivants : h/h = 34 pour le celluloid, 50
pour le duralumin et 70 pour le laiton. On n'a pas constaté de différences
entre les longueurs de voile pour les voiles élastique et plastique.

ITI. — Les figures 1 et 2 constituent deux remarquables exemples de toles
ayant subi un voile par suite de contraintes latérales ; elles sont extraites d'un

rapport d'essais publi¢ par H. I'. Moore et W. M., Wilson 1.

IV. — Stabilité des Ames des poutres de ponts, particuliéerement
en ce qul concerne les aciers de construction a haute résistance.

Il est plus difficile d’assurer la sécurité des dmes des poutres pleines contre
le voile dii aux contraintes simultanées de compression et de flexion, que
contre le voile di aux efforts transversaux. l.es maxima de ces contraintes
transversales se manifestent en général seulement au voisinage des appuis ;
par contre, dans les poutres paralléles par exemple, les contraintes simultanées
de flexion et de compression sont pratiquement constantes sur toute la lon-
gueur de la poutre. Des difficultés particuliéres se rencontrent dans les poutres
continues ; loutefois, précisément dans ce cas, il est trés souvent possible de
trouver des solutions satisfaisantes du point de vue de la construction et
par ailleurs esthétiques. Le pont des Trois Roses, qui est actuellement en
construction sur le Rhin & Béile, constitue un remarquable exemple d'une
construction dans laquelle on a tenu compte, des I'établissement du projet, de
toutes les expériences qui ont été faites au sujet de la stabilité des plaques
renforcées .

Les régles expérimentales connues pour le calcul des piéces d'dme sont
applicables & 'acier de construction de qualité normale (St. 36).

Considérons un ouvrage déterminé. Les toles d'ame doivent subir le flambage
dans la zone élastique et il ne doit pas intervenir d’autres limites de stabilité
que celle de la tole d'ame. Supposons l'ouvrage en acier St 37, avec une sécu-

1. H.F. Moore et HH. M. WirLso~, The strength of webs of I-beams and girders. Univer-
sité d'Illinois, Bulletin de la Station d’Essais n° 86, mai 1916.

2. L. Kanxer, Concours International pour I'établissement des projets concernant la
construction d'un pont-route sur le Rhin, & Bale (Dreirosenbriicke), Die Bautechnik, 1931,
et : Concours pour le Pont des Trois Roses a Bile ; une date dans 'évolution de la conslruc-
tion des ponls & poutres, Der Bauingenieur, 1931.
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rité de 1,7 contre le voile; si, par contre, il était en acier St 52, avec une
charge correspondant & un coeflicient de 1,5, valeur admissible en soi, il ne
resterait plus qu'une marge de sécurité de 1,1. Toutes choses égales d’ailleurs
et pour une limite de proportionnalité suffisamment élevée, une picce en acier
St 52 doil avoir une épaisseur égale & environ 1,2 fois I'épaisseur correspondant
a I'acier St 37. D’une maniere générale, les dépaisseurs des tdles varient comme
les racines des charges.

Un exemple montrera quelles précautions particulieres il est nécessaire d'en-
visager pour le renforcement des poutres & dmes pleines de grande hauteur.
L’ame non renforcée d’une poutre en acier St 52 doit accuser une charge cri-
tique a la flexion

ox = 0,85.2,1. 1,75 = 3,12 t/em?

(ui correspond & une marge de sécurité normale par rapport i la limite d'écou-
lement, pour l'effort moyen, sans tenir compte de laffaiblissement diu au
rivetage. La limite de proportionnalité serait au moins aussi élevée. On a alors,
d’aprés Timoshenko :

o = 24,1895 (h/bh)? = 45500 (h/b)? en t/em? (3)

ou, si gy doil étre égal a 3,12 t/em? :
n—1205h (4)
Par exemple, pour une poutre ayant une hauteur b — 480 cm, il serait

nécessaire d’adopter pour les toles de I'ame une épaisseur de /o = 4,0 em. Des
éléments de renforcement situés & des intervalles de 240 em n’éléeveraient la
charge de flambage que de 6 °/, environ!. L’adjonction d’éléments de renfor-
cement verticaux ne constitue donc pas une solution favorable pour améliorer
la stabilité aux efforts simultanés de compression et de flexion. Avec des
membrures rigides, présentant une sécurité assurée contre la torsion, on
arrive & des conditions de résistance bien meilleures, par suite de l'encastre-
ment qui en résulte pour I'ame. L’influence exercée par cette disposition ne
peut toutefois étre évaluée que comme un cas d'espece.

V. — Ladétermination expérimentale des contraintes de flam-
bage dans la zone élastique.

11 devient de plus en plus important de prendre en considération, dans les
études sur la stabilité, la question des fréquences d’oscillation. Lorsque 1'équi-
libre stable d'un systéme élastique est soumis & une perturbation, ce systeme
accuse une tendance a revenir & sa position initiale. Le systeme oscille autour
de la position qui correspond a I'équilibre stable ; la fréquence varie avec le
régime de charge. Dans tout systeme élastique instable sous un régime de
charge déterminé, la fréquence baisse lorsque la charge approche de la valeur
critique. Par ailleurs, elle s’éleve pour des charges qui provoquent une amé-
lioration de la stabilité. A la limite de stabilité, la fréquence est nulle, le sys-
teme ne manifeste aucune tendance a revenir 4 I'ancienne position d’équilibre.

1. Trimosuenko, Tableau 8, Publication Préliminaire, p. 162.
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Pour une barre soumise a une contrainte de compression ¢ et admettant une
charge de flambage d’Euler s, la fréquence d’oscillation est donnée par :

g
p_po\/1~—&;

Do désignant la fréquence de la barre a I’état non chargé !. On suppose que
o est inférieur & o, et que la déformation est suffisamment faible.

. . . g
On obtient alors les valeurs suivantes, pour p/p,, en fonction de —,
: Ox

s 0,75 0,9 0,95 0,99 0,999 1
Ok
}l} . 4 0707 05 0,316 022 041 0,032 0

On obtiendrait des relations semblables pour les dalles et les surfaces de
courbure. La prise en considération des fréquences ne peut toutefois donner de

résultats effectifs que lorsque la forme théorique subit une certaine pertur-
bation.

Dr.-Ing. A. HAWRANEK,

Professor an der Deutschen ‘Technischen Hochschule, Briinn,

[(nickversuch eines Blechtrigerstiickes mit verinderlicher Iohe.
Soweit bekannt, liegen bisher bloss theoretische Versuche mit vollwandigen
genieteten Triagern mit parallelen Gurtungen vor, die sich mit dem Stabilitiits-

Ansrcht
T Schnitt
; formanderungen
! ves Versuchssivckes
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li== Knicktast 98.97¢
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Fig. 1. — Vue de face = Ansicht = Side view.
Fig. 2. — Coupe = Schnilt = Section.
Fig. 3. — Déformation de la piéce d’essai = Forminderungen des Versuchsstiickes = Dcforn-]a—
tion of Lhe test piece — Charge de flambage : 98, 91 tonnes = Knicklast 98, 91* = Bukling

load 98, 91 tons.

1. Voir Handbuch der Physik, vol. VI, Berlin, 1928, p. 365.
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problem des Stehbleches befassen. IFiir Blechtriger mit nichtparallelen Gurtun-

gen 1st sowohl far den Fall

formanderungen des Stegbleches. :
von  Schubspannungswirkun-

d g gen, wie bei Biegung das Pro-
blem der Stabilitit des Steh-
bleches derzeit noch ungelést,

: % % ist aber fir die Haupttriger
: = von Briicken, die als durchlau-
87 fendeTrager oder Gerbertrager

ausgebildet sind von Wichtig-

o keit, da diese bel den Stiitzen

N7 gewohnlich eine Vergrosserung

N der Stehblechhéhe in Form von

4 4 Vouten erhalten.

Verfasser hat zur Klarung

20 einer einschlagigen I'rage einen
Versuch durchgefihrt, aus dem

= sich allerdings keine allgemei-

Jd nen Schlusse ableiten lassen,
da er abgesehen von der Form

32 des  Versuchsstiickes auch

9 beztglich der Lagerung eige-
8 €5

lﬁ e 28 nartig ist, aber hier vorgeliihrt

4 werden soll, weil die Irschei-

/ nungen beim Knickvorgang die
24 :

ﬁ/ theoretische Behandlung er-

/4/ / leichtern.

.g / / 20 Anlisslich eines Fallesin der
/

>

Jymme(‘ﬁ/'eac/r.re des l/feﬂsucﬁ&sﬂ}b&es

RS

Praxis war esnotig, die Knick-
75 last eines Sattels in TForm
/ / eines Blechtrigers zu untersu-

ﬁ / 8 chen, dessen untere Gurtung

a / / / | N 2 g_erade, dle.obere Gurtung nach

A T T T8 S 0 einem Kreishogen gekrimmt

g e ‘g war. Bel dem betrelfenden Ob-

jelkte war bloss ein Stehblech

vorhanden, unten ein Gurtwin-

kel aussen, oben emer auf der

Innenseile. Dieses Stick halte

die in Abb. 1 in der Ansicht

gegebene Form, sie 1st unsym-

I'ig. 1. — Déformation de ‘l’z*lme = Forménderung des metrisch, das Stehblech war
Stegbleches - Deformalion of the wely — Axe 8¢ _ilich schief hinaufgezogen
Versuchsstiickes = Axisof symmeltry of the teslpiece. und 8§ mm stark. Die Gurtwin-

kel sind 80/100/10. Die Abstiit-
zung des Stickes erfolgte aufeinen I-Tragerflansch von 141 mm Breite. Die Bela-
stung war lotrecht, auf 50 cm Breite am Obergurt gleichmissig verteilt, wirksam.
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Fiir den Versuch wurde das Stiick doppelwandig mit 200 mm lichtem Ab-
stand ausgebildet (Abb. 2) und oben mit einer 6 mm starken Kopfplatte ver-
bunden. Damit die lotrechte Kraft gleichmissig wirke und sich auf beide Steg-
teile in gleicher Weise verteile, wurde ein eigenes Gusslager aufgesetzt und
die Schubwirkung durch ein aufgesetztes und verschraubtes Zwischenstiick
aufgenommen.

Die Fusswinkel sind mit einer geringen Federung von 2 mm(Abb. 2) auf-
cebracht worden, wie im [Falle der Praxis, was aber fiir die IKnicklast ohne
Einfluss 1st, da sich der Iusswinkel bei der kleinsten Last schon ganz
aufstitzte.

Das Versuchstiick wurde mit einem Liniennetz auf den Aussenseilen ver-

el b,

sehen und in die 400 t-Presse der Deutschen Techn. Hochschule in Brinn
eingebracht.

Im Endzustande hatten die Stehbleche im Querschnitt eine Verbiegung auf-
gewiesen, die in Abb. 3 wiedergegeben ist. Gemessen wurden wihrend des
Versuches die lichten Abstinde der Stehbleche auf der schiefen Seite, deren
Linge in vier gleiche Teile geteilt war. Die Teilpunkte sind von oben O, A, B,
(., wiihrend auf dem gegeniiberliegenden Rand des Stehbleches knapp unterhalb
der Innenwinkel bei D gemessen wurde. Die einzelnen Laststufen wurden je
5 Minuten lang gehaltén.

Die Ablesungen ergaben :

o)
11
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Belastung 0 48,714 61,28 73846 86,4 98,98 ¢
Messtelle A 200 200.8 200,6 2008 200,9 201,0 mm
3 B 1981 1982 198,4 1985 198,9 1996  »
; C 195,0 191,2 1905 1894 188,0 1842  »

» D 202,9 203, 203,4 203,5 203,5 209,5 »

Die Knicklast betrug 98, 98 ¢, somit entfillt auf eine Hilfte die Knicklast
von 49, 49 (.

Fig. 6.

Die windschiefe Verbiegung des Stehbleches wurde nach dem Versuche
fir verschiedene Verlikalschnitte a-y (Abb. 1) des Fusses genau vermessen
und in Abb. 4 eingetragen. Dabei wurden die unteren Winkeleisen im Grund-
riss nach innen gedreht und zwar haben sich diese an der Stelle mit grosster
Trigerhohe am meisten genihert, was auch aus Abb. 4 entnommen werden
kann, Abb. 5 und 6 geben die Liangs- und Queransicht des Versuchssliickes
nach der Ausknickung.

Im vorliegenden IFall war es. nicht maglich, bisher aufgestellte ormeln
anzuwenden. Deshalb wurde eine Theorie aufgestellt, die wegen Raumman-



La stabilité de I'ame des poutres sollicitées & la flexion 163

gels an anderer Stelle veroffentlicht wird. Hier soll nur der Niherungsweg
beschritten werden, der eine gute Uebereinstimmung brachte.

Zu diesem Zwecke ist die Basislinge in 10 gleiche Teile eingeteilt worden.
Es wurden 10 vertikale Streifen herausgegrilfen, ohne auf die seitlichen Wider-
stande Riicksicht zu nehmen, die die kiirzeren Streifen der Ausbeulung der lin-
geren entgegensetzen. Ausserdem wurde der lange dreieckige Zwickel des
Stehbleches vernachlassigt, der unten keine Stiitzung hat, linger ist und auch
nicht unmittelbar belastet wird.

Diese Streifen des Stehbleches hatten eine Fliche von 4 cm?2 und einen Trig-
heitshalbmesser von 0,231 c¢m. Da nach der Forminderung des Versuchs-
stiickes die unteren I'usstellen sich gedreht haben, oben jedoch die Gurtwinkel
das Stehblech festhielten, aber knapp unterhalb des Winkelrandes das Steh-
blech sich ausgedreht hat, wird fur jeden Streifen der Abstand vom Fussende
bis zu diesem Winkelrand als freie Knicklinge genommen.

IFir diese Annahme wurde fir alle Streifen unabhingig voneinander die
zuliissige Knicklast nach Tetmajer bezw. Euler gerechnet fiir s = 1200 kg/cm?2.
Die Stauchspannung fiir das verwendele Eisen ist mit 2400 kg/cm? ermittelt
worden, ,

Die zuliassige Last ergab sich mit 49,44 und die rechnungsmissige Knicklast
aus der Stauchspannung mit 98,88 t. Die tatsichliche Knicklast betrug fiir
diese Halfte 98, 62 t., was eine gute Ubereinstimmung gibt.

Traduction.

Jusqu'a maintenant, et pour autant que 'on sache, seules les poutres rivées
a Ame pleine & membrures paralleles ont fait I'objet d'études portant sur la
question de la stabilité des toles de I'ame. En ce qui concerne les poutres en
tole dont les membrures ne sont pas paralleles et tant pour le cisaillement
que pour la flexion, le probleme de la stabilité des toles de l'ame n’a pas
encore recu de solution. Ce probléme présente cependant une extréme impor-
tance pour les poutres principales de ponts exécutées en poutres continues
ou poutres Gerber, car ces dispositions comportent généralement, aux appuis,
une augmentation de la hauteur de 1'dme sous forme de voiitins.

L auteur, ayant a4 étudier une question corrélative, a effectué un essai, qui,
sans permeltre d’aboutir & des conclusions d’ordre général (car cet essai porte
non seulement sur une forme particuliére, mais également sur une disposition
particulicre des appuis), n'en est pas moins intéressant a évoquer ici, les
phénomeénes qui ont été constatés au flambage pouvant contribuer a faciliter
I’étude théorique de ce processus.

A Voccasion d'un cas concret, il fut nécessaire d’étudier le flambage d'une
picce d'appui ayant la forme d'une poutre a ame pleine, dont la membrure
inférieure affectait une forme rectiligne, tandis que la membrure supérieure
présentait la forme d'un arc de cercle. Dans le cas considéré, la poutre ne
comportait qu'une seule tdle d'ame, avec corniere de membrure inférieure
extérieure et cornicre de membrure supérieure intérieure. La piéce avait la
forme indiquée sur la figure 1; elle était donc dissymétrique, la tole d’Ame,
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d'une épaisseur de 8 millimetres, étant inclinée latéralement vers le haut.
Les corniéres de membrure ont 80-100-10. L’appui de la piéce était assuré
par une semelle en I de 141 mm de large. La charge s'exercait verti-
calement, sur 50 centimétres de large, et d’une maniére uniformément répar-
tie, sur la membrure supérieure.

Pour l'essai, la pi¢ce fut constituée avec double paroi & un écartement
entre ames de 200 mm (figure 2), ces deux ames étant assemblées a la partie
supérieure avec une semelle de 6 mm d'épaisseur. Afin que linfluence de
la charge puisse s'exercer uniformément et que cette charge se répartisse
également sur les deux ames de la piéce, on disposa un support en fonte de
forme appropriée, l'effort de cisaillement étant supporté par une piéce inter-
meédiaire rapportée et boulonnée.

Les cornieres inférieures sont montées avec un faible jeu de 2 mm
(figure 2), de méme que dans la pratique, fait qui n’exerce cependant aucune
influence sur le processus du flambage, car 'appui effectif de ces dernicres
est completement assuré pour la plus faible charge.

On traca sur la piéce d'essai un systeme de lignes de repéere et elle fut
montée sur la presse de 400 tonnes de 1'Lcole Polytechnique de Briinn,

La figure 3 représente la déformation accusée par les toles de 'ame a la
fin de l'essai. Pendant 1'essal, on mesura l'intervalle entre les tdles d’ame,
sur le coté incliné, dont la longueur avait été divisée en quatre parties
égales. Les points de divisions sont marqués, & partir du haut, O, A, B, C:
sur le bord opposé de la tole d'ame, presque sous la corniére, la mesure fut
elfectuée en D. Les dilférentes charges successives furent maintenues chacune
pendant 5 minutes.

Les résultats obtenus sont indiqués dans le tableau ci-countre :

‘La charge de flambage fut atteinte pour 98,98 t, ce qui correspond, pour
chaque moitié de la piéce, & une charge de flambage de 49,49 tonnes.

Eliargesentt = e SR 0 48,71 61,28 73,85 86, 4 98,98
20 TRATERES S e S 200 200,8 200,6 200,8 200,9 201

R OT| G S e 198,1 198,2 198, 4 198,5 198,9 199,6
Rointa@ s e 1935 191,2 190,5 189, 4 188 184,2
PointoDi s 202,9 203,4 203, 4 203,5 203,5 209,5

Le gauchissement de la tole d'ame fut mesuré exactement aprés I'essai,
pour différentes sections verticales a-g (figure 1) et fait 1'objet de la figure 4.
Les corniéres inférieures se sont d'ailleurs déformées vers lintérieur, se
rapprochant d’ailleurs l'une de 'autre au maximum & l'endroit correspondant
a la plus grande hauteur de 'ame de la poutre, ainsi qu'on peut s’en rendre
compte sur la figure 4. Les figures 5 et 6 représentent la piéce ainsi soumise
a 'essal, en vue longitudinale et transversale, aprés le flambage.

Il n’a pas été possible d'appliquer, au cas qui vient d’étre exposé, les for-
mules déja établies. On a di mettre sur pied une théorie, dont le peu de
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place dont nous disposons actuellement nous oblige a différer la publication.
Nous n'exposerons ici qu'une méthode approchée, donnant d'ailleurs un
résultat en concordance.

Cette méthode consiste a diviser la longueur de base en 10 parties égales.
On définit ainsi 10 bandes verticales et 1'on ne tient pas compte de la résis-
tance qu’opposent les bandes de faible longueur au flambage des bandes de
plus grande longueur. On néglige en outre la longue pointe triangulaire de la
tole d’ame, qui ne comporte aucun appui inférieur et qui n’est pas soumise,
d’ailleurs, a l'action d'une charge directe.

Les bandes ainsi définies avalent une surface de 4 em? et un rayon d'inertie
de 0,231 em. A la suite des déformations provoquées par 'essai, les parties
inférieures ayant été particulierement déformées, la corniere supérieure de
membrure ayant tenu, mais la téle ayant été gauchie presque immédiatement
au-dessous du bord de cette cornicre, on a pris comme longueur libre de
flambage, pour chacune des bandes, la distance entre le pied et ce bord de
corniére lui-méme.

On a calculé, dans ces conditions, d’aprés Tetmajer et Euler, la charge de
flambage admissible pour toutes les bandes, indépendamment les unes des
autres, pour s = 1200 kg/em?. La contrainte de compression, pour l'acier
employé, a été trouvée égale & 2400 kg/em?.

On a trouvé une charge admissible de 49,44 tonnes et une charge de
flambage déduite de la contrainte de compression de 98,88 tonnes. La
charge de flambage elfectivement constatée pour cette moitié de la piece
est de 98,62 tonnes, ce qui est d’accord avec le calcul.

Dr. Ing. ST. BRYLA,

Professeur & I'icole Polytechnique, Lwéw.

En ce qui concerne la question du renforcement des poutres en double T, &
laide de contre-fiches, question soulevée par M. Timoshenko dans son tres
intéressant mémoire, je m'empresse d'indiquer ci-aprés les résultats des
essais exécutés par moi en 1930-31.

Il s’agit de poutres en double T laminées, dont les ames ont été renforcées
par des contre-fiches, constituées par des fers plats soudés aux dmes. On a
essayé des poutres de 16, 20, 24, 30, 32 et 34 cm de hauteur, dont les appuis
étaient éloignés de 3 metres. Les poutres supportaient une charge appliquée
au milieu, car je n'avais pas d'appareils répartissant uniformément la charge
sur toute la longueur des poutres.

Dans chacune des 6 séries on a essayé : une poutre sans contre-fiche de ren-
forcement, une poutre avec 3 contre-fiches, placées aux points d'application
des charges verticales, et une poutre & 5 contre-fiches placées a des distances
égales 'une de l'autre. (Voir fig. 1.)

Les résultats détaillés de ces essais seront publiés spécialement. Je me bor-
nerai ici & citer les résultats qui sont représentés par les tableaux fig. 2-4. Sur
ces diagrammes, on a porté en abscisses les hauteurs des poutres et en ordon-
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M
W)
la valeur du moment de rupture et W celle du moment de résistance des
poutres.

nées la résistance au pliage, calculée d'apres la formule k = ou M désigne

En ce qui concerne les autres poutres,
elles n’ont pas supporté 1'effort, ce qui s'est
manifesté, soit parl'écrasement dela semelle,
soit par le flambage de I'Ame.

Pour ces derniéres poulres, de plus grande
hauteur, on voit l'importance de 1'application
des contre-fiches, qui augmentent la résis-
tance.

Le diagramme fig. 2 (poutres non-renfor-
cées) montre la diminution de la résistance
pour des poutres d’une plus grande hauteur,
ce qui est d’ailleurs connu; cependant le dia-

kg/mm?

-
S

20

1710

[%l ‘ h
h _h J h % 20 24 30 32 3¢

Fig. 1. Fig. 2.

gramme fig. 3 (poutres renforcées par 3 contre-fiches) et surtout fig. 5 (5 contre-
fiches) met en évidence, non sculement une stabilité, mais méme une augmen-
tation de la résistance. Cette augmentation est de plus en plus nette lorsque la

kg/mm?
kg/mm? 7
40 i o> 40 Rz
___-——"_-——-_-_ /
130 30
20 120
110 170
i) Y]
76 20 24 Jo 32 34 76 20 24 g0 32 J4
Fig. 3. Fig. 4.

hauteur des poutres augmente, et traduit le renforcement de I'ame a 1'aide des
contre-fiches. ;
Les conséquences qu'on peut tirer de ces diagrammes sont les suivantes :
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1° L’application de contre-fiches soudées augmente la résistance des poutres
laminées en double T, quelquefois méme de plus de 20 °/,.

90 Sj les contre-fiches sont placées a la méme distance, la résistance aug-
mente d’autant plus que la hauteur de la poutre est plus grande.
~ 3° Les essals n'ont pas permis de déterminer la valeur la plus avantageuse

h

du rapport T

4° Iaugmenlation est la plus grande sil'on applique des contrefiches dans
les points d’application des charges concentrées.

5° L’application des contre-fiches & des intervalles plus réduits augmenterait
la résistance, mais leur cotit deviendrait alors plus élevé que le profit que l'on
retirerait de I'augmentation de la résistance.

{
1

!
2505 ‘
. I

Fig. 5.

6o L'épaisseur de I'ame des poutres examinées n'a pas joué dans ces essals
un role primordial, étant donné que ces poutres étaient relativement basses;
épaisseur de l'ame dépend plutot de considérations de fabrication que de
questions de résistance.

Les résultats ci-dessus ne peuvent pas étre généralisés, bien entendu, car
nous n'avons pas appliqué une charge uniformément répartie sur toute la lon-
gueur de la poutre ; néanmoins le renforcement des poutres par des contre-fiches
soudées semble procurer des avantages incontestables.

L’augmentation de la résistance par application de contre-fiches peut avoir
une importance dans la pratique pour des poutres en double T travaillant a la
flexion et la compression. J'ai employé ces poulres & la construction du bati-
ment de 16 étages de la Société « Prudential » & Varsovie, ott I'on s’est décidé
a construire encore le 16¢ étage alors que I'on était encore au 15¢°. Les poutres
en double T, de 36 cm. de hauteur, qui supportaient 2 étages, ont du étre lége-
rement renforcées, et on ne pouvait pas appliquer de semelles ni en haut ni de
¢oté, la construction ne le permettant pas. On a donc prévu, dans la partie la
plus chargée, plusieurs contre-fiches soudées, en fers plats. (Iig. 5.)
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Discussion libre.
Freie Diskussion.
Free diccussion.

M. B. BUXTON,

Captain, Chartered Civil Engineer, London.

Professor Timoshenko's paperon Stability of Plate Girders Subject to Bending,
marks a practical advance in structural engineering, because he lays down a theo-
retical basis for the design and spacing of stilfeners in the webs of plate girders,
and for the thickness of the web. Hitherto the rules have been largely empirical.

In Great Britain the Standard Specilication for Girder Bridges demands web
stilfeners riveted on both sides at the ends and inner edges of the bearing
plates, at all points of local and concentrated loads, also at points throughout
the length of the girder generally not further apart than the depth of the gir-
der with a maximum spacing of six feet, when the thickness of the web is
less than 1/60 of the unsupported distance between the flange angles. The
end stiffeners must have sufficient area to carry the entire shear without
exceeding the working stress, while the intermediate stilleners and the rivets
connecling them to the web should be of sufficient area to take 2/3 of the ver—
tical shear at the point of attachment.

Now these rules, like the American Specification mentioned in the paper, have
been based on past experience and are generally satisfactory. The more exact
rules of Prof. Timoshenko show an appreciable saving of material and are to be
welcomed, and it is hoped that they will be supported by practical experience.

Traduction.

Le Rapport du Professeur Timoshenko sur la Stabilité des poutres sollicitées
4 la flexion marque un progres trés effectif dans la technique de la construction,
car il pose les bases de notions théoriques en vue du calcul des éléments de
renforcement et de leur écartement sur I'Ame des poutres pleines ainsi que
pour le calcul des épaisseurs & donner aux ames de ces poutres. Jusqu'a main-
tenant en effet, les régles que l'on adoptait étaient pratiquement empiriques.

En Grande-Bretagne, la « Standard Specification » prescrit pour les ponts &
poutres des éléments de renforcement rivés, sur les deux cOtés, aux extrémités
et sur les bords intérieurs des plaques de téle constituant les ames, ainsi
qu'en tous les points ot peuvent se manifester des charges localisées ou con-
centrées ; ces éléments de renforcement sont également prévus sur toute la
longueur de la poutre, généralement & des écartements non supérieurs a la
hauteur de la poutre elle-méme, avec un maximum de 6 pieds (1,83 metre),
lorsque I'épaisseur de I'ame est inférieure au 1/60 de la distance qui sépare les
extrémités des cornieéres des membrures inférieure et supérieure (ce que 1'on
pourrait appeler la hauteur nette de I'ame). Les éléments de renforcement des
extrémités doivent présenter une section suffisante pour pouvoir supporter la
totalité du cisaillement sans travailler au-dessus du taux normal ; les éléments
de renforcement intérieurs et le rivetage quiles assemble surl'ame de la poutre
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dotvent présenter une section suffisante pour pouvoir supporter les 2/3 du
cisaillement vertical qui s’exerce & leur point d’assemblage.

Ces prescriptions, de méme que les Spécifications américaines qui sont men-
tionnées dans le rapport, sont basées sur une longue expérience et donnent
généralement des résultats satisfaisants. Les régles plus exactes établies par le
Professeur Timoshenko permettent de réaliser une économie trés appréciable
de matiére premiére ; elles doivent recevoir un chaleureux accueil et il faut
espérer qu'elles seront légitimées par 'expérience pratique.

Dr. sc. techn. J. BRUNNER,

Wissenschaftlicher Mitarbeiter an der Eidgendssischen Materialpriffungsanstalt, Ziirich.

Zur Abhandlung von Prof. Dr. Karner mochte ich bemerken, dass mir
seine Definition des Knickens zu eng gefasst erscheint.

Prof. Karner sagt : « Wird ein gelenkig gelagerter Stab zentrisch belastet,
so bleibt er infolge Belastungen unterhalb der kritischen Knicklast (Euler’sche
Knicklast) gerade. Wird die Stabachse durch hinzutreten von fusseren Momenten
gebogen (und tritt keine Randspannung iiber der Proportionalititsgrenze
auf), so kehrt der Stab nach Wegfall der Ausbiegungsursachen wieder in die
gerade Lage zurtick.

« Der Stab bleibt auch bei weiterer Steigerung der Last gerade, er ist im
stabilen Gleichgewicht, bis die kritische Last, die Knicklast, erreicht ist. Der
Stab ist bisher nur durch eine Normalkraft beansprucht. Wird nunmehr die
Last um einen noch so kleinen Teil gesteigert, so tritt eine Ausbiegung auf,
es wird ein Zusatzmoment wirksam. Nur diesen Vorgang sprechen wir
als Knickvorgang an.»

Diese Definition erscheint mir, wie gesagt, zu eng, sie ist darauf eingestellt,
nur elastiche Baustoffe rechnerisch zu erfassen.

Baustoffe, die keine Proportionalititsgrenze, resp. Elastizitiitsgrenze kennen,
wie z. B. Kupfer, auch Gusseisen, wiirden nicht unter den Knickbegriff einge-
retht werden kénnen.

Unsere Stibe der Praxis sind auch immer exzentrisch gedriickt. Auch
da wiirde man nicht von Knicken sprechen konnen.

Geeigneter scheint es mir, das exzentrische Knicken als Typus zu
withlen und das zentrische Knicken als Spezialfall zu bezeichnen.

Gewiss kann man den Begriff « Knicken » so einengen, doch deckt sich
dies weder mit der Praxis, noch ist wissenschaftlich damit etwas gewonnen.

Traduction.

Au sujet du Rapport présenté par le Professeur Dr. Karner, je me permettrai
de faire cette remarque que sa définition du flambage me semble trop étroite.

Le Professeur dit : Lorsqu'une barre articulée & ses extrémités est soumise &
un effort axial centré, elle reste rectiligne sila charge est inférieure & la charge
critique de flambage (charge de flambage d'Euler). Si I'axe de la barre subit
une flexion sous l'influence de moments extérieurs (et si aucune contrainte péri-
phérique n’acrrive & dépasser la limite de proportionalité), la barre revient a sa
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forme rectiligne apres la disparition des causes ayant provoqué la déformation.

« La barre reste également rectiligne sila charge augmente & nouveau ; elle
se trouve en équilibre stable jusqu’a ce que soit atteinte la charge critique, c’est-a-
dire la charge de flambage. Cette barre n’a été ainsi soumise, jusqu’'a ce moment,
qua une charge normale, axiale. Si toutefois, a partir de ce moment, la charge
continue a augmenter, si peu soit-1l, il se produit une déformation par flexion
et un moment additionnel entre effectivement en jeu. G’est cette phase
seulement du processus de charge que nous considérons comme
constituant essentiellement le flambage. »

Ainsi que je l'al dit, cette définilion me parait trop étroite. Elle ne consi-
dere d'une maniere mathémathique que les matériaux parfaitement élastiques.

Des matériaux tels que le cuivre, la fonte également, qui ne possedent
aucune limite de proportionnalité, aucune limite d’élasticité nettement délinie,
ne pourraient en effet pas étre soumis a cette notion du flambage.

Dans la pratique, les barres que nous employons sont en outre toujours
soumises a des charges excentriques. La encore, il ne serait pas non plus pos-
sible de parler de flambage.

Ainsi que je l'ai dit, cette définition me parait trop étroite. Elle ne consi-
dére d'une maniere mathématique que les matériaux parfaitement élastiques.

Il me semblerait donc plus judicieux de considérer le flambage sousl'influence
dechargesexcen tréescomme constituantlecas général, dont le flambage
sous l'influence de charges centrées ne serait quun cas particulier.

On peut évidemment maintenir la notion de « flambage » dans ces étroites
limites, mais cela ne concorde pas avec lapratique et 'on n’a rien 4 y gagner
scientifiquement.

M. BROSZKO,

Professor an der Technischen [Hochschule, Warschau.

Bei der Behandlung des Knickproblems werden oft logische Fehler began-
gen, welche auf einen gemeinsamen Ursprung zuriickgeflithrt werden konnen.
Zur Aufdeckung der gemeinsamen Ursache dieser Fehler wird man durch die
folgenden Ueberlegungen gefiihrt :

Die Ligenart der mathematischen Elastizititstheorie besteht bekanntlich
darin, dass sie, auf die Allgemeingiilligkeit ihrer Ergebnisse von vornherein
verzichtend, die wirklichen elastomechanischen Eigenschaften der beanspruch-
ten festen Korper durch willkiirlich angenommene, unabianderlich festge-
legte Iigenschaften ersetzt, und infolgedessen bei Bewertung der Korrektheit
ihrer Resultate sich auf die Anwendung der rein mathematischen Kriterien
beschrinken kann. Im Gegensalz zu der mathematischen Elastizititstheorie
muss die allgemeine, d. h. eine unbeschriinkte Giiltigkeit ihrer Losungen an-
strebende Knicktheorie die wirklichen elastomechanischen Lligenschaften der
festen Korper in ihren Ansitzen voll beriicksichtigen, und kann infolgedessen
bei der Ueberpriifung der Richtigkeit ihrer Ergebnisse neben der Mathematik
auch eines anderen Priifmittels, nimlich des Versuchs nicht enthehren. Denn
die Korreltheit der mathematischen Operationen, mit deren Hilfe die Ergeb-
nisse der vollwertigen physikalischen Theorien gewonnen werden, bildet eine
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zwar notwendige, keinesfalls aber auch hinreichende Bedingung fur die Rich-
tigkeit der letzteren. Eine vollwertige physikalische Theorie darf vielmehr den
Anspruch auf Richtigkeit nur dann erheben, wenn erstens ithre Grundannah-
men, und zweitens auch ihre aus diesen Grundannahmen in korrekter Weise
abgeleiteten Endergebnisse mit den Erfahrungstatsachen tithereinstimmen.

Die Ursache der bei der Behandlung des Knickproblems sich regelmiissig
wiederholenden logischen Fehler kann nun auf Grund der vorstehenden
Erorterungen leicht aufgezeigt werden. Sie liegt darin, dass viele Inge-
nieure, infolge des stindigen Gebrauches der vonunverriickbaren Ansitzen
ausgehenden Elastizititstheorie, sich gewohnheitsmassig von der PfHicht
einer gewissenhaften Ueberprifung der Rechnungsgrundlagen enthoben fiihlen,
und nur zu leicht zu dem Glauben verfithrt werden, ein in mathematischer
Hinsicht korrektes Rechnungsergebnis stelle unter allen Umstinden eine ein-
wandfreie Losung des Problems dar. Die Richtigkeit dieser Behauptung moge
durch einige Beispiele belegt werden :

1) Die formale Korrektheit der Rechnung, mit deren Hilfe v. Karman seine
Knickformel aus einem unrichtigen, weil mit den Erfahrungstatsachen unver-
triglichen Spannungsverteilungsgesetz abgeleitet hat, wurde bekanntlich von
mehreren Forschern dargelegt. Nach der Meinung eines Verfechters deringes-
ser-v. Karman’schen Theorie soll nun die Korrektheit der Karman'schen
Rechnung schon an und fir sich einen zwingenden Beweis dafiir bilden, dass
eine andere, auf Grund anders gearteter Annahmen unter Benutzung einer
korrekten Rechnung aufgestellte Knicktheorie unbedingt falsch sein misse !

2) Die von dem hochverdienten Leiter der Dahlemer Knickversuche aufge-
stellte Knicktheorie wurde aus physikalischen Annahmen abgeleitet, deren
Unrichtigkeit durch die in meinen Diskussionsvortrag dargelegte Unrichtig-
keit des Engesser-v. Karman’'schen Spannungsverteilungsgesetzes bedingt
ist. Auf Grund einer kritischen Ueberprifung der Rechnungsgrundlagen
und der Rechnungsresultate der Rein’schen Knicktheorie gelangt nun
ein Verfasser zu dem Ergebnis, welches im IFalle seiner Richtigkeit geeignet
wiire, die in der Physik bis dahin geltenden Kriterien fiir die Richtigkeit der
theoretischen Ableitungen ins Wanken zu bringen : Er findet namlich, dass
die Rein’sche Theorie, trotz ihrer (auch von ihm erkannten) Unrichtigkeit
sich mit den Erfahrungstatsachen in voller Uebereinstimmung befinde !

Traduction.

Dans 'étude du probleme du flambage, on commet souvent des faules de
raisonnement que I'on peut d’ailleurs attribuer & la méme cause générale. Les
considérations qui sont exposées ci-apres nous permeltront de mettre en évi-
dence l'origine commune de ces erreurs.

La théorie mathématique de I'élasticité est caractérisée, ainsi qu'on le sait,
par la conception suivante : renoncant par avance & donner aux résultats
qu'elle permet d’obtenir un caractére général de validité, elle remplace les
propriétés mécano-élastiques elfectives des corps solides soumis a des con-
traintes par des propriétés choisies en quelque sorte arbitrairement et élablies
dans un cadre invariable, ce qui lul permet de se limiter, dans I'interprétation
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de la légitimité des résultats obtenus, a l'intervention de criléres purement
mathématiques. Par contre, et opposée en cela a la théorie mathématique de
I'élasticité, la théorie du flambage, qui s'efforce d’aboutir a des solulions
géndrales, c¢’est-a-dire d'une validité non limitée, doit tenir compte d'une
maniére intégrale des caractéristiques mécano-élastiques effectives des corps
solides ; elle se trouve par suite dans la nécessité de faire appel également au
controle expérimental pour vérifier la validité des résullats obtenus. I exacti-
tude des opérations mathématiques auxquelles on a recours pour tirer les con-
séquences d'une théorie physique qui a toute sa valeur constitue donc une
condition nécessaire, mais nullement suffisante pour en assurer la légilimité.
Il importe bien davantage, pour confirmer la validité de cette théorie physique,
de constater unaccord entre les principes sur lesquels elle s’appuie et les résultats
définitifs logiquement déduits de ces principes, d'une part, et les faits d’expé-
rience correspondants, d’autre part.

Ces considérations d'ordre général vont nous permettre de dégager facile-
ment I'origine des erreurs d’ordre logique dont on constate la répétilion régu-
licre dans les éludes consacrées au probleme du flambage. Elle est la suivante :
trés fréquemment, les ingénieurs, tout habitués qu’ils sont a appliquer la théorie
de I'élasticité, qui découle de propositions immuables, ne pensent pas avoir
a se soumeltre & l'obligation de controler d'une maniére scientifique les prin-
cipes de base sur lesquels ils appuient leurs calculs ; ils ne sont que trop
enclins & admetlre qu'un résultat fourni parle calcul, dans des conditions cor-
rectes du seul point de vue mathématique, peut constituer, dans tous les cas,
la solution parfaite d'un probleme. Quelques exemples permettront de serendre
compte du degré de légitimité de cette tendance.

1. — L’exactitude, dans la forme, du calcul au moyen duquel Karman a
établi sa formule du flambage a été reconnue, ainsi qu’on le sait, par de nom-
breux investigateurs ; or cette formule est basée en somme sur une loi de
répartition des contraintes qui n’est pas rigoureusement correcte, puisqu’elle
n'est pas conciliable avec les faits d’expérience pratique. Suivant 1'opinion
émise par un protagoniste de la théorie d’Engesser-Karman, l'exactitude du
calcul de Karman, prise en elle-méme, constituerait un argument de poids,
suivant lequel toute autre théorie du flambage, basée sur d’autres hypotheses
et faisant intervenir un calecul correct, serait nécessairement fausse !

2. — La théorie du flambage, telle qu'elle est établie par le trés distingué
réalisateur des essais de flambage de Dahlem, repose sur des hypotheses
d’ordre physique dont on peut dire que le caractére non parfaitement légitime
est précisément conditionné par le défaut d’exactitude de la loi de répartition
des contraintes d’Engesser-Karman, défaut que j'ai mis en évidence dans ma
communication & la Discussion. L'étude critique des bases sur lesquelles
repose le calcul de la théorie du flambage de Rein et des résultats correspon-
dants conduit, en considérant cette théorie comme légitime, & un véritable
bouleversement des critéres admis jusqu’a maintenant comme susceptibles de
justifier, en physique, la légitimité des déductions théoriques : on arrive en

effet & constater que malgré son défaut d’exactitude — défaut reconnu par
I'auteur lui-méme — cette théorie de Rein se trouve en parfait accord avec les

faits d'ordre expérimental !
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