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V3
THEORIE DER

SCHWINGUNGSERSCHEINUNGEN
AN TRAGWERKEN

THEORIE DES OSCILLATIONS DES PONTS ET CHARPENTES

THEORY OF THE OSCILLATIONS OF STRUCTURES

Dr.-Ing. Friedrich BLEICH,
Zivilingenieur, Wien.

Herr Hoaiann hat in dem vorangehenden Referat in knapper aber äusserst
übersichtlicher Form alle jene Probleme der Dynamik berührt, deren theoretische

Erledigung zu einer erfolgreichen Erforschung der Schwingungserscheinungen
bei Brücken notwendig erscheinen. Die Mannigfaltigkeit und die enge

Verkettung der verschiedenen dynamischen Erscheinungen bei Brücken und
anderen Bauwerken verlangt gebieterisch vor Inangriffnahme grosszügiger
Versuche und Beobachtungen an ausgeführten Brücken die theoretische
Klärung zahlreicher Fragen der Bauwerksdynamik, denn in diesen schwierigen
Fragen werden nur unter Führung der Theorie Beobachtungen und Untersuchungen

am Bauwerk mit Aussicht auf Erfolg durchgeführt werden können.
Umgekehrt wird aber auch die fortschreitende Versuchsforschung der Theorie
neue Aufgaben und Fragen stellen. In einem solchen steten Zusammenwirken
von mathematischer Theorie und Versuchsforschung zwecks gegenseitiger
Anregung und Befruchtung sehe ich den einzigen gangbaren Weg, um das
überaus schwierige Problem der Bauwerkdynamik, insbesondere der Brückendynamik

einer befriedigenden Lösung zuzuführen.
Aufgabe dieses Referates ist es, in groben Umrissen den derzeitigen Stand

der Theorie der Schwingungserscheinungen bei Bauwerken im allgemeinen
vorzuführen, um dann auf die Besprechung der im Brückenbau in Betracht
kommenden besonderen dvnamischen Probleme einzugehen."Öv

A. Eigenschwingungen und erzwungene
Schwingungen in Bauwerken.

Drei Ursachen sind es im wesentlichen, die zu Schwingungserscheinungen
unserer Bauwerke Anlass geben. 1. Bewegte (rollende) Lasten. 2. Periodische
Veränderlichkeit ortsfester oder bewegter Lasten. 3. Stosswirkungen der
Lasten. 1. und 2. führen auf das Problem der sogenannten erzwungenen Schwin-
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gungen, das im Rahmen des praktischen Bedürfnisses wohl als gelöst betrachtet

werden kann, während die befriedigende Lösung aller mit eigentlichen
Stosswirkungen der Lasten zusammenhängenden dynamischen Aufgaben
bisher, trotz vielfacher Anstrengungen der Ingenieure, nicht gelungen ist.

I. Eigenschwingungen elastischer Systeme.

Jedes Tragwerk führt, wenn es irgendwie angeregt und dann sich selbst
überlassen wrird, Schwingungen aus, die wir als Eigenschwingungen bezeichnen

und die infolge gewisser DämpfungsWirkungen wenn keine neuen
Anregungen hinzutreten, abklingen. Diese Eigenschwingungen lassen sich immer
auf eine endliche oder unendliche Summe von harmonischen Schwingungen
also auf die Form

y= \ v sin (o,. * + £,.) (1)

r i

zurückführen, y ist hierbei die Koordinate einer Punktverschiebung des hier
zunächst als eben vorausgesetzten Tragwerkes, p ist gleich der 2tu fachen
Schwingungszahl je see und heisst Kreisfrequenz, s ist die Phasenverschiebung.

Yj ist die Schwingungsamplitude, sie stellt eine von der Zeit unabhängige

Ortsfunktion vor.
Das durch Gl. (1) dargestellte System von Eigenschwingungen kennzeichnet

das dynamische Verhalten des Systems. Die Kenntnis der Eigenschwingungen

bildet daher die Grundlage für alle weiteren Schwingungsuntersuchungen.
Ordnet man die Glieder in Gl. (1) nach der Grösse von pr, so heisst das

erste Glied mit dem kleinsten p die Grundschwingung, ihr entspricht in der
Regel die grösste Amplitude yj. Die übrigen Schwingungen heissen
Oberschwingungen ; p nimmt mit wachsendem r sehr rasch zu, yj sehr rasch ab.

Massgebende Rolle, insbesonders bei Resonnanzproblemen, spielt die
Grundschwingung, weshalb es meistens genügt die Grundschwingungszahl zu
kennen.

Fasst man die Bauwerke im allgemeinsten Fall als aus biegungs- und
torsionssteifen Stäben zusammengesetzte Tragwerke auf, so vollführen die einzelnen

Stäbe Längs- Biegungs- und Torsionsschwingungen. Ausserdem vollführen

die einzelnen Stäbe als ganzes periodische Verschiebungen und Drehungen.

In Fachwerken spielen, selbst wenn die Stäbe in den Knoten steif
verbunden sind, die Biegungsspannungen in der Regel nur eine untergeordnete
Rolle, die Nebenspannungen haben beiden hauptsächlich gebräuchlichen
Fachwerkformen sehr geringen Einfluss auf die Formänderung des Fachwerkträgers.
Massgebend sind hier die Längenänderungen, also vom dynamischen Standpunkt
aus, die periodischen Verschiebungen und Drehungen der ganzen Stäbe, sowie
ihre Längsschwingungen. Umgekehrt spielen bei Rahmensystemen die
Biegungsschwingungen neben den Längsschwingungen eine ausschlaggebende
Rolle. Setzt man voraus, dass unsere Bauwerke, was in der Mehrzahl der Fälle
zutreffen wird, aus ebenen Tragsystemen bestehen, wo von Ausnahmsfällen
abgesehen, Torsionsmomente keine Rolle spielen, so können wir in erster
Annäherung mit einer dynamischen Theorie des ebenen Fach Werkes
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einerseits, und des ebenen Stabwerkes, d. s. ebene Tragwerke aus
biegungssteifen und miteinander steif verbundenen Stäben, anderseits, zunächst
das Auslangen finden.

Fürdie Schwingungszahlen derEigenschwingungen sind die Grösse und
Verteilung der Massen, sowie die Steifigkeit des Tragwerkes massgebend. Je

grösser die Masse und je elastischer das Tragwerk ist, umso langsamer ist die
Grundswingung. Die Schwingungszahlen werden von kleinen
Massenverschiebungen wenig beeinflusst, es genügt daher bei der praktischen Ermittlung
der Schwingungszahlen vereinfachte Massenverteilung anzunehmen, um die
Berechnung zu vereinfachen, ohne dass sich das Ergebnis, praktisch genommen,

verschiebt.

1 Eigenschwingungen von Fachwerken.

Die Ermittlung der Eigenschwingungsperioden kann ausserordentlich
vereinfacht werden, wenn man jedes Fachwerk in ausreichender Annäherung
als ein System von n Massenpunkten, die in den n Knoten des Trägers sitzen,
betrachtet, und zwischen denen die Stabkräfte als innere elastische Kräfte
wirken6' 10. Ist das Fachwerk im allgemeinsten Fall z fach statisch unbestimmt,
so führt das Problem auf N 2/i—3 —
Form

homogene Gleichungen von der

i>
P2 \ v* i >k — uu) cos a,lk + (vk — vu) sin a,lkJ cos *hL

Wk — «i.) cos «,lk + (l\ — vu) sin a,lk} sin ahk

(2)

worin uk vk die Verschiebungsamplituden des Knotens k, u\x, vh die Verschiebungen

aller durch Stäbe mit k verbundenen Knoten h, Fhk, s\ik Flächen und
Längen der in k zusammentreffenden Stäbe, Pk die Knotenlast in k,g und E

Schwerebeschleunigung und Elastizitätsmodul ky
bedeuten. ai,k sind die Neigungswinkel der
Stäbe gegen eine feste Achse x. Siehe Abb 1.

Die Null gesetzte Determinante des Gleichungssystems

(2) liefert die Periodengleichung aus
der die N Eigenschwingungsgrössen des Fach-
wrerkes hervorgehen. Praktisch wäre die
Ausrechnung der Determinante überaus beschwerlich

Doch kann in äusserst einfacher Weise durch
ein von PohlhauskiN9 angegebenes schrittweises

Annäherungsverfahren, das in seinem
Wesen mit den von Vianello für Bemessung
von Knickstäben vorgeschlagenen zeichnerischen Verfahren übereinstimmt,
die Grundschwingungszahl und wenn notwendig die höheren Schwingungszahlen

mit verhältnismässig geringer Mühe ermittelt werden.
Man wählt zu diesem Zwecke ein beliebiges System von Verschiebungen u

und v, die aber mit den Auflagerbedingungen im Einklänge stehen müssen,
33

*r

hif
Tih

-h
Fig. I.
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und berechnet mit der Annahme X2 ^— 1 die Knotenlasten P u X2 und

P v X2 und hiezu zeichnerisch oder rechnerisch die zugehörenden Stabkräfte S,
die wir als erste Näherungswerte mit Sr bezeichnen. Mit diesen Stabkräften
ermittelt man die Verschiebungen u und v', z B mit einem Willi otschen
Verschiebungsplan, und berechnet nach Pohlhausen mittels der Beziehung

X'2
l

(3)

einen ersten Näherungswert)/2. Die Summen unter den Wurzelzeichen erstrek-
ken sich hiebei auf alle Knoten des Fachwerkes. Man bestimmt nun mit
diesem Wert X'2 neuerdings die Knotenlasten Pü' X'2 und P vf X'2 und dazu die
neuen Stabkräfte S" und die dazugehörenden Knotenverschiebungen u", v", die
einen neuen Näherungswert

1
X"2 (3')

yA:(Pu")2 + 2(Pz/')2
liefern. Der Vorgang wird solange wiederholt, bis die aufeinanderfolgenden
Näherungswerte von X2 genügend Übereinstimmung zeigen. Dieses Verfahren

führt sehr rasch zum Ziele, da die Konvergenz eine ausgezeichnete ist
und meistens der dritte Näherungswert bereits ausreicht. In der Regel wird
es genügen, auf diese Weise nur die Grundschwingungszahl zu ermitteln. Doch
liegt nichts im Wege, auch die höheren Schwingungszahlen auf dem gleichen
Wege zu finden.

Das Verfahren ist vollkommen allgemein und kann bei jeder Art Fachwerksystem,

statisch bestimmt oder statisch unbestimmt und bei jeder Art der
Massenverteilung verwendet werden und liefert nach zwei oder dreimaliger
Wiederholung des einfachen Rechnungsganges (es handelt sich im wesentlichen
um Zeichnung von Kräfteplänen und Verschiebungsplänen bezw. Biegeplänen)
sehr genaue Ergebnisse. Wegen praktischen Beispielen sei auf 10und ll
hingewiesen.

2. Eigenschwingungen von Rahmen tragwerken.
Wir betrachten zunächst einen einfachen, biegungssteifen Stab als einfachsten

Fall eines Rahmentragwerkes. Er stellt ein System mit unendlich vielen

Freiheitsgraden vor. An Stelle des endlichen Systems der Gleichungen (2)
beim Fachwerk, aus denen die Frequenzen der freien Schwingungen zu
ermitteln sind, tritt die Differentialgleichung

d_l? *P\ — Q (i)dx-t-jE"-" W

p2
Gl. (4) stellt die Differentialgleichung des mit y. ^ v belasteten Stabes vor,

wobei v die Ausbiegung bedeutet.
Die Ermittlung der Lösung dieser Gleichung kann in dergleichen Art erfolgen,

wie bei den analogen Differentialgleichungen in der Theorie des instabilen

Gleichgewichtes, nämlich durch schrittweises Anpassen der Biegelinie an
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die Bedingungen (i).Es ergibt sich damit im Wesentlichen das gleiche Verfahren,

das wir bereits im Vorangehenden dargelegt haben, und das, sinngemäss
angewendet, nicht nur für den Einzelstab, sondern auch für jedes
Rahmentragwerk Geltung besitzt n.

Zu diesem Zwecke denken wir uns den steifen Stab oder das Rahmengebilde
in einzelne, genügend dicht aneinander gereihte Massenpunkte zerlegt. Jedem
dieser Massenpunkte ordnen wir eine zunächst willkürlich angenommene, aber
mit den Auflagerbedingungen des Systems verträgliche Verschiebung v, oder
wenn wir gleich verallgemeinern wollen, Verschiebungen u und v zu. u sind
die Verschiebungen in der Längsrichtung des Stabes, während v die Verschiebung

quer zur Stabachse bedeuten. Wir belasten nun das Rahmengebilde in
den gewählten Massenpunkten mit den Lasten PwX2 bezw. PuX2. P bedeutet
das Gewicht der in den fraglichen Massenpunkten konzentriert gedachten
Massen ja des Stababschnittes und seiner Autlasten, wobei zunächst

•,«=,£1 ,K\I«
E<

gleich 1 gewählt wird. Zu diesen Lasten ermittelt man rechnerisch oder
zeichnerisch die Biegungsmomente und Normalkräfte und damit die Verformung in
der in der Statik üblichen Weise und gewinnt so ein erstes System von
Verschiebungen uf und v'. Man berechnet nun einen ersten Wert von X2 nach der
Formel.

X'2
1

(6)
\f^(Vuf + ^(Vv'Y

und wiederholt den vorgeschriebenen Rechnungsgang. Das Ergebnis seien die
Verschiebungen u" und vn, mit denen neuerdings gemäss Gl. (6) ein zweiter
Näherungswert X"2 bestimmt werden kann. Das Verfahren wird solange fort-
gesetzt, bis zwei aufeinanderfolgende X genügend Übereinstimmung zeigen.
Dies ist oft schon bei X" der Fall.

Auf diese Weise gelingt es, bei passendem Ansatz der ersten Biegelinie die
einzelnen Schwingungstypen der Reihe nach darzustellen und die zugehörigen

Schwingungszahlen zu berechnen.

II. Erzwungene Schwingungen elastischer Systeme.

Wirkt in irgend einem Punkte des Tragwerkes eine Last P, die ihre Grösse
periodisch ändert, wir nehmen an, dass dies nach dem Gesetz P (t) Psino)£
erfolge, so vollführt das Tragwerk, wenn ein gewisser stationärer Zustand
erreicht ist, Schwingungen mit der Frequenz w. Diese Schwingungen sind im
allgemeinen für das Bauwerk so lange ungefährlich, als die Schwingungszahl
n nicht in Übereinstimmung mit einer der niedrigen Eigenschwingungsperioden,

insbesonders mit der Grundschwingungsperiode steht. Ist dies der Fall,
so tritt die bekannte Erscheinung der Resonanz ein. Die Schwingungsampli-
tuden und damit die von den Schwingungen herrührenden Beanspruchungen
können sehr gross werden, und falls die Dämpfung nicht genügend stark ist,
wachsen die Amplituden und damit die Spannungen im Tragwerk in einer
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den Bestand desselben gefährdenden Weise. Für die praktische Bemessung
des Bauwerks entsteht nun die Frage, wie nahe darf die Schwingungszahl n
der einwirkenden Last an die kritische Schwingungszahl v heranrücken, ohne
das Bauwerk in Gefahr zu bringen, und wie hoch sind die durch die schwing-
ende Last erzeugten tatsächlichen Beanspruchungen im Bauwerk.

1. Näherungslösung.
Vereinfachende Annahmen führen auf folgende verhältnismässig gut stimmende

Näherungsformeln : 10 und 14

a) Fach werke ; Ist P* sin mt die schwingende Last, die in einem Knoten
m angreife, w die Verschiebung des Knotens m in der Richtung von P*, u und
v die übrigen Knotenverschiebungen, wobei w,u, v die bei der Ermittlung der
Eigenschwingungen nach dem Pohlhausenverfahren festgestellten
Eigenschwingungsverschiebungen und P die zu gehörenden Knotenlasten sind ; ist
weiters Sk die Stabkraft im Stabe sk, die zu diesen Verschiebungen gehört und
die ebenfalls aus dem Rechnungsgange zur Bestimmung der Eigenschwingungen
bekannt ist, so ist die tatsächliche Stabspannung Sk* unter Wirkung der
schwingenden Last P* sin<o/ gegeben durch

k i_jiL' * iPii2xa+i:Pü2x2'
A

—E[/"
" ' " [)

V2

Hierbei ist von Fall zu Fall die Rechnung mit jenem Eigenschwingungstypus

durch zuführen, dessen Schwingungszahl v ~- der Schwingungszahl der

antreibenden Kraft P*, nämlich n -—am nächsten kommt, n kann kleiner

oder grösser als v sein.

b) Rahmentragwerke: Eine ganz analoge Formel gilt auch hier. Ist
Mk* das von der Last P* sin ut hervorgerufene Biegungsmoment in irgend
einem Punkte k, so gilt hierfür

^* ~^T (»)

Die Bezeichnunhen haben die gleiche Bedeutung wie oben. Mk ist das zu den

EigenschwingungsVerschiebungen u, v, w gehörende Moment im Punkte k.
Aus den Formel (7 und 8) erkennt man, dass bei Heranrücken von n an v,

der Nenner sich der Grenze 0 nähert, und dass bei Fehlen der Dämpfung S

oder M ins Unendliche wächst. Anderseits gestatten die einfachen Gl. (7 und 8)

zu entscheiden, wrie nahe man im Einzelfalle mit der Schwingungszahl n an
die kritische Zahl v heranrücken darf, um einerseits die notwendige Sicherheit
zu haben, dass man weit genug vom kritischen Grenzzustand entfernt ist, und
dass anderseits die auftretende dynamische Spannung im Tragwerk, hinzugefügt

zu den von den übrigen ruhenden Lasten hervorgerufenen Spannungen
noch innerhalb der zulässigen Beanspruchung bleibe. Die Entscheidung im
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Einzelfalle hängt ganz davon ab, mit welcher Genauigkeit n bekannt ist und
wie genau die kritische Eigenschwingung bestimmt wrerden kann. Diese
Bestimmung ist mit sehr grosser Genauigkeit dann durchführbar, wenn die
mitschwingenden Massen der Grösse und Lagenach gut bestimmt sind. Wie nahe

man n an v heranrücken lassen kann, hängt weiters damit zusammen, wie
gross für sich genommen der Spannungszuwachs in Folge der schwangenden
Last P gegenüber den von den übrigen Lasten erzeugten Spannungen ist. Man
erkennt, dass eine allgemeine Regel, wie gross der Unterschied zwischen n
und v gemacht werden soll, nicht gegeben werden kann, dass aber anderseits
die einfachen Formeln (7 und 8) es leicht machen, im Einzelfall nach richtiger

Einschätzung der die Genauigkeit der beiden massgebenden Zahlen n und
v beinflussenden Faktoren, den Abstand von n und v festzulegen.

2. Genaue Lösung.
Für das Facrnverk fehlt in der einschlägigen Literatur ein zweckmässiges

Verfahren zur genaueren Ermittlung der Formänderungen und Beanspruchungen
in Folge eingeprägter Schwingungen, olnvohl es grundsätzlich nicht

schwer sein dürfte, diese Aufgabe in einer für die Praxis geeigneten Form zu
lösen.

Für das ebene Rahmentragwerk haben, Prager ['2, Bleich u, mehr oder
weniger allgemeine Verfahren angegeben, um in einer auch bei praktischen
Rechnungen anwendbaren Form und ohne allzugrosse Rechenarbeit die

Aufgabe der erzwungenen Schwingung streng zu lösen.
Die Prüfung der Näherungsformeln (7 und 8) an den Ergebnissen der

genauen Berechnung hat die Zuverlässigkeit der Näherungsformeln bestätigt.

B. Dynamische Probleme des Brückenbaues.

Wie in den nachfolgenden Erörterungen gezeigt werden wird, genügen die
im Vorangehenden in Kürze vorgeführte Theorie und ihre Ergebnisse, um eine

ganze Reihe von Fragen der Brückendvnamik erfassen zu können. Welche
Fragen überhaupt in Betracht kommen, haben Sie aus dem ausgezeichneten
Bericht des Herrn Homann entnommen.

Von diesen Fragen sind die folgenden einer mehr oder weniger guten rech-
nungsmässigen Behandlung zugängig :

1. Erzwungene Schwingungen infolge der mit der Geschwindigkeit v rollenden

Lasten.
2. Zusatzbeanspruchungen von den Fliehkräften, die in der nach unten

gekrümmten Bahnlinie der bewegten Lasten auftreten.
3. Zusatzbeanspruchungen infolge der erzwungenen Schwingungen, die

durch die periodisch veränderlichen Raddrücke der Lokomotiven infolge des

unvollständigen Massenausgleiches ausgelöst werden, sowie die
Zusatzbeanspruchungen durch die periodischen Stosswirkungen der in regelmässigen
Abständen angeordneten Schienenstösse.

Eine Reihe älterer Arbeiten hat sich mit diesen Einzelproblemen befasst.
Ich nenne hier nur Phillips2, Renaudot 3, Bresse4, Lebert5, die das Problem
der Brückenschwingungen unter dem Einfluss der rollenden Lasten behan-



518 F. Bleich

delt haben. Stokes1, und Zimmermann7 haben den Einfluss der infolge der
Durchbiegung entstehenden Fliehkräfte dargestellt.

Timoshenko8 hat als erster einige Fragen der Brückendynamik, die einer
rechnerischen Behandlung zugänglich sind, in einheitlicher Weise, unter der
Benützung der Lagrangeschen Gleichungen zweiter Art erörtert. Die gleichen
Probleme wurden später von der Differentialgleichung der Querschwingungen
gerader Stäbe ausgehend und, so wreit notwendig, unter Berücksichtigung der
Abfederung der rollenden Last von Bleich untersucht und gezeigt, wie man
auf theoretischem Wege zu den für die Praxis notwendigen Stosskoeffikienten
gelangen kann t0.

1. Erzwungene Schwingungen von der rollenden Last.

Unter der Annahme, dass eine Einzellast P, deren Masse aber klein gegen
die Masse des Tragwerkes gedacht ist, über einen frei aufgelagerten Balken
von der Stützweite l mit der Geschwindigkeit c rollt, lassen sich die durch die
bewegte Last erzwungenen Schwingungen leicht berechnen. Der Trägerführt
dann neben den Eigenschwingungen erzwungene Schwingungen mit der

2/Periode T — aus. Diese Periode ist also gleich der doppelten Zeit, die die

Last braucht, um über die Brücke zurollen. Die Bewegung ist langsam gegenüber

den freien Schwingungen. Die Bahn des Lastpunktes ist im verzerrten
Masstab in Abb. 2 dargestellt.

Die grösste Durchbiegung

tritt etwas seitwärts
der Mitte auf. Da die

erzwungenen Schwingungen
verhältnismässig langsam
sind, so tritt bei der Steifigkeit

der heutigen Brücken
Resonanzwirkung erst bei Lastgeschwrindigkeiten von über 300 m/sek. ein,
die natürlich nicht vorkommen, sodass Resonanzerscheinungen bei diesem
Problem nicht in Frage kommen. Die zusätzliche Beanspruchung durch
die Wirkung der rollenden Lasten beträgt bei schweren Eisenbahnbalkenbrücken

etwa 10 °/o der statischen Wirkung der Last P bei 5 m Spannweite
und nimmt bis auf ca 5 °/0 bei 150 Spannweite ab. Die genaueren Zahlen
sind nachstehend angegeben. Sie wurden für schwere Eisenbahnbalkenbrücken

unter bestimmten Annahmen über Eigengewicht und Steifigkeit
errechnet 10. Aehnliche Zahlenreihen lassen sich für jeden Brückentypus,
z. B. Bogenbrücken, unschwer aufstellen.

Tafel 1.

Stützweite l in m 4 6 10 15 20 25 50 100 150

Vermehrung in %
der statischen Wirkung 10,3 9,8 8,7 8,7 8,3 8,1 6,8 5,9 5,0

Rollt eine ganze Folge von Einzellasten über die Brücke, so werden sich
die einzelnen Lasten in ihrer Wirkung auf den Träger z. T. stören. Im ungün-

*K

Fi^r. 2.
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stigsten Fall aber zeigt es sich, dass die gleichen Vermehrungskoeffizienten
gelten, wie für eine Einzellast8 und 10.

Untersucht man den Einfluss, den die Abfederung der Wagen auf die
Schwingungen ausübt, so gelangt man zu dem folgenden einfachen
Zusammenhang 10. Ist v die Eigenschwingungszahl des Trägers >/, die der mit P
belasteten Feder, so verhält sich die Amplitude der erzwungenen Schwingung der
abgefederten Last zur Amplitude der Trägerschnvingungen wrie

'\ 2

(9)
1-

Ist v gross, v' klein, so ist ;j. klein gegen 1, d. h. die abgefederte Last schwingt
mit bedeutend kleinerer Amplitude als der Träger.

Die kleinen Wellen, die sich in Abb. 2 über die Hauptdurchbiegung
überlagern, werden daher durch die Abfederung der Last stark abgeflacht. Der
Einfluss der Abfederung ist bei Brücken kleiner Stützweiten mit ihren raschen
Schwingungen sehr gross. Bei grösseren Brücken macht sich die Abfederung
weniger geltend. Diese Erkenntnis ist aber äusserst wichtig, da gerade bei
kleinen Brücken die Trägheitswirkungen der Lasten von grosser Bedeutung
sind, und die gerade durch die Abfederung stark vermindert werden.

2. Einfluss der Trägheitskräfte der rollenden Last.
Wenn man die Träger nicht als gewichtslos betrachten will, ist eine strenge

Lösung der hier in Frage kommenden Aufgabe nicht möglich. Die über den
P

Träger rollende Last P mit der Masse - übt infolge der Bnhnkrümmung nach

unten einen Druck

M'-f^O (••'

aus, wro \j. der oben, Gl. (9), ermittelte Beiwert der Abfederung ist. Die
Wirkung dieser Kraft ist eine zweifache. Sie beeinflusst sowohl die oben berechneten

erzwungenen Schwingungen als auch die sie begleitenden freien Schwingungen.

Durch eine mehr abschätzende Näherungsberechnung wurde gefunden,

dass die Vergrösserung der unter 1) betrachteten erzwungenen Schwingungen

im Verhältnis von
1 4

8M
2 2 CH2P /11,

erfolgt 10. Hierin ist M das Moment des rollenden Lastenzuges, pl das Trag-
werksgewricht, EJ die Brückensteifigkeit. Die folgende Tafel 2 gibt in
Prozenten die Vermehrung der statischen Wirkung für den in Tafel 1 zugrunde
gelegten Brückentypus an.

Tafel 2.

Stützweite / in m 4 ß 10 15 20 25 50 100 150

Vermehrung in °/0
der statischen Wirkung 12,3 8,3 4,9 3,3 2,4 1,9 0,91 0,38 0,23
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Der Einfluss der lotrechten Fliehkräfte auf die freien Schwingungen ist nur
bei kleinsten Stützweiten von Bedeutung. Die folgende Tafel 3 gibt ziffern-
mässig die Vermehrung der statischen Wirkung durch diese Fliehkräfte, bei
dem bereits oben erwähnten betrachteten Brückentypus an10.

Tafel 3.

Stützweite l in m 4 6 10 15 20 25 50 100 150

Vermehrung in °/0
der statischen Wirkung 19,2 11,3 5,3 3,3 2,3 1,7 1,0 0,62 0,27

3. Dynamische Wirkungen der Gegengewichte der
Lokomotivräder.

Die Gegengewichte der Lokomotivräder wrirken mit dem Gesetz P sin 2i:nt
auf die Brücke. Nähert sich n einer Eigenschwingungszahl, so tritt Resonanz
ein. Bei den üblichen Schnellzugslokomotiven ist c 30 m/sec. und «:5.
Nun ist bei Balkenbrücken von etwa 50 m Spannweite die Eigenschwingungszahl

v ebenfalls gleich 5. Es besteht also die Gefahr, dass bei Brücken von
etwra 50 m Spannweite angefangen, starke Resonanzerscheinungen auftreten
können. Diese Wirkungen werden aber erfahrungsgemäss verringert durch
die Phasenverschiebung bei den einzelnen Lokomotivrädern und durch die
Dämpfung in der Brücke, Es erscheint daher in erster Linie notwendig, da
das Problem der gedämpften erzwungenen Schwängungen von der theoretischen

Seite her als gelöst betrachtet werden kann, durch Beobachtungen an
Brücken ziffernmässige Werte der Dämpfungskoeffizienten festzustellen. Mit
der Bestimmung dieser Dämpfungskoeffizienten wräre auch die Frage der Resonanz

bei erzwungenen Schwingungen infolge der in festen Abständen
angebrachten Schienenstösse einer Lösung näher gebracht.

Damit wrurden in knapper Form die wächtigsten einer theoretischen
Behandlung unterzogenen Probleme der Brückendynamik gestreift. Bei der
mathematischen Behandlung dieser Aufgaben wrurde aber stillschweigend von
der Voraussetzung ausgegangen, dass die Lasten durch starre Längs-und
Querträger auf die Hauptträger übertragen werden. Die Wirkung der elastischen

Fahrbahntafel macht sich aber so wrie eine Abfederung geltend. Es wäre
daher als eine nächste, durchaus auf theoretischem Wege lösbare Aufgabe zu
erledigen, den Einfluss der elastischen Fahrbahntafel auf die Schwingungserscheinungen

bei den Hauptträgern und umgekehrt den Einfluss der elastischen
Lagerung von Längs- und Querträgern auf deren Schwingungen rechnerisch
festzustellen.
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TRADUCTION

par M. Gossieaux, Ing., Paris.

Dans le rapport qu'il vient de nous communiquer, M. Homann a presente
d'une maniere concise, mais parfaitement claire, tous ceux des problemes de la

dynamique dont la mise au point parait necessaire si l'on veut pouvoir effec-
tuer des recherches fructueuses sur les phenomenes d'oscillation qui se mani-
festent dans les ponts. La multiplicite et letroit enchainement des divers
phenomenes dynamiques que l'on observe dans les ponts et dans les autres ouvrages
exigent d'une maniere imperieuse, avant le commencement des recherches de

grande envergure et des observations sur des ponts reels, la Solution theorique
de nombreuses questions pratiques concernant la dynamique des ouvrages. Si
Ton veut, en effet, pouvoir poursuivre, avec quelques chances de succes, les
observations et les recherches concernant la construction, dans ces domaines
difficiles, il est necessaire de sappuyer sur des bases theoriques solides. Inver-
sement, la progression des recherches experimentales posera des questions
theoriques nouvelles. Dans une dependance aussi etroite entre la theorie
mathematique et la recherche experimentale, dependance qui a pour
consequence la reciprocite dans l'impulsion et les progres, je vois la seule condition

qui permette d'arriver ä une Solution heureuse du probleme delicat que
constitue la dynamique de la construction et, en particulier, la dynamique du
pont.

Le but de la presente etude est de presenter, d'une maniere generale, et dans
ses grandes lignes, l'etat actuel de la theorie des phenomenes oscillatoires que
l'on rencontre en construction, pour passer ensuite ä Tenonce des problemes
dynamiques qui se posent tout particulierement en ce qui concerne la construction

des ponts.

A. Les oscillations propres et les oscillations forcees
dans la construction.

II existe trois causes principales qui peuvent donner naissance, dans nos
ouvrages de construction, ä des phenomenes d'oscillation. Ce sont les suivantes :
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tement de cette hypothese que les charges sont transmises aux poutres
principales par l'intermediaire des longerons et des poutres transversales rigides.
L'influence de l'elasticite du tablier de la voie se fait donc sentir comme si

une supension intervenait. II faudrait donc ensuite determiner completement,
sur des bases theoriques, l'influence qu'exerce le tablier elastique du pont sur
les phenomenes d'oscillation, puis determiner correlativement l'influence de

l'appui elastique que constituent les longerons et les poutres transversales
sur ces oscillations.

Zusammenfassung.

Es werden die Methoden zur Berechnung der Eigenschwingungen und
der durch periodisch veränderliche Lasten hervorgerufenen erzwungenen
Schwingungen dargelegt. Diese Verfahren können bei Fachwerken, bei
biegungssteifen Trägern und bei Rahmenkonstruktionen Anwendung finden.
Verwendung der vorgeführten Theorien in der Dynamik der Brücken und zwar
auf folgende Probleme : 1) Erzwungene Schwingungen der Brücken unter
dem Einfluss rasch bewegter Lasten, 2) Einfluss der durch die Durchbiegung
der Brücken geweckten lotrechten Fliehkräfte der bewegten Lasten. Der
Einfluss der Abfederung der Lasten auf die dynamische Wirkung derselben
kann berücksichtigt werden. Als Beispiel werden die Vermehrungszahlen der
statischen Spannungen durch die dynamische Wirkung der bewegten Lasten
bei schweren Eisenbahnbalkenbrücken vorgeführt.

Resume.

L'auteur expose les methodes de determination des oscillations propres et
des oscillations forcees qui sont provoquees par des charges periodiquement
variables. Ces methodes peuvent etre employees pour les treillis, les poutres
rigides et les charpentes constituees par des cadres.

II expose ensuite les principes de l'application des theories precedentes ä

la dynamique du pont, et en particulier aux problemes suivants :

1. Oscillations forcees provoquees dans les ponts par l'action des charges
rapides ;

2. Influence des efforts centrifuges verticaux, provoques par le flechissement

des ponts sous l'action des charges roulantes.
On peut d'ailleurs tenir compte de l'influence qu'exerce la Suspension des

charges sur leur action dynamique.
A titre d'exemple, l'auteur montre quelles amplifications subissent les

influences statiques par suite de l'action dynamique des charges roulantes,
dans les ponts lourds de chemins de fer.
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