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V3

THEORIE DER
SCHWINGUNGSERSCHEINUNGEN
AN TRAGWERKEN

THEORIE DES OSCILLATIONS DES PONTS ET CHARPENTES
THEORY OF THE OSCILLATIONS OF STRUCTURES

Dr.-Ing. Friedrich BLEICH,
’ Zivilingenieur, Wien.

Herr Hovany hat in dem vorangehenden Referat in knapper aber dusserst
iibersichtlicher Form alle jene Probleme der Dynamik beriihrt, deren theore-
tische Erledigung zu einer erfolgreichen Erforschung der Schwingungserschei-
nungen bei Briicken notwendig erscheinen. Die Mannigfaltigkeit und die enge
Verkettung der verschiedenen dynamischen Erscheinungen bei Bricken und
anderen Bauwerken verlangt gebieterisch vor Inangriffnahme grosszigiger
Versuche und Beobachtungen an ausgefiihrten Brucken die theoretische Kla-
rung zahlreicher Fragen der Bauwerksdynamik, denn in diesen schwierigen
I'ragen werden nur unter Fihrung der Theorie Beobachtungen und Untersu-
chungen am Bauwerk mit Aussicht auf Erfolg durchgefiihrt werden kénnen.
Umgekehrt wird aber auch die fortschreitende Versuchsforschung der Theorie
neue Aufgaben und Fragen stellen. In einem solchen steten Zusammenwirken
von mathematischer Theorie und Versuchsforschung zwecks gegenseitiger
Anregung und Befruchtung sehe ich den einzigen gangbaren Weg, um das
iiberaus schwierige Problem der Bauwerkdynamik, inshbesondere der Briicken-
dynamik einer befriedigenden Losung zuzufihren.

Aufgabe dieses Referates ist es, in groben Umrissen den derzeitigen Stand
der Theorie der Schwingungserscheinungen bei Bauwerken im allgemeinen
vorzufithren, um dann auf die Besprechung der im Briickenbau in Betracht
kommenden besonderen dynamischen Probleme einzugehen.

A. Eigenschwingungen und erzwungene
Schwingungen in Bauwerken.

Drei Ursachen sind es im wesentlichen, die zu Schwingungserscheinungen
unserer Bauwerke Anlass geben. 1. Bewegte (rollende) Lasten. 2. Periodische
Verinderlichkeit ortsfester oder bewegter Lasten. 3. Stosswirkungen der La-
sten. 1. und 2. fithren auf das Problem der sogenannten erzwungenen Schwin-
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gungen, dasim Rahmen des praktischen Bediirfnisses wohl als gelost betrach-
tet werden kann, wihrend die befriedigende Losung aller mit eigentlichen
Stosswirkungen der Lasten zusammenhangenden dynamischen Aufgaben
bisher, trotz vielfacher Anstrengungen der Ingenieure, nicht gelungen ist.

I. Eigenschwingungen elastischer Systeme.

Jedes Tragwerk fiithrt, wenn es irgendwie angeregt und dann sich selbst
iiberlassen wird, Schwingungen aus, die wir als Eigenschwingungen bezeich-
nen und die infolge gewisser Dampfungswirkungen wenn keine neuen Anre-
gungen hinzutreten, abklingen. Diese Eigenschwingungen lassen sich immer
auf eine endliche oder unendliche Summe von harmonischen Schwingungen
also auf die Form

Y= n,.Sin(D,-l—f-El-) e e e e e e e e (l)

zuriickfithren, y ist hierbei die Koordinate einer Punktverschiebung des hier
zundchst als eben vorausgesetzten Tragwerkes. p ist gleich der 2z fachen
Schwingungszahl je sec und heisst Kreisfrequenz, ¢ ist die Phasenverschie-
bung. 7 ist die Schwingungsamplitude, sie stellt eine von der Zeit unabhiin-
gige Ortsfunktion vor.

Das durch Gl. (1) dargestellte System von Eigenschwingungen kennzeich-
net das dynamische Verhalten des Systems. Die Kenntnis der Eigenschwin-
gungen bildet daher die Grundlage fiir alle weiteren Schwingungsuntersuch-
ungen. Ordnet man die Glieder in Gl. (1) nach der Grésse von p,, so heisst das
erste Glied mit dem kleinsten p die Grundschwingung, ihr entspricht in der
Regel die grosste Amplitude 4. Die iibrigen Schwingungen heissen Ober-
schwingungen ; p nimmt mit wachsendem r sehr rasch zu, v sebr rasch ab.
Massgebende Rolle, inshesonders bei Resonnanzproblemen, spielt die Grund-
schwingung, weshalb es meistens geniigt die Grundschwingungszahl zu
kennen.

Fasst man die Bauwerke im allgemeinsten Fall als aus biegungs- und tor-
sionssteifen Stiaben zusammengesetzte Tragwerke auf, so vollfihren die einzel-
nen Stibe Lings- Biegungs- und Torsionsschwingungen. Ausserdem vollfiih-
ren die einzelnen Stabe als ganzes periodische Verschiebungen und Drehun-
gen. In Fachwerken spielen, selbst wenn die Stibe in den Knoten steif ver-
bunden sind, die Biegungsspannungen in der Regel nur eine untergeordnete
Rolle, die Nebenspannungen haben bei den hauptsichlich gebrauchlichen Fach-
werkformen sehr geringen Einfluss auf die Formanderung des Fachwerktrigers.
Massgebend sind hier die Lingenénderungen, also vom dynamischen Standpunkt
aus, die periodischen Verschiebungen und Drehungen der ganzen Stibe, sowie
ihre Liangsschwingungen. Umgekehrt spielen bei Rahmensystemen die Bie-
gungsschwingungen neben den Lingsschwingungen eine ausschlaggebende
Rolle. Setzt man voraus, dass unsere Bauwerke, was in der Mehrzahl der Fille
zutreffen wird, aus ebenen Tragsystemen bestehen, wo von Ausnahmsfillen
abgesehen, Torsionsmomente keine Rolle spielen, so konnen wir in erster
Anniherung mit einer dynamischen Theorie des ebenen Fachwerkes
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einerseits, und des ebenen Stabwerkes, d. s. ebene Tragwerke aus bie-
gungssteifen und miteinander steif verbundenen Stiben, anderseits, zunichst
das Auslangen finden.

Firdie Schwingungszahlen der Eigenschwingungen sind die Grésse und Ver-
teilung der Massen, sowie die Steifigkeit des Tragwerkes massgebend. Je
grosser die Masse und je elastischer das Tragwerk ist, umso langsamer ist die
Grundswingung. Die Schwingungszahlen werden von kleinen Massenver-
schiebungen wenig beeinflusst, es geniigt daher bei der praktischen Ermittlung
- der Schwingungszahlen vereinfachte Massenverteilung anzunehmen, um die
Berechnung zu vereinfachen, ohne dass sich das Ergebnis, praktisch genom-
men, verschiebt.

1. Eigenschwingungen von Fachwerken.

Die Ermittlung der Eigenschwingungsperioden kann ausserordentlich
vereinfacht werden, wenn man jedes Fachwerk in ausreichender Anniherung
als ein System von n Massenpunkten, die in den n Knolen des Tragers sitzen,
betrachtet, und zwischen denen die Stabkrifte als innere elastische Krifte wir-
ken® 10, Ist das IFachwerk im allgemeinsten Fall z fach statisch unbestimmt,
so fithrt das Problem auf N=2n—3—2z homogene Gleichungen von der
Form

P 1)2 . —\ Fhk ' . . \
o (]—— = — [(ux—u),) cos ay + (vx — v),) SIN ok | €OS i
* h

E Shk
- (2)
1) 2 Fhk [ \ ] ‘. "
L — | (ux—uy,) cos oy + (v — vy,) SIN 2, | SN 2ty
q - hk /

worin u), v, die Verschiebungsamplituden des Knotens k, u, v, die Verschie-
bungen aller durch Stibe mit & verbundenen Knoten A, Iy, s, Flachen und
Lingen der in k zusammentreflenden Stibe, Py die Knotenlast in A,y und E
Schwerebeschleunigung und Elastizititsmodul
bedeuten. ay sind die Neigungswinkel der
Stiabe gegen eine feste Achse x. Siehe Abb 1.

DieNull gesetzte Determinante des Gleichungs-
systems (2) liefert die Periodengleichung aus
der die N Eigenschwingungsgrossen des Fach-
werkes hervorgehen. Praktisch wire die Aus-
rechnung der Determinante tiberaus beschwer-
lich. Doch kann in ausserst einfacher Weise durch
ein  von Ponruausen® angegebenes schritt-

weises Anniherungsverfahren, das in seinem
Wesen mit den von Vianello fir Bemessung
von Knickstiben vorgeschlagenen zeichnerischen Verfahren iibereinstimmt,
die Grundschwingungszahl und wenn notwendig die hoheren Schwingungs-
zahlen mit verhiltnismissig geringer Miihe ermittelt werden.

Man wihlt zu diesem Zwecke ein beliebiges System von Verschiebungen u

und v, die aber mit den Auflagerbedingungen im Einklange stehen miissen,
33

Fig. 1.
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p?
Ty
P v %2 und hiezu zeichnerisch oder rechnerisch die zugehorenden Stabkrifte S,
die wir als erste Naherungswerte mit S’ bezeichnen. Mit diesen Stabkriften
ermittelt man die Verschiebungen «’ und ', z B mit einem Williotschen
Verschiebungsplan, und berechnet nach Pohlhausen mittels der Beziehung

_ ! , (3)
VE(Pu')2 £ S(Pv)?
einen ersten Naherungswert 1’2, Die Summen unter den Wurzelzeichen erstrek-
ken sich hiebei auf alle Knoten des Fachwerkes. Man bestimmt nun mit die-
sem Wert 1’2 neuerdings die Knotenlasten Pz’ x'2 und P o' %2 und dazu die
neuen Stabkrifte S” und die dazugehorenden Knotenverschiebungen u”, v, die

einen neuen Naherungswert

und berechnet mit der Annahme 7©.2= =1 die Knotenlasten P u »2 und

w2

1
VE(PU )2 Z(PY)2

liefern. Der Vorgang wird solange wiederholt, bis die aufeinanderfolgenden
Naherungswerte von 7.2 gentigend Ubereinstimmung zeigen. Dieses Verfah-
ren fithrt sehr rasch zum Ziele, da die Konvergenz eine ausgezeichnete ist
und meistens der dritte Naherungswert bereits ausreicht. In der Regel wird
es geniigen, auf diese Weise nur die Grundschwingungszahl zu ermitteln. Doch
liegt nichts im Wege, auch die hoheren Schwingungszahlen auf dem gleichen
Wege zu finden.

Das Verfahren ist vollkommen allgemein und kann bei jeder Art Fachwerk-
system, statisch bestimmt oder statisch unbestimmt und bei jeder Art der
Massenverteilung verwendet werden und liefert nach zwei oder dreimaliger
Wiederholung des einfachen Rechnungsganges (es handelt sichim wesentlichen
um Zeichnung von Kriafteplinen und Verschiebungsplinen bezw. Biegeplinen)
sehr genaue Ergebnisse. Wegen praktischen Beispielen sei auf 10urd it hinge-
wiesen.

*,\”2 —

(3°)

2. Eigenschwingungen von Rahmentragwerken.

Wir betrachten zunichst einen einfachen, biegungssteifen Stab als einfach-
-sten Fall eines Rahmentragwerkes. Lr stellt ein System mit unendlich vie-
len Freiheitsgraden vor. An Stelle des endlichen Systems der Gleichungen (2)
beim Fachwerk, aus denen die Frequenzen der freien Schwingungen zu
ermitteln sind, tritt die Differentialgleichung

dtv  pp?
dzt~ JE °°

0 . . ..

2
Gl. (4) stellt die Differentialgleichung des mit p % v belasteten Stabes vor,

wobei v die Ausbiegung bedeutet.

Die Ermittlung der Losung dieser Gleichung kann in der gleichen Art erfol-
gen, wie bei den analogen Dilferentialgleichungen in der Theorie des instabi-
len Gleichgewichtes, namlich durch schrittweises Anpassen der Biegelinie an
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die Bedingungen (4). Es ergibt sich damit im Wesentlichen das gleiche Verfah-
ren, das wir bereits im Vorangehenden dargelegt haben, und das, sinngemiss
angewendet, nicht nur fir den Einzelstab, sondern auch fir jedes Rahmen-
tragwerk Geltung besitzt !l

Zu diesem Zwecke denken wir uns den steifen Stab oder das Rahmengebilde
in einzelne, gentigend dicht aneinander gereihte Massenpunkte zerlegt. Jedem
-dieser Massenpunkte ordnen wir eine zunichst willkiirlich angenommene, aber
mit den Auflagerbedingungen des Systems vertrigliche Verschiebung v, oder
wenn wir gleich verallgemeinern wollen, Verschiebungen « und v zu. u sind
die Verschiebungen inder Lingsrichtung des Stabes, wihrend v die Verschie-
bung quer zur Stabachse bedeuten. Wir belasten nun das Rahmengebilde in
den gewihlten Massenpunkten mit den Lasten P u%2 bezw. Pv72. P bedeutet
das Gewicht der in den fraglichen Massenpunkten konzentriert gedachten
Massen p. des Stababschnittes und seiner Auflasten, wobei zuniichst

=2 L)

gleich 1 gewihlt wird. Zu diesen Lasten ermittelt man rechnerisch oder zeich-
nerisch die Biegungsmomente und Normalkrifte und damit die Verformung in
der in der Statik iiblichen Weise und gewinnt so ein erstes System von Ver-
schiebungen ¢’ und v’. Man berechnet nun einen ersten Wert von %2 nach der
Formel.

1

L8
" NS TSI coe e e e |
und wiederholt den vorgeschriebenen Rechnungsgang. Das Ergebnis seien die
Verschiebungen u” und v”, mit denen neuerdings gemiss Gl. (6) ein zweiter
Naherunﬂrswert e bestlmmt werden kann. Das Verfahren wird solange fort-
gesetzt, bls zwel aufemanderfolcrende » genugend Lberem%tlmmunv zeigen.
Dies ist oft schon bei " der l‘all.

Auf diese Weise gelingt es, bei passendem Ansatz der ersten Biegelinie die
einzelnen Schwingungstypen der Reihe nach darzustellen und die zugehéri-
gen Schwingungszahlen zu berechnen.

(=23
~-

II. Erzwungene Schwingungen elastischer Systeme.

Wirkt in irgend einem Punkte des Tragwerkes eine Last P, die ihre Grosse
periodisch dndert, wir nehmen an, dass dies nach dem Gesetz P (f) = Psinwt
erfolge, so vollfithrt das Tragwerk, wenn ein gewisser stationirer Zustand
erreicht ist, Schwingungen mit der Frequenz w. Diese Schwingungen sind im
allaememen fir das Bauwell\ so lange ungefihrlich, als die Schwingungszahl
n mcht in Ubereinstimmung mit einer der niedrigen Eigenschwingungsperio-
den, insbhesonders mit der Gx'undschwmgungspel10de sleht. Ist dies der Fall,
so tritt die bekannte Irscheinung der Resonanz ein. Die Schwingungsampli-
tuden und damit die von den Schwingungen herrithrenden Beanspruchungen
konnen sehr gross werden, und falls die Dampfung nicht geniigend stark ist,
wachsen die Amplituden und damit die Spannungen im Tragwerk in einer
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den Bestand desselben gefihrdenden Weise. Fir die praktische Bemessung
des Bauwerks entsteht nun die I'rage, wie nahe darf die Schwingungszahl n
der einwirkenden Last an die kritische Schwingungszahl v+ heranriicken, ohne
das Bauwerk in Gefahr zu bringen, und wie hoch sind die durch die schwing-
ende Last erzeugten tatsichlichen Beanspruchungen im Bauwerk.

1. Niaherungslosung.

Vereinfachende Annahmen fithren auf folgende verhiltnismiissig gut stimm-
ende Niherungsformeln : 10 ued

a) Fachwerke : Ist P* sin w ¢ die schwingende Last, die in einem Knoten
m angreife, w die Verschiebung des Knotens m in der Richtung von P*, u und
v die iibrigen Knotenverschiebungen, wobei i, u, v die bei der Ermittlung der
Eigenschwingungen nach dem Pohlhausenverfahren festgestellten Eigen-
schwingungsverschiebungen und P die zugehorenden Knotenlasten sind ; ist
weiters Sy die Stabkraft im Stabe s, die zu diesen Verschiebungen gehért und
die ebenfalls aus dem Rechnungsgange zur Bestimmung der Eigenschwingungen
bekannt ist, so ist die tatsichliche Stabspannung S,* unter Wirkung der
schwingenden Last P* sinw/ gegeben durch

g, * a Sk . w . p? (7
o= — = = - i — == C
| n?’ - XPu?.24 X P22’ Ky )
2
v

Hierbeiist von Fall zu Fall die Rechnung mit jenem Eigenschwingungstypus

) .
.L- der Schwingungszahl der

durchzufithren, dessen Schwingungszahl v — 3
=

. - . ) . .
antreibenden Kraft P*, namlich n = — am niichsten kommt. n kann kleiner
b

2z
oder grosser als v sein.

b) Rahmentragwerke: Eine gunz analoge Formel gilt auch hier. Ist
M," das von der Last P* sin w¢ hervorgerufene Biegungsmoment in irgend
einem Punkte %, so gilt hierfir

.’LNIk
Mi=—+-............1(
1 n? '

2

Die Bezeichnunhen haben die gleiche Bedeutung wie oben. M, ist das zu den
Eigenschwingungsverschiebungen u, v, w gehérende Moment im Punkte 4.
Aus den Formel (7 und 8) erkennt man, dass bei Heranriicken von n an v,
der Nenner sich der Grenze 0 nihert, und dass bei Fehlen der Dampfung S
oder M ins Unendliche wichst. Anderseits gestatten die einfachen Gl. (7Tund 8)
zu entscheiden, wie nahe man im Einzelfalle mit der Schwingungszahl n an
die kritische Zahl v heranriicken darf, um einerseits die notwendige Sicherheit
zu haben, dass man weit genug vom kritischen Grenzzustand entfernt ist, und
dass anderseits die auftretende dynamische Spannung im Tragwerk, hinzuge-
fiigt zu den von den tbrigen ruhenden Lasten hervorgerufenen Spannungen
noch innerhalb der zulassigen Beanspruchung bleibe. Die Entscheidung im
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Einzelfalle hingt ganz davon ab, mit welcher Genauigkeit n bekannt ist und
wie genau die kritische Figenschwingung bestimmt werden kann. Diese Be-
stimmung ist mit sehr grosser Genauigkeit dann durchfithrbar, wenn die mit-
schwingenden Massen der Grosse und Lage nach gut bestimmt sind. Wie nahe
man n an v heranriicken lassen kann, hingt weiters damit zusammen, wie
gross fur sich genommen der Spannungszuwachs in Folge der schwingenden
Last P gegeniiber den von den tuibrigen Lasten erzeugten Spannungen ist. Man
erkennt, dass eine allgemeine Regel, wie gross der Unterschied zwischen n
und v gemacht werden soll, nicht gegeben werden kann, dass aber anderseits
die einfachen Formeln (7 und 8) es leicht machen, im Einzelfall nach richti-
ger Einschiitzung der die Genauigkeit der beiden massgebenden Zahlen n und
v beinflussenden Faktoren, den Abstand von n und v festzulegen.

2. Genaue Losung.

Fiir das Fachwerk fehlt in der einschligigen Literatur ein zweckmassiges
Verfahren zur genaueren Ermittlung der Formiinderungen und Beanspruchun-
gen in Folge eingeprigter Schwingungen, obwohl es grundsitzlich nicht
schwer sein diirfte, diese Aufgabe in einer fiir die Praxis geeigneten IForm zu
lisen.

Fiir das ebene Rahmentragwerk haben, Pracer 2, BrLeicn !, mehr oder
weniger allgemeine Verfahren angegeben, um in einer auch bei praktischen
Rechnungen anwendbaren IForm und ohne allzugrosse Rechenarbeit die
Aufgabe der erzwungenen Schwingung streng zu losen.

Die Prufung der Niherungsformeln (7 und 8) an den Ergebnissen der
genauen Berechnung hat die Zuverlissigkeit der Niherungsformeln bestitigt.

B. Dynamische Probleme des Briickenbaues.

Wie in den nachfolgenden Erorterungen gezeigt werden wird, geniigen die
im Vorangehenden in Kiirze vorgefithrte Theorie und ihre Ergebnisse, um eine
ganze Reihe von Fragen der Briickendynamik erfassen zu konnen. Welche
Fragen tiberhaupt in Betracht kommen, haben Sie aus dem ausgezeichneten
Bericht des Herrn HoMaNN entnommen.

Von diesen Fragen sind die folgenden einer mehr oder weniger guten rech-
nungsmissigen Behandlung zugingig :

1. Erzwungene Schwingungen infolge der mit der Geschwindigkeit v rollen-
den Lasten.

2. Zusatzbeanspruchungen von den Fliehkriften, die in der nach unten
gekriimniten Bahnlinie der bewegten Lasten auftreten.

3. Zusatzbeanspruchungen infolge der erzwungenen Schwingungen, die
durch die periodisch verianderlichen Raddriicke der Lokomotiven infolge des
unvollstindigen Massenausgleiches ausgelost werden, sowie die Zusatzbean-
spruchungen durch die periodischen Stosswirkungen der in regelmissigen
Abstinden angeordneten Schienenstésse.

Eine Reihe ilterer Arbeiten hat sich mit diesen Einzelproblemen befasst.
Ich nenne hier nur Pricuips 2, RExaupor 3, Bresse, LeBerr?, die das Problem
der Bruckenschwingungen unter dem Einfluss der rollenden Lasten bhehan-
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delt haben. Srokes!, und ZimMerMANN? haben den Einfluss der infolge der
Durchbiegung entstehenden Fliehkrafte dargestellt.

Timoshenko? hat als erster einige Fragen der Briickendynamik, die einer
rechnerischen Behandlung zugiinglich sind, in einheitlicher Weise, unter der
Beniitzung der Lagrangeschen Gleichungen zweiter Art erortert. Die gleichen
Probleme wurden spiter von der Differentialgleichung der Querschwingungen
gerader Stibe ausgehend und, so weit notwendig, unter Beriicksichtigung der
Abfederung der rollenden Last von Bleich untersucht und gezeigt, wie man
auf theoretischem Wege zu den firr die Praxis notwendigen Stosskoeffikienten
gelangen kann 1.

1. Erzwungene Schwingungen von der rollenden Last.

Unter der Annahme, dass eine Einzellast P, deren Masse aber klein gegen
die Masse des Tragwerkes gedacht ist, {iber einen frei aufgelagerten Balken
von der Stiitzweite [ mit der Geschwindigkeit ¢ rollt, lassen sich die durch die
bewegte Last erzwungenen Schwingungen leicht berechnen. Der Trager fithrt
dann neben den Eigenschwingungen erzwungene Schwingungen mit der

Periode T = Q—Cl aus. Diese Periode ist also gleich der doppelten Zeit, die die

Last braucht, um iiber die Briicke zurollen. Die Bewegung ist langsam gegen-
iiber den freien Schwingungen. Die Bahn des Lastpunktes ist im verzerrten
Masstab in Abb. 2 darge-
stellt. Die grosste Durchbie-
gung tritt etwas seitwirts
der Mitte auf. Da die er-
zwungenen Schwingungen
verhéltnismissig langsam
sind, so tritt bei der Steifig-
keit der heutigen Briicken
Resonanzwirkung erst bei Lastgeschwindigkeiten von iiber 300 m/sek. ein,
die natiirlich nicht vorkommen, sodass Resonanzerscheinungen bei diesem
Problem nicht in Frage kommen. Die zusitzliche Beanspruchung durch
die Wirkung der rollenden Lasten betriagt bei schweren Eisenbahnbalken-
briicken etwa 10 °/, der statischen Wirkung der Last P bei 5 m Spannweite
und nimmt bis auf ca 3 °/, bei 150 Spannweite ab. Die genaueren Zahlen
sind nachstehend angegeben. Sie wurden fir schwere Eisenbahnbalken-
briicken unter bestimmten Annahmen iiber Eigengewicht und Steifigkeit
errechnet 10, Aehnliche Zahlenreihen lassen sich fir jeden Briickentypus,
z. B. Bogenbricken, unschwer aufstellen.

Tafel 1.
Stiitzweite ! in m 4 6 10 45 20 25 50 100 13D

Vermehrung in °/,
der statischen Wirkung 10,3 9,8 8,7 87 8,3 81 6,8 59 50

Rollt eine ganze I'olge von Einzellasten uber die Briicke, so werden sich
die einzelnen Lasten in ihrer Wirkung aufden Trager z. T. storen. Im ungiin-
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stigsten Fall aber zeigt es sich, dass die gleichen Vermehrungskoeffizienten
gelten, wie fiir eine Einzellast 8 und 10,

Untersucht man den Einfluss, den die Abfederung der Wagen auf die
Schwingungen ausiibt, so gelangt man zu dem folgenden einfachen Zusam-
menhang 0. Ist v die Eigenschwingungszahl des Tragers v/, die der mit P bela-
steten Feder, so verhilt sich die Amplitude der erzwungenen Schwingung der

abgefederten Last zur Amplitude der Trigerschwingungen wie
. N

/)1 2
)

vo= -1?<v,-—>2 .
v

Ist v gross, v klein, soist u. klein gegen 1, d. h. die abgefederte Last schwingt
mit bedeutend kleinerer Amplitude als der Trager.

Die kleinen Wellen, die sich in Abb. 2 uber die Hauptdurchbiegung iiber-
lagern, werden daher durch die Abfederung der Last stark abgeflacht. Der
Einfluss der Abfederung ist bei Briicken kleiner Stiitzweiten mit ihren raschen
Schwingungen sehr gross. Bei grosseren Briicken macht sich die Abfederung
weniger geltend. Diese Erkenntnis ist aber dusserst wichtig, da gerade bei
kleinen Briicken die Tragheitswirkungen der Lasten von grosser Bedeutung
sind, und die gerade durch die Abfederung stark vermindert werden.

©)

2. Einfluss der Tragheitskrafte der rollenden Last.

Wenn man die Trager nicht als gewichtslos betrachten will, ist eine strenge
Losung der hier in Frage kommenden Aufgabe nicht moglich. Die iiber den

Trager rollende Last P mit der Masse gﬁbt infolge der Bahnkriitmmung nach

unten einen Druck

) vy
P:P(1_5‘312> N L))

aus, wo p. der oben, Gl. (9), ermittelte Beiwert der Abfederung ist. Die Wir-
kung dieser Kraft ist eine zweifache. Sie beeinflusst sowohl die oben berechne-
ten erzwungenen Schwingungen als auch die sie begleitenden freien Schwin-
gungen. Durch eine mehr abschitzende Niherungsberechnung wurde gefun-
den, dass die Vergrosserung der unter 1) betrachteten erzwungenen Schwing-
ungen im Verhiltnis von

SM
1:1—}—;)—15&2 o4

\

2 2p

=2Elg °
erfolgt 10, Hierin ist M das Moment des rollenden Lastenzuges, pl! das Trag-
werksgewicht, EJ die Briickensteifigkeit. Die folgende Tafel 2 gibt in Pro-
zenten die Vermehrung der statischen Wirkung fiir den in Tafel 1 zugrunde
gelegten Briickentypus an.

()

Tafel 2.
Stiitzweite [ in m 4 6 10 15 20 25 50 100 150

Vermehrung in °/,
derstatischen Wirkung 12,3 8,3 49 3,3 2,4 1,9 0,9 0,38 0,23
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Der Einfluss der lotrechten Fliehkrifte auf die freien Schwingungen ist nur
bei kleinsten Stitzweiten von Bedeutung. Die folgende Tafel 3 gibt ziffern-
missig die Vermehrung der statischen Wirkung durch diese Fliehkrifte, bei
dem bereits oben erwihnten betrachteten Briickentypus ant?.

Tafel 3.
Stitzweite [ in m 4 6 10 15 20 25 50 100 150

Vermehrung in °/,

der statischen Wirkung 19,2 11,3 5,3 3,3 2,3 1,7 1,0 0,62 0,27

3. Dynamische Wirkungen der Gegengewichte der Lokomo-
tivrader.

Die Gegengewichte der Lokomotivrader wirken mit dem Gesetz P sin 2znt
auf die Briicke. Niahert sich n einer Eigenschwingungszahl, so tritt Resonanz
ein. Bei den iblichen Schnellzugslokomotiven ist ¢=30 m/sec. und n = 5.
Nun ist bei Balkenbriicken von etwa 50 m Spannweite die Eigenschwingungs-
zahl v ebenfalls gleich 5. Es besteht also die Gefahr, dass bei Briicken von
etwa 50 m Spannweite angefangen, starke Resonanzerscheinungen auftreten
konnen. Diese Wirkungen werden aber erfahrungsgemiss verringert durch
die Phasenverschiebung bei den einzelnen Lokomotivridern und durch die
Dampfung in der Brucke, Es erscheint daher in erster Linie notwendig, da
das Problem der gedimpften erzwungenen Schwingungen von der theoreti-
schen Seite her als gelost betrachtet werden kann, durch Beobachtungen an
Briicken ziffernmissige Werte der Dampfungskoeftizienten festzustellen. Mit
der Bestimmung dieser Dampfungskoeffizienten wiire auch die Frage der Reso-
nanz bei erzwungenen Schwingungen infolge der in festen Abstinden ange-
brachten Schienenstosse einer Losung niher gebracht.

Damit wurden in knapper Form die wichtigsten einer theoretischen
Behandlung unterzogenen Probleme der Briickendynamik gestreift. Bei der
mathematischen Behandlung dieser Aulgaben wurde aber stillschweigend von
der Voraussetzung ausgegangen, dass die Lasten durch starre Lings- und
Quertrager auf die Haupttrager tibertragen werden. Die Wirkung der elasti-
schen Fahrbahntafel machtsich aber so wie eine Abfederung gellend. Es wire
daher als eine nachste, durchaus auf theoretischem Wege losbare Aufgabe zu
erledigen, den Einfluss der elastischen IFahrbahntafel auf die Schwingungser-
scheinungen bei den Haupttrigern und umgekehrt den Einfluss der elastischen
Lagerung von Langs- und Quertrigern auf deren Schwingungen rechnerisch
festzustellen.
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TRADUCTION

par M. Gossieaux, Ing., Paris.

Dans le rapport qu’il vient de nous communiquer, M. Homany a présenté
d’'une maniére concise, mais parfaitement claire, tous ceux des problémes de la
dynamique dont la mise au point parait nécessaire si l'on veut pouvoir effec-
tuer des recherches fructueuses sur les phénoménes d'oscillation qui se mani-
festent dans les ponts. La multiplicité et 1'étroit enchainement des divers phé-
nomenes dynamlques que I'on observe dans les ponts et dans les autres ouvrages
exigent d'une maniére impérieuse, avant le commencement des recherches de
grande envergure et des observations sur des ponts réels, la solution théorique
de nombreuses questions pratiques concernant la dynamique des. ouvrages. Si
I'on veut, en effet, pouvoir poursuivre, avec quelques chances de succes, les
observations et les recherches concernant la constructlion, dans ces domaines
difficiles, il est nécessaire de s’appuyer sur des bases théoriques solides. Inver-
sement, la progression des recherches expérimentales posera des questions
théoriques nouvelles. Dans une dépendance aussi étroite entre la théorie
mathématique et la recherche expérimentale, dépendance qui a pour consé-
quence la réciprocité dans I'impulsion et les progres, je vois la seule condi-
tion ui permette d’arriver a une solution heureuse du probléme délicat que
constitue la dynamique de la construction et, en particulier, la dynamique du
pont.

Le but de la présente étude est de présenter, d’'une maniére générale, et dans
ses grandes lignes, I'état actuel de la théorie des phénoménes oscillatoires que
I'on rencontre en construction, pour passer ensuite 4 'énoncé des probleémes
dynamiques qui se posent tout particuliérement en ce qui concerne la construc-
tion des ponts.

A. Les oscillations propres et les oscillations forcées
dans la construction.

Il existe trois causes principales qui peuvent donner naissance, dans nos
ouvrages de construction, a des phénomeénes d’oscillation. Ce sont les suivantes :
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tement de cette hypothése que les charges sont transmises aux poutres prin-
cipales par I'intermédiaire des longerons et des poutres transversales rigides.
L’influence de 'élasticité du tablier de la voie se fait donc sentir comme si
une supension intervenait. Il faudrait donc ensuite déterminer complétement,
sur des bases théoriques, l'influence qu'exerce le tablier élastique du pont sur
les phénomeénes d’oscillation, puis déterminer corrélativement l'influence de
I'appui élastique que constituent les longerons et les poutres transversales
sur ces oscillations.

Zusammenfassung.

Es werden die Methoden zur Berechnung der Eigenschwingungen und
der durch periodisch verinderliche Lasten hervorgerufenen erzwungenen
Schwingungen dargelegt. Diese Verfahren konnen bei IFachwerken, bel
biegungssteifen Tragern und bei Rahmenkonstruktionen Anwendung finden.
Verwendung der vorgefiithrten Theorien in der Dynamik der Briicken und zwar
auf folgende Probleme : 1) Erzwungene Schwingungen der Briicken unter
dem Einfluss rasch bewegter Lasten, 2) Einfluss der durch die Durchbiegung
der Briicken geweckten lotrechten Fliehkriifte der bewegten Lasten. Der
Einfluss der Abfederung der Lasten auf die dynamische Wirkung derselben
kann beriicksichtigt werden. Als Beispiel werden die Vermehrungszahlen der
statischen Spannungen durch die dyvnamische Wirkung der bewegten Lasten
bei schweren Eisenbahnbalkenbriicken vorgefiihrt.

Résumée.

L’auteur expose les méthodes de détermination des oscillations propres et
des oscillations forcées qui sont provoquées par des charges périodiquement
variables. Ces méthodes peuvent étre emplovées pour les treillis, les poutres
rigides et les charpentes constituées par des cadres.

Il expose ensuite les principes de l'applicalion des théories précédentes a
la dynamique du pont, et en particulier aux problémes suivants :

1. Oscillations forcées provoquées dans les ponts par laction des charges
rapides ;

2. Influence des efforts centrifuges verticaux, provoqués par le fléchisse-
ment des ponts sous l'action des charges roulantes.

On peut d’ailleurs tenir compte de l'influence qu’exerce la suspension des
charges sur leur action dynamique.

A titre d'exemple, I'auteur montre quelles amplifications subissent les
influences statiques par suite de l'action dynamique des charges roulantes,
dans les ponts lourds de chemins de fer.
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