Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 1 (1932)

Artikel: Einbetonierte Stahlseiten und Träger, ihre Bedeutung im Skelettbau

Autor: Hawranek, Alfred

DOI: https://doi.org/10.5169/seals-475

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VII A3

EINBETONIERTE STAHLSÄULEN UND TRÄGER, IHRE BEDEUTUNG IM SKELETTBAU

COLONNES EN ACIER ENROBÉES DE BÉTON ET LEUR IMPORTANCE DANS L'OSSATURE MÉTALLIQUE

COMPOSITE COLUMNS AND THEIR IMPORTANCE TO STEEL STRUCTURES

Dr.-Ing. Alfred HAWRANEK, Professor an der Deutschen Technischen Hochschule, Brünn.

I. Einleitung, Kennzeichnung der Bauweisen.

Mit der Einführung des Stahlskelettbaues im neueren Bauwesen, besonders im Grossgeschossbau und bei dessen baulicher Entwicklung sind vielfach konstruktive Aufgaben gelöst worden, die ihn schon zu einer gewissen Vollkommenheit gebracht haben. Eine Frage ist heute noch offen, die der zweckmässigen und wirtschaftlichen Ausbildung der Stützen, sowie der Unterzüge und der Deckenträger, wenn sie einbetoniert werden.

Bisher hat man die Stützen von Stahlskelettbauten mit Ziegeln ummantelt und den Innenraum mit Beton ausgegossen, oder hat die Stütze ganz mit Beton umhüllt, ohne dass man mit der tragenden Mitwirkung der Umhüllungstoffe gerechnet hat. Die Stahlstütze musste die ganzen Lasten und Momente für Eigengewicht, Nutzlast und Wind allein übernehmen und musste hierfür bemessen werden. Die Umhüllung war bloss Feuerschutz und auch vom baukünstlerischen Standpunkt angeordnet worden.

Heute ist man geneigt, einer Umhüllung der Stützen mit Beton den Vorzug zu geben und diesen Beton bei entsprechender Festigkeit tragend mitzurechnen. Die Folge davon ist, dass man die Stahlsäulenquerschnitte viel schwächer als früher wählen kann und daher Ersparnisse an Kosten erzielt, die sich nicht nur auf die ersparte Stahlmenge bezieht sondern sich auch bei der Anarbeitung, der leichten und schnellen Montage des Stahlgerüstes auswirkt. Inwieweit die erforderlichen Betonmengen in diesem Falle grösser werden als bei der bisherigen einfachen Umhüllung muss gleichfalls geklärt werden.

Die Gesamtheit der Stützen mit den stahlbaumässig angeschlossenen Unterzügen und Trägern behält den Charakter eines Stahlskelettbaues bei, er wird auch als solcher vorher montiert. Nachträglich werden die Stützen und die nach beiden Richtungen laufenden Unterzüge einbetoniert, so dass sie nun ein Gerippe mit einbetonierten steifen Stahlprofilen bilden, in das dann die

620 A. Hawranek

Decken und Wände eingezogen werden. Die Einbetonierung der Unterzüge und die Deckenherstellung kann auch gleichzeitig erfolgen.

Diese Bauweise unterscheidet sich von den Bestrebungen, die die Eisenbetonbauweise bei solchen Stockwerkbauten verfolgt, die wohl die Stützen mit steifen Profilen bewehrt, die Unterzüge und Deckenträger jedoch in der üblichen Weise mit Rundeisen ausführt. Dabei werden die Stahlbewehrungen der Stützen wieder erst nach Massgabe des Fortschrittes der gleichzeitigen Herstellung der Stützen und Decken jeweilig weiter geschossweise aufgesetzt, wie dies beispielsweise beim Bau des Batä-Hochhauses in Brünn ausgeführt wurde ¹, im Gegensatz zum Arbeitsvorgang beim Stahlskelettbau.

Beide Gesichtspunkte verfolgen den gleichen Zweck, den Grossgeschossbau wirtschaftlicher zu gestalten.

In vorliegender Abhandlung wird bloss der erste Gesichtspunkt verfolgt.

Es soll nicht unerwähnt gelassen werden, dass der Verfasser bereits im Jahre 1906 beim Bau des Landesamtsgebäudes in Brünn die Säulen des doppelten Prunktstiegenhauses mit steifer Stahlbewehrung und mit tragendem Beton ausgeführt hat.

Bei dem vorhergeschilderten Arbeitsvorgang muss aber eine neuartige Berechnung des Stahlbaues erfolgen, die sich nicht nur auf die Stützen, sondern auch auf die Unterzüge erstreckt, die der nachträglichen Betonierung Rechnung trägt. Bei den Stahlstützen ist einmal zu berücksichtigen, dass sie schon vor der Betonierung in Spannung sind und das Gleiche tritt bei den steifen Unterzügen durch das Eigengewicht und das Schalungsgewicht ein. Dann ist das Zusammenwirken von Stahl und Beton zu untersuchen, wobei verschiedene Anordnungen der Querbewehrung zu berücksichtigen sind. Ausserdem muss die Wirkung der Schwindspannungen untersucht werden, was in Folgendem geschehen soll.

Vorher werden die allgemeinen Berechnungsgrundlagen auf Grund von Versuchen nach dem derzeitigen Stande der Forschung kritisch auseinandergesetzt und anschliessend behufs Ueberprüfung alle Fragen an einem Hochhaus mit einem Kellergeschoss und zwanzig Geschossen über der Erde behandelt und geklärt. Dabei ist es möglich, auch für eine geringere Zahl von Geschossen für die Praxis ausreichende Schlüsse zu ziehen.

Die Untersuchungen erstrecken sich sowohl auf St 37, wie St 52. Das Hochhaus wurde für sechs verschiedene Fälle völlig durchgerechnet, die alle Möglichkeiten der Ausführung beleuchten. Dann wurden die Ersparnisse gegenüber der bisherigen Bauweise ermittelt und Schlussfolgerungen gezogen.

II. Die Wirkung einbetonierter Stahlsäulen beim Stahlskelettbau.

Für die Berechnung eines Stahlbaues, der dann einbetoniert wird, wobei der Beton mittragend angenommen wird, sind noch einige Erwägungen anzustellen, die auf den Arbeitsvorgang bei der Betonierung Rücksicht nehmen.

^{1.} Dr.-Ing. A. HAWRANEK. Der Stahlskelettbau mit Berücksichtigung der Hoch- und Turmhäuser. Berlin, 1931 Verl. J. Springer. Seite 273.

Erstens ist es nötig zu überlegen, wie die Lasten, die die Decken bringen in die Säulen übertragen werden. Die Stahlunterzüge sind unmittelbar an die Stahlsäulen angeschlossen. Mit dem Gewicht der aufgehängten Deckenschalung ist daher unbedingt bloss die Stahlsäule zusätzlich beansprucht, diese Belastung kommt wohl dann wieder fort, aber bei der Einbetonierung der Säule wird der Stahlkern diese zusätzliche Spannung haben und beim Erhärtungsprozess des Säulenbetons teilweise, vielleicht sogar ganz behalten. Genaueres kann man darüber nicht sagen, da diesbezügliche Versuche und Messungen fehlen. Diese Vorspannung wird also noch zu jener, die das Stahlgewicht der darüberliegenden Geschosse bringt, hinzu treten und wird sich in den unteren Geschossen wegen der stärkeren Querschnitte weniger auswirken als in den oberen.

Es sind zwei Arbeitsvorgänge möglich:

Arbeitsvorgang 1.

Praktisch werden wohl vorerst die Stützen betoniert werden und dann erst die Decken. Es wird also die Art der Kraftübertragung des Deckeneigengewichtes von dem Zeitintervall zwischen Stützen-und Deckenbetonierung abhängen. Will man also die Stahlkerne der Stützen durch die Deckenausführung nicht zusätzlich belasten, so muss man entweder zwei bis drei Tage nach der Stützenbetonierung erst die Decken herstellen, oder frühhochsesten Zement verwenden. Erst bei diesen Massnahmen könnte man die neuhinzukommenden Lasten der Verbundsäule zuweisen.

Arbeitsvorgang 2.

Werden hingegen Säulen und Decken in einem betoniert, was bei forciertem Betriebe oder bei Betongiesseinrichtungen wohl vorkommen wird, so gehen die Deckeneigengewichte vorerst in die Stahlstützen. Ob im Laufe der Erhärtung des Säulenbetons ein Ausgleich eintritt, und wenn dies der Fall ist, in welchem Ausmass, kann ohne Versuche leider nicht gesagt werden.

Zu dem treten dann noch auch in den Stützen Schwindspannungen auf, die gleichfalls im Stahlkern weiteren Druck erzeugen.

Es tritt also in diesem Arbeitsvorgang 2 nach dem heutigen Stande der Forschung eine gewisse Unsicherheit in der Verteilungsweise der Lasten auf den Beton und den Stahlkern ein und es dürfte sich die Tragkraft solcher Stützen gegenüber der bei Versuchen mit reinen Säulen ermittelten etwas ändern.

Man könnte sich zwar etwas helfen, um die Auswirkung der Spannungsverteilung für den Stahl günstiger zu gestalten, wenn man schon mit der Betonierung beginnt, sobald das Stahlgerüst noch nicht zur vollen Höhe montiertist, aber die Entlastung ist dabei verhältnismässig gering. Ausserdem bringt eine solche Massnahme Störungen der Montagearbeit.

Schliesslich muss hervorgehoben werden, dass die gerade erwähnte Unsicherheit in der Verteilung der Kräfte auf den Beton und den Stahlkern, wegen der grösseren Bewehrungsziffern von bedeutenderem Einfluss ist, als bei den mit Rundeisen bewehrten Eisenbetonsäulen.

Es darf auch nicht vergesson werden, dass bei einbetonierten Stahlsäulen im

622 A. Hawranek

Beton infolge der Schwindwirkung waagerecht durchgehende, wenn auch feine Risse in der Praxis vorgekommen sind.

Die Nutzlasten werden im allgemeinen wohl erst dann wirken, wenn das ganze einbetonierte Gerippe schon einen monolitischen Charakter besitzt, so dass die Verteilung der Beanspruchungen auf Beton und Stahl den Gesetzen des Eisenbetons gehorcht.

Es muss gleich betont werden, dass die Vorspannungen und jene der primären Schwindwirkung wohl vorhanden sind, beide aber die Stahlbewehrung besser ausnützen lassen.

III. Umschnürte Säulen bei Beanspruchung auf exzentrischen Druck.

Soweit bekannt, sind umschnürte Eisenbetonsäulen mit steifem Stahlkern bis jetzt nur wenig auf exzentrischen Druck geprüft worden. Zwei Versuche des oesterreichischen Eisenbetonausschusses liegen weit zurück 1. Für den Stahlskelettbau mit Berücksichtigung der Mitwirkung des Betons sind aber solche Versuche besonders notwendig. Verfasser hat bereits Anfangs 1931 ein diesbezügliches eingehendes Programm entworfen; infolge der Wirtschaftskrise konnte es leider bis jetzt nicht durchgeführt werden, wiewohl das Stahlmaterial schon zur Verfügung steht. Deshalb ist man genötig, Ergebnisse von Versuchen mit exzentrischen Kraftangriff bei Rundeisenbewehrung von Stützen heranzuziehen. Solche liegen unter anderen von Bach und Graf vor 2.

Bei der Berechnung der umschnürten Stützen für exzentrischen Kraftangriff kommt das Verhalten des Betons sowohl bei Druck wie im Zugteil in Frage. Besonders das Mass der Steigerung der Betondruckfestigkeit, gegenüber der Prismenfestigkeit des Betons, das von der Bewehrungsziffer, der Lage der steifen Bewehrung, von der Grösse der Exzentrizität neben anderen Umständen abhängt, ist dabei von Wichtigkeit, aber noch nicht geklärt. Die Versuche BACHS und GRAFS zeigen dies ganz deutlich, Seite 55 der genannten Quelle betrug die Betondruckspannung für einen quadratischen Betonquerschnitt 40 × 40 cm bei 2,50 m Säulenlänge (und je 4 Rundeisen zu 16 mm auf zwei gegenüberliegenden Seiten, einer Umschnürung von 5 mm Stärke und 7 cm Ganghöhe) unter der Höchstlast bei zentrischer Belastung $\sigma_p = 183 \text{ kg/cm}^2$. Die Würfelfestigkeit betrug $\sigma_{\rm w}=225~{\rm kg/cm^2}$. (Prismenfestigkeit = 0,81 der Würfelfestigkeit). Bei einer Exzentrizität der Last von 10 cm stieg die rechnungsmässige Betonspannung ohne Berücksichtigung des Betonzuges auf $255(1,396\sigma_p)$, bei 20 cm auf $288 \text{ kg/cm}^2(1,576\sigma_p)$ und sank dann bei noch grösserer Exzentrizität herab. Die Zerstörung erfolgte auf der Druckseite des Betons. Diese Tatsache ist auch mit anderen Versuchen in Uebereinstimmung und

^{1.} Ing. J. Spitzer. Versuche mit Eisenbetonsäulen. Heft 3 der Mitteilungen über Versuche des Eisenbeton- Ausschusses des oesterr. Ing. u. Architekten Vereines. 1912. Seite 220.

^{2.} Bach und Graf. Versuche mit bewehrten Betonkörpern, die durch zentrischen und exzentrischen Druck belastet werden. Heft 166-169 der Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Berlin, 1914.

sagt, dass der Beton bei dieser Beanspruchung noch grössere Druckspannungen verträgt als seiner Prismenfestigkeit entspricht. Wichtig ist aber, dass die Biegedruckfestigkeit von Kontrollbalken nicht erreicht wird.

Auch die zwei quadratischen Säulen der Versuche des oesterreichischen Eisenbetonausschusses (Höhe 3 m, 25 cm Seitenlänge des Querschnittes, Bewehrung mit vier Winkeleisen 40/40/6, Alter 149 Tage, Exzentrizität 5 cm) zeigten rechnungsmässige Betondruckspannungen, die, 1,18 bezw. 1,36 grösser waren als die Prismenfestigkeit des Betons.

Es ist aber noch ein zweiter Umstand von Bedeutung, und zwar der Verlauf bezw, die Verteilung der Stauchungen und Dehnungen im Querschnitt.

Bei den Versuchen Bachs und Grafs mit den gleichen Versuchsäulen ergab sich für die Höchstlast eine Stauchung des Betons von 2,2 mm auf 1 m, während die Dehnungen auf der Zugseite nur 0,61 mm auf 1 m betrugen. Wie der Uebergang der spez. Formänderungen von der Druckseite auf die Zugseite erfolgt, ist unbekannt, da keine Messungen darüber vorliegen. Er ist gewiss nicht geradlinig. Auch das Verhalten der Versuchsäule in dieser Hinsicht bei kleineren Zwischenbelastungen ist bloss durch Randmessungen bekannt.

Das Gesetz der Verteilung der spezisischen Längenänderungen über den Querschnitt wird aber bei steisen Bewehrungen gewiss ein anderes sein und ist ausser anderem von der Grösse, Form und Lage der steisen Bewehrung abhängig. Nun erhalten aber Stützen des Skelettbaues bei Einbetonierung in den obersten Stockwerken vielsach infolge der lotrechten Lasten und Wind auch Zugspannungen, sodass diese Frage bei der Berechnung solcher Säulen Bedeutung gewinnt. In den unteren Geschossen treten keine Zugspannungen mehr auf.

Will man bei der Annahme des Ebenbleibens der Querschnitte bleiben, so ergibt sich nach den Versuchen (siehe Seite 61 der Quelle), dass für die Gebrauchslasten die rechnungsmässige Lage der Nullinie mit den Messungen besser übereinstimmt, wenn man bei kleinen Lastexzentrizitäten den Zug im Beton nicht berücksichtigt.

Bei einbetonierten Stahlsäulen ergeben sich die Exzentrizitäten relativ klein. Sie betragen für ein später behandeltes Hochhaus mit 21 Geschossen 4,23 cm oben und 6,41 cm unten, das ist ca 1/6 bis 1/12 der Seitenlänge des Säulenquerschnittes. Behalten wir nun die Ergebnisse der Versuche Bachs und Grafs bei und nehmen wir an, dass für solche kleinere Exzentrizitäten das Verhältnis zwischen Betondruckfestigkeit bei exzentrischer Belastung und jener für zentrischen Druck für umschnürte Säulen $v_1 = 1,4$ sei, so könnte man die zulässige Betondruckbeanspruchung für exzentrisichen Druck mit $65 \times 1,4 = 91 \,\mathrm{kg/cm^2}$ in Rechnung stellen. Dabei ist die zulässige Inanspruchnahme für reinen Druck mit $65 \,\mathrm{kg/cm^2}$ angenommen worden.

Bei diesem Werte der zulässigen Betondruckspannung (s_b = 91 kg/cm²) treten in der Schale ausserhalb der Umschnürung nach den Versuchen noch keine Risse ein (Bach), auch nicht bei rechteckigen Querschnitten (Saliger).

Deshalb könnte man mit dem gesamten Betonquerschnitt rechnen, wenn man sonst die Stahleinlagen und die Umschnürung richtig den Versuchergebnissen entsprechend berücksichtigt, was dann in Abschnitt IV geschehen soll. In dem im Abschnitt V gerechneten Beispiel ist allerdings die in den Vor-

schriften angegebene Ziffer $s_b = 85 \text{ kg/cm}^2$ beibehalten. Hier soll nur gesagt werden, dass man mit der Beanspruchung höher gegen könnte.

Da mit grösserer Ganghöhe der Umschnürung bei exzentrischem Druck nach den Versuchen die Betondruckspannungen beim Bruch sinken, wären kleinere Ganghöhen zu wählen, etwa 5 cm.

Wird hochwertiger Stahl für die Umschnürung benützt, so wirkt sich dessen grösserer Einfluss auf die Betonfestigkeit bei der Berechnung auf exzentrsichen Druck, wenn man die üblichen Biegungsformeln benützt, rechnerisch nicht aus. Es kann deshalb nur mit einem höheren va gerechnet und damit eine höhere zulässige Betondruck-Inanspruchnahme sb berücksichtigt werden. Wie weit man hier gehen kann, ist noch durch Versuche zu klären.

Betonzugspannungen.

Nach den Versuchen von Bach und Graf (Seite 47 der Quelle) ergibt sich, dass die rechnungsmässigen Betonzugspannungen bei den rechteckigen Säulen mit Umschnürung und geringen Exzentrizitäten etwa 12 % kleiner ausfallen als bei Säulen ohne Umschnürung.

Da man aber bei rechteckigen Säulenquerschnitten die Umschnürung ohnehin nicht mitrechnen kann, und im Stockwerkbau nur verhältnismässig kleine Exzentrizitäten vorkommen, wäre es wohl möglich mit etwas grösseren Ganghöhen der Umschnürung auszukommen, soweit die Betonzugspannungen massgebend sind. Mann müsste aber den Betonquerschnitt entsprechend gross wählen, damit die Betonzugspannungen nicht allzuhohe Werte erreichen. Diese Vergrösserung der Ganghöhe steht aber mit den in diesem Belange vorhin bei den Druckspaunungen angeführten Forderungen in Widerspruch. Deshalb wird man wohl, besonders in den oberen Geschossen, Vergleichsrechnungen machen müssen, um die richtige Ganghöhe zu ermitteln. Ausserdem gilt dies so lange man n = 15 für die Rechnung beibehält, was für die Gebrauchslasten zutreffend erscheint. Für das Bruchstadium kommt allerdings ein kleineres n in Betracht.

Das Verhältnis der Rissbildungslasten zu den Bruchlasten zeigt mit wachsender Exzentrizität keine Gesetzmässigkeit. Für kleine Exzentrizitäten (10 cm) war das Verhälnis 0,66.

IV. Formeln für die Berechnung einbetonierter Stahlstützen mit Umschnürung.

1. Reiner Druck.

Für umschnürte Rechtecksäulen mit steifer Bewehrung bestimmt sich die Brachlast P einer Säule nach Saliger i mit

$$P = F_b \sigma_p + 1.03 F_e \sigma_e + F_{es} \sigma_{es}$$

darin bedeuten:

 $\sigma_{\rm p}$ = Prismenfestigkeit des Betons.

 $\sigma_{\rm e}$ = Stauchfestigkeit des Stahles.

^{1.} Dr R. Saliger. Versuche an Betonumschnürten Stahlsäulen. Der Bauing, 1931, Seite 285.

 $\sigma_{\rm es} = {\rm Streckspannung \ der \ Umschnürung}$.

F_b = Reiner Betonquerschnitt einschliesslich der Schale.

F_e = Querschnitt der Längsstahlbewehrung.

 $F_{es} =$ » Umschnürung.

Die Wirkung der Umschnürung soll nach Saligers Versuchen bei rechteckigen Säulenquerschnitten vernachlässigt werden. Mörsch hat übrigens auf Grund seiner Versuche dies ebenfalls festgestellt. Ausserdem treten die ersten Risse im Beton schon bei einer Belastung auf, die 30 % unter der Bruchlast liegt.

Für umschnürte Säulen mit kreisförmigem Querschnitt und steifer Bewehrung ist die Bruchlast

$$P = F_b \ \sigma_p + 1.10 \ F_e \ \sigma_e + F_{es} \ \sigma_{es}$$
 Ist für St 37 $\sigma_e = 2800 \ kg/cm^2$, für St 52 $\sigma_e = 3600 \ kg/cm^2$

und die Prismenfestigkeit des Betons nach 28 Tagen 0,8 der Würfelfestigkeit, so ergibt sich für einen flüssig eingebrachten Beton in der tschechoslowakischen Republik mindestens.

a) Rechteckige Querschnitte.

Dann erhalten wir für die Bruchlast der Säule mit rechteckigem Querschnitt die Formeln

$$\begin{array}{lll} \text{für St } 37: & P = 200 \ F_b + 2884 \ F_c = 200 \ (F_b + 14,42 \ F_c) \\ \text{`` `` $52:} & P = 200 \ F_b + 3708 \ F_c = 200 \ (F_b + 18,54 \ F_c) \end{array}$$

Dies gäbe bei einer Rechnung auf reinen Druck einschliesslich aller Nebenwirkungen (Wind) und $s_b = 65 \text{ kg/cm}^2$ zulässiger Inanspruchnahme des Betons, eine Sicherheit von $\frac{200}{65} = 3,08$, einschliesslich der Biegung mit $s_b = 85 \text{ kg/cm}^2$ eine Sicherheit von 2,36.

Man erhält also für die Bemessung der Stützen bei reiner Druckbeanspruchung und der 3,08 fachen Sicherheit die zulässigen Lasten der Säule aus

$$\begin{array}{lll} \text{für St } 37: & P_{zul} = 65 \ [F_b + 14,42 \ F_e] \) \\ \text{für St } 52: & P_{zul} = 65 \ [F_b + 18,54 \ F_e] \) \end{array} \ . \ . \ . \ . \ (1)$$

woraus sich der erforderliche reine Betonquerschnitt ergibt

$$\begin{array}{lll} \text{für St } 37: & F_b = \frac{P_z}{65} - 14,42 \ F_e \\ \\ \text{für St } 52: & F_b = \frac{P_z}{65} - 18,54 \ F_e \end{array} \right\} \ . \ \ . \ \ (2)$$

Und die volle Gesamtquerschnittsfläche samt Schale F_v

für St 37:
$$F_v = F_b + F_e = \frac{P_z}{65} - 13,42 F_e$$

$$F_{v} = \frac{P_{z}}{65} - 17,54 F_{e}$$

Man ersieht aus den Formeln (1), dass man auf reinen Druck für steife Bewehrung und Umschnürung, sowie beim gewöhnlichen Eisenbetonquerschnitt zu rechnen hat, nur dass man für n bei St 37 den Wert 14,42 und bei St 52 den Wert 18.54 setzt.

b) Kreisförmiger Querschnitt.

Die Bruchlast der Säule ist

$$P = F_b \sigma_p + 1$$
, 1 $F_e \sigma_e + F_s \sigma_{es}$

wird die Umschnürung aus dem gleichen Baustoff genommen wie die steife Bewehrung, so wird $\sigma_{se} = \sigma_e$ und

$$P = F_b \sigma_p + \sigma_e (1.1 F_e + F_s)$$

bei der Ganghöhe h^{cm} und der Stärke 3^{cm} der Umschnürung, dem Durchmesser d^{cm} derselben (Kern) und bei D^{cm} dem Durchmesser der Säule, ist das Gewicht g der Umschnürung auf 1 m Höhe.

$$g=100~\mathrm{F_s\gamma}~\mathrm{und}$$
 $\mathrm{F_s}=rac{d~\delta^2~\pi^2}{4~h}$

Wird für die Schale eine Stärke von 3 cm angenommen, so ist D = d + 6

$$F_b = \frac{D^2 \pi}{4} - F_e$$

Setzt man diese Werte in die Gleichung für P ein, so erhält man, wenn v den Sicherheitsgrad bedeutet

$$\begin{split} \nu &= \frac{\sigma_p}{s_{b \; zul}} \\ P &= \left(\frac{D^2 \, \pi}{4} - F_e\right) \sigma_p + \sigma_e \left[1.1 \; F_e \; + \frac{(D-6) \; \delta^2 \, \pi^2}{4 \; h}\right] = \nu. \; P_z \end{split}$$

und für eine gegebene Säulenlast P_z den erforderlichen äusseren Durchmesser Daus der Gleichung

$${
m D^2 + \, D} \, rac{\delta^2 \, \pi}{h} \, \cdot \, rac{\sigma_{
m e}}{\sigma_{
m p}} = rac{4 \, \nu}{\pi} \, \cdot \, rac{{
m P_z}}{\sigma_{
m p}} + {
m F_e} \, \Big(rac{4}{\pi} - rac{4 \, , 4}{\pi} \, \cdot \, rac{\sigma_{
m e}}{\sigma_{
m p}}\Big) + rac{6 \, \delta^2 \, \pi \, \sigma_{
m e}}{h \, \cdot \, \sigma_{
m p}}$$

worin alle Werte in kg und cm einzusetzen sind.

Sonderfälle:

Ganghöhe $h=5\,$ cm, $\delta=0.7\,$ cm, mit $\nu=3.08\,$ (s_{b zul} = 65 kg/cm².) wird Für St 37

$$\frac{\sigma_e}{\sigma_p} = \frac{2800}{200} = 14$$

$$D^2 + 4.31 \ D = 0.0196 \ P_z - 18.34 \ F_e + 25.9$$

Für St 52

Ganghöhe h = 5 cm, $\delta = 0.7$ cm,

$$\frac{\sigma_c}{\sigma_p} = \frac{3600}{200} = 18$$

$$D^2 + 5,55 D = 0,0196 P_z - 25,52 F_c + 33,3$$

2. Exzentrischer Druck.

Nach den Ergebnissen des Abschnittes III wären also bei exzentrischem Druck die für nichtumschnürte Säulen üblichen Formeln zu berücksichtigen. Eine Abänderung ist jedoch notwendig. Sie betrifft die Grösse der Normalkraft N. Da die Säule des reinen Stahlgerüstes eine Vorspannung σ_1 durch das Stahlgewicht der Sütze, Unterzüge und Deckenträger erfährt, die schon vor der Betonierung vorhanden ist, so wird die in Rechnung zu setzende Normalkraft, um die Läst P_1 zu vermindern sein, die dieser Vorspannung entspricht. Ueberträgt sich je nach dem Arbeitsvorgang auch noch ein Teil des Deckeneisengewichtes P_t unmittelbar in die Stahlstützen, wir bezeichnen ihn mit μ P_t , (μ < 1) und die bezügliche Druckspannung σ_2 , so wird die im ganzen auf eine Stütze wirkende Last auch vermindert. Wir bezeichnen mit P_t die Last einer Stütze bei voller Ausmauerung des Gebäudes einschliesslich der Windzusatzkraft und die zulässige Inanspruchnahme des Stahles mit se.

Es ist daher für die Berechnung der Stütze die Normalkraft

und das Moment M anzunehmen.

Bei der Bemessung muss dann die auftretende grösste Stahlspannung oekleiner sein als die reduzierte zulässige Inanspruchnahme

$$\sigma_{\rm e} < s_{\rm e} - \sigma_{\rm l} - \sigma_{\rm 2}$$
 (6)

Ist noch die Schwindspannung σ_3 im Stahl, eine Druckspannung zu berücksichtigen (Siehe Abschnitt V. 7), so muss dann

$$\sigma_{\rm e} < s_{\rm e} - \sigma_{\rm 1} - \sigma_{\rm 2} - \sigma_{\rm 3} \ldots \ldots \ldots \ldots (7)$$

Dann kann man aber auch im Beton die Schwindspannung σ_4 (Zugspannung) beachten, sodass die rechnungsmässige Betondruckspannung σ_{bd} , bezw. Betonzugspannung σ_{bz}

Führt man die Rechnung nach obigem Gesichtspunkte durch, so erhält man kleinere Betonquerschnitte als ohne Berücksichtigung der Vorspannung.

V. Anwendung der Untersuchungen auf ein Hochhaus mit 21 Geschossen.

Um die Auswirkung der in den vorstehenden Abschnitten gegebenen Erörterungen auf Stahlskelettbauten bei Berücksichtigung des tragenden Betons gegenüber der bisher üblichen Bauweise mit gewöhnlicher Ummantelung zu sehen, um für die möglichen Ersparnisse im Stahlaufwand und für die nötige Vergrösserung der Betonmenge ein Bild in Zahlen zu erhalten, wurde ein Hochhaus mit einem Kellergeschoss und weiteren 20 Stockwerken herangezogen.

628

Alle Rechnungsergebnisse sind in den beigefügten Zahlentafeln und zeichnerischen Darstellungen derart eingetragen, dass man für alle behandelten Fragen auch ein Bild gewinnt, wenn es sich um eine geringere Zahl von Stockwerken handelt.

Es sollen hierbei auch alle Einzelheiten behandelt werden, die für den Konstrukteur wichtig sind. Bei den Berechnungen mussten manche Annahmen gemacht werden, wie etwa die Abminderungen der Nutzlasten für die Säulenberechnung, doch sind sie die allgemein üblichen. Auch der Typus des Hochhauses wurde bisherigen Ausführungen angepasst. Für stärkere Abweichungen in den Stützenentfernungen und Belastungen werden sich natürlich die Ergebnisse ändern.

Abmessungen des Hochhauses.

Das Hochhaus (Abb. 1.) hat ein Kellergeschoss von 3,00 m Höhe, im Erdgeschoss ist eine Höhe von 4,50 m vorgesehen, in den übrigen Geschossen eine solche von 3,50 m. Die Gesamthöhe des Baues beträgt 74,00 m. Im Querschnitt ist das Gebäude vierstielig, wobei die einzelnen Schiffe 6,00 m Stützenentfernung haben. Auch in der Längsrichtung des Hochhauses sind die Stützen in 6,00 m Entfernung angeordnet.

Die Unterzüge laufen in der Querrichtung des Gebäudes. In jedem Deckenfeld sind vier Deckenträger in Abständen von je 1,50 m eingebaut. (Siehe Grundriss.)

1. Voraussetzungen für die Berechnungen.

a. Eigengewichte und Nntzlasten.

Als Deckeneigengewicht samt den Stahlträgern wurden 250 kg/m² angenommen. Die Nutzlasten betragen auf der Dachdecke 75 kg/m², in den übrigen Geschossen 500 kg/m². Diese sind in der Dachdecke und jene des obersten Geschosses voll gerechnet, während in den darunter liegenden Geschossen für die Stützenberechnung eine Abminderung um je 5 % der Nutzlast pro Geschoss eingeführt wurde, bis die Abminderung 40 % erreicht hat, dann ist in den Geschossen weiter abwärts die 40 % Abminderung beibehalten worden, sodass in den untersten 10 Geschossen mit 300 kg/m² Nutzlast gerechnet wurde. Diese abgeminderten Nutzlasten sind in Abbildung I eingetragen. Der Winddruck wurde über die ganze Höhe mit 150 kg/m² angenommen.

Die Untersuchungen wurden sowohl für gewöhnlichen Baustahl St. 37, wie für hochwertigen Baustahl St 52 durchgeführt und die später ausgewiesenen Stahlgewichte auf Grund vollständiger konstruktiver Auftragung nach genauer Berechnung ermittelt.

Der Rechnungsgang gliedert sich in vier Stufen.

Fall. I. Berechnung des reinen Stahlgerüstes bloss für das Eisengewicht und Wind. Die Stützen sind auf Knicken nach den Tschechoslowakischen Vorschriften gerechnet und auf Biegung.

Fall I a. Berechnung des reinen Stahlgerüstes, wie ad I für Eisengewicht und Wind. Die Stützen sind jedoch auf Druck und Biegung gerechnet.

Fall II. Berechnung der einbetonierten Konstruktion einschliesslich der eingezogenen Wände und Decken für Eigengewicht, Nutzlasten und Wind, wobei die in I ermittelten Stahlquerschnitte beibehalten und die eventuelle Verstärkung der Stützenstahlquerschnitte ermittelt wurden. Die Säulen sind auf Druck und Biegung gerechnet unter Mitwirkung des Betons.

Fall III. Berechnung des Skelettes als reiner Stahlgerippebau, wobei die Ummantelung als nicht mitwirkend angenommen wurde, was der bisherigen üblichen Rechnung- und Ausführungsweise entspricht.

Fall IV. Berechnung der primären Schwindspannungen.

Für die Einbetonierung der Stützen bei Fall III und der Träger bei Fall II und III, war der Grundsatz massgebend, dass die Stützen eine Deckung von 5 cm nach allen Seiten wegen der Feuersicherheit erhalten, die Unterzüge und Deckenträger unten und seitlich von 3 cm, oben von 4 cm. Die einbetonierten Querschnitte sind rechteckig oder quadratisch. Es wurden aber auch kreisförmige Querschnitte untersucht. Für die Stützen bei Fall II waren stärkere Betondeckschichten erforderlich.

b. Wind.

Der Wind in der Querrichtung auf das reine Stahlgerüst (Fall I) wurde in einer solchen Schiefe angenommen, dass er sowohl alle Säulen, wie alle an die Stützen angeschlossenen Deckenträger eines Geschosses, also vier Deckenträger, trifft. Dies ist zwar sehr ungünstig, kann aber vorkommen. Die hierbei erforderliche Schiefe des Windanfalls ist verhältnismässig gering. Als Angriffsfläche wurde ein mittleres Säulenprofil, 2 I Nr. 22 mit rund 20 cm Flanschbreite angenommen und die Bindebleche sowie Anschlussbleche für die Unterzüge berücksichtigt, wobei für die hinteren Bindebleche ein Zuschlag von 50 %, für die hinteren Anschlussbleche ein solcher von 20 % berechnet wurde.

Es ergeben sich daher nachstehende Windangriffslasten.

α. Stütze: pro Stütze 42,40 kg/m für vier Stützen $4 \times 42,4 = 170,00 \text{ kg/m}$

- β. Windknotenlasten.
 - 1) Dachgeschoss 593 kg.
 - 2) Normale Decke 810 kg.

Diese Belastungen wurden sowohl für eine Ausführung in St 37 wie in St 52 beibehalten und angenommen, dass jeder Stockwerkrahmen den auf ihn entfallenden Winddruck selbst überträgt. Da sich herausstellte, dass die Stützenquerschnitte der Aussen- wie der Innenstützen nahezu gleich sind, wurden die bezüglichen Windmomente auf alle vier Stützen gleichmässig aufgeteilt.

Bei der Berechnung der Windmomente wurden die Momentennullpunkte der Stützen im Dachgeschosse und in den übrigen Geschossen im Abstande 0,46 h., im Erdgeschoss mit 0,55 h, im Kellergeschoss mit 0,80 h von unten, entsprechend genaueren Berechnungen angenommen (h = Geschosshöhe). Für die Riegel sind die Momentennullstellen in der Feldmitte angenommen worden.

Der Winddruck auf das vollausgemauerte Gebäude (Fall II und III) wurde mit 900 kg/m Höhe eingesetzt, die Windmomente pro Stütze sind in Abb. 2 wiedergegeben und zwar gilt die Kurve A für das reine Stahlgerüst, die Kurve B für den vollen Ausbau pro Stütze.

c. Knicken.

Für die Berechnung der Stahlstützen auf Knicken wurden die ω-Werte nach der tschechoslowakischen Norm für gewöhnlichen Baustahl C 38 eingesetzt, der dem deutschen Stahl St 37 entspricht und für hochwertigen Baustahl jene für C 55 gewählt, die sich von den deutschen Vorschriften für St 52 nur wenig unterscheiden.

d. Zulässige Inanspruchnahmen.

Stahl.

```
Die zulässigen Inanspruchnahmen betragen: Für St 37 ohne Wind s_{e_i^1} = 1200 \text{ kg/cm}^2

mit " = 1400 "

Für St 52 ohne Wind s_e = 1800 \text{ kg/cm}^2

mit Wind = 2100 "
```

Beton.

Für die Einbetonierung der Säulen wird man wohl den besten Zement verwenden. Nach den tschechoslowakischen Normen 1090 vom Jahre 1931 ist hierbei eine Würfelfestigkeit des besten Betons nach 28 Tagen vorgeschrieben:

```
Für erdfeuchten Beton von 400 kg/cm². weichen " " 330 " " flüssigen " " 260 "
```

Letzterer wird angenommen.

Als zulässige Inanspruchnahmen des Betons wurden im Folgenden berücksichtigt: Für reinen Druck $s_b := 55 \text{ kg/cm}^2$, mit allen Nebenkräften 65 kg/cm^2

```
» Druck und Biegung s_{
m b}=65 » » » » 85 »
```

In Oesterreich ist für eine Würfelfestigkeit nach 28 Tagen bei ffüssigem Beton von 250 kg/cm², bei Umschnürung für reinen Druck 60 kg/cm², für Druck und Biegung 70 kg/cm² zugelassen.

2. Deckenträger und Unterzüge.

Die Deckenträger wurden durchwegs als freiausliegende Träger für ihre künftige Belastung gerechnet mit $s_e = 1200 \text{ kg/cm}^2$ für St 37, bezw. 1800 kg/cm² für St 52.

Die Unterzüge sind als durchlaufende Träger über vier Stützen berechnet worden, ebenso ihre Stützendrücke für die Säulenbelastungen. Bei ihrer Bemessung wurden auch die vom Winddruck auf das völlig ausgemauerte Gebäude herrührenden Momente berücksichtigt und zwar näherungsweise. Bedeuten Δ M den Zuwachs an Windmomenten im Geschoss, B die Entfernung der Aussenstützen (18 m), b die Entfernung der Innenstützen (6 m) und V und S die Querkräfte im Momentenullpunkt des Riegels im Aussen-bezw. Mittelfeld, so ist

$$V = \frac{B}{B^2 + b^2} \Delta M$$
; $S = \frac{B + b}{B^2 + b^2} \Delta M$;

die zur Berechnung der Unterzugwindmomente benutzt wurden.

Bei der Bemessung sind durchwegs deutsche Normalprofile angenommen worden, die heute auch in der Tschechoslowakei und in Oesterreich für solche Bauten gewalzt und verwendet werdeu. Als zulässige Inanspruchnahme kamen die höheren Werte 1400 für St 37 bezw. 2100 kg/cm² für St 52 in Betracht.

Für die Unterzüge waren Verstärkungen durch Kopfplatten über den Stützen erforderlich, die angeschweisst gedacht sind und daher ohne Nietabzug gerechnet werden konnten. Die Gewichte wurden auf Grund einer Materialverteilung berechnet.

a. Berechnung ohne Mitwirkung des Betons.

Es ergaben sich nachstehende Profile und Gewichte der Stahldeckenkonstruktion samt Anschlüssen für beide Stahlsorten und für 1 m² Decke und 1 m³ umbauten Raum.

		St 37				Ersparnis		
	Profil	Gewi	cht in	Profil	Gewi	gegen St 37		
	From	kg/m²	kg/m³	Рюш	kg/m²	kg/m³	in º/₀	
Dachdecke	Id 19	16,8	4, 8	Id 17	14,1	4,03	16	
Normale Decke	Id 26	29, 30	8,38	Id 22	22,4	6,38	23,6	

Gewichte der Deckenträger.

Gewichte der Unterzüge und Deckenträger für 6 m Gebäudelänge.

7.11.1	St :	37	St	E	
Zahl d. Geschosse von oben	Gesamt Gewichte kg.	Gewicht in kg m/3	Gesamt Gewichte kg.	Gewicht in kg/m³	Ersparnis gegen St 37 in •/°
3 6 9 12	15428 31440 48036 65214 82974	13,6 13,8 14,1 14,4	11696 23916 36660 49926	10,3 10,5 10,8 11,0	24,2 23,9 23,6 23,4 23,2
15 18 21	101504 120804	14,6 14,9 15,1	63716 78242 93502	11,2 11,5 11,7	23,2 22,9 22,6

Aus der ersten Zusammenstellung ist zu entnehmen, dass man bei den Deckenträgern 16 bis 23,6 % bei der Wahl hochwertigen Stahles an Gewicht ersparen kann.

In der zweiten Zusammenstellung finden sich die gesamten Deckenträgergewichte im Ganzen und auf 1 m³ umbauten Raum bezogen, wobei die Ziffern abgestuft für je drei noch hinzukommende Geschosse angegeben sind.

Man beachte die mit der Geschosszahl steigenden Raumeinheitsziffern. Die Gewichtsersparnisse sind dabei abnehmend, betragen aber doch 24,2 bis 22,6%.

Schlussfolgerung: Die Anwendung von hochwertigem Stahl für die Deckenträger, die bei der reinen Stahlskelettbauweise nur ummantelt werden, empfiehlt sich vom Standpunkte der Gewichtsersparnis wenn nicht der Preisunterschied diese Ersparnis wieder wettmacht oder zu grosse Durchbiegungen einer Ausführung in St. 52 hinderlich sind.

b. Berechnung bei Mitwirkung des Betons.

Werden die unter a gerechneteu Deckenträger und Unterzüge einbetoniert und der Beton mittragend gerechnet, so ändert sich das Bild teilweise. Dabei wurde eine ausreichende kleinste Deckung der Stahlträger durch den Beton von 3 cm unten und seitlich vorgesehen, und von 4 cm oben, entsprechend der üblichen Drückbetonschichte bei Steineisendecken. Bei den Deckenträgern wurde eine Stelzung angenommen mit einer trapezförmigen, oben breiteren Einhüllung, bei den Unterzügen ist der Betonquerschnitt rechteckig vorausgesetzt.

Die Untersuchungen sind sowohl für St 37 wie für St 52 ausgeführt.

a) Deckenträger.

St 37. Es zeigt sich, dass die mit den vorhin genannten Abmessungen einbetonierten Träger bei Rechteckform nur Betonspannungen von 70 kg/cm² (Dachdecke Id 19) bezw. 68 kg/cm² (Normale Decke Id 26) bei gemeinsamer Wirkung erhalten, während die Stahlspannungen in diesen zwei Fällen 1072 kg/cm² (gegen früher 1177) bezw. 1069 kg/cm² (gegen 1146) betragen. Um also die Betonspannungen herabzusetzen, muss bei den erwähnten Minimaldeckungen die Einbetonierung nach dem Trapezprofil erfolgen.

Es gelingt aber auch unter Beibehaltung des Trapezprofiles durch die Wahl niedrigerer Deckenträger auch den Stahl ziemlich auszunützen, wenn man bei der Dachdecke statt Id 19 das Profil Id 18 und bei der normalen Decke statt Id 26 das Profil Id 24 wählt. Dabei sind die Betonspannungen 66,4 bezw. 65,3 kg/cm², die Stahlspannungen 1174 bezw. 1257 kg/cm². Man kann also in diesem Falle an Stahlgewicht bei den Trägern der Dachdecke 8,8 °/o, bei der normalen Decke 13,7 °/o gegenüber einem normalen Stahlskelettbau (Fall III) sparen, wenn man für den Beton die gleiche zulässige Inanspruchnahme festlegt, wie bei den Säulen. Dagegen gelingt es nicht, die Betonspannungen wesentlich herabzusetzten, ausser man wählt stärkere Umhüllungen, die jedoch die Säulenlasten vergrössern würden. Deshalb ergibt sich, dass man die Einbetonierung der Deckenträger auch mit einem hochwertigen Beton durchführen muss.

St 52. Ganz anders liegt der Fall bei St 52. Hier kann man den hochwertigen Stahl keines Falls in Form von Profil-eisen ausnützen. Man müsste wesentlich niedrigere Träger wählen, die sich infolge des Eigengewichtes schon stark durchbiegen und die Anschlussmöglichkeit an die Unterzüge verschlechtern. Selbst bei sehr breit angenommener Betondruckzone kann man im Stahl höchstens 1300 kg/cm² Beanspruchung erzielen, wenn die zulässige Betondruckspannung selbst mit 65 kg/cm² angenommen wird, Auch würde die Längssteifigkeit des aufzustellenden Stahlskelettes darunter leiden. Deshalb ist die Ausführung der Deckenträger in hochwertigem Stahl nicht zu empfehlen.

β) Unterzüge.

Betoniert man die Stahlunterzüge ein, die für Eigengewicht, Nutzlast und Windmomente bei St 37 mit 1400 kg/cm², bei St 52 mit 2100 kg/cm² ohne Nietabzug und angeschweissten Kopfplatten bemessen wurden und wählt die oben angeführten

Betondeckungen, so zeigt sich für die Stellen der grössten negativen Momente und bei dem Rechteckquerschnitt des Betons folgendes.

St 37. Die Stahlspannungen werden nur unwesentlich niedriger, die Betondruckspannungen erreichen aber bei den Unterzügen in den oberen Geschossen 82, in den anderen 88 kg/cm². Sie sind also ausserordentlich hoch. Wollte man bloss 65 kg/cm² Betondruckspannung erzielen, so müssten die seitlichen Deckungen statt 3 je 7 cm betragen, was einen Mehraufwand an Beton und damit eine Gewichtserhöhung bringt. Jedenfalls muss man mit hochwertigem Beton arbeiten. Die Nullinie liegt im Durchschnitt etwa im Abstande 0,44 h vom Druckrande.

St 52. Auch hier werden die Stahlspannungen um 100 bis 60 kg/cm² geringer, dafür erreichen die Betondruckspannungen in den oberen Geschossen 110 kg/cm², in den anderen bis 130 kg/cm², also ganz unzulässige Werte.

Es ergibt sich also für die Unterzüge ebenso wie bei den Deckenträgern, dass der hochwertige Stahl bei Berücksichtigung einer Mitwirkung des Betons unwirtschaftlich ist.

Selbstverständlich muss in allen Fällen, wo man mit der Mitwirkung des Betons rechnet, der Verbund durch Bügelanordnungen gesichert sein.

Diese Ergebnisse sind rechnungsmässig erhalten, es wäre aber nicht ausgeschlossen, dass Versuche die Schlussfolgerungen etwas abändern.

3. Das reine Stahlskelett. Fall I.

Bei der Berechnung dieser ersten Phase war der Grundsatz massgebend, dass das reine Stahlskelett für sich in allen seinen Teilen bis zu seiner vollkommenen Fertigstellung unter Einhaltung und Ausnützung der zulässigen Inanspruchnahme, unter seinem Eigengewicht (ohne Umhüllung, Decken und Wände) und bei Wind völlig standsicher sei. Das derart bemessene Stahlgerüst soll dann einbetoniert werden (Fall II). Bei einem solchen Vorgang ergeben sich gegenüber einem reinen Stahlskelettbau bisheriger Ausführungsweise (Fall III) Gewichtsersparnisse. Diese sollen festgestellt und erhoben werden, ob die derart bemessenen Stahlquerschnitte auch bei Mitwirkung des Betons (Fall II) für diese Zwecke wirtschaftlich sind.

Im Folgenden sollen nur die Stützen behandelt werden. Als Stützenprofil sind zwei I-Träger gewählt mit 16 cm lichtem Abstand zwischen den Flanschenenden. Die Stützenstösse sind in jedem dritten Geschoss angeordnet, so dass jeder Stützenstrang aus 7 Schüssen besteht. Die Querschnitte der Stützen sind auf Knicken und Biegung infolge Windmomente (Linie A Abb. 2) berechnet und zwar mit Nietabzug. Es wurden alle Schüsse sowohl für die Innen-wie die Aussenstützen gerechnet.

Die Beanspruchung auf Wind gibt den Ausschlag. Sie nimmt von der Gesamtbeanspruchung bei den Innenstützen im obersten Säulenschuss 85°/°, im untersten noch 76°/°, in Anspruch, bei den Aussenstützen 89,5 bezw. 70°/°.

Die Rechnung ist für St 37 und St 52 durchgeführt worden. Ihre Ergebnisse sind in den Tabellen 1 und 2 für St 37 in den Tabellen 3 und 4 für St 52 eingetragen, aus denen auch alle angreifenden Lasten und Momente, wie die Profile und Spannungen entnommen werden können.

Für alle diese Säulen wurde eine genaue Gewichtsberechnung unter Berücksichtigung aller Bindebleche, Unterzuganschlüsse und Stösse für jeden Säulenschuss durchgeführt. Ihre Ergebnisse sind in Kurven (Abb 3) eingetragen, und zwar für Innenund Aussenstützen getrennt. Die Gesamtgewichte sind in Abb. 4 und in Tabelle 13 eingetragen. Die Gewichtseinheitswerte für ein m³ umbauten Raum finden sich in Abb. 5.

Die Innen-und Aussenstützen haben in den einzelnen Geschossen bei St 37 und St 52 tatsächlich das gleiche Profil, was sich mit der getroffenen Annahme für die Aufteilung der Windmomente deckt.

Schlussfolgerungen und Vergleiche bezüglich des Stahlaufwandes gegenüber dem Fall. I a sind im Abschnitt V. 4., gegenüber Fall III im Abschnitt VI behandelt.

Tabelle 1. Belastungen, Auerschnitte, Spannungen. Innenstützen.

<i>St.</i> 3	37.	·			0120201			Fall I.			
Beschoß.	∏eschoß- -Höhe.	Druck inf Deckeneisen Bewicht	Druck inf. Stitzeneisen- - bewicht.	Druck inf Windkraft.	besamt - Stützende	Wind- -Moment	Profil	W Forus com²	What's cm3	6 kg/cm	
	772.	kg	kg	kg	kg	tm					
21	3,50	1000					TT d 16	1:483			
20	,	2740									
19	1.	4480	510	401	6391	1489	g= 358 kg	45.6	170	1051	
18		6220					TT d20	1.402			
17	•	7960		ľ					ŀ		
16	,	9700	1260	1540	12500	3490	9=526 .	67	333	1220	
15		11440					TT 024	+353			
14	•	13180]				9= 724	'333			
13	•	14920	2260	3420	20600	5000	9= 124 .	92.2	571	1178	
12	,	16660					TT d26	1:356			
11	*	18400									
10	- "	20140	3450	6300	29890	6:575	<i>9</i> = 838 ·	1068	701	1313	
9	•	21880	l				[] d28	1:321			
8	*	23620					9= 960	1			
7	↓ •	25360	4810	9380	39550	8.280	93 960 .	1222	868	1381	
6	4	27100		l			TT 232	1:297			
5	"	28840		Ì	1		9=122.2 •		1		
4	•	30580	6460	13450	50490	9.990	9-7222 .	1556	1220	1238	
3	•	32320			1		TT d36	1:322			
2	4,50	34060	8210	17070	59340	:7120		194.2	1678	1423	
1	3,00	35800	8830	18450	63080	16820	g= 152·4 *	a: 1.259	1678	1411	

Tabelle 2. Belastungen, Querschnitte, Spannungen. Außenstützen

St. 3	37.	·			siurzei	<i>a</i> .			K	all I.
liescho13	Sesahors Hohe.	Druck raft Jackenesser - Armicht	Druck inf. Stifteneisen- - fewicht	Druck inf. Windleroft. +-	besamt- Stützendr.	Wind- Moment	Profil	W Forutto Cm²	W _{nello} cm.3	6 kg/cm²
	172	kg	kg	kg	kg	lm.	L		1	
21	3,50	373		1			I Id16	1:483		
20	4	1020]	1						
19	•	1667	510	1204	3381	1489	9= 358 kg/	456	170	986
18		2314					IIdzo	1.402		
17	4	2961	1							ŀ
16	•	3608	1260	4620	9488	3:490	9= 52.6 "	67	333	1157
15		4255	1]]d24	1:353	1	
14		4902		l			9- 72.4 .	ł		
13	4	5549	2260	10250	18059	5.000		922	571	1141
12		6196	1	į.		1	IId26	1336	i	
11		6843					9. 83.8 "			
10		9490	3450	18092	29032	6.575		1068	701	1302
_ 9	*	8137	ł		1		ITd28	1321		
8	1	8784	1010	20.40	10000	0.000	g: 96.0 "			
9	<u> </u>	9431	4810	28148	42389	8.280		1222	868	1411
	"	10078	1	l .]]d32	1297		l
5	1	10725	6460	40416	50040	9970	9=122.2 .	1001	1000	1202
4		11372	0460	40416	58248	7970		1556	1220	1303
	1 7	12019	4000	54000	70 A70	45.400	TTd38		1000	/ / / / /
	4,50	12666	8390	51222	72 278	17420	9. 1680"	214.0	1968	1313
1	3.00	13313	9070	55430	77813	16.820		w 1.353	1968	1309

4. Berechnung der Stützen des reinen Gerüstes auf blossen Druck und Wind. Fall la.

Ausgehend von dem Gesichtspunkt, dass infolge der Mitwirkung des Betons bei nachträglicher Einbetonierung der Stützen die Bemessung der Stahlsäulen auf Druck und Biegung, ohne die Knickung zu berücksichtigen, weitere Ersparnisse an Stahlgewicht erzielt werden könnten, wurde untersucht, ob und wie weit eine solche Berechnung zulässig sei.

> Sabelle 3. Belastungen, Querschnitte, Spannungen. Innen shiitzen.

St. 5	St. 52.										
Gescho/S.	Gestios-	Druck inf. Deckeneisen-Gewicht.	Druck inf. Stitzeneisen- bewoht	Druck inf. Windlarsft. + -	besamt- -Stiftzendr	Wind- -Moment	Profil	Ebrutto com 2	Wnellown.3	or kg/an.	
	27 0	kg.	kg.	kg	Kg	tm		_			
21	3,50	830					II d16	1,558			
20		2186					9-35,8 3/2			4000	
19		3542	510	401	4453	1,489		45,60	170	1027	
18		4898	ļ				∐d16	1,558			
17	<u> </u>	6254					9-35,8		407.0	0109	
16	1	7610	1020	1540	10170	3,190	9-00,0	45,60	170	2103	
15		8966	1		ļ	1] [d20	1,454			
14		10322			.,,,,,,		g-52,6 ·	177.04	24.1	10//	
13	 ' 	11676	1770	3420	16868	5,000		67,00	355	1866	
12	<u> </u>	13034	1				∏d22	1,423			
11	,	14390	075	(200	2/1700	1575	9-62.18	79,200	422	2005	
10	∔ - '	15746	2753	6300	24799	6575			722	2005	
9	↓ '	17102	4				∐d24	1,394			
8	<u> </u>	18458	.~	9380	120/17	8,280	9-72,38	92,20	571	1948	
7	 '	19814	3753	9,00	32947	0,200			3//	7340	
<u>6</u> 5		21170	-				∐d26	1,37			
	1	22.526 23882	/.002	191.50	42225	9,970	g=83,84 ·	106,80	701	1968	
4	 '		4893	13.450	74223	1,1/0		1,386	/0/	,,,,,	
3	+	25238 26594	. 200	10000	49957	17,120	∏d32		1220	1851	
2 1	4,50	27950	6293 6793	18450	53193	16,820	9-122,# .	155,00 w= 1,296	1220	1822	
	300	2/350	0/73	28430	00170	10,820	L	w- 1,270	7440	70200	

Stolle 4. Belasiungen, Auerschnitte, Spannungen. Außenstülzen.

CI 50

28. 3	Z.									fall I
Geschost).	Beschols- Hölhe	Druck inf. Decision -Gewicht	Druck inf Stitzeneisen- -bewicht	Druck inf. Windkaaft. +-	Gesemt- Stutzendir	Wrnd- Noment	Profil	w F _{brulto} an *	WneHo am*	5 Kg/aat
		kg	K9	Kg	KO	lm.				
21	3,50	308					[[d16	1,558		
20	1	811		l	1		0.35,807%			
19	٠.	1314	510	1204	3028	1,489		45,60	170	979
18		1817	ļ	l	1	İ	[]d 16	1,558		
17_	<u>'</u>	2320					9.35,80 .	45,60	100	2170
16	<u> </u>	2823	1020	4620	8463	3,190			170	2110
15	<u> </u>	3326	ł		ł		I Id 20	1,454		[
14	<u> </u>	3829					g-52,60 ·	(60.00	222	1855
13	 '	4332	1770	10250	16352	5,000		67,00	333	7833
12	<u> </u>	4835] [d22	1,423	1	
11	<u> </u>	5338	0752	48000	26686	1575	g-62,18 ·	79,20	422	2040
10	-	5841 6344	2753	18092	28686	6,575			422	20 10
<u>9</u> 8	+:	6847	1		1		I Id24	1,394	1	
_ 	+-:	7350	3753	28148	39251	8,280	9.72,38 .	92,20	571	2043
6	†-;	7853	7/00	20770	3/202	1,20			- • · · · · · · · · · · · · · · · · · · 	***
5	+ ; -	8356	1	1			I Id26	437		
4	 	8859	4893	40416	54168	9,970	g-83,84 ·	106,80	701	2118
3	1	9362				1	I Id32	1,386		
2	4.50	9865	6293	51222	67380	17.120		155,60	1220	2005
1	3,00	10368	6793	55430	72591	16,820	9.123,14.	w= 1,296	1220	1985

Deshalb wurde nachgesehen wie hoch die Beanspruchung steigt, wenn diese Querschnitte nachher auf Knickung nachgeprüft werden.

Da das reine Stahlskelett nicht lange Zeit ohne Einbetonierung bleibt und mit dieser nicht erst gewartet werden muss, bis der ganze Skelettbau fertig ist, könnte eine höhere zulässige Inanspruchnahme vorübergehend zugelassen werden; wie dies ja bei Montierungen von grösseren Brücken zulässig ist. (Beltbrücke).

Man kann in diesem Fall eine Erhöhung der zulässigen Inanspruchnahme für die kurze Zeit um 25 % empfehlen.

Es wurden deshalb vorerst die Stützenquerschnitte für reinen Druck und Biegung für das Eigengewicht des Stahlgerripes berechnet. Die Querschnitte sind ohne Nietabzug ermittelt, wobei für St 37 die zulässige Inanspruchnahme mit s = 1400 kg/cm², für St 52 mit s = 2100 kg/cm² angenommen wurde. Schliesslich wurden die Gewichte der Stahlskelettstützen einschliesslich aller Stossdeckungen, Bindebleche, Anschlüsse bestimmt. Die erhaltenen Werte sind in den grafischen Darstellungen (Abb. 3) unter Fall I a eingetragen. Die Gesamtstahlgewichte finden sich in Tabelle 13.

Hinzugefügt möge werden, dass bei den Spannungen die Momentenwirkungen den Ausschlag geben und diese bei St 52 grösser sind als bei St 37.

Die derart ermittelten Querschnitte sind dann auf Knicken und Biegung nachgeprüft worden, wobei die Nietabzüge berücksichtigt wurden. Die zulässigen Inanspruchnahmen wurden für St 37 mit s = 1750 kg/cm^2 , für St 52 mit s = 2625 kg/cm^2 angesetzt.

Es stellte sich heraus, dass diese erhöhten zulässigen Inanspruchnahmen erst in den untersten Geschossen erreicht werden und dass sich in dieser Hinsicht St 37 günstiger verhält als St 52. In beiden Fällen sind die Aussenstützen empfindlicher als die Innenstützen, nur bei den Aussenstützen von St 52 mussten zwei Säulenschüsse verstärkt werden, damit auch bei diesen die erhöhte zulässige Inanspruchnahme eingehalten wird.

In den obersten sechs Geschossen sind die tatsächlichen Beanspruchungen nur mässig höher als s = 1400 kg/cm² bezw. 2100 kg/cm², da die Stützenquerschnitte für die erste Berechnung auf Druck und Biegung aus konstruktiven Gründen nicht ausgenutzt waren.

Die Ersparnisse an Gesamtgewicht gegenüber Fall I sind allerdings nicht sehr gross.

Für 21 Geschosse beträgt das Gesamtgewicht:

	St 37	St 52
Fall I	156,72 t	121,04 t
Fall Ia	151,08 t	117,02 t
Ersparnis	$\overline{5,64}$ t	$\frac{1}{4,02}t$

Für 12 Geschosse beträgt das Gesamtgewicht:

	St 37	St 52
Fall I	80,17 t	61,78 t
Fall Ia	77,94 t	60,08 t
Ersparnis	$\overline{2,23\ t}$	$\overline{1,70}t$

Die Gewichte beziehen sich auf sechs Meter Gebäudelänge.

Schlussfolgerung.

Wenn auch bei der vorliegenden Untersuchung im Querschnitt des Skelettbaues gleiche Stützenentfernungen angenommen worden sind, kann der Schluss gezogen werden, dass es zulässig ist, die Stützenstahlquerschnitte auf reinen Druck und Biegung zu bemessen. Die vorübergehenden Inanspruchnahmen geben bei St 37 dann noch eine Sicherheit von 1,6, bei St 52 von 1,36 gegen das Erreichen der Streckgrenze. St 37 verhält sich also in diesem Punkte günstiger als St 52.

Die Zulässigkeit dieser Berechnungsweise ändert sich nicht wenn die hier ausgewiesenen Sicherheiten als zu klein angesehen werden sollten. Eine etwaige Erhöhung der Sicherheiten wirkt sich allerdings in der Gewichtsersparnis aus.

Die Beanspruchungen der Stützen werden noch günstiger ausfallen, wenn geschweisste Konstruktionen angewendet werden, weil dann die Nietabzüge fortfallen und wenn man mit der Einbetonierung der Stützen in den unteren Geschossen beginnt bevor das ganze Stahlskelett aufgestellt ist, da die unteren Stützenteile kleinere Beanspruchungen erhalten. Ausserdem werden dabei die Vorspannungen in dem Stahlkern geringer. Dieser Bauvorgang wird sich also bei einer grösseren Zahl von Geschossen empfehlen.

Wendet man diesen Rechnungsvorgang an, so werden allerdings bei Mitwirkung des Betons im einbetonierten Zustand die Betonquerschnitte grösser als im Fall I.

5. Berechnung des Stahlskelettes bei Mitwirkung des Betons. Fall II.

Als Bewehrung der Stützen waren die bei Fall I für Knicken und Biegung ermittelten Stahlquerschnitte herangezogen worden. Die Betonquerschnitte sind in den oberen zwei Säulenschüssen, also für die sechs obersten Geschosse rechteckig, in den übrigen Geschossen quadratisch angenommen. Die Berechnung der Stützen erfolgte für den endgiltigen Belastungszustand für Eigengewicht, Nutzlast und Wind.

Die Bemessung der Betonquerschnitte ist vorerst nach den im Abschnitt IV für umschnürte Rechteckquerschnitte gegebenen Formeln 2) auf zentrischen Druck ohne Wind und zwar sowohl für eine Bewehrung mit St 37 wie für St 52 durchgeführt. Die zulässige Betonspannung war dabei zu $s_b = 65 \, \text{kg/cm}^2$ angesetzt. Die auf diese Weise errechneten Betonquerschnitte waren aber für die Berechnung einsschliesslich Wind für exzentrischen Druck mit dem erhöhten $s_b = 85 \, \text{kg/cm}^2$ zuklein. Sie mussten durchwegs vergrössert werden.

Da die Umschnürung an Rechteckquerschnitten bei Versuchen mit zentrischem Druck keine Erhöhung der Tragkraft brachte wurde die Berechnung auf exzentrischen Druck nach den Formeln für gewöhnliche Eisenbetonquerschnitte durchgeführt und zwar unter Berücksichtigung der Zugspannungen im Beton. Es hat sich gezeigt, dass bei Bewehrung in St 37 die Zugspannungen des Betons die zulässige Inanspruchnahme von 15 kg/cm² nicht überschritt. Sie war in dem Querschnitt des obersten Säulenschusses 2,8 kg/cm² und in einem anderen 13,3 kg/cm². Eine geringe Querschnittsvergrösserung hätte auch diese herabgedrückt. Sonst waren die Normalkräfte im Kern des Querschnittes geblieben. Bei der Rechnung für St 52 war dies bei den gewählten Querschnitten durchwegs der Fall. Allerdings sind die Seitenlängen der Betonquerschnitte in letzterem Falle um ca 2 cm grösser als für St 37.

Die nachgeprüften Spannungen in der Stahlbewehrung blieben bei St 37 um 200 bis 400 kg/cm² unter der zulässigen Inanspruchnahme von 1400 kg/cm², während sie sich bei St 52 zwischen 970 und 1128 kg/cm² bewegten, gegen 2100 kg/cm² zulässige Inanspruchnahme. (Tabellen 5-8) Dieses Ergebnis lässt sehr wichtige Schlussfolgerungen zu.

Schlussfolgerungen

Untersucht man jene Spannungen, die in den noch nicht einbetonierten Stahlsäulen infolge des reinen Eisengewichtes des Stahlskelettes ohne Wind auftreten, so findet man, dass sie sowohl bei St 37, wie bei St 52 innerhalb der Grenzen 210 bis 230 kg/cm² liegen. Diese Vorspannungen haben also die Stahlsäulen, wenn sie einbetoniert werden.

Da die Beanspruchungen der Säulen bei St 37 nach der Einbetonserung einschliesslich Wind nur 1000 bis 1200 kg/cm² gegenüber der zulässigen Inanspruchnahme von 1400 kg/cm² betragen, ist es möglich, die Stahlsäulen in St 37 mit Rücksicht auf die noch hinzukommende Vorspannung auszunützen.

Bei St 52 ist dies aber bei den gewählten Querschnitten nicht der Fall, denn die Säulen haben samt der Vorspannung bloss eine Inanspruchnahme von etwa 1180 bis 1358 kg/cm², gegen die zulässige von 2100 kg/cm². Sie sind also nicht ausgenützt.

Iatelle I. Belastungen, Auerschnitte, Spannungen. Innenstützen.

St.	<i>37</i> .		Fall II.								
<i>Besotal</i> S	Gesaloss- -Kölie. M.	Stilzendr: u Becke + +/Ntziasi, kg	Strizendr. u.Strize + Umhiltung kg.	Stutzendr. inf. Wind. kg.	besamt- Stützendr kg.	Wind- -Moment lm.	Guerschnitt.	Fs netto	Te cm.2	6. kg/cm.*	Belon. m. ²
21	3,50									6: 86.3 284	
20		70920	3060	830	74810	3,17	MI	1061	456		1:114
19		70320	3000	0,0	74010	3,27	1 -37	,,,,,	73.0	€ 1040 198	*****
18	,						. TE-E			- (856	14412.295
17		150653	9010	3310	162973	698	\$ FI	2183	67	6. 856	3409
16		130033	3010	3320	102373	4,50	1 30	2,03	<u> </u>	<u> </u>	
15	•			į		1	1 1/2	4	92.2+12:59	. (834	3:409+3:067
14		221527	17170	7430	246127	10,78	3 F-I /7	2920	104.77	6 2365	6476
13	•	221027	*/1/0	7.750	270.27	24//0	1		20477	<u> </u>	
12							3 126 17	*	1068+12:57	1808	6.476+4.315
11		286495	28260	19230	327985	14,58	3 126 17	4106	11937	61 28:25	10.791
10		200773	20200	13230	02/303	11,00	1	L.	1.337		
9	,					Ì	0 deel \$7	d	122712877	6. [82.4	10791,4.985
8	•	351463	41230	20680	413373	18,38	N 41 1 7	4750	150.47	6 33.2	15.976
7	•	007.700		2.00		,,,,,,	70	1	250 27		
6	•						32 47	4	1556+28:27	٠, ١٠٠	15.776+ 5.56
5		416431	55925	29750	502106	22,18	1 132 177	5292	18387	26.3	21.336
4	,			22700		22,10	10.24				~.,,,
3	•						134	•	194:2+28:29	6: 82.8	21.33617.720
2	4,50	481402	76845	41000	599247	38,40	\$ 139 -7	1347	22247	5e- 1194	29456
1	3,00	401402	70013	41000	393247	30,40	107-	1337	102231	454	

Belashungen, Querschnitte, Spannungen. Außenstützen.

St.	<i>37</i> .				CULISE	nsruc	zen.			9	Fall II.
[jeschof]	lieschaß- -Höhe.	+Nutzlast	Sivizends: v. Sivize+ -Umhukung	Stiffzendr. unf Wind.	Sistendr	Wind- moment	Querschmitt.	E metro	Fe cm²	6 kg/cm²	Belon.
	m.	kg.	kg.	kg.	kg	tm		cm.	CM		771.
21	3,50	į	1	ļ			ا تستاله	l	ŀ	6; 75·2	1
20	-	33040	2970	2480	38490	3:17	% F*I	1020	45.6	Se. 261	1.071
19							41		<u> </u>		
18	"			i		l	TIT	l	Į.		1-07/+ 1-582
17	,	63662	7360	9920	80942	698	7 Per [1507	67	6°5 86.9	2.653
16		03002	7555	7,20	000,2		1 78				
15	•						TET			1	2653+2-125
14	•	90994	13280	22320	126594	10.78	PT P	2024	92.2	6: - 19:2	4.778
13	•	30994	13280	22320	120394	10 78	1 75	2027		1 - 132	
12	•						TIE		1		4-798+3-064
11	•	116131	21450	39690	197271	14:58	ચું 424	2918	1068	6: 01.3	7842
10	1	110131	21430	39090	7//2/1	7430	1 24	23,0	////	(- 40)	L
9							TET			,	7842+3653
8	- 7	,,,,,,,		62010	234408	18.38	3 724	3478	122.2	F. 85.5	11:495
7		141268	31130	62010	254408	70'90	1 50 0	3470	1222	1 - 080	
6	•						.Tr.T			E. S 83.9	H-495+4 274
5	•	166405	1.0600	89300	298325	22:18	3 432	4069	1556	7.09	15.769
4	1	100405	42620	89300	230323	2240	1		,,,,,		l I
3	,						TET	i	1	62 82.5	15.76946285
2	4,50	201554	59466	123000	384 020	3840	[Je]	5715	214	6e. 984	22.054
1	3,00	207554	35400	72 3000	304020		1 77			1 490	

Würde man die Betonquerschnitte in diesem Falle verkleinern, so steigen die Betonspannungen bald stark an, sodass auch dieser Weg ungangbar ist. Bedenkt man, dass sogar die Betonquerschnitte bei St 52 grösser sind, als bei St 37, so ergibt sich, dass bei diesem Rechnungsvorgang die Anwendung von St 52 bei Mitwirkung von Beton in der Säule un wirtschaftlich ist.

Das Ergebnis für St 52 wird etwas günstiger. wenn man eine andere Querschnittsform der Stahlbewehrung als die übliche annimmt und die Stahlquerschnitte nahe den Ecken des Betonquerschnitts konzentriert, etwa durch vier starke Winkelisen samt Verstärkungen. Der Betonquerschnitt wurde kreisförmig angenommen.

Sabelle 7. Belastungen, Auerschnitte, Spannungen. Innenstützen.

37.	<i>52</i> .			Fall II.							
Gescherß	Geschoss- -Höhe m.	Stútzendr. D. Decke + +/Tutzlast. Ka	Stútzencis: v. Stútze + Umhúlkung kg	Stutzenetr. inf. Wind. Ke	Sesamt- Stůtzenár: kg.	WindMoment. tm.	Querschnit.	\$ netto	ā. om.²	δ. kg/cm²	Beton.
21	3,50									1.046	· · · · · ·
20		70920	3070	000	74820	2.~				\$ 1 41	
19		10520	30/0	830	14820	3,17	1 4/-	1104	45,6	£ {970	1,16
18	•						1 7 7 9 30		45,6 ~28,27	(81,5	1,16+2,05
17		150653	8200	3310	162163	6,98	\$ 16 97	40.54	1	\$ 21,9	
16	,	130033	*200	3370	162165	6,78	1 25	1951	73,97	2 (22)	3,21
15	,						Te		67+28,27	1975	121+2,85
14		221527	16068	7430	245025	1000	S 20 07	2741.		o 87.5 27.8	
13		201027	70000	7700	275025	10,78	1	2714	95,27	(~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6,06
12							I F= -3030		79,2+28,27	182,0	6,06+4,32
11		286495	27140		00000		S 22 07		1	\$ 30,3	
10	,	200733	2/170	13230	326865	14,58	1	4118	107,45	, ,	10,38
9	,						[24] 030 N [24] 07		92,2+2427	185	10,38+5,31
8	•	351463	40389	20680	412532	18,38	24 107	5063		\$ 34.7	1540
7_	•	331400	75355	20000	712332	70,30	1 22 -	3003	120,47	(**,,,	15,69
6		l					16		104,8+28,27	(41.5	15,69+6,58
5		416431	56738	29750	502919	22.10	8 26 07	6265	18500	0 81,5 37,9	
4	•	// //02	22/38	25/50	302319	22,18	1	0205	135,07	, , , , ,	22,27
<u> </u>							1		155,6+222	8 29,0	28,27+8,7-
2	4,50	481402	78568	41000	600970	3840	8 32 07	7916	183.87	e [29,0	30.97
-											

Istelle 8 Belastungen, Auerschnitte, Spannungen. Äußenstützen.

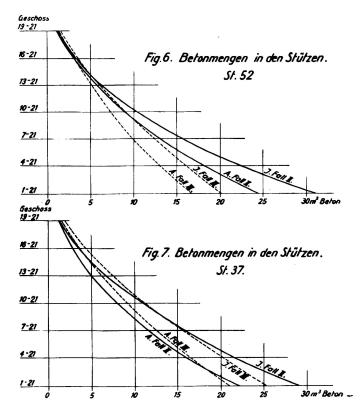
St	<i>52</i> .				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J-10-20	•••			9	all II.
Bescholb	Beschall-	Stitzendr. a Decke + + Nutzlast	Stútzendr v Stútze + -Umrútung	Stitzendr. unf. Wind	Gesemt - Solmenae:	Wind - moment	Querschnit	Fo netto	T _e	σ	Beton.
	777	kg.	kg.	kg.	kg.	tra	<u> </u>	om.L	om.ª	Ing/cay.	707.3
21	3,50									g: 261	
20	•	33040	2970	2480	38.490		N IZI	1020			400
19		33040	29/0	2780	38.790	3,17	→ 4/ - ≠	1020	45,6	5- 75,2	1,07
18	1						TEE				1,07+1,89
17	•						\$ KI			179.5	
16		63662	7750	9920	81332	6,98	1 3	1803	45,6	5- 79,5 15,4	2,96
15	•						T				2,96 +2,56
14		00004	44.000				S [2]			1 82,5	
13	•	90994	14280	22320	127594	10,78	1 30 -	2433	67,0	\$ · { 2,5 -9,65	5,52
12							T				5,52+3,93
11	•									183	
10		116131	22793	39690	178614	14,58	1 37	3169	79,2	5 - {- 2,4	8,85
9	•						T		†		8,85+4,2
8							3 [24]			183,2	
7		141 268	33253	62010	236531	18,38	1 24	4008	92,2	5 366	13,05
6							T				13,05+5,03
5	•						2 26		1	82	
4	•	166405	45713	89300	301418	22,18	70 =	4794	106,8	5- 10.72	18,08
3	-						T		<u> </u>	1920	18,08+6,4
2	4,50	201554	427/2	123000	107267	301.0	R [2]	6085	1556	4.920 421	24.4.0
1	3,00	201334	62713	123000	387267	38,40	1 22	6083	155,6	5. 86	24,48

(Abb. 11). Für das Kellergeschoss (siebenter Schuss von oben) genügt eine Rundsäule von 75 cm Durchmesser und 10,3 % Bewehrung gegenüber der Quadratsäule von 90 cm Seitenlänge und 2,27 % Bewehrung.

im 5. Schuss Rundsaüle 65 cm. Durchmesser, 7,3 % Bewehrung.

Die Stahlspannungen in der Rundsäule betragen:

	ohne Vorspannung	mit Vorspannung
im 7. Schuss	1216 kg/cm^2	1436 kg/cm ²
5. »	1220 »	1440 »
3. »	11 4 9 »	1379 »


Eine bessere Ausnutzung des Stahls gegenüber dem Quadratquerschnitt ist also in dem unterem Geschosse schon vorhanden, wird aber mit einer stärkeren Bewehrung erreicht. Die Betonquerschnitte werden kleiner. Ergänzend seien noch für den Fall II und rechteckige Betonquerschnitte die Bewehrungszisser, auf den vollen Betonquerschnitt bezogen, angegeben.

Sie bewegen sich bei St 37 zwischen

4,12 °/
$$_{o}$$
 oben, bis 2,94 °/ $_{o}$ unten für die Innenstütze 4,28 °/ $_{o}$ » » 3,61 °/ $_{o}$ » » Aussenstütze

bei St 52 zwischen

Die Querschnittsabmessungen des Betons sind aus den Zahlentafeln 5, 6. 7 und 8 zu entnehmen. Die erforderlichen Betonmengen aus Abb. 6 und 7. In diesen

Abbildungen sind auch die Betonmengen für den Fall III eingetragen, sodass die Unterschiede beurteilt werden können.

 Berechnung eines Stahlskelettes nach der üblichen Bauweise mit blosser Umhüllung. Fall III.

Die Berechnung der Stützen erfolgte nach der üblichen Weise der bisherigen Ausführungen von Stahlskelettbauten. Es wurden die Eigengewichte und Nutzlasten der Decken, der Ummantelungen, der Stützen und der Winddruck auf das völlig ausgemauerte Gebäude berücksichtigt.

In den Tabellen 9, 10, 11 und 12 finden sich die Lasten, Stützenquerschnitte und Spannungen angegeben. In Abbildung 3 sind die Stützengewichte, in Abbildung 4) die Gesamtgewichte und in

Abbildung 5) jene für ein m³ umbauten Raumes angegeben.
Schliesslich sind in Tabelle 13 die Ersparnisse an Stahlgewicht angegeben, wenn

statt St 37 hochwertiger Baustahl verwendet wird. Diese betragen bei 3 Geschossen 24,10 % und bei 21 Geschossen 25,53 %

Die Stahlgewichte pro umbauten Raum betragen für St 37 bei 3 Geschossen

Stelle 9. **Belastungen, luerschnitte, Spannungen.** Innenstützen.

St. 3	37.		Fall III.							
Sescho/3	Seschoff- -Höhe.	+Nutstast.	Druck inf Slåtzeneigeng +Umhüllung	*- '	Sesami- -Skitzendr	Wind- -190ment.	Profil.	W Fe cm.	W cm.3	6 kg/m²
	m.	kg.	kg.	kg.	k9.	tm.				
21	3,50	1				1	T d26	1336		1
20	"]					36,49			1 1
19	1	90920	5270	830	77020	347	9-83:84 4	1068	884	1322
18	,	1					TT436	1280		
17	,]					46255			
16		150653	13285	3310	167248	6.98	9.152.44 .	1942	2178	1423
15		1	ŀ				TTd45	1:258	i	l I
14	•]					55,60			
13		221529	24 185	7430	253142	10.78	4. 230:80 "	2940	4074	1349
12						l i	TTd50	1.252	i	
11							60x63			
10		286495	36925	13230	336650	14:58	9-282-601	360.0	5500	1435
9		i					T Td60	1.243		
8	•			00/00			70169		2004	
7_		351463	53735	20680	425878	18:38	9:398.80	508	9264	1239
6	,	1	1				4. 229/9	1:243		
5		1	l -			l	72.70			
4	1	416431	71045	29750	519226	22.18	9:460.98 4		11360	1289
3		J			l		0.220/9	1.271		
2	4,50	459746	86725	39760	584231	38.34	74,70	666'4	13480	1399
1	3,00	481402	92 265	41000	614667	38.40	9.523:16"	W:1230	13480	1419

Aboute 10. Belastungen, Averschnitte, Spannungen. Außenstützen.

St.	37.			Fall III.						
<i>Безд</i> юВ.	besglass- -Naise.	Druck inf. Decke + +IMZkist.	Druck 1217. Shirzenavgeng Hankullung.	Druck inf. Wind kraft. + -	Gesami- -Silizendr.	Uind- -Moment	Profil	w F cm²	W cm ³	6 kg/2
	777.	Mg.	hg.	kg.	kg.	lm.				
21	3,50		1				TT422	1376		
20							32.46			
19	-	33 040	4280	2480	39800	347	9: 62.1819	79.2	556	1263
18	•		ł				TTd30	1308		
17	,]		1	ļ		401.51	73.0		
16	•	63662	10530	9920	84112	6.98	9- 108.48 "	1382	1306	1330
15	•						TTa36	1280		
14		1					46,55	7200		i .
13	,	90994	18545	22320	131859	10.78	9= 152 441	194.2	2178	1363
12	,,						TT4425	1260		
11	•	1					53.59	7200		ĺ
10		116 131	28725	39690	181546	14:58	9-207.244	264	3480	1286
9							TT047%	1:254		
8	•					1	38.62	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ĺ
7		141268	40685	62010	243963	18:38	9=255-92=	326	4756	1325
6							TTd55	1247		
5	•	}					65,66	, -,,		i
4 .		166405	54625	89300	310330	22:18	9-334-42-	426	7214	1216
3	•						TTd60	1.272		
2	4,50	189 191	68235	113420	370846	38:34	70/69	508	9264	1342
1	3,00	201554	73025	123000	397579	38.40	9-398.80-	a=1:229	9264	1376

17,64 kg/m³, bei 21 Geschossen 27,16 kg/m³, für S t 52 bei 3 Geschossen 13,40 kg/m³, bei 21 Geschossen 20,20 kg/m³, für andere Geschosszahlen sei auf die Abbildung 5 verwiesen.

Die umhüllten Stützen für diesen Fall haben kleinere Abmessungen als in Fall II. Beispielsweise hat für St 52 der Betonquerschnitt im Kellergeschoss 70 cm Seitenlänge gegen 90 cm im Fall II. (Abb. 8, 9). Für St 37 ist die Kellersäule 74 x 70 cm, also mässig grösser als bei St 52. Der Unterschied wird in den oberen Geschossen kleiner.

Tabelle 11.
Belastungen, Querschnitte, Spannungen.
Innenstützen.

<u> 57. 5.</u>	<u>z</u>				9all III.					
Geschol3	Geschafs- -Höhe	Aruch inf. Darke+ +/Artziast.	Brock inf. Stilizmeigeng. +Um/ni/Livng.	Druck inf Windkraft	fiesamt - -Stitzends:	Wind- -Moment.	Profil	W Fe com.	W im.	e kg/sai
	277	kg.	kg.	кд.	K9.	tm.				
21	3,50		ì			į	TTd22	1,423		
20	<u> </u>				1		32 ×46	, i		
19	 •	70920	4280	830	76030	3,17	94-62,1849/	79,20	556	1940
18	 		1		1		[[d30	4,339		l
17	 	150653	10530	3310	164493	6.98	40×51		1306	2125
16	 '	750005	10330	3370	707773	0,70		138,20	1300	2125
15	 	ł			ľ		I I d 36	1,302		ŀ
14	l i	221527	18545	7430	247502	10,78	96 x 55 94 - 153,44	194.20	2178	2151
12	<u> </u>						Td+2 &	1,281		
11	,	1					55,69			
10	· .	286495	28725	15230	328450	14,58	90-207,24.	264,00	3480	2015
9	1]		ł		[]d47 4	1,274		
8	1						58×62			
7		351463	40685	20680	412828	18,38	94 • 255,92 •	52600	4756	1997
6	-	Į	1] [d50	1,272		
5	<u> </u>	1.161.91		29750	498846	40.10	60x63	360,00	5500	2165
4	 	416431	52665	23/30	4 70 8 7 6	24,10		1,295	2200	2103
3	1 50	459746	11045	37760	563751	38,34	[]d60		9264	1848
2	4,50	481402	71050	41000	593452	38,40		508,00 W-1,242	9264	1866
1	3,00	701702	17000	71000	JANA	1 30,70	A . J / 6/1-2 .	- TUTE	1407	7,000

Belastungen, Guerschnitte, Spannungen. Oußenstützen.

St.5	2.		Fall II.							
<i>Geochai</i> 3	Geschots- -Hothe	Druck inf. Decke + +Nutziest.	Druck inf. Shizereigeng. Hahiling.	Druck inf Wind kræft. + -	Besant- -Stilzendr	Wind- -Gonest	Profi/	w Fe cm²	W cars	o 19/m²
	78	Mg.	Kg.	Kg.	Ng.	tan.				
21	3,50						I]d18	1.497		
20	1]				l	28×43			
19		33040	3400	2480	38920	3,17	9-43,80 49/11	55,80	322	2025
11		}	ľ]]d26	1,371		į.
17	1]					36×49			
16		63662	8670	9920	82252	6,98	9-83.84 1	106,80	884	1850
15		3					I Id30	1,339		
14		1					40 151			0000
15	1	90994	14930	22320	128244	10,78	9=100,48 .	138,20	1306	2067
12		1]			II_{d34}	1,314		
11			00010	*****		11.50	44×54	17212	. 1011	2140
10		116131	22360	39690	478181	14,58		173,60	1846	2,70
9	1 .	4		1	Į.	ļ	I Id38	1,294		1
8		44.000	****	10010	234228	18,38	9-168,00	214,00	2528	2136
7		141268	30950	62010	251225	70,50			4/40	+
6	 ! -	4		l	1	İ	1 d42 1/2	1,281		
5	- '	1441.05	40620	89300	296325	22,18	53×59 g-20724 ·	26400	3480	2079
4	+ !	166405	70020	* 3300	276340	22,20	T	1,311	5/0	7.7.
3	1	ر مرمور ا	50910	449400	353521	38,34	I d 50	360.00	5500	1986
2	4,50	189191		+13420		38,40	9-282,00	a. 1,252	. 5500	2020
1	3,00	201554	54540	123000	379094	70,70	19-230,00	- 11300 N	3300	T-44-44

7. Schwindspannungee. Fall IV.

Es wurden bloss die rechnerischen primären Schwindspannungen ermittelt, jene jedoch welche infolge der Wirkung auf das vielfach statisch unbestimmte System des Stockwerkrahmens entstehen, sollen an anderer Stelle nachgewiesen werden. Ebenso ihr Einfluss auf die Bemessung mittragender Betonquerschnitte.

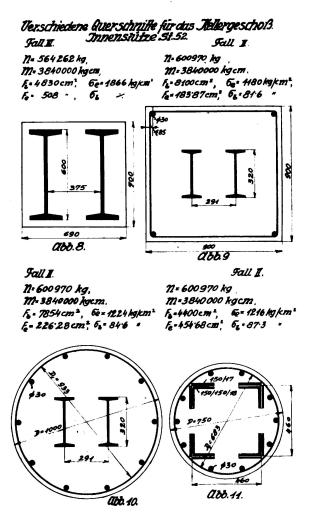
	Tabelle 13.	
Gesamtstahlgewichte für 6m	Gebäudelänge int und	n kg pro 1 m³umbauten Raumes.

			Ge samt stahlgewichte.										Gewichtsunterschiede 4 9							
Zahl d. Geschehe v. oben.	Harry .		50	UI.		9	Fall Ia.		Fall II.			Fall F -	Fall I	Fall 5- Fall I						
	Ruce		S¥.37.	51.52	ξ.	51.37.	St. 52.	E	St. 37.	St. 52.	Ę.	1	\$1.37.	S1.52.	St.37.	S1.52				
		g	17-884	14068		17536	13'516		20'018	15194		-6	2734	1426	2482	1478				
3	1134	1/2	1575	124	21:35		11.92	22 72	1764		2010	Z	1068	740	1241	11.06				
6	,	g	37252	28748		36'382	28010		43:550			46	6298	4222	7168	1960				
•	2268	7	16:42	1267	228	16:03	1236	1			2428	%	1448	12:01	16:47	1507				
9	3402	g	58-096	44740		56:514	43'562		70782	i e	1	10	12686	8:348	14:268	9:526				
g		1/2	17.08		23.00	16.62		2270	2080	156	2500	Z	1790	15.74	2015	17.96				
		0			2298	77944	60076	1	101750	75.940	25*	.6	21:584	14-162	23'806	15:064				
12	4536	1/2	1770				13:24		2243			Z			23:40	2085				
		g	103:566			100.512	77638		136:822	l		40	1	21:360		23:542				
15	5670	12	18:25	1440	2298			1	2442		26:06	2		21:10	26:54	23'250				
						9				124:390			174944			4	46.102	30.040		32.790
18	6804	1/2	1893	14:57	23:48			2250			2524	Z	2636	2324		2540				
		9	156716			151-082		П	217318			4	60%02	40196	66.236	44714				
21.	7992	2,	1953		22:80]	2746	2020	2553	%	27.90	25:20	3050	2762				

E = Ersparnis

Das Schwindmass ist mit ϵ , = 0,15 mm auf 1 m angenommen worden. Ist F_b die

reine Betonquerschnittsfläche, Fe die Stahlquerschnittsfläche, so ist die Schwindspannung im zentrisch bewehrten Eisenbetonstab.


$$egin{aligned} \sigma_{\mathrm{e}} &= rac{\mathrm{E_{e}}\;\mathrm{F_{b}}\,arepsilon_{\mathrm{s}}}{\mathrm{F_{b}}+n\;\mathrm{F_{e}}} \ \sigma_{\mathrm{b}} &= rac{\mathrm{E_{e}}\;\mathrm{F_{e}}\,arepsilon_{\mathrm{s}}}{\mathrm{F_{b}}+n\;\mathrm{F_{e}}} \end{aligned}$$

Mit $E^{\circ} = 2,100.000 \text{ kg/cm}^2$ wird $E_{\text{s}_{*}} = 315 \text{ kg/cm}^2$. Für die in Fall II für die Stützen errechneten Flächen F_{b} und F_{e} liegen die Schwindspannungen im Stahl mässig verschieden zwischen $\sigma_{3} = 192$ bis 220 kg/cm² Druck für St 37, zwischen $\sigma_{3} = 195$ bis 238 kg/cm² für St 52.

Die Betonspannungen rechnen sich mit.

$$au_4 = 8.2 \, \mathrm{kg./cm^2}$$
 bis 6.4 kg./cm² Zug bei St 37 $au_4 = 8.0 \, \mathrm{kg./cm^2}$ bis 5.1 kg./cm² Zug bei St 52

Diese Werte wären also in die Gleichungen 7 und 8 in Abschnitt IV zu benützen Sie entsprechen den Bewehrungsprozenten von 4,12 bis 2,94 o/o bei St

37 und 3,98 bis 2,27 % bei St 52. Bei höheren Bewehrungsziffern nehmen die Stahlspannungen ab, die Betonspannungen zu.

Wenn also für die Stützen kleinere Betonquerschnitte gewählt werden mit stärkerer Bewehrung, um gegebenem N und M zu genügen, so wird der Stahl nur dann besser ausgenützt, wenn die Schwindspannungen noch grösser sind, als die Spannungserhöhung durch die Lasten bei dieser Massnahme.

Bei dem in Abschnitt V. 5. behandeltem Fall einer Rundsäule (Kellergeschoss) sind etwa bei 10 °/o Bewehrung die Schwindspannungen dieser genannten Spannungserhöhung gleich. Das ist aber aus konstruktiven Gründen des Stahlbaues wohl auch die obere Grenze der Bewehrung.

VI. Ersparnisse an Stahl.

Wählt man den in Fall I behandelten Weg der Bemessung des Stahlskelettes für die Wirkung seines Eigengewichtes und Wind auf das reine Stahlgerüst um es später einzubetonieren, so kann man nach Tabelle 13 gegenüber der bisher üblichen Ausführungsweise des Stahlbaues (Fall III) bei Mitwirkung des Betons bei

Geschossen an Stahlgewicht sparen.

Rechnet man jedoch die Stützen des reinen Stahlgerüstes auf Druck und Biegung (Fall I a), so betragen die Erspanisse gegenüber III

bei St 37: 12,4
$$^{\circ}/_{o}$$
 bei 3 Geschossen, 23,4 $^{\circ}/_{o}$ bei 12 u. 30,9 $^{\circ}/_{o}$ bei 21 St 52: 11,1 $^{\circ}/_{o}$ » » 20,85 $^{\circ}/_{o}$ » 12 u. 27,62 $^{\circ}/_{o}$ » 21

Es erhöhen sich allerdings dabei die Betonmengen. In beiden Fällen schneidet St 37 etwas günstiger ab als St 52, Bei der Behandlung des Falls I a (Abschnitt V. 4.), wurde schon besprochen, dass beim Entschluss die Stützen nur auf Druck und Biegung zu rechnen die Ersparnis nicht sehr gross ist gegenüber einer Rechnung auf Knicken und Biegung. Die Sicherheit ist auch in dem Fall Ia ausreichend mit Rücksicht auf die kurze Zeit, die das Gerüst allein frei steht, wenn sie auch bei St 52 knapp ist. Es werden bei Ausführung des Skelettes nach Ia bei der Montage zweckmässig provisorische Windverbände einzulegen sein.

Die angeführten Ziffern entsprechen der Anordnung, dass die Stahlkerne der Stützen nach den gleichen Formen und Kombinationen der Walzprofile ausgebildet werden und diese rechteckige oder quadratische Betonquerschnitte haben. Auf diese Weise sind Bewehrungen in den Grenzen von 4,28 °/° bis herab auf 2,27 °/° des Betonquerschnittes ausreichend. Muss man die Bewehrungszilfer steigern um geringere Abmessungen der Säulen mit Kreisquerschnitt zu erhalten, so werden natürlich die Gewichtsunterschiede der oben behandelten Fälle kleiner.

VII. Betonaufwand.

Gegenüber dem Stahlskelettbau gewöhnlicher Ausführung sind die erforderlichen Betonmengen im Fall II bei St 52 grösser bei Gebäuden mit über sechs Stockwerken. Die bezüglichen Werte sind aus Abb. 6 zu entnehmen. Sie

erreichen im Kellergeschoss einen Mehrbedarf an Beton bei den Innenstützen von 54 %, bei den Aussenstützen von 46 % gegenüber Fall III. Dabei ist dieser Mehrbedarf an Beton in den Stützen hochwertiger Baustoff.

Bei St 37 ist die Betonmenge der Innenstütze erst bei Gebäuden von mehr als 10 Geschossen, jene der Aussenstützen erst sogar bei 20 Geschossen grösser als in Fall III. Für geringere Geschosszahlen in den bezüglichen Strängen ist bei den gewählten Stahlquerschnitten der Betonbedarf für Fall III grösser als bei II. Auch hierin liegt eine Ueberlegenheit des St 37 über St 52.

Diese Zahlenergebnisse werden für kreisförmige Querschnitte und stärkere Bewehrung bezüglich des Betons günstiger, wenn dieser mittragend gerechnet wird.

Um den Gesamteinfluss in den betrachteten Fällen bezüglich der Kosten zu überblicken, müssen die jeweiligen Einheitspreise für Stahl, Beton und Schalung berücksichtigt werden, was hier wegen der allzugrossen Verschiedenheit der Preise nicht untersucht wird.

Zum Schlusse kann ich nicht umhin, meinen Assistenten den Herren Ing. J. Schier, Ing. E. Haulena und H. Forberich für ihre besondere Mitwirkung bei den sehr umfassenden Berechnungen bestens zu danken.

Zusammenfassung.

Bei der beabsichtigten Mitwirkung des Betons soll das Stahlgerüst aus St 37 gemacht werden, während St 52 sowohl in den Deckenträgern, Unterzügen, und Stützen unwirtschaftlich ist. Es ist schon bei St 37 schwer, die steifen Bewehrungen voll auszunützen, bei St 52 ist dies nicht möglich.

Deckenträger und Unterzüge sind auch für St 37, wenn der Beton mittragend gerechnet wird, unwirtschaftlich, weil zu grosse Betonquerschnitte erforderlich sind, wenn die zulässige Betondruckspannung eingehalten werden soll.

Um aber auf jeden Fall die steifen Bewehrungen besser auszunützen, wäre noch ein Mittelweg gangbar und zwar folgender: Die Deckenträger und Unterzüge sind wie bisher nichttragend mit Beton zu umhüllen, oder es sind Deckenarten mit fertig zu verlegenden Deckenelementen zu verwenden und nur die Stützen einzubetonieren. Dann erhalten die steifen Bewehrungen dieser Stützen grössere Vorspannungen und lassen sich besser ausnützen. In diesem Falle wären die Ersparnisse an Stahl geringer und die Betonmengen der Stützen kleiner. In welchem Ausmasse sich dann die Nutzlasten auf den Beton und die steife Stahlbewehrung verteilen, müsste erst durch Versuche festgestellt werden.

Résumé.

L'ossature métallique d'une construction enrobée de béton doit être exécutée en acier doux. L'emploi des aciers à haute résistance n'est économique ni pour les poutres, ni pour les colonnes. Même en utilisant de l'acier doux, on ne peut pas construire d'une façon économique des poutrelles et poutres enrobées, dont le béton fait partie du matériau portant, car cela exige de trop grandes sections du béton, si l'on tient à ne pas dépasser les tensions admissibles.

Dans tous les cas, si l'on veut utiliser à fond l'ossature métallique rigide, il faut adopter la solution suivante :

Pour les poutrelles et poutres, on se servira de fers profilés que l'on enrobera de béton, sans toutefois tenir compte de ce revêtement dans les calculs statiques; ou, si l'on préfère, on utilisera, pour les plafonds, des systèmes spéciaux, composés d'éléments tout prêts pour le montage. Quant aux supports, on pourra les exécuter d'après la nouvelle méthode, qui consiste à admettre le revêtement de la charpente métallique comme partie intégrante de la construction portante.

De cette façon, les tensions préliminaires provenant du poids propre et du poids des coffrages, qui ne sollicitent que l'armature rigide, seront plus élevées et il sera plus aisé de tirer de l'acier le rendement maximum. Dans ce cas, l'économie réalisée sur l'acier sera moins grande, mais par contre les quantités de béton nécessaires pour les colonnes diminueront sensiblement.

Summary.

Taking count of the cooperation of the concrete, the steel framing ought to be made of soft steel (St 37). Steel of high strength (St 52 for example) on the other hand is uneconomical in the ceiling beams, joists and supports. With St 37 it is already difficult to utilize the stiff reinforcement completely; with St 52 it is impossible.

Ceiling beams and joists are also uneconomical for St 37, if the concrete is reckoned as taking a share of the load, since too great concrete cross-sections are required if the compression stresses in the concrete shall be kept within the permissible limits.

However, in order to utilize the stiff reinforcement better, a middle way as follows is still available: The ceiling beams and joists are as formerly to be enveloped with concrete which is considered as not taking share of the load, or types of ceilings with ceiling elements ready to be laid in position are to be adopted; afterwards the supports are to be enveloped in concrete and to be calculated as real composite columns. The stiff reinforcements of these supports then get greater preliminary stressing and can be utilized better. In this case the saving in steel would be slighter, but the quantity of concrete on the supports less. To what extent the working load is then distributed between the concrete and the stiff steel reinforcement, must first of all be determined by tests.