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TRADUCTION

par M. Gossieaux, Ing., Paris.

Dans le rapport qu'il vient de nous communiquer, M. Homann a presente
d'une maniere concise, mais parfaitement claire, tous ceux des problemes de la

dynamique dont la mise au point parait necessaire si l'on veut pouvoir effec-
tuer des recherches fructueuses sur les phenomenes d'oscillation qui se mani-
festent dans les ponts. La multiplicite et letroit enchainement des divers
phenomenes dynamiques que l'on observe dans les ponts et dans les autres ouvrages
exigent d'une maniere imperieuse, avant le commencement des recherches de

grande envergure et des observations sur des ponts reels, la Solution theorique
de nombreuses questions pratiques concernant la dynamique des ouvrages. Si
Ton veut, en effet, pouvoir poursuivre, avec quelques chances de succes, les
observations et les recherches concernant la construction, dans ces domaines
difficiles, il est necessaire de sappuyer sur des bases theoriques solides. Inver-
sement, la progression des recherches experimentales posera des questions
theoriques nouvelles. Dans une dependance aussi etroite entre la theorie
mathematique et la recherche experimentale, dependance qui a pour
consequence la reciprocite dans l'impulsion et les progres, je vois la seule condition

qui permette d'arriver ä une Solution heureuse du probleme delicat que
constitue la dynamique de la construction et, en particulier, la dynamique du
pont.

Le but de la presente etude est de presenter, d'une maniere generale, et dans
ses grandes lignes, l'etat actuel de la theorie des phenomenes oscillatoires que
l'on rencontre en construction, pour passer ensuite ä Tenonce des problemes
dynamiques qui se posent tout particulierement en ce qui concerne la construction

des ponts.

A. Les oscillations propres et les oscillations forcees
dans la construction.

II existe trois causes principales qui peuvent donner naissance, dans nos
ouvrages de construction, ä des phenomenes d'oscillation. Ce sont les suivantes :
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1. les charges roulantes ;

2. les variations periodiques des charges fixes ou mobiles;
3. les influences de choc qui sont exercees par les charges.
Les causes 1 et 2 nous conduisent ä l'etude du probleme des oscillations

dites « forcees ». Dans le cadre des exigences de la pratique, ce probleme peut,
en fait, etre considere comme resolu. Par contre, on n'a pas encore pu
resoudre d'une maniere satisfaisante, malgre tous les efforts des techniciens,
toutes les questions dynamiques qui sont reliees aux influences de choc proprement

dites exercees par les charges.

I. Oscillations propres des systemes elastiques.
Tout Systeme de poutres qui se trouve soumis ä une excitation particuliere,

puis abandonne ä lui-meme, est l'objet d'oscillations que l'on designe sous le
nom d'oscillations propres, et qui s'eteignent sous l'action de certaines influences
d'amortissement, si aucune nouvelle excitation ne s'exerce. Ces oscillations
propres peuvent toujours etre ramenees ä une somme limitee ou illimitee
d'oscillations harmoniques, c'est-ä-dire ä la forme suivante :

00

,V=2/J,.sin (prl + sr) (\)

dans laquelle on designe par :

y l'ordonnee du mouvement d'oscillation d'un point de la poutre ä partir de
sa position initiale d'equilibre ;

pr 2 t: fois le nombre d'oscillations par seconde, c'est-ä-dire la pulsation;
c le decalage de phase ;

yj l'amplitude des oscillations, fonetion du point considere et independante du
temps.

Le Systeme d'oscillations propres defini par l'equation (1) definit la condition

dynamique du Systeme. La connaissance des oscillations propres constitue

donc la base de toutes les recherches ulterieures sur les phenomenes
oscillatoires. Si l'on ränge les termes de l'equation (1) d'apres les valeurs crois-
santes de pr (pulsation), le premier terme correspondant ä la plus faible valeur
de p constitue l'oscillation fondamentale, ä laquelle correspond normalement la
plus grande valeur de l'amplitude yj. Les autres oscillations sont des oscillations

harmoniques ; p augmente rapidement avec le rang de r, r, diminuant
rapidement en meme temps.

L'oscillation fondamentale joue un röle de premier plan, particulierement
dans les problemes de resonance, c'est pourquoi, dans la plupart des cas, il
suffit de connaitre la frequence de l'oscillation fondamentale.

Si, dans le cas le plus general, on considere l'ouvrage comme une charpente
constituee par un ensemble d'elements resistant ä la flexion et ä la torsion,
les elements individuels executent, en tant quefaisant partie de cette charpente,
des oscillations longitudinales, des oscillations de flexion et des oscillations de
torsion. En outre, ils subissent par eux-memes des translations et des rota-
tions periodiques. Dans les treillis, meme lorsque les barres sont assemblees
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aux noeuds d'une maniere rigide, les efforts de flexion ne jouent, en regle generale,

qu'un röle peu important; les tensions secondaires, dans les dispositions
en treillis generalement adoptees, n'exercent qu'une influence tres faible sur
les deformations de la poutre en treillis. Par contre, les deformations longitudinales,

qui se traduisent sur les elements tout entiers par des translations
et des rotations periodiques, jouent un röle important.

Inversement, dans les systemes constitues par des assemblages en cadres,
les oscillations de flexion jouent un röle preponderant par rapport aux oscillations

longitudinales. Si l'on admet, ce qui se produit dans la plupart des cas,
que nos ouvrages se composent de systemes plans lesquels, sauf cas d'excep-
tion, les moments de torsion n'interviennent pas, on peut donc, en premiere
approximation, se contenter d'une theorie dynamique concernant, d'une part,
le treillis plan, d'autre part, les elements plans des charpentes, c'est-ä-dire des

systemes constitues par des barres resistant ä la flexion et assemblees d'une
maniere rigide les unes aux autres.

Les periodes des oscillations propres sont determinees principalement par la

valeur et par la repartition des masses, de meine, que par la rigidite de la
charpente. L'oscillation fondamentale est d'autant moins rapide que la masse est
plus importante et que la charpente est plus elastique. Les periodes d'oscillation

sont peu influencees par de faibles variations de la masse ; il suffira donc,
pour la determination pratique de la periode d'oscillation, d'admettre une repartition

simple des masses ; le calcul sera ainsi simplifie, sans toutefois que le
resultat soit altere en ce qui concerne la portee pratique.

1. Oscillations propres des treillis.
La determination de la periode des oscillations propres peut etre considerablement

simplifiee, avec une approximation süffisante, si l'on considere chaque
treillis comme un Systeme de n points doues d'une masse elementaire, situes
aux n nceuds d'assemblage de ce treillis, et entre lesquels les efforts dans les
barres agissent comme efforts elastiques internes6'10. Si, dans le cas general, le
treillis est z fois statiquement indetermine, le probleme conduit ä :

N 2rc — 3 — z

equations homogenes de la forme suivante :

p2 "^ Fhk
Pk"k^-p 7, — i ("k — tili) COS qhk + (Vk — Vh) sin qhk"| COS qhk

7>2 V Fhk i ^
PkVk-Tj ^ —- [(uk — uh) cos qhk + (vk — vu) sin qllk] sin qhk

ff ^ ^" 5hk I

dans lesquelles on designe par :

ukvk les amplitudes des deplacements du noeud k ;

üi,Ui, les deplacements de tous les noeuds h qui sont relies au noeud k par des
barres;

FhkShk les sections et longueurs respectives des barres qui sont assemblees en k\
Pk la charge sur l'assemblage en k ;
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g, E l'acceleration de la pesanteur et le module d'elasticite ;

qhk l'angle de deviation des barres par rapport ä un axe (ixe x (voir
figure 1).

En egalaut ä zero le determinant du Systeme d'equations (2) on obtient
l'equation de la periode, de laquelle resultent les N valeurs qui correspondent
ä l'oscillation propre du treillis. Pratiquement, le calcul du determinant serait
tres difficile. Toutefois, on peut, d'une maniere tres simple et avec relativement
peu de difficultes, determiner la periode d'oscillation fondamentale et, en cas
de besoin, les periodes des oscillations harmoniques, en employant un procede
d'approximations successives indique par Pohlhausen * et qui permet d'obtenir
des resultats concordant avec ceux que donne le procede graphique prevu par
Vianello pour la determination des cotes des barres au flambage.

On choisit ä cet effet, ä volonte, un groupe de translations u et v, qui doivent
toutefois etre compatibles avec les conditions aux appuis et on calcule les

charges aux nceuds

Pu)* et Pvi2
en supposant :

Eg

Puis, soit graphiquement, soit par le calcul, on determine les efforts corres-
pondants dans les barres S, dont nous designerons les premieres valeurs appro-
chees par S'. Au moyen de ces efforts dans les barres, on determine les
translations uf et v' par exemple, au moyen d'un diagramme de translation de

Williot et on calcule une premiere valeur approchee X'2 d'apres Pohl hausen,
au moyen de la relation :

X'2
1

(3)
Y/2(Pu')a + 2i:(Pü')*

Les sommes entre les parentheses s'etendent ä tous les noeuds du treillis. On
determine ensuite, ä l'aide de cette valeur X'2, ä nouveau, les charges dans les
nceuds P h'X'2 et P t/X'2 puis les nouvelles valeurs S" des efforts dans les barres
et les deplacements correspondants u"v" dans les noeuds, ce qui conduit ä une
nouvelle valeur approchee :

1
(3')

X/Z(Pu")2+?.(Pv")2

On continue ces calculs jusqu'a ce que deux valeurs successives obtenues

pour X2 soient suffisamment rapprochees. Cette methode conduit tres rapidement

au but, car la convergence des resultats est remarquable et la troisieme
valeur approchee est generalement süffisante dans la plupart des cas.

En regle generale, il est süffisant de determiner de cette maniere la periode
d'oscillation propre. Toutefois, rien n'empeche de determiner egalement les

periodes des oscillations harmoniques, en employant le meme procede.
Le procede est tout ä fait general et peut etre employe pour un Systeme de

treillis de quelque nature que ce soit, statiquement determine ou statiquement
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indetermine, et pour une repartition quelconque des masses; il donne, apres
deux ou trois approximations successives, d'un calcul simple, des resultats tres
precis s'il s'agit en particulier du trace des diagrammes d'efforts, de deformations

ou de flechissements. En ce qui concerne les exemples pratiques, voir
(10) et (11).

2. Oscillations propres des charpentes en cadres.
Considerons tout d'abord un element simple et rigide, que nous pouvons

admettre, comme representant le cas le plus simple d'une charpente en cadres.
II constitue un Systeme admettant un degre de liberte infini. A la place du

Systeme fini des equations (2) qui correspondent au treillis et ä partir des-

quelles on determine la frequence des oscillations libres, on a l'equation
differentielle :

<7P-J-KB 0 (4)

L'equation (4) represente l'equation differentielle de l'element soumis ä une
p2

charge [i^r .v oü v designe le flechissement.

La resolution de cette equation peut etre effectuee de la meme maniere que
celle des equations differentielles analogues que l'on rencontre dans la theorie
des equilibres instables, c'est-ä-dire par adaptation progressive de la ligne
elastique aux conditions (4). On peut pour cela, en particulier, employer le meme
Processus que celui que nous avons dejä expose precedemment et qui, mis en
oeuvre d'une maniere analogue, est applicable non seulernent ä un element isole,
mais egalement a toute charpente constituee par des cadres n.

Dans ce but, on suppose l'element rigide, ou le cadre, decompose en masses
ponctuelles isolees, situees ä des endroits suffisamment rapproches les uns des

autres. A chacune de ces masses ponctuelles, on attribue un deplacement v tout
d'abord suppose arbitraire, mais compatible avec les conditions d'appui du
Systeme, ou, si Ton veut egalement generaliser, des deplacements u et v, u
designant les deplacements suivant la direction longitudinale par rapport ä l'ele-
ment et v le deplacement suivant une direction perpendiculaire ä son axe. On

suppose maintenant le cadre charge, ä l'endroit des masses ponctuelles choi-
sies, avec des charges respectives PwX2et PuX2. P designe le poids qui
correspond, d'une part, aux masses [x des parties de l'element considerees comme
concentrees aux points en question et, d'autre part, aux charges ä supporter.
On considere tout d'abord :

X«=^ (3)
hg

K

comme egal ä 1. Pour ces charges, on determine par le calcul ou graphique-
ment les moments flechissants et les efforts normaux et, par suite, les
deformations, suivant le processus courant en statique. On obtient ainsi un premier
groupe de deplacements u' et v'. On calcule ensuite une premiere valeur X'2

d apres la formule :.

W*=
j

(6)
V S(Pu')a + l'(Pu')a
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et 1 on repete le cycle de calcul precedemment expose. On obtient les deplacements

«"et v", ä partir desquels on peut determiner ä nouveau, suivant l'equation

(6), une deuxieme valeur plus approchee. On continue suivant la meme
methode, jusqu'a ce que l'on obtienne deux valeurs successives X qui soient suf-
fisamment voisines l'une de l'autre. C'est ce qui se produit souvent des la
valeur X".

De cette maniere, on arrive, en partant d'une ligne elastique convenable, ä

degager les differentes oscillations particulieres, les unes apres les autres et ä

calculer les periodes d'oscillation correspondantes.

II. Oscillations forceps d'un Systeme elastique.

Supposons que, en un point quelconque de la charpente, s'exerce une charge
P dont la valeur varie periodiquement et que cette Variation suive la loi :

P (<) P sin o) t

La charpente executera, lorsqu'un certain etat de regime sera atteint, des
oscillations ayant la pulsation gd. Ces oscillations ne sont en general pas dan-
gereuses pour la charpente, tant que la frequence d'oscillation n ne coincide
pas avec l'une des periodes inferieures des oscillations propres, en particulier
avec la periode de l'oscillation fondamentale. Si toutefois ce fait se produit, le
phenomene bien connu de la resonance entre en jeu. L'amplitude des oscillations

et, par suite, les contraintes provoquees par ces oscillations, peuvent
prendre des valeurs considerables. Si l'amortissement n'est pas suffisamment
prononce, les amplitudes continuent ä croitre ; les efforts peuvent alors devenir
tels que la securite de la charpente soit elle-meme menacee.

Pour determiner les dimensions de cette charpente, la question se pose
donc maintenant de savoir dans quelle mesure la frequence de Variation n de la
charge peut se rapprocher de la frequence d'oscillation critique v sans que la
securite de la charpente soit compromise et de determiner quelles sont les
valeurs effectives des efforts qu'y provoque la charge variable.

1. Solution approchee.

Des hypotheses de simplification conduisent aux formules approchees qui
suivent et qui donnent des resultats relativement bons.

a) Treillis.

Soit P* sin (i) / la charge oscillante qui s'exerce sur un noeud m, soit w le
deplacement que subit le noeud m dans la direction du P\ u et v les deplacements

que subissent les autres noeuds ; u, v et w etant constitues par les
deplacements dus aux oscillations propres determinees suivant la methode de
Polhausen et P designant la charge correspondante s'exergant aux nceuds.
Soit en outre Sk l'effort dans l'element sk du treillis qui correspond ä ces
deplacements et qui est egalement determine par la methode de calcul des oscillations

propres.
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L'effort effectif dans l'element, soit S*k sous l'action de la charge oscillante
P* sin o) t est donne par :

Sk=r^_2 (7)
1 — n2 '

avec

V p Ü2A2 _|_V Pt,2-A2

x=*2
E.flr

Ce calcul doit etre execute, suivant chaque cas, en tenant compte du mode
d'oscillation propre correspondant ä la frequence

P
V 2,

se rapprochant le plus possible de la frequence

0)

de la charge P*. n peut etre superieur ou inferieur ä v.

b) Charpentes constituees par des cadres.

On peut appliquer ici une formule tout ä fait analogue. Si M\ designe le
moment flechissant qui prend naissance sous l'action de la charge P* sin w/ en
un point quelconque k, on a ici :

M'k ^ML (S)

~~2

les designations etant les memes que precedemment. Mk est le moment
correspondant aux deplacements u, v, w, au point k.

En examinant les formules (7) et (8) on peut remarquer que lorsque n et v

se rapprochent, et lorsque l'amortissement fait defaut, S (ou M) augmente
indefiniment. D'autre part, les equations simples (7) et (8) permettent de

determiner dans quelle proportion, pour des cas particuliers, la frequence
d'oscillation n peut etre voisine de la frequence critique v ce qui permet, d une part,
de s'assurer que par suite de l'ecart avec la valeur critique, on realise la securite

necessaire et d'autre part, que l'effort dynamique qui s'exerce dans la
charpente et qui vient s'ajouter aux efforts mis en jeu par les autres charges
fixes, se maintient encore au-dessous du taux admissible.

Le resultat depend, dans chaque cas particulier, de la precision avec laquelle
n est connue, ainsi que de celle avec laquelle on peut determiner l'oscillation
propre critique. Cette determination peut etre effectuee avec une exactitude
beaucoup plus grande lorsque toutes les masses entrant en oscillation peuvent
etre elles-memes convenablement determinees, tant en grandeur qu'en position.
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L'ecart admissible entre n et v depend en outre de l'importance en soi de
l'accroissement des efforts resultant de l'influence des oscillations de la charge
P par rapport aux efforts produits par les autres charges. liest evident que Ton
ne peut pas donner de regles generales indiquant quelles differences on peut
admettre entre n et v ; on voit toutefois que les formules simples (7) et (8)
permettent de determiner facilement l'ecart entre n et v dans chaque cas particulier

suivant l'exactitude de l'evaluation des facteurs qui interviennent dans la
precision avec laquelle on connait les valeurs essentielles «etv.
2. Solution exacte.

Pour le treillis, il manque dans la litterature correspondante une methode
convenable permettant la determination precise des deformations et des efforts
qui resultent des oscillations forcees, quoiqu'il ne paraisse pas tres difficile,
en principe, de resoudre cette question d'une maniere qui reponde aux besoins
de la pratique.

En ce qui concerne les membrures planes des charpentes, Prager n,
Bleich n, ont indique des methodes plus ou moins generales permettant de
resoudre la question des oscillations forcees sous une forme faisant appel ä
des calculs assez pratiques et sans conduire ä un travail trop fastidieux.

Le contröle qui a ete effectue sur les formules (7) et (8), d'apres les resultats
obtenus en employant les methodes de calcul rigoureuses, a permis de confir-
mer la legitimite de ces formules approchees.

B. Problemes dynamiques
concernant la construction des ponts.

Ainsi qu'on le verra dans les discussions qui suivent, la theorie qui vient
d'etre brievement exposee et les resultats qu'elle permet d'obtenir suflisent ä
embrasser une grande partie des questions qui concernent la dynamique du
pont. Le remarquable memoire de M. Homann a permis de voir quelles etaient
les questions les plus importantes qu'il importait de prendre en consideration.

Les points suivants sont susceptibles d'etre traites par le calcul d'une
maniere plus ou moins satisfaisante.

1. — Oscillations forcees provoquees par des charges roulantes qui se

deplacent ä une vitesse v;
2. — Efforts secondaires dus aux influences centrifuges et qui se trouvent

mis en jeu sur la trajectoire suivie par la charge roulante et incurvee vers le
bas;

3. — Efforts secondaires resultant des oscillations forcees que produisent les
variations periodiques de pression exercees par les roues de locomotives, et qui
sont dues ä un equilibrage imparfait des masses, ainsi que les efforts secondaires

provoques par les effets de choc periodiques qui se produisent aux joints
de dilatation des rails, qui se trouvent generalement ä des intervalles reguliers.

Un certain nombre d'investigateurs se sont dejä preoccupes anterieurement
de ces problemes particuliers. Nous nous contenterons seulernent de signaler
ici Phillips"2, Renaudot3, Bresse4, Lebert5 qui ont traite le probleme des
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oscillations provoquees dans les ponts par l'influence des charges roulantes.
Stokes { et Zimmermann ont etabli l'influence des forces centrifuges qui
prennent naissance ä la suite des flechissements.

Timoshenko 8, le premier, a etudie quelques-unes des questions que pose la

dynamique du pont et qui sont susceptibles de recevoir une Solution rigou-
reuse, en employant les equations de Lagrange du deuxieme type. Le meme
probleme a ete etudie ulterieurement ä partir de l'equation differentielle des
oscillations transversales des barres rectilignes et, dans la mesure necessaires

en tenant compte de l'influence de la Suspension de la charge roulante. On a

montre comment il etait possible d'arriver par des voies theoriques, aux
coefficients de choc qui sont necessaires dans la pratique 10.

1. Oscillations forcees provoquees par les charges roulantes.
Si Ton suppose qu'une charge isolee P, dont on imagine toutefois que la

masse est faible par rapport ä la masse de la charpente, roule sur une poutre
ayant une portee / et reposant librement sur ses appuis, la vitesse de ce
deplacement etant c, on peut determiner facilement par le calcul les oscillations
forcees provoquees par cette charge roulante.

La poutre execute, outre ses oscillations propres, des oscillations forcees
admettant une periode egale ä :

T=2J
c

Cette periode est donc egale au double du temps que met la charge roulante

pour parcourir la longueur du pont. Le mouvement est lent par rapport aux
oscillations. Le chemin parcouru par le point d'application de la charge est

represente sur la figure 2 ä echelle reduite. Le flechissement atteint sa valeur
maximum en un point voisin du milieu. Comme les oscillations forcees sont
relativement lentes, ilse produit tout d'abord, par suite de la rigidite des ponts
actuels, un effet de resonance, pour les vitesses de deplacement de la charge
qui sont superieures ä 300 metres-seconde. Comme ces vitesses ne se presentent
pas dans la pratique, il n'y a pas lieu de tenir compte, dans ce probleme, des

phenomenes effectifs de resonance. L'effort additionnel du ä l'action de la charge
roulante atteint, dans les ponts-rail lourds ä poutres pleines, environ 10% de

celui qui resulte de l'influence statique de la charge, pour une portee de

5 metres. et descend environ jusqu'a environ 5 °/0 pour une portee de

130 metres. Les chiffres exacts sont indiques dans le tableau ci-dessous.

Tableau 1.
Portees l en metres :

4 6 10 15 20 25 50 100 150

Coefficient d'amplification de la charge statique, en °/0.
10,3 9,8 8,7 8,7 8,3 8,1 6,8 5,9 5,0

Ces coefficients ont ete calcules pour des ponts-rail lourds ä poutres pleines,
dans des conditions determinees de poids propre et de rigidite10. On peut
determiner facilement des series de pourcentages semblables pour chaque type de

ponts, par exemple, pour les ponts en are ou pour les ponts suspendus.
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Si toute une succession de charges isolees passe sur le pont, les influences
de ces charges individuelles sur la poutre subiront des perturbations partielles.
Dans le cas le plus defavorable, on constate que l'on peut faire intervenir les

memes coefficients d'amplification que pour les efforts provoques par une
charge isolee 8>10.

Si Ton recherche l'influence qu'exerce sur les oscillations la Suspension des

vehicules, on arrive ä la relation simple suivante 10. Soit v la frequence de
l'oscillation propre de la poutre, etv' celle dela Suspension supportant une charge
P. On a entre l'amplitude des oscillations forcees de la charge suspendue et
celle des oscillations de la poutre la relation :

Si v est eleve, v' faible, \j. est tres faible, c'est-ä-dire que la charge
suspendue oscille avec une amplitude notablement inferieure ä celle de la poutre.

Les petites ondulations qui, sur la fig. 2, se superposent aux deformations
principales, seront donc considerablement aplaties par suite de la Suspension
de la charge. Dans les ponts de faibles portees, l'influence de la Suspension est
donc tres importante, par suite de leurs oscillations rapides. Dans les ponts
de plus grandes portees, cette influence se fait moins sentir. La connaissance
de ces influences est particulierement importante, car precisement dans les

ponts de faibles portees l'influence de l'inertie des charges est plus importante

et eile se trouve considerablement reduite gräce ä la Suspension.

2. Influence des forces d'inertie de la charge roulante.
Si Tont veut considerer les poutres comme non denuees de poids, il n'est

pas possible d'arriver ä une Solution rigoureuse des questions qui inter-
P

viennent. La charge P qui roule sur la poutre avec sa masse - exerce, par

suite de rincurvation du chemin de roulement, vers le bas, une pression :

P-_P(l_i.$) „0)

expression dans laqnelle \j. designe le coefficient de Suspension precedemment
determine (equation 9). L'influence de cette force est double. Elle agit aussi
bien sur les oscillations forcees determinees plus haut que sur les oscillations
libres qui les accompagnent. On a trouve, gräce ä un calcul approche plus
pousse, que l'amplification qui en resulte, pour les oscillations forcees consi-
derees dans le paragraphe 1, est dans le rapport de10 :

iül+™. avec »-=-Ä (H)
p l2 r.2hi g

K '

M designant le moment qui correspond ä la disposition des charges, p l le poids
de la charpente et E J la rigidite du pont.



Theorie des oscillations des ponts et charpentes 531

Le tableau 2 qui suit donne le coefficient d'amplification en °/0 de l'influence
statique pour le type de pont ayant servi de base ä l'etablissement du tableau 1.

Tableau 2.
Portee l en metres :

4 6 10 15 20 25 50 100 150

Coefficient d'amplification de l'influence statique, en °/0 :

12,3 8,3 4,9 3,3 2,4 1,9 0,91 0,38 0,23

L'influence des efforts centrifuges verticaux sur les oscillations libres n'est
importante que pour les plus faibles portees. Le tableau 3 suivant donne

numeriquement la valeur de l'amplification de l'influence statique, resultant de

ces efforts centrifuges, pour le type de ponts dejä considere.

Tableau 3.
Portees en metres :

4 6 10 15 20 25 50 100 150

Coefficient d'amplification de l'influence statique, en °/0 :

19,2 11,3 5,3 3,3 2,3 1,7 1,0 0,fi2 0,27

3. Influences dynamiques exercees par les masses d'equilibrage
des roues des locomotives.
Les contrepoids des roues des locomotives reagissent sur le pont suivant la

loi :

Psin2::/i/
Si la valeur de n devient voisine d'une frequence propre d'oscillation, les
phenomenes de resonance entrent en jeu. Dans les locomotives couramment
emplovees pour les trains rapides, on a :

c 30m./see. et n 5 environ.

Dans les ponts ä poutres rectilignes ayant une portee de 50 metres environ,
la frequence de l'oscillation propre est egalement egale ä 5. On risquerait donc,
dans les ponts ayant une portee voisine de 50 metres, de voir se produire des

phenomenes de resonance importants. On a toutefois constate experimentale-
ment que ce danger etait considerablement reduit par suite du decalage de

phase qui existe entre les differentes roues d'une meme locomotive et par suite
de l'amortissement du pont. II semble donc utile au premier chef de determiner,

par des observations effectuees sur des ponts, les valeurs numeriques de

ces coefficients d'amortissement, puisque le probleme des oscillations forcees

amortiespeut etre considere comme resolu du point de vue theorique. La
determination de ces coefficients d'amortissement permettrait egalement d'etudier
de plus pres une autre question : celle des phenomenes de resonance resultant
des oscillations forcees qui sont provoquees par les chocs sur les joints des

rails, chocs qui se produisent ä intervalles reguliers.
On pourrait ainsi traiter, dans leurs grandes lignes, les principaux

problemes de la dynamique du pont qui rentrent dans le cadre d'un traite
theorique. L'etude mathematique de ces questions devrait toutefois partir implici-
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tement de cette hypothese que les charges sont transmises aux poutres
principales par l'intermediaire des longerons et des poutres transversales rigides.
L'influence de l'elasticite du tablier de la voie se fait donc sentir comme si

une supension intervenait. II faudrait donc ensuite determiner completement,
sur des bases theoriques, l'influence qu'exerce le tablier elastique du pont sur
les phenomenes d'oscillation, puis determiner correlativement l'influence de

l'appui elastique que constituent les longerons et les poutres transversales
sur ces oscillations.

Zusammenfassung.

Es werden die Methoden zur Berechnung der Eigenschwingungen und
der durch periodisch veränderliche Lasten hervorgerufenen erzwungenen
Schwingungen dargelegt. Diese Verfahren können bei Fachwerken, bei
biegungssteifen Trägern und bei Rahmenkonstruktionen Anwendung finden.
Verwendung der vorgeführten Theorien in der Dynamik der Brücken und zwar
auf folgende Probleme : 1) Erzwungene Schwingungen der Brücken unter
dem Einfluss rasch bewegter Lasten, 2) Einfluss der durch die Durchbiegung
der Brücken geweckten lotrechten Fliehkräfte der bewegten Lasten. Der
Einfluss der Abfederung der Lasten auf die dynamische Wirkung derselben
kann berücksichtigt werden. Als Beispiel werden die Vermehrungszahlen der
statischen Spannungen durch die dynamische Wirkung der bewegten Lasten
bei schweren Eisenbahnbalkenbrücken vorgeführt.

Resume.

L'auteur expose les methodes de determination des oscillations propres et
des oscillations forcees qui sont provoquees par des charges periodiquement
variables. Ces methodes peuvent etre employees pour les treillis, les poutres
rigides et les charpentes constituees par des cadres.

II expose ensuite les principes de l'application des theories precedentes ä

la dynamique du pont, et en particulier aux problemes suivants :

1. Oscillations forcees provoquees dans les ponts par l'action des charges
rapides ;

2. Influence des efforts centrifuges verticaux, provoques par le flechissement

des ponts sous l'action des charges roulantes.
On peut d'ailleurs tenir compte de l'influence qu'exerce la Suspension des

charges sur leur action dynamique.
A titre d'exemple, l'auteur montre quelles amplifications subissent les

influences statiques par suite de l'action dynamique des charges roulantes,
dans les ponts lourds de chemins de fer.
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Summary.

The methods are shown for calculating the frequencies of natural
vibrations and of forced vibrations caused by periodically fluetuating
loads. These methods may be adopted in trusses, in rigid lattice girders and
in framed structures. Application of the exposed theories to the dynamics
of bridges in the following problems : 1) Forced vibrations in bridges caused

by loads moving at a high speed; 2) Influence of the vertical centrifugal
forces of the rolling loads, caused by bending of the bridges. The effect of the
Suspension of the loads on their dynamic action can be taken into consideration.

Examples are given of the addition to the static stresses caused by the
dynamic action of rolling loads in heavy railway girder bridges.
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