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TRADUCTION

par M. Gossieaux, Ing., Paris.

Dans le rapport qu’il vient de nous communiquer, M. Homany a présenté
d’'une maniére concise, mais parfaitement claire, tous ceux des problémes de la
dynamique dont la mise au point parait nécessaire si l'on veut pouvoir effec-
tuer des recherches fructueuses sur les phénoménes d'oscillation qui se mani-
festent dans les ponts. La multiplicité et 1'étroit enchainement des divers phé-
nomenes dynamlques que I'on observe dans les ponts et dans les autres ouvrages
exigent d'une maniére impérieuse, avant le commencement des recherches de
grande envergure et des observations sur des ponts réels, la solution théorique
de nombreuses questions pratiques concernant la dynamique des. ouvrages. Si
I'on veut, en effet, pouvoir poursuivre, avec quelques chances de succes, les
observations et les recherches concernant la constructlion, dans ces domaines
difficiles, il est nécessaire de s’appuyer sur des bases théoriques solides. Inver-
sement, la progression des recherches expérimentales posera des questions
théoriques nouvelles. Dans une dépendance aussi étroite entre la théorie
mathématique et la recherche expérimentale, dépendance qui a pour consé-
quence la réciprocité dans I'impulsion et les progres, je vois la seule condi-
tion ui permette d’arriver a une solution heureuse du probléme délicat que
constitue la dynamique de la construction et, en particulier, la dynamique du
pont.

Le but de la présente étude est de présenter, d’'une maniére générale, et dans
ses grandes lignes, I'état actuel de la théorie des phénoménes oscillatoires que
I'on rencontre en construction, pour passer ensuite 4 'énoncé des probleémes
dynamiques qui se posent tout particuliérement en ce qui concerne la construc-
tion des ponts.

A. Les oscillations propres et les oscillations forcées
dans la construction.

Il existe trois causes principales qui peuvent donner naissance, dans nos
ouvrages de construction, a des phénomeénes d’oscillation. Ce sont les suivantes :
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1. les charges roulantes ;

2. les variations périodiques des charges fixes ou mobiles;

3. les influences de choc qui sont exercées par les charges.

Les causes 1 et 2 nous conduisent a I'étude du probleme des oscillations
dites « forcées ». Dans le cadre des exigences de la pratique, ce probleme peut,
en fait, étre considéré comme résolu. Par contre, on n'a pas encore pu
résoudre d’'une maniére satisfaisante, malgré tous les efforts des techniciens,
toutes les questions dynamiques qui sont reliées aux influences de choc propre-
ment dites exercées par les charges.

I. Oscillations propres des systémes élastiques.

Tout systéeme de poutres qui se trouve soumis a une excitation particuliére,
puis abandonné a lui-méme, est 1'objet d’oscillations que I'on désigne sous le
nom d’oscillations propres, et qui s'éteignent sous ’action de certaines influences
d’amortissement, si aucune nouvelle excitation ne s’exerce. Ces oscillations
propres peuvent toujours étre ramenées a une somme limitée ou illimitée d’os-
cillations harmoniques, c’est-a-dire & la forme suivante :

y=Yusin(p,(+ <) (1
r=1

dans laquelle on désigne par :

y lordonnée du mouvement d’oscillation d’un point de la poutre & partir de
sa position initiale d’équilibre ;

Dr 2= fois le nombre d’oscillations par seconde, c’est-a-dire la pulsation;

¢ le décalage de phase;

n P'amplitude des oscillations, fonction du point considéré et indépendante du
temps.

Le systéme d’'oscillations propres défini par I'équation (1) définit la condi-
tion dynamique du systéeme. La connaissance des oscillations propres consti-
tue donc la base de toutes les recherches ultérieures sur les phénomenes oscil-
latoires. Si I'on range les termes de 1'équation (1) d’aprés les valeurs crois-
santes de p, (pulsation), le premier terme correspondant & la plus faible valeur
de p constitue l'oscillation fondamentale, a laquelle correspond normalement la
plus grande valeur de I'amplitude ». Les autres oscillations sont des oscilla-
tions harmoniques ; p augmente rapidement avec le rang de r, 4 diminuant
rapidement en méme temps.

L’oscillation fondamentale joue un role de premier plan, particuliérement
dans les problemes de résonance, c’est pourquoi, dans la plupart des cas, il
suffit de connaitre la fréquence de I'oscillation fondamentale.

Si, dans le cas le plus général, on considére I'ouvrage comme une charpente
constituée par un ensemble d’éléments résistant a la flexion et & la torsion,
les éléments individuels exécutent, en tant que faisant partie de cette charpente,
des oscillations longitudinales, des oscillations de flexion et des oscillations de
torsion. En outre, ils subissent par eux-mémes des translations et des rota-
tions périodiques. Dans les treillis, méme lorsque les barres sont assemblées
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aux nceuds d'une maniére rigide, les efforts de flexion ne jouent, en regle géné-
rale, qu'un réle peu important ; les {ensions secondaires, dans les dispositions
en treillis généralement adoptées, n’exercent qu'une influence trés faible sur
les déformations de la poutre en treillis. Par contre, les déformations longitu-
dinales, qui se traduisent sur les éléments tout entiers par des translations
et des rotations périodiques, jouent un role important.

Inversement, dans les systémes constitués par des assemblages en cadres,
les oscillations de flexion jouent un role prépondérant par rapport aux oscilla-
tions longitudinales. Sil'on admet, ce qui se produit dans la plupart des cas,
que nos ouvrages se composent de systémes plans lesquels, sauf cas d’excep-
tion, les moments de torsion n’interviennent pas, on peut donc, en premiére
approximation, se contenter d'une théorie dynamique concernant, d'une part,
le treillis plan. d’autre part, les éléments plans des charpentes, c'est-a-dire des
systemes constitués par des barres résistant & la flexion et assemblées d'une
maniére rigide les unes aux autres.

Les périodes des oscillations propres sont déterminées principalement par la
valeur et par la répartition des masses, de méme _que par la rigidité de la char-
pente. L’oscillation fondamentale est d’autant moins rapide que la masse est
plus importante et que la charpente est plus élastique. Les périodes d’oscilla-
tion sont peu influencées par de faibles variations de la masse ; il suffira done,
pour la détermination pratique de la période d'oscillation, d’admettre une répar-
tition simple des masses; le calcul sera ainsi simplifié, sans toutefois que le
résultat soit altéré en ce qui concerne la portée pratique.

1. Oscillations propres des treillis.

La détermination de la période des oscillations propres peut étre considéra-
blement simplifiée, avec une approximation suffisante, si l'on considére chaque
treillis comme un systéme de n points doués d'une masse élémentaire, situés
aux n nceuds d'assemblage de ce treillis, et entre lesquels les efforts dans les
barres agissent comme efforts élastiques internes®1°. Si, dans le cas général, le
treillis est z fois statiquement indéterminé, le probléme conduit & :

N=2n—3—3

équations homogénes de la forme suivante :

2 Fhk r . q ‘\
/l* = ™ ( k—ul|)cogahl\+( k—Uh)SlnathCOSahk
h

P|\ uy
(2)

2 F . '
I)L 2 hk [(ux— uy) cos ayk + (Vk— vy) SIN oy ] SIN 2

q Shk I )

dans lesquelles on désigne par :

uyvy les amplitudes des déplacements du neeud %
ujv, les déplacements de tous les nceuds % qui sont reliés au nceud & par des
barres ;

Fucsnc les sections et longueurs respectives des barres qui sont assemblées en &;
Py Ia charge sur I'assemblage en & ;
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g, I T'accélération de la pesanteur et le module d’élasticité ;
Ahk I'angle de déviation des barres par rapport & un axe fixe z (voir
figure 1).

En égalant a zéro le déterminant du systéme d’équations (2) on obtient
I'équation de la période, de laquelle résultent les N valeurs qui correspondent
a l'oscillation propre du treillis. Pratiquement, le calcul du déterminant serait
tres difficile. Toutefois, on peut, d'une maniére trés simple et avec relativement
peu de difficultés, déterminer la période d’oscillation fondamentale et, en cas
de besoin, les périodes des oscillations harmoniques, en employvant un procédé
d’approximations successives indiqué par PonLnausen ¥ et (ui permet d’obtenir
des résultats concordant avec ceux que donne le procédé graphique prévu par
Vianello pour la détermination des cotes des barres au ftambage.

On choisit a cet effet, 3 volonté, un groupe de translations u et v, qui doivent
toutefois étre compatibles avec les conditions aux appuis et on calcule les
charges aux nceuds

Pui2 et Povi2

en supposant :

Puis, soit graphiquement, soit par le calcul, on détermine les efforts corres-
) ) p )
pondants dans les barres S, dont nous désignerons les premiéres valeurs appro-
chées par S’. Au moyen de ces efforts dans les barres, on détermine les trans-
lations u’ et v’ par exemple, au moyen d'un diagramme de translation de
Williot et on calcule une premiére valeur approchée %'2 d'aprés Pohlhausen

. p p >
au moyen de la relation :

1
W2 —
VE(Pu )24 X(Pv)

Les sommes entre les parenthéses s’étendent a tous les noeuds du treillis. On
détermine ensuite, a4 1'aide de cette valeur %’2, 4 nouveau, les charges dans les
nceuds Pu’1\'2 et P v’ 0\'2 puis les nouvelles valeurs S” des efforts dans les barres
et les déplacements correspondants u”v” dans les nceuds, ce qui conduit & une
nouvelle valeur approchée :

-Anz — 1 (3/)
VE(Pu")24+ X(Pov")2 "

On continue ces calculs jusqu'a ce que deux valeurs successives obtenues
pour %2 soient suffisamment rapprochées. Cette méthode conduit trées rapide-
ment au but, car la convergence des résultats est remarquable et la troisieme
valeur approchée est généralement suffisante dans la plupart des cas.

En régle générale, il est suffisant de déterminer de cette maniére la période
d'oscillation propre. Toutefois, rien n’empéche de déterminer également les
périodes des oscillations harmoniques, en employant le méme procédé.

Le procédé est tout a fait général et peut étre employé pour un systéme de
treillis de quelque nature que ce soit, statiquement déterminé ou statiquement



Théorie des oscillations des ponls et charpentes 325

indéterminé, et pour une répartition quelconque des masses; 1l donne, apres
deux ou trois approximations successives, d'un calcul simple, des resultats tres
précis s’il s’agit en particulier du tracé des diagrammes d’efforts, de déforma-
tions ou de fléchissements. En ce qui concerne les exemples pratiques, voir

(10) et (11).
2. Oscillations propres des charpentes en cadres.

Considérons tout d’abord un élément simple et rigide, que nous pouvons
admettre, comme représentant le cas le plus simple d'une charpente en cadres.
Il conslitue un systéme admettant un degré de liberté infini. A la place du
systeme fini des équations (2) qui correspondent au treillis et a partir des-
quelles on détermine la fréquence des oscillations libres, on a I’équation diffé-
rentielle :

4 2
L R o) (4)

det  J L

L’équation (4) représente ’équation différentielle de I'élément soumis & une
charge . %

La résolution de cette équation peut étre effectuée de la méme maniére que
celle des équations différentielles analogues que l'on rencontre dans la théorie
des équilibres instables, c’est-a-dire par adaptation progressive de la ligne élas-
tique aux conditions (4). On peut pour cela, en particulier, employer le méme
processus que celui que nous avons déja exposé précédemment et qui, mis en
ceuvre d'une maniére analogue, est applicable non seulement a un élément isolé,
mais également a toule charpente constituée par des cadres !l

Dans ce but, on suppose 1'élément rigide, ou le cadre, décomposé en masses
ponctuelles isolées, situées a des endroits suffisamment rapprochés les uns des
autres. A chacune de ces masses ponctuelles on attribue un déplacement v Lout
d’abord supposé arbitraire, mais compatible avec les conditions d’appui du
systeme, ou, sil'on veut également généraliser, des déplacements u et v, u dési-
gnant les déplacements suivant la direction longitudinale par rapport a 1'élé-
ment et v le déplacement suivant une direction perpendiculaire a son axe. On
suppose maintenant le cadre chargé, a 'endroit des masses ponctuelles choi-
sies, avec des charges respectives Pui2et Pvi2 P désigne le poids qui cor-
respond, d'une part, aux masses u. des parties de 1'élément considérées comme
concentrées aux points en question et, d’autre part, aux charges a supporter.
On considére tout d'abord :

.v ou v désigne le fléchissement.

)2 [\
=i g )

comme égal & 1. Pour ces charges, on détermine par le calcul ou graphique-
ment les moments fléchissants et les efforts normaux et, par suite, les défor-
mations, suivant le processus courant en statique. On obtient ainsi un premier
groupe de déplacements u’ et v’. On calcule ensuite une premiére valeur 1’2
d’apres la formule :.

e ! (6)

ISPu P (Po)? ’




526 F. Bleich

et l'on répete le cycle de calcul précédemment exposé. On obtient les déplace-
ments u” et v”, & partir desquels on peut déterminer a nouveau, suivant I’équa-
tion (6), une deuxiéme valeur plus approchée. On continue suivant la méme
méthode, jusqu’a ce que l'on obtienne deux valeurs successives % qui soient suf-
fisamment voisines l'une de l'autre. C'est ce qui se produit souvent dés la
valeur 1.”.

De cette maniére, on arrive, en partant d'une ligne élastique convenable, a
dégager les différentes oscillations particuliéres, les unes aprés les autres et a
calculer les périodes d'oscillation correspondantes.

II. Oscillations forcées d’'un systéme élaétique.

Supposons que, en un point quelconque de la charpente, s’exerce une charge
P dont la valeur varie périodiquement et que cette variation suive la loi :

P (¢)=Psin vt

La charpente exécutera, lorsqu'un certain état de régime sera atteint, des
oscillations ayant la pulsation w. Ces oscillations ne sont en général pas dan-
gereuses pour la charpente, tant que la fréquence d'oscillation n ne coincide
pas avec l'une des périodes inférieures des oscillations propres. en particulier
avec la période de l'oscillation fondamentale. Si toutefois ce fait se produit, le
phénoméne bien connu de la résonance entre en jeu. L’'amplitude des oscilla-
tions et, par suite, les contraintes provoquées par ces oscillations, peuvent
prendre des valeurs considérables. Si I'amortissement n'est pas suflisamment
prononcé, les amplitudes continuent a croitre ; les efforts peuvent alors devenir
tels que la sécurité de la charpente soit elle-méme menacée.

Pour déterminer les dimensions de cette charpente, la question se pose
donc maintenant de savoir dans quelle mesure la fréquence de variation n de la
charge peut se rapprocher de la fréquence d'oscillation critique v sans que la
sécurité de la charpente soit compromise et de déterminer quelles sont les
valeurs effectives des efforts qu'y provoque la charge variable.

1. Solution approchée.

Des hypothéses de simplification conduisent aux formules approchées qui
suivent et qui donnent des résultats relativement bhons.

a) Treillis.

Soit P* sin w £ la charge oscillante qui s’exerce sur un nceud m, soit w le
déplacement que subit le nceud m dans la direction du P*, u et v les déplace-
ments que subissent les autres nceuds; u, v et w étant constitués par les
déplacements dus aux oscillations propres déterminées suivant la méthode de
Polhausen et P désignant la charge correspondante s'exer¢ant aux nceuds.
Soit en outre S, I'effort dans 1’'élément sy du treillis qui correspond a ces dépla-
cements et qui est également déterminé par la méthode de calcul des oscilla-
tions propres.
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L'effort effectif dans ’élément, soit S*; sous 'action de la charge oscillante
P* sin o ¢ est donné par : )

2 Sy
Skzm. R L (7)
2
avec

o w

N Pu224+YPo2)2
e
E.g

Ce calcul doit étre exécuté, suivant chaque cas, en tenant compte du mode
d’oscillation propre correspondant a la fréquence

P .

V= =—

2z
se rapprochant le plus possible de la fréquence

(O]

n= —

S
I

de la charge P". n peut étre supérieur ou inférieur a v.
b) Charpentes constituées par des cadres.

On peut appliquer ici une formule tout a fait analogue. Si M*, désigne le
moment fléchissant qui prend naissance sous I'action de la charge P*sin w ¢ en
un point quelconque k&, on a ici :

les désignations étant les mémes que précédemment. My est le moment cor-
respondant aux déplacements u, v, w, au point k.

En examinant les formules (7) et (8) on peut remarquer que lorsque n et v
se rapprochent, et lorsque l'amortissement fait défaut, S (ou M) augmente
indéfiniment. D’autre part, les équations simples (7) et (8) permettent de
déterminer dans quelle proportion, pour des cas particuliers, la fréquence d’os-
cillation n peut étre voisine de la fréquence critique v ce qui permet, d' une part,
de s’assurer que par suite de I'écart avec la valeur critique, on réalise la sécu-
rité nécessaire et d’autre part, que l'effort dynamique qui s’exerce dans la
charpente et qui vient s’ajouter aux efforts mis en jeu par les autres charges
fixes, se maintient encore au-dessous du taux admissible.

Le résultat dépend, dans chaque cas particulier, de la précision avec laquelle
n est connue, ainsi que de celle avec laquelle on peut déterminer I'oscillation
propre critique. Cette détermination peut étre effectuée avec une exactitude
beaucoup plus grande lorsque toutes les masses entrant en oscillation peuvent
étre elles-mémes convenablement déterminées, tant en grandeur qu’en posi-
tion.



528 F. Bleich

L’écart admissible entre n et v dépend en outre de l'importance en soi de
I'accroissement des efforts résultant de l'influence des oscillations de la charge
P parrapport aux efforts produits par les autres charges. Il est évident que 1'on
ne peut pas donner de régles géndérales indiquant quelles différences on peut
admettre entre n et v; on voit toutefois que les formules simples (7) et (8) per-
mettent de déterminer facilement l’écart entre n et v dans chaque cas particu-
lier suivant l'exactitude de 1'évaluation des facteurs qui interviennent dans la
précision avec laquelle on connait les valeurs essentielles n et v.

2. Solution exacte.

Pour le treillis, il manque dans la littérature correspondante une méthode
convenable permettant la détermination précise des déformations et des efforts
qui résultent des oscillations forcées, quoiqu’il ne paraisse pas trés difficile,
en principe, de résoudre cette question d'une maniére qui réponde aux besoins
de la pratique.

En ce qui concerne les membrures planes des charpentes, PraGer 2,
Breicu !!, ont indiqué des méthodes plus ou moins générales permettant de
résoudre la question des oscillations forcées sous une forme faisant appel a
des calculs assez pratiques et sans conduire a un travail trop fastidieux.

Le controle qui a été effectué sur les formules (7) et {8), d'apres les résultats
obtenus en employant les méthodes de calcul rigoureuses, a permis de confir-
mer la légitimité de ces formules approchées.

B. Problémes dynamiques
concernant la construction des ponts.

Ainsi qu'on le verra dans les discussions qui suivent, la théorie qui vient
d’étre brievement exposée et les résultats qu'elle permet d'obtenir suflisent a
embrasser une grande partie des questions qui concernent la dynamique du
pont. Le remarquable mémoire de M. Honany a permis de voir quelles étaient
les questions les plus importantes qu'il importait de prendre en considération.

Les points suivants sont susceptibles d’étre traités par le calcul d’une
maniére plus ou moins satisfaisante.

1. — Oscillations forcées provoquées par des charges roulantes qui se
déplacent & une vitesse v;

2. — Efforts secondaires dus aux influences centrifuges et qui se trouvent
mis en jeu sur la trajectoire suivie par la charge roulante et incurvée vers le

bas;

3. — Efforts secondaires résultant des oscillations forcées que produisent les
variations périodiques de pression exercées par les roues de locomotives, et qui
sont dues a un équilibrage imparfait des masses, ainsi que les efforts secon-
daires provoqués par les effets de choc périodiques qui se produisent aux joints
dedilatation des rails, qui se trouvent généralement a des intervalles réguliers.

Un certain nombre d'investigateurs se sont déja préoccupés antérieurement
de ces problemes particuliers. Nous nous contenterons seulement de signaler
ici PuiLuips 2, Renavpor3, Bresse’, LeBerT® qui ont traité le probléme des
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oscillations provoquées dans les ponts par l'influence des charges roulantes.
Stokes! et ZimmerMmany ont établi 'influence des forces centrifuges qui
prennent naissance a la suite des fléchissements.

Timoshenko 8, le premier, a étudié quelques-unes des questions que pose la
dynamique du pont et qui sont susceptibles de recevoir une solution rigou-
reuse, en employant les équations de Lagrange du deuxiéme type. Le méme
probléeme a été étudié ultérieurement a partir de ’équation différentielle des
oscillations transversales des barres i‘ectilignes et, dans la mesure nécessaires
en tenant compte de l'influence de la suspension de la charge roulante. On a
montré comment il était possible d’'arriver par des voies théoriques, aux coetli-
cients de choc qui sont nécessaires dans la pratique 1.

1. Oscillations forcées provoquées par les charges roulantes.

Si l'on suppose quune charge isolée P, dont on imagine toutefois que la
masse est faible par rapport a la masse de la charpente, roule sur une poutre
ayant une portée ! et reposant librement sur ses appuis, la vitesse de ce dépla-
cement étant ¢, on peut déterminer facilement par le calcul les oscillations
forcées provoquées par cette charge roulante.

La poutre exécute, outre ses oscillations propres, des oscillations forcées
admettant une période égale a: '

Cette période est donc égale au double du temps que met la charge roulante
pour parcourir la longueur du pont. Le mouvement est lent par rapport aux
oscillations. Le chemin parcouru par le point d’application de la charge est
représenté sur la figure 2 & échelle réduite. Le fléchissement atteint sa valeur
maximum en un point voisin du milieu. Comme les oscillations forcées sont
relativement lentes, il se produit tout d’abord, par suite de la rigidité des ponts
actuels, un effet de résonance, pour les vitesses de déplacement de la charge
qui sontsupérieures & 300 métres-seconde. Comme ces vitesses ne se présentent
pas dans la pratique, il n'y a pas lieu de tenir compte, dans ce probleme, des
phénomenes effectifs de résonance. L'effort additionnel di a ’action de la charge
roulante atteint, dans les ponts-rail lourds & poutres pleines, environ 10°/, de
celui qui résulte de linfluence statique de la charge, pour une portée de
5 meétres, et descend environ jusqu'a environ 3 °/, pour une portée de
150 metres. Les chiffres exacts sont indiqués dans le tableau ci-dessous.

Tableau 1.
Portées [ en métres :
4 6 10 15 20 25 50 100 150
Coeflicient d'amplification de la charge statique, en °/,. ‘

103 98 87 87 83 81 68 5,9 5,0

Ces coefficients ont été calculés pour des ponts-rail lourds & poutres pleines,
dans des conditions déterminées de poids propre et de rigidité 19. On peut déter-
miner facilement des séries de pourcentages semblables pour chaque type de
ponts, par exemple, pour les ponts en arc ou pour les ponts suspendus.

31



530 F. Bleich

Si toute une succession de charges isolées passe sur le pont, lesinfluences
de ces charges individuelles sur la poutre subiront des perturbations partielles.
Dans le cas le plus défavorable, on constate que 'on peut faire intervenir les
mémes coefficients d’amplification que pour les efforts provoqués par une
charge isolée 3 10,

Si 'on recherche l'influence qu'exerce sur les oscillations la suspension des
véhicules, on arrive a la relation simple suivante 10, Soit v la fréquence de 1'os-
cillation propre de la poutre, et+' celle dela suspension supportant une charge
P. On a entre I'amplitude des oscillations forcées de la charge suspendue et
celle des oscillations de la poutre la relation :

1_(1/)2

Y

o=

(9)

Siv est élevé, v faible, y est tres faible, c’est-a-dire «que la charge sus-
pendue oscille avec une amplitude notablement inférieure a celle de la poutre.

Les petites ondulations qui, sur la fig. 2, se superposent aux déformations
principales, seront donc considérablement aplaties par suite de la suspension
de la charge. Dans les ponts de faibles portées, l'influence de la suspension est
donc trés importante, par suite de leurs oscillations rapides. Dans les ponts
de plus grandes portées, cette influence se fail moins sentir. La connaissance
de ces influences est particulierement importante, car précisément dans les
ponts de faibles portées l'influence de l'inertie des charges est plus impor-
tante et elle se trouve considérablement réduite grice a la suspension.

2. Influence des forces d’inertie de la charge roulante.

Si I'ont veut considérer les poutres comme non dénuées de poids, il n’est
pas possible d’arriver a unc solution rigoureuse des questions qui inter-

viennent. La charge P qui roule sur la poutre avec sa masse - exerce, par

suite de 'incurvation du chemin de roulement, vers le bas, une pression :

/ 27
f_pfy__ ¥ 0%y ,
P_lal—g.atz) (10)

expression dans laqnelle p. désigne le coefficient de suspension précédemment
déterminé (équation 9). L'influence de cette force est double. Elle agit aussi
bien sur les oscillations forcées déterminées plus haut que sur les oscillations
libres qui les accompagnent. On a trouvé, grace 4 un calcul approché plus
poussé, que I'amplification qui en résulte, pour les oscillations forcées consi-
dérées dans le paragraphe 1, est dans le rapport de 10 :

SM c2l2p
: —_ 2 Ve et
fat+ R avec % FElg (11)

M désignant le moment qui correspond & la disposition des charges, p{le poids
de la charpente et £ J la rigidité du pont.
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Le tableau 2 qui suit donne le coefficient d’amplification en °/, de I'influence
statique pour le type de pont ayant servi de base & I’établissement du tableau 1.

Tableau 2.
Portée [ en metres :
b 6 10 15 20 25 50 100 150
Coefficient d’amplification de I'influence statique, en °/, :

12,3 8,3 £9 3,3 2.4 1,9 0,91 0,38 0,23

L'influence des efforts centrifuges verticaux sur les oscillations libres n’est
importante que pour les plus faibles portées. Le tableau 3 suivant donne
numériquement la valeur de 'amplification de l'influence statique, résultant de
ces efforts centrifuges, pour le type de ponts déja considéré.

Tableau 3.
Portées en metres :
4 6 10 15 20) 25 50 100 15
Coefticient d’amplification de l'influence statique, en °/, :
19,2 11,3 5,3 3,3 2,3 1,7 1.0 0,62 0,27
3. Influences dynamiques exercées par les masses d'équilibrage
des roues des locomotives.

Les contrepoids des roues des locomotives réagissent sur le pont suivant la
lo1 :
Psin2znt¢

Si la valeur de n devient voisine d'une fréquence propre d’oscillation, les phé-
nomeénes de résonance entrent en jeu. Dans les locomotives couramment
employées pour les trains rapides, on a :

¢ =30 m./sec. et =1, environ.

Dans les ponts a poutres rectilignes ayant une portée de 50 metres environ,
la fréquence del'oscillation propre est également égale a 5. On risquerait donc,
dans les ponts ayant une portée voisine de 50 meétres, de voir se produire des
phénomeénes de résonance importants. On a toutefois constaté expérimentale-
ment que ce danger était considérablement réduit par suite du décalage de
phase qui existe entre les différentes roues d'une méme locomotive et par suite
de I'amortissement du pont. Il semble donc utile au premier chef de détermi-
ner, par des observations effectuées sur des ponts, les valeurs numériques de
ces coefficients d’amortissement, puisque le probleme des oscillations forcées
amorties peut étre considéré comme résolu du point de vue théorique. La déter-
mination de ces coefficients d’amortissement permettrait également d'étudier
de plus prés une autre question : celle des phénoménes de résonance résultant
des oscillations forcées qui sont provoquées par les chocs sur les joints des
rails, chocs qui se produisent a intervalles réguliers.

On pourrait ainsi traiter, dans leurs grandes lignes, les principaux pro-
blémes de la dynamique du pont qui rentrent dans le cadre d'un traité théo-
rique. L'étude mathématique de ces questions devrait toutefois partir implici-
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tement de cette hypothése que les charges sont transmises aux poutres prin-
cipales par I'intermédiaire des longerons et des poutres transversales rigides.
L’influence de 'élasticité du tablier de la voie se fait donc sentir comme si
une supension intervenait. Il faudrait donc ensuite déterminer complétement,
sur des bases théoriques, l'influence qu'exerce le tablier élastique du pont sur
les phénomeénes d’oscillation, puis déterminer corrélativement l'influence de
I'appui élastique que constituent les longerons et les poutres transversales
sur ces oscillations.

Zusammenfassung.

Es werden die Methoden zur Berechnung der Eigenschwingungen und
der durch periodisch verinderliche Lasten hervorgerufenen erzwungenen
Schwingungen dargelegt. Diese Verfahren konnen bei IFachwerken, bel
biegungssteifen Tragern und bei Rahmenkonstruktionen Anwendung finden.
Verwendung der vorgefiithrten Theorien in der Dynamik der Briicken und zwar
auf folgende Probleme : 1) Erzwungene Schwingungen der Briicken unter
dem Einfluss rasch bewegter Lasten, 2) Einfluss der durch die Durchbiegung
der Briicken geweckten lotrechten Fliehkriifte der bewegten Lasten. Der
Einfluss der Abfederung der Lasten auf die dynamische Wirkung derselben
kann beriicksichtigt werden. Als Beispiel werden die Vermehrungszahlen der
statischen Spannungen durch die dyvnamische Wirkung der bewegten Lasten
bei schweren Eisenbahnbalkenbriicken vorgefiihrt.

Résumée.

L’auteur expose les méthodes de détermination des oscillations propres et
des oscillations forcées qui sont provoquées par des charges périodiquement
variables. Ces méthodes peuvent étre emplovées pour les treillis, les poutres
rigides et les charpentes constituées par des cadres.

Il expose ensuite les principes de l'applicalion des théories précédentes a
la dynamique du pont, et en particulier aux problémes suivants :

1. Oscillations forcées provoquées dans les ponts par laction des charges
rapides ;

2. Influence des efforts centrifuges verticaux, provoqués par le fléchisse-
ment des ponts sous l'action des charges roulantes.

On peut d’ailleurs tenir compte de l'influence qu’exerce la suspension des
charges sur leur action dynamique.

A titre d'exemple, I'auteur montre quelles amplifications subissent les
influences statiques par suite de l'action dynamique des charges roulantes,
dans les ponts lourds de chemins de fer.
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Summary.

The methods are shown for calculating the frequencies of natural
vibrations and of forced vibrations caused by periodically fluctuating
loads. These methods may be adopted in trusses, in rigid lattice girders and
in framed structures. Application of the exposed theories to the dynamics
of bridges in the following problems : 1) Forced vibrations in bridges caused
by loads moving at a high speed; 2) Influence of the vertical centrifugal
forces of the rolling loads, caused by bending of the bridges. The effect of the
suspension of the loads on their dynamic action can be taken into considera-
tion. Examples are given of the addition to the static stresses caused by the
dynamic action of rolling loads in heavy railway girder bridges.
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