Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 1 (1932)

Artikel: Neuere dynamische Messverfahren im Bauwesen

Autor: Bernhard, Rudolf

DOI: https://doi.org/10.5169/seals-463

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

V 2

NEUERE DYNAMISCHE MESSVERFAHREN IM BAUWESEN

NOUVELLES MÉTHODES DE MESURE DANS LA DYNAMIQUE DES PONTS ET CHARPENTES

NEW METHODS FOR DYNAMICAL MEASURING ON STRUCTURES

Dr.-Ing. Rudolf BERNHARD, Reichsbahnrat im Reichsbahnzentralamt, Berlin.

A. Messtechnik im Allgemeinen.

Die grosse Bedeutung der praktischen Messtechnik liegt in erster Linie in ihrem wirtschaftlichen Nutzen. Durch Prüfung und auch Befruchtung der Berechnung von dynamischen Vorgängen soll die Theorie, welche ohne diese Hilfe wahrscheinlich nur sehr langsam Fortschritte machen könnte, ergänzt werden. Diese Wechselwirkung zwischen Messung und Berechnung wird es erst ermöglichen, einen grossen Teil der zunächst willkürlichen Annahmen von Berechnungsgrundlagen genauer festzule en, also die sparsamste und sicherste Bauweise zu erkennen und mithin Über-, sowie Unterdimensionierungen zu vermeiden.

I. Messgrössen und Messgrenzen.

Die bei der Untersuchung von Bauwerken in erster Linie in Frage kommenden Messgrössen sind :

Durchbiegungen,

Dehnungen (Längenänderungen),

Verdrehungen (Winkeländerungen),

Schwingungen (Frequenzen und Amplituden),

Beschleunigungen,

und neuerdings auch Dämpfungen, Arbeitsbeträge und Temperaturen.

Welche Grössen gemessen werden müssen, richtet sich u. a. danach, ob der Werkstoff allein, oder das Bauwerk als Ganzes untersucht werden soll.

Hier seien nur Messungen am Bauwerk und zwar bei Beanspruchungen unterhalb der Elastizitätsgrenze betrachtet.

Die Grössenordnung obiger Messwerte ist recht verschieden. Während die Durchbiegung verhältnismässig grosse Werte, etwa von 1/10 mm bis zu 10 cm

454 R. Bernhard

erreichen kann, bewegen sich die Dehnungen in wesentlich kleineren Dimensionen, die im allgemeinen, bezogen auf die üblichen Messlängen, kaum über $200 \,\mu$ (1 $\mu=10^{-3}$ mm) hinausgehen. Auch für die unteren Grenzen der Verdrehungen (Winkeländerungen) ist die Bestimmung von ungewöhnlich kleinen Werten bis hinunter zu 5 Winkelsekunden erforderlich. Schwingungen sind bis zu 800 Hertz (1 Hertz = Schwingung je Sekunde) beobachtet worden, also Zahlen, welche bereits fast das Doppelte des Kammertons a (435 Hertz) erreichen. Über die Grenzen der anderen, oben genannten Grössen können zur Zeit noch keine genaueren Zahlen angegeben werden.

Die Hilfsmittel, welche zur Messung dieser, zum Teil ungewöhnlich kleinen Dimensionen zur Verfügung stehen, sind vor allem der Mechanik, Optik, Elektrotechnik und Akustik zu entnehmen. Während der Mechanik durch ihre an die Masse gebundenen Hilfsmittel sehr bald obere und untere Grenzen gesetzt sind, haben die drei anderen Gebiete einen wesentlich erweiterten Wirkungsbereich.

So können in der Optik, z. B. mit Ultramikroskopen, in kolloidalen Lösungen Werte von nur wenigen $\mu\mu$ (1 $\mu\mu = 10^{-6}$ mm) erkannt und in der Elektrotechnik, z. B. mit Kathodenstrahlen-Oszillographen, Vorgänge aufgenommen werden, welche sich auf einen Zeitraum von nur 10^{-7} sec erstrecken.

Die Anforderungen in der Bauwerksmesstechnik erreichen zwar nicht die obigen Grenzwerte, der masselose Lichtstrahl in der *Optik* und die masselose Übertragung von Strömen in der *Elektrizität* bilden aber Hilfsmittel, die auch hier kaum zu entbehren sind.

II. Anforderungen an die Messgeräte.

Die Forderungen, welche an die im Bauwesen anzuwendenden Messgeräte gestellt werden müssen, kann man in *statische und dynamische* einteilen, je nachdem ob unter ruhenden oder veränderlichen Lasten gemessen werden soll.

Die Dehnungs- (Spannungs-) Messung, also die Feststellung von Abstandsänderungen zweier Punkte (Messlänge) des Werkstoffes, spielt im Bauwesen eine ausschlaggebende Rolle. Sie soll daher zunächst besprochen werden. Sowohl die dabei zu stellenden statischen Anforderungen in Bezug auf Empfindlichkeit, Vergrösserung und Genauigkeit, als auch die dynamischen Anforderungen, wie masstabsgetreue Anzeige an Ueber- oder Unterfrequenzgeräten, Phasengleichheit, Registrierung und Zeitmarkierung sind im letzten Bericht des Verfassers an der Internationalen Tagung für Brücken- und Hochbau in Wien 1928 (Ausgabe 1929) bereits eingehend geschildert worden, sodass sich eine weitere Behandlung hier erübrigt.

III. Fehlerquellen der Messgeräte.

Die bei den Messgeräten leicht auftretenden Fehler können gleichfalls statische und dynamische Ursachen haben. Einige der hauptsächlich auftretenden Störungen seien kurz gestreift.

^{1.} Neuere Messungen dynamischer Brückenbeanspruchungen.
R. Bernhard. Bericht über die II. Internationale Tagung für Brücken- und Hochbau.
Wien (Ausgabe 1929).

1. Statische Fehler.

- a. Gelenke: Werden zur Ubertragung von Bewegungen Hebel verwendet, die durch irgendwelche Gelenke angeschlossen sind, so bildet ein Spiel in diesen Gelenken eine Fehlerquelle. Bei tausenfacher Vergrösserung genügt schon das Spiel von 1 μ, um am Ende einen Auschlag von 1 mm, also bei 20 cm Messlänge eine Fehlanzeige von 10 kg/cm² hervorzurufen.
- b. Temperaturschwankungen: Bedenkt man weiter, dass eine Temperaturschwankung von 1°C bei 20 cm Messlänge für Stahl bereits eine Längenänderung von 2,4 µ. bedeutet, so erscheint die Aufgabe fehlerfreie Gelenke herzustellen, geschweige denn sie bei dem rauhen Betrieb an der Messtelle fehlerfrei zu erhalten, gleichfalls sehr schwierig. Werden jedoch Hebel mit mehreren Gelenken hintereinander geschaltet, um stärkere Vergrösserungen zu erhalten, so summieren sich die Fehler entsprechend.
- c. Messpitzen: Die Messpitzen, welche je nach Härte des Baustosse sich verschieden tief in den Werkstosse eingraben und in erster Linie die Abstandsänderung der Messpunkte unmittelbar zu übertragen haben, bilden leicht eine weitere Fehlerquelle. Insbesondere für wechselnde Spannungen, bei denen sich diese Messpitzen einmal in der einen und nachher in der anderen Richtung bewegen, also an verschiedenen Seiten anliegen, ist ein Spiel, ebenso wie bei den Gelenken, oft die Ursache vermeintlicher Hysteresis-Erscheinungen oder in Wirklichkeit nicht vorhandener, remanenter Spannungen.
- d. Aufspannung: Eine bequem nachspannbare Befestigung wird, nachdem sich die Messpitzen durch verschiedene Belastungen gleichsam ein Bett im Werkstoff geschaffen haben, und ein Einrütteln der Messpitzen eingetreten ist, die Beseitigung von Aufspannfehlern erleichtern.

2. Dynamische Fehler.

- a. Reibung: Als dynamische Fehlerquelle kommt in erster Linie die unvermeidliche, je nach dem Zustand des Ols in den Gelenken und den Witterungsverhältnissen veränderliche, unkontrollierbare Reibung beweglicher Einzelteile in Frage. Die damit zusammenhängende, veränderliche Dämpfung vereitelt die Forderung nach masstabsgerechter Aufzeichnung. Auch wird das geringste Spiel in den Gelenken zur Aufzeichnung von in Wirklichkeit nichtvorhandenen Schüttelschwingungen führen. Dieses Spiel muss so weit wie irgend möglich durch kräftige Federn beseitigt werden, die ein gleichmässiges, einseitiges Anliegen der Gelenke bewirken.
- b. Massenwirkung: Bedenkt man ferner, dass von der Schreibspitze bei tausendfacher Vergrösserung ein tausendfacher Weg gleichzeitig bei tausendfacher Beschleunigung zurückzulegen wäre, so ergibt sich rein rechnerisch dort ein 10⁶-faches Moment der Trägheitskraft. Jegliche noch so geringe Änderung in den Massen der Messysteme erzeugt Änderungen der Trägheitskräfte, die demnach erhebliche Fehlanzeigen nach sich ziehen müssen. Insbesondere ist dabei zu beachten, dass eine Steigerung der Vergrösserung, also eine Erhöhung der Massen, ein erhebliches Absinken der Eigenfrequenz zur Folge hat.

Nur die bis aufs äusserste getriebene Einschränkung beweglicher Massen kann hier Abhilfe schaffen.

IV. Eichung der Messgeräte.

Die Eichung der Messgeräte, also die Feststellung, ob die Geräte den oben genannten Fehler nicht aufweisen, gehört mit zu den schwierigsten Aufgaben. Erst wenn es gelingt, Eichgeräte zu bauen, welche eine Prüfung ermöglichen, ob die Apparate den statischen und dynamischen Bedingungen genügen, können zuverlässige Messgeräte enwickelt werden.

Da die Eichfrage gleichfalls im vorgenannten Bericht des Verfassers bereits eingehend behandelt wurde, sei hier nur mitgeteilt, dass inzwischen die damals geforderten Eichgeräte entwickelt worden sind.

1. Statische Eichung.

Für die statische Eichung, d. h. die genaue Bestimmung des Vergrösserungsmasstabes innerhalb des gesamten Messbereiches, ist eine Eichbank gebaut worden.

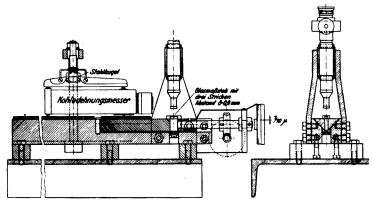


Fig. 1.

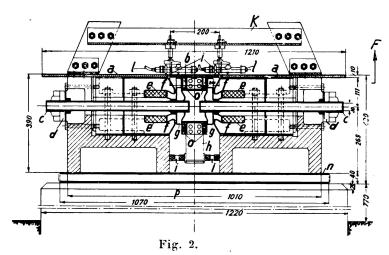
Eichbank zur statischen Prüfung von Messgeräten.

Banc d'étalonnage pour le Contrôle statique des appareils de mesure.

Calibrating Bench for Static Checking of Measuring Instruments.

Stablkugel. — Bille d'acier. — Steel ball.
 Kohledehnungsmesser. — Dispositif à disques de charbon pour la mesure de l'allongement. — Carbon disk extensometer.
 Glasmasstab mit drei Strichen. — Échelle graduée en verre avec trois traits espacés de 0,9 mm. — Glass scale with three marks. Distance δ = 0,9 mm.

Die Eichbank (Abb. 1) besteht aus einem festen und einem beweglichen Teil. Die zu prüfenden Messgeräte werden mit ihrer beweglichen Spitze auf dem beweglichen, mit ihrer festen Spitze auf dem festen Teil der Eichbank befestigt. Durch Verschiebung des beweglichen Teils der Eichbank um genau bekannte Werte, etwa im Bereich von 0,5 µ, kann den Messgeräten eine Verschiebung aufgedrückt werden. Diese kleine Verschiebung muss durch genaue Messmikroskope kontrolliert werden. Die Anzeige der zu prüfenden Messgeräte soll dann unter Berücksichtigung ihres Vergrösserungsmasstabes mit der Bewegung des beweglichen Teils der Eichbank, also der Anzeige des Messmikroskops, übereinstimmen.


2. Dynamische Eichung.

Für die dynamische Eichung ist ein Prüfstand gebaut worden 1 (Abb. 2).

^{1.} Prüfstand für Messgeräte im Bauwesen.

R. Bernhard. Zeitschrift des VDI, 1931, Heft 52.

Er besteht aus einem festen und einem beweglichen Teil, auf dem die zu prüfenden Instrumente befestigt werden. Der bewegliche Teil ist einerseits in der Lage, ausreichend hohe Frequenzen, also z. B. sinusförmige Schwingungen bis zu 300 H bei verschiedenen Amplituden auszuführen, die andererseits aber auch gleichzeitig einwandfrei beobachtet und zum Vergleich mit dem Schaubild des zu eichenden Instruments aufgezeichnet werden können. Die Erregung

Aufbau und Hauptabmessungen des elektromagnetischen Prüfstandes für Messgeräte im Bauwesen.

Disposition et cotes principales du banc d'essai électromagnétique pour le contrôle des appareils de mesure de construction.

General Arrangement and Sizes of Electromagnetic Bench for Checking Measuring Instruments for Structural Members.

- Fester Teil. Partie fixe. Fixed part.

 Beweglicher Teil des Tisches Partie mobile du banc. Movable part of the bench.

 Rohrfedern zwischen a und b. Ressorts tubulaires disposés entre a et b. Helical springs between a
- d) Blattfedern zwischen a und b (auswechselbar). Ressorts à lames disposés entre a et b (interchangeables).

Leaf springs between a and b. gnetspule. — Electro-aimant à armatures feuilletées. — Magnet spools. Magnetspule.

e) Magnetspûle. — Electro-aimant à armatures feuilletées. — Magnet spools.
f) Lamellen, fest in a. — Armatures feuilletées solidaires de a. — Laminations fixed in a.
g) Lamellen, fest in b. — Armatures feuilletées solidaires de b. — Laminations, fixed in b.
h) Gegengewicht für b. — Contrepoids de b. — Counterweight for b.
i) Gummidämpfung. — Amortisseur de caoutchouc. — Rubber buffers.
k) Aufspannbock. — Armature de serrage. — Fixing device.
l) Zu untersuchende Prüfgeräte. — Appareil d'essai à contrôler. — Object tested.
n) Korkplatte. — Plaque de liège. — Cork slab.
o) Blattfedern zu Führung des beweglichen Teiles. — Ressorts à lames pour le guidage de la partie mobile. —Leaf springs for guide of the movable part.
p) Betonfundament. — Socle de béton. — Concrete foundation.

p) Betonfundament. - Socle de béton. - Concrete foundation.

des beweglichen Teils des Prüfstandes zu Schwingungen von bekannter Frequenz und Auslenkung erfolgt durch Magnete, welche mit Wechselstrom von der gewünschten Periodenzahl und Stromstärke gespeist werden.

B. Neuere dynamische Messverfahren.

I. Wahl der Messverfahren.

Die Frage, welche Messgrössen bei den Bauwerken zu verfolgen sind, ist noch nicht geklärt. Wenn man den Endzweck, die Erforschung der Beanspruchung infolge der dynamischen Vorgänge im Auge behält, ist es letzten Endes gleichgültig, welcher Weg zum Ziel führt. Solche Verfahren, die durch möglichst wenige Einzelmessungen den ganzen Spannungszustand des Bauwerks auf einmal erfassen können, sind vorzuziehen.

Am einsachsten ist jedenfalls wegen der bequemen Grössenordnung die Messung von Durchbiegungen.

Mit optischen Verfahren wird es wohl gelingen, Durchbiegungen aller Knotenpunkte einer Brücke während der Überfahrt eines Belastungszuges auf einmal aufzunehmen. Die in rein mathematischer Hinsicht jedoch schwierige Rechnung, aus diesen Durchbiegungen nunmehr die Spannungen zu erfassen, bleibt dann noch durchzuführen. Gleichfalls offen ist die Frage, wie sich nun in den Einzelstäben, also zwischen den gemessenen Knotenpunkten, die Beanspruchungen verteilen.

Ein zweiter Weg, die Beanspruchungen ohne erhebliche Rechenarbeit unmittelbar zu messen, erscheint zunächst einfacher. Durch Messung der mittleren Querschnittsspannungen, also gleichzeitig mit zahlreichen Apparaten, könnte der Spannungszustand des gesamten Tragwerks gleichfalls erfasst werden; durch Anbringung von Messgeräten in der Nähe oder auch zwischen den Knotenpunkten wären auch die dort auftretenden Beanspruchungen, einschliesslich der dynamischen Nebenbeanspruchungen, zu verfolgen. Der Umweg über die Durchbiegungsmessung ist in diesem Fall nicht erforderlich.

Eine dritte Möglichkeit, die Messung von Beschleunigungen, erfordert gleichfalls eine nicht einfache Umrechnung auf die Spannungen und wird daher wohl nur bei Sonderaufgaben in Frage kommen.

Schwingungen setzen sich unmittelbar in Durchbiegungs- und Spannungsschwankungen um und brauchen daher in gewöhnlichen Fällen nicht besonders gemessen zu werden.

Die vierte Möglichkeit, den Gesamtzustand eines Bauwerks zu erfassen, besteht in dem Verfahren, das ganze Bauwerk künstlich zu Schwingungen anzuregen. Hier sind zahlreiche Versuche, mit Schwingungsmaschinen durch Leistungsaufnahme und Verfolgung der Temperaturen gleichsam den Energiehaushalt des Bauwerks zu erfassen, in Angriff genommen worden.

II. Messgeräte.

Es werden nunmehr einige neuere, dynamische Messgeräte, und zwar vor allem Spannungs- (Dehnungs-) und Durchbiegungszeichner, als die im Bauwesen vorzugsweise verwendeten Messgeräte, und weiter Schwingungs-, bezw. Beschleunigungszeichner beschrieben.

Betont werden muss nochmals, dass auch jetzt die Entwicklung der Messgeräte noch nicht abgeschlossen ist, ja wohl niemals beendet sein wird, da mit fortschreitender Technik sich auch stets die Messgeräte verbessern werden.

Als endgültig brauchbar können nur solche Apparate angesehen werden, welche nicht nur den eingangs erwähnten Anforderungen genügen, sondern sich auch in mehrjährigen, eingehenden Versuchen am Bauwerk praktisch bewährt haben und deren Anschaffungskosten eine bestimmte, wirtschaftlich vertretbare Summe nicht überschreiten.

Die Messgeräte können, wie auch aus der Zusammenstellung I hervorgeht, je nach dem Messprinzip in mechanische und optische, sowie mechanischoptische und elektrisch-optische Instrumente eingeteilt werden.

1. Mechanische Messgeräte.

Die Frage, ob überhaupt und bis zu welchen Grenzen man sich auf die Anzeigen mechanischer Messgeräte verlassen kann, ist noch nicht endgültig entschieden.

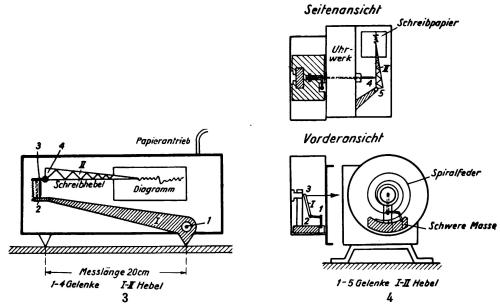


Fig. 3.

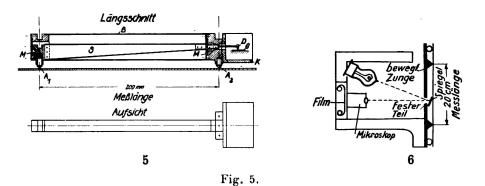
Mechanischer Spannungsmesser der Schweizerischen Bundesbahnen (A. Meyer). — Schema. Appareil de mesure mécanique des efforts. — Chemins de fer fédéraux (A. Meyer). — Schéma. Mechanical Stress Recorder. — Swiss Federal Railways (A. Meyer). — General arrangement.

Papierantrieb. — Disposition d'entrainement du papier. — Card moving mechanism. Schreibhebel. — Levier d'enregistrement. — Pen lever. Diagramm. — Diagramme. — Diagram. Messlänge. — Longueur de mesure. — Measured length. 1-4: Gelenke. — Articulations. — Joints. 1-II: Ilebel. — Leviers de mesure. — Levers.

Fig. 4

Mechanischer Schwingungsmesser. Vibrograph (Geiger). — Schema. Appareil mécanique pour la mesure des oscillations. — Vibrographe (Geiger). — Schéma. Oscillation Mechanical Recorder. — Vibrograph (Geiger). — General arrangement.

Seitenansicht. — Profil. — Side view.
Vorderansicht. — Vue de face. — Front view.
Uhrwerk. — Mécanisme d'horlogerie. — Clockwork.
Schreibpapier. — Dispositif d'enregistrement. — Card.
Spiralfeder. — Ressort spiral. — Spiral spring.
Schweremasse. — Poids. — Heavy mass.
1-5: Gelenke. — Articulations. — Joints.
I-II: Hebel. — Leviers. — Levers.


a. Spannungsmesser der Schweizerischen Bundesbahnen 1 (A. Meyer) (Abb. 3):

Der Spannungsmesser ist bereits auf der letzten Tagung von Herrn Sektionschef Bühler genauer beschrieben worden. Er ist ein Zwei-Hebelgerät mit 4 Gelenken, Registrierung auf berusstem Papier, getrenntem Papiervortrieb für den 4 cm breiten Diagrammstreifen, veränderlicher Messlänge von 20 und 40 cm und fester Vergrösserung von 1:100. Die zur Aufspannung erforderliche

^{1.} Ziel. Ergebnisse und Wert der Messungen an Bauwerken. A. Bühlen. Bericht über die II. Internationale Tagung für Brücken- und Hochbau. Wien (Ausgabe 1929).

Gesamtlänge beträgt 30 bezw. 50 cm, das Gewicht einschliesslich Vortrieb 1 kg. Durch besonders sorgfältige Prüfung jedes einzelnen Hebels, sowie seiner Lager auf einem Schütteltisch ist eine grosse Vervollkommnung erreicht worden. Weitere Einzelheiten gehen auch aus der Zusammenstellung I hervor.

Man kann wohl sagen, dass von den zur Zeit bestehenden mechanischen Geräten für dynamische Spannungsmessungen an Brücken dieser Apparat am weitgehendsten praktisch erprobt ist.

Mechanischer Spannungsmesser nach dem Ritzverfahren (Pabst). — Schema.

Appareil mécanique pour la mesure des oscillations suivant la méthode Ritz (Pabst). — Schéma.

Mechanical Stress Recorder. By the Ritz Method (Pabst). — General arrangement.

Längsschnitt. — Coupe longitudinale. — Longitudinal section.
Übertragungshebel. — Levier de transmission. — Transmission lever.
Diamant. — Diamant. — Diamond.
Glasplatte. — Plaque de verre. — Glass plate.
Feste Messpitze. — Pointe fixe de mesure — Movable measuring point.
Bewegliche Messpitze. — Pointe mobile de mesure. — Movable measuring point.
Messlänge. — Longueur de mesure. — Measured length.
Aufsicht. — Vue en plan. — Plan.

Fig. 6.

Optischer Spannungsmesser nach dem mikrophotographischen Verfahren (Bloss). — Schema. Appareil optique pour la mesure des efforts d'après la méthode Microphotographique (Bloss). — Schéma.

Optical Stress and Deflection Recorder by the Microphotographic Method (Bloss). — General arrangement.

Film. — Bande d'enregistrement. — Film. Bewegliche Zunge. — Languette mobile. — Movable tongue. Fester Teil. — Partie fixe. — Fixed part. Spiegel. — Miroir. — Mirror. Mikroscop. — Microscope. — Microscope. Messlänge. — Longueur de mesure. — Measured length.

b. Schwingungsmesser Vibrograph 1 (Dr. Geiger) (Abb. 4): Der Schwingungsmesser ist ein Zwei-Hebelgerät mit 5 Gelenken, Tintenregistrierung und eingebautem Uhrwerkantrieb für den 5 cm breiten Diagrammstreifen. Durch Anbringung verschieden schwerer Gewichte an verschieden starken Federn ist seine Eigenfrequenz von 0,001 bis 1 H veränderlich. Es soll als Unterfrequenzgerät (Seismisches Prinzip) verwendet werden. Das Gesamtgewicht beläuft sich auf etwa 4,6 kg, die Vergrösserung ist von 3 bis 24-fach einstellbar, die Aufspannlänge-beträgt 25 cm. Das Gerät ist zur Bestimmung von Frequenzen in waagerechten und lotrechten Ebenen brauchbar. Eine Auswer-

^{1.} Neuere Fortschritte im Bau von Messgeräten für den Maschinenbau. Geiger. Maschinenbau, 1924, Heft 27.

tung der Absolutwerte (Amplituden) ist nicht einfach und u. a. nur möglich, wenn der jeweilige Dämpfungszustand vor und nach jeder Messung durch Eichversuche festgestellt wird. Weitere Einzelheiten gehen aus der Zusammenstellung I hervor.

Der Vibrograph ist von den mechanischen Schwingungsmessern dasjenige Gerät, welches z. B. bei der unmittelbaren Messung von Brückenschwingungen mehrfach verwendet worden ist.

c. Spannungsmesser nach dem Ritz-Verfahren der Deutschen Versuchsanstalt für Luftfahrt 1 (Pabst) (Abb. 5): Das Gerät ist ein mechanisches Instrument ohne Hebelübersetzung. Es wurde zunächst für eine Messlänge von 20 cm eingerichtet. Der mit einer beweglichen Messpitze verbundene Diamant ritzt auf einer Glasscheibe mit aussergewöhnlich langsamem Vortrieb (25 mm in 15 sec bis 160 min) die Längenänderungen in natürlicher Grösse ein. Die Glasplattendiagramme von nur 25 mm Länge müssen daher unter einem Mikroskop ausgewertet werden. Durch Beobachtung mit Mikroskopen hat man etwa 500-fache Vergrösserungen erreicht. Die Eigenschwingungszahl soll rund 2000 H betragen, das Gewicht nur 500 g. Dem Vernehmen nach wird an der Entwicklung dieses Messinstrumentes zur Zeit noch weitergearbeitet.

Das sehr leichte und kleine Gerät von 28 cm Baulänge hat sich besonders für die Zwecke der Luftfahrt bei Spannungs-und Durchbiegungsmessungen bewährt.

2. Optische Messgeräte.

Bei den rein optischen Verfahren fallen alle mechanischen Übertragungsteile zur Umsetzung der zu messenden Lage- oder Längenänderungen wie Hebel, Gelenke, reibende Schreibstifte usw. fort. Eine trägheitsfreie Übersetzung wird durch den masselosen Lichtstrahl erreicht.

a. Durchbiegungs-und Spannungsmesser nach dem mikrophotographischen Verfahren ² (Bloss) (Abb. 6): Durch zwei mit den Enden an den Messpunkten befestigte Zungen wird ein Spalt gebildet, dessen veränderliche Breite mit einer mikrophotographischen Kamera auf einem vorbeilaufenden Filmstreifen von 3 cm nutzbarer Breite abgebildet wird. Die Vergrösserung (Verkleinerung) beträgt 1: 1/2 bis 1: 20 für Durchbiegungs-bezw. 1: 70 für Dehnungsmessungen. Die zur Aufspannung erforderliche Länge ist 60 cm, das Gesamtgewicht beträgt 15 kg.

Das Instrument ist in erster Linie zur Messung von Durchbiegungen geeignet und hat sich bei derartigen Messungen an Schienen bewährt.

b. Durchbiegungsmesser Optograph 3 (Zeiss-Kulka) (Abb. 7): Das Messprinzip wurde im Jahre 1927 im Schiffbau zuerst angewandt. Das Messgerät, welches mit Unterstützung der Deutschen Reichsbahn-Gesellschaft hergestellt

^{1.} Aufzeichnung schneller Schwingungen nach dem Ritzverfahren.

Pabst. Zeitschrift des VDI, 1929, Heft 46.

^{2.} Zur Frage der Dehnungs- und Schwingungszeichner.

Bross. Die Bautechnik, 1930, Heft 38.

^{3.} Optisch-photographische Formänderungsmessungen an Luftfahrzeugen.

Küssner. Jahrbuch 1930 der deutschen Versuchsanstalt für Luftfahrt, Berlin Adlershof. Beitrag zur Ermittlung von dynamischen Beanspruchungen in eisernen Brücken.

H. Kulka. Die Bautechnik, 1931, Heft 26.

R. Bernhard

wurde, befindet sich noch im Versuchsstadium. Die Durchbiegungen zur Bestimmung der elastischen Linie werden durch ein, mit einer photographischen Kamera versehenes, in Richtung des zu messenden Trägers aufgestelltes Fernrohr aufgenommen. Besondere Tripelprismen, welche die Eigenschaft haben, jeden eintreffenden Lichtstrahl genau parallel der Einfallsrichtung zu reflektieren, werden an den zu untersuchenden Messpunkten angebracht. Eine elektrische Glühbirne im Fernrohr dient als Lichtquelle. Die reflektrierten Bilder dieser punktförmigen Lichtquelle erscheinen in der Fernrohrkamera als leuchtende Punkte und auf dem vorbeigezogenen Filmband in der Kamera als gerade Linien. Veränderungen der Tripelprismen erzeugen mithin Veränderungen auf dem Filmstreifen, lotrechte Durchbiegungen entsprechende lotrechte Einsenkungen, auf der in Form einer Wellenlinie photographierten Abbildung der Tripelprismen.

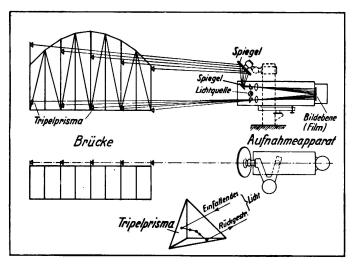
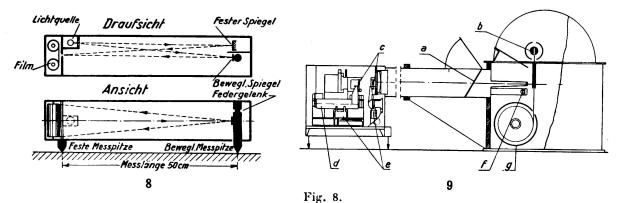


Fig. 7.

Optischer Durchbiegungsmesser Optograph (Zeiss-Kulka). Schema. Optographe Zeiss-Kulka pour la mesure optique des fléchissements. — Schéma. Optical Deflection Recorder. Optograph (Zeiss-Kulka). — General arrangement.


```
Tripelprisma. — Prisme à trois faces. — Equilateral prism.
Brücke. — Pont. — Bridge.
Lichtquelle. — Source lumineuse. — Source of light.
Spiegel. — Miroir. — Mirror.
Bildebene. — Plan de l'image (enregistrement). — Image.
Aufnahmeapparat. — Appareil d'enregistrement. — Receiving apparatus.
Einfallendes Licht. — Faisceau lumineux, arrivée. — Impinging light.
Rückgestrahltes Licht. — Retour du faisceau lumineux. — Reflected light.
```

Ein grosser Vorteil dieses Verfahrens liegt unzweifelhaft in der Möglichkeit, die Durchbiegung einer grossen Anzahl von Messpunkten auf einem einzigen Diagrammstreifen trägheitslos und absolut gleichzeitig zu erfassen. Die Auswertung der Diagramme, die nur unter sehr erheblicher Vergrösserung mit besonderen Messmikroskopen möglich ist, erfordert noch weitere Versuche.

3. Mechanisch-optische Geräte.

Bei den mechanisch-optischen Geräten ist darauf zu achten, dass insbesondere der mit Masse behaftete mechanische Teil nicht die Vorzüge des masselosen optischen Teils zunichte macht.

a, Spannungsmesser der Englischen Eisenbahn-Gesellschaften 1 (Fereday-Palmer) (Abb. 8): Der Spannungsmesser ist gleichfalls auf der letzten Tagung von Herrn Sektionschef Bühler 2 erwähnt worden. Er wird als Ein-Hebelgerät mit photographischer Registrierung ausgebildet. Die Ablenkung des Lichtstrahls erfolgt durch einen Spiegel, welcher auf einem, mit der beweglichen Messpitze unmittelbar verbundenen Hebel, angebracht ist. Elektrischer Vortrieb des 6 cm breiten Films ist möglich. Eine feste Messlänge von 50,8 cm, sowie feste Vergrösserung von 1: 100 ist vorhanden. Das Gewicht liegt hoch und beträgt 10 kg, die Einbaulänge 80 cm. Weitere Einzelheiten gehen aus der Zusammenstellung I hervor.

Mechanisch-optischer Spannungsmesser der Englischen Eisenbahngesellschaften (Fereday-Palmer). — Schema.

Appareil mécanique et optique pour la mesure des efforts. — Chemins de fer anglais (Fereday-Palmer). — Schéma.

Mechanical and Optical Stress Recorder of British Railway Companies (Fereday-Palmer).

General arrangement.

Draufsicht. — Vue en plan. — View from above.

Ansicht. — Profil. — Side view.
Fester Spiegel. — Miroir fixe. — Fixed mirror.
Beweglicher Spiegel. — Miroir mobile. — Movable mirror.
Film. — Bande d'enregistrement. — Film.
Federgelenk. — Articulation élastique. — Spring joint.
Bewegliche Messpitze. — Pointe fixe de mesure. — Movable measuring point.
Feste Messpitze. — Pointe fixe de mesure. — Fixed measuring point.
Messlänge. — Longueur de mesure. — Measured length.

Fig. 9.

Mechanisch-optischer Dreikomponentenerschütterungsmesser.

Appareil mécanique et optique pour l'étude des trépidations, suivant les trois composantes.

Mechanical and Optical Vibration Recorder by the three-component Method.

a) Beobachtungsspiegel. — Miroir d'observation. — Observation mirror.
b) Aufwickeltrommel. — Tambour d'enroulement — Drum for exposed film c) Spiegel. — Miroir. — Mirror.
d) Masse. — Masse. — Mass.
e) Dämpfung. — Amortissement. — Damping

e) Dämpfung. — Amortissement. — Damping.
 f) Lampe. — Lampe. — Lamp.
 g) Filmvorratstrommel. — Bobine de chargement. — Drum with unexposed film.

Besonders die englischen Eisenbahngesellschaften haben umfangreiche Versuche mit diesem Gerät angestellt. Es ist jedenfalls eines der ersten Geräte, welches sich die Vorteile der Vergrösserung durch einen masselosen Lichtstrahl zunutze gemacht hat, um dabei den Nachteil der photographischen Registrierung auf sich zu nehmen.

^{1.} Report of the Bridge Stress Committee London, 1928.

^{2.} Siche Fuss note 5, p. 459.

b. Mechanisch-optischer Erschütterungsmesser 1 (Schwayder, Hort, Angenheister) (Abb. 9): Das erst 1930 in den Handel gebrachte Gerät stellt einen Dreikomponenten-Schwingungsmesser nach seismischem Messprinzip (Unterfrequenzmessgerät) dar. Ähnlich wie bei dem eben beschriebenen Spannungsmesser (Fereday-Palmer) wird die Ablenkung eines Lichtstrahls mit Hilfe eines Spiegels auf einem Filmstreifen registriert.

Für die 3 Raumkomponenten (X-, Y- und Z- Achse) ist je ein Spiegel vorgesehen. Die Ablenkung des Lichtstrahls bezw. Drehung jedes Spiegels erfolgt durch drei, in den entsprechenden Raumachsen beweglich aufgehängte Pendelmassen. Sowohl die mechanische Übersetzung (Hebelverbindung zwischen Spiegel und Pendelmasse), als auch die optische Vergrösserung (Lichtzeigerlänge) sind veränderlich, so dass bis zu dreitausendfacher Übersetzung erreicht werden kann. Die Eigenschwingungszahl der drei Pendelmassen beträgt etwa 5 Hertz.

Bemerkenswert ist die veränderliche Dämpfung durch verschieden hohes Einstellen des Oberflächenspiegels eines, in besonderen Dämpfungsgefässen angeordneten Ölbades. Die Filmbandbreite beträgt 6 cm, das Gesamtgewicht etwa 33 kg; der Vortrieb ist bis zu 8 cm je Sekunde regelbar.

Das Gerät ist wegen seiner grossen Empfindlichkeit besonders zur unmittelbaren Messung von Erschütterungen mit sehr kleinen Amplituden geeignet.

4. Elektrisch-optische Geräte.

Bei den elektrisch-optischen Geräten kann die sehr wünschenswerte Trennung in Aufnahme- (Sende-) Gerät und Registrier- (Empfänger-) Gerät leicht mit Hilfe einer Kabelverbindung durchgeführt werden.

Vorausgeschickt sei ferner, dass eine völlige Beseitigung mechanischer Übertragungsteile, wie bei den rein optischen Messgeräten, nicht möglich ist, jedoch auf wenige untergeordnete Teile beschränkt werden kann. Eine photographische Registrierung lässt sich gleichfalls kaum vermeiden; die Beobachtung der Vorgänge während der Messung ist trotzdem erreicht worden. Auch kann man nach wenigen Sekunden Entwicklungszeit den Aufnahmefilm erkennen, und durch geschickte Anordnung von Lichtschleusen die Dunkelkammer beliebig betreten. Wagen oder Zelte zum Transport oder Aufstellung der Messgeräte an der Messtelle sind in jedem Fall erforderlich und ermöglichen stets den Einbau einer Dunkelkammer, falls nicht sogar Tankentwicklung ohne Dunkelkammer vorgezogen wird.

Solche Messgeräte, welche Diagramme in Form von Umhüllungskurven, also Schaulinien, bei denen nur die oberen, bezw. unteren Berührungslinien verwendbar sind, aufzeichnen, sind nicht weiter verfolgt worden.

Bei den zur Zeit benutzten und in der Entwicklung befindlichen, elektrischoptischen Messverfahren wird als Empfänger ein Oszillograph benutzt, der zunächst beschrieben werden soll:

Empfängergerät Oszillograph ² (Siemens und Halske) (Abb. 10): Der Oszillograph ist im vorigen Bericht vom Verfasser bereits erwähnt worden. Er besteht

^{1.} Drei-Koponenten-Erschütterungsmesser.

René Leonhardt. Die Bautechnik, 1931, Heft 49.

^{2.} Oszillographen. Zeitschrift des VDI, 1930, Heft 8.

im wesentlichen aus einem, in Form einer Drahtschleife ausgespannten Messorgan, das zwischen einem starken Elektromagneten nach Art eines Galvanometers aufgehängt ist. Durch die elektrodynamischen Wirkungen, die ein Magnetfeld auf stromdurchflossene Leiter ausübt, ergeben sich Schleifenausschläge bei Stromdurchgang. Auf der Schleife ist ein kleiner, nur 0,5. 0,5 mm grosser Spiegel befestigt, der in den Strahlengang einer Lampe eingeschaltet, seine Bewegungen auf einen beweglichen Filmstreifen projiziert. Es können sechs und mehr Schleifen nebeneinander angeordnet werden, also auf

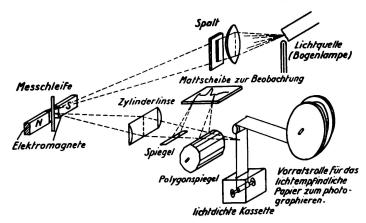


Fig. 10.

Empfänger zur Beobachtung und Aufzeichnung elektrischer Strom- oder Spannungsschwankungen. Schema des Strahlenganges in einem einschleifigen Oszillographen (Siemens und Halske).

Appareil récepteur pour l'observation et l'enregistrement électrique des variations de courants ou d'efforts. Trajet des rayons lumineux dans un oscillographe à un seul circuit (Siemens et

Receiver for Observation and Registration of Electrically Transmitted Current or Stress Oscillations. Passage of the Rays through the Single Moving-coil Oscillograph (Siemens and Halske).

Lichtquelle. — Source lumineuse (lampe à arc). — Source of light (arch lamp).

Lichtquelle. — Source lumineuse (lampe a arc). — Sour Spalt. — Fente. — Slit. Mess-Schleife. — Equipage mobile. — Moving coil. Elektromagnete. — Electroaimant. — Electro magnet. Zylinderlinse. — Lentille cylindrique. — Cylinder lens.

Zynnderinse. — Lentine Cynndrique. — Cynnder Iens.
Spiegel. — Miroir. — Mirror.
Mattscheibe zur Beobachtung. — Verre dépoli pour observation. — Frosted glass plate for observation.
Polygonspiegel. — Miroir polygonal. — Polygonal mirror.
Vorratsrolle. — Dispositif d'enregistrement phototographique. — Roll of unexposed sensitised paper for photographing.

Lichtdichte Kassette. - Bobine étanche. - Light-tight box.

ein und demselben 12 cm breiten Filmstreifen sechs Diagramme und mehr gleichzeitig aufgenommen werden. Bei den üblichen Schleifen entspricht 1 mm Ausschlag auf dem Film bei 1 m Lichtzeigerlänge etwa 5.10-5 Amp. Stromstärke. Die von der Deutschen Reichsbahn für Brückenmesszwecke benutzten Oszillographenschleifen besitzen eine Eigenfrequenz von 1500-15000 Hertz. Durch entsprechende Zusammensetzung des zur Dämpfung in den Oszillographenschleifen erforderlichen Öls wird genau halbaperiodische Dämpfung erreicht.

Bei mechanischen Geräten hat man es nicht ohne weiteres in der Hand, den gewünschten Dämpfungszustand zu erzwingen. Je nach den inneren Widerständen der Apparate, z. B. in den Gelenken, wird sich eine andere Dämpfung ergeben, die sich beim Transport und neuem Aufspannen der Messgeräte jeweils etwas verschiebt und gegebenenfalls eine wiederholte Eichung des Verzerrungsmasstabes nötig macht.

Die Bewegung der Schleisenausschläge kann auf stroboskopischer Grundlage während eines Versuches durch Beobachtung auf einem Polygonspiegel sichtbar gemacht, ja sogar eine Verwandlung von laufenden in dauernd sichtbare, gewissermassen stehende Wellen vorgenommen werden. Die Vergrösserung kann ohne die Diagrammstrichbreite zu verstärken, fast als unbeschränkt bezeichnet werden. Bisher ist in Verbindung mit einem Sendegerät der Deutschen Reichsbahn im Höchstfall mit einer 20000-fachen Vergrösserung gearbeitet worden.

Der Papiervortrieb ist, was bei mechanischer Aufzeichnung unmöglich erscheint, bis zu 4 m/sec stetig regelbar. Die Aufstellung und Bedienung des Oszillographen kann ganz unabhängig und auch selbsttätig in beliebiger Entfernung von der zu untersuchenden Messtelle in einem besonderen Wagen oder Zelt geschehen.

Zur Bestimmung des Zeitablaufs, in dem die Messungen vor sich gehen, kann als Zeitzeichen die Bewegung einer Stimmgabel (50 H Eigenschwingung) mitphotographiert werden. Für Brückenmesszwecke wird zweckmässig ein elektromagnetisch betätigter Unterbrecher eingebaut werden. Seine Erregung geschieht durch einen oder mehrere Kontakte auf, bezw. vor und auch hinter der Brücke, so dass die jeweilige Stellung, sowie Geschwindigkeit der Belastungsfahrzeuge, deren Achsen während der Überfahrt diese Kontakte niederdrücken, auf jedem Diagramm genau verzeichnet ist.

Der Oszillograph kann zur Aufzeichnung rascher Vorgänge, insbesondere infolge der Verwendung des masselosen Lichtstrahls als geeignetes Messgerät auch in der Bauwerksmesstechnik angesehen werden.

Sendegeräte:

Die beiden zunächst un I das unter d beschriebene Verfahren arbeiten mit Elektronenröhren. Gewisse Schwierigkeit bietet dabei der Anschluss von gleichzeitig mehreren Messgeräten, für die jeweils eine oder sogar mehrere Röhren erforderlich werden. Von den unter a bis d genannten Verfahren seien nur die grundsätzlichen elektrischen Schaltbilder erläutert und auf die Veröffentlichungen in den Fachzeitschriften verwiesen, da für die Messungen an Brücken erprobte Ausführungsformen zur Zeit noch nicht vorliegen.

a. Spannungsmessung nach dem Kondensatorverfahren i (Thoma und Sachsenberg) (Abb. 11):

Die Längenänderung der Messtrecke wird auf zwei sich gegenüberliegende Kondensatorplatten, von denen die eine mit der festen, die andere mit der beweglichen Messpitze verbunden ist, übertragen. Die Abstandsänderung dieser beiden Messplatten, die in einem durch eine Elektronenröhre zu hochfrequenten Schwingungen angeregten Kreis eingeschaltet sind, ruft Kapazitätsänderungen hervor. Hierdurch werden in einem zweiten, in Resonanz gekoppelten Schwingungskreis Änderungen der Stromstärke erzeugt, die durch

^{1.} Aufzeichnung schneller Schwingungen.

H. Thomas. Zeitschrift des VDI. 1929, Ilest 19.

Gerät zur Messung von Arbeitswiderständen und Beanspruchungen.

Sachsenberg, Osenberg und Gruner, Zeitschrift des VDI, 1928, Heft. 14.

eine weitere Röhre gleichgerichtet und erheblich verstärkt werden müssen. Die Ströme können einem Oszillographen zugeleitet und von ihm aufgezeichnet werden.

Dieses Messprinzip ist zunächst für Untersuchungen im Maschinenbau verwendet worden.

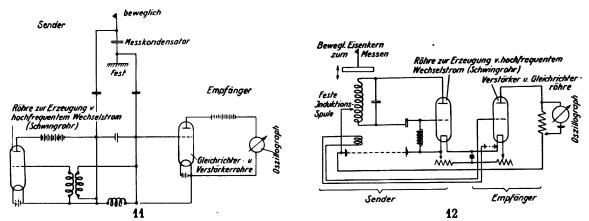


Fig. 11.

Elektrisch-optischer Dehnungsmesser nach dem Kondensatorverfahren. Elektrisches Schaltschema nach H. Thoma.

Appareil électrique et optique pour la mesure des allongements d'après la méthode du condensateur. — Schéma de montage d'après II. Thoma.

Electrical and Optical Extensometer by the Condenser Method. Wiring Diagramm according to H. Thoma.

Sender. — Transmetteur. — Trans Beweglich. — Mobile. — Movable. - Transmitter. Messkondensator. — Condensateur de mesure. — Measuring condenser. Fest. — Partie fixe. — Fixed.

rest. — Farne fixe. — Fixed.

Röhre zur Erzeugung von hochfrequentem Wechselstrom (Schwingrohr). — Oscillateur à haute fréquence. — Valve for generating highfrequency alternating current (Oscillator valve).

Empfänger. — Récepteur. — Receiver.

Gleichrichter und Verstärkerröhre. — Valve redresseuse et amplificatrice. — Amplifying and rectifying valve.

Oscillographe. — Oscillographe. — Oscillograph.

Fig. 12.

Eiektrisch-optischer Dehnungsmesser nach dem Induktionsverfahren. Elektrisches Schaltschema nach II. A. Thoma.

Appareil électrique et optique pour la mesure des allongements d'après la méthode d'induction-Schéma de montage d'après H. Thoma.

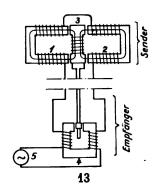
Electrical and Optical Extensometer by the Induction Method. Wiring Diagramm according to H. Thoma.

Bewegl. Eisenkern zum Messen. - Noyau magnétique solidaire de la pointe mobile de mesure. - Movable iron core for measuring

Feste Induktionsspulen. - Selfs fixes. - Fixed induction coils.

reste mauktonsspuen. — Seils axes. — rixed induction coils.
Röhre zur Erzeugung von hochfrequentem Wechselstrom (Schwingrohr). — Oscillateur à haute frequence. —
Valve for generating high frequency alternating current (oscillator valve).
Sender. — Transmetteur. — Transmitter.
Empfänger. — Récepteur. — Receiver.
Verstärker und Gleichrichterröhre. — Tube redresseur et amplificateur. — Amplifying and rectifying valve.
Oszillograph. — Oscillographe. — Oscillograph.

b. Spannungsmessung nach dem Induktionsverfahren (H. A. Thomas) (Abb. 12):


Das Verfahren unterscheidet sich von dem oben, unter a genannten Verfahren in erster Linie nur dadurch, dass an Stelle der beiden sich gegenüberstehenden Kondensatorplatten, diesmal eine Spule einer Metallplatte von hohem Widerstand gegenübersteht. Durch die Abstandsänderung zwischen Spule und

^{1.} Report of the Bridge Stress Committee, London, 1928.

468 P. Bernhard

Metallplatte, die einerseits mit der festen, andererseits mit der beweglichen Messspitze verbunden sind, werden gleichfalls Stromschwankungen in dem durch eine Elektronenröhre erzeugten, hochfrequenten Schwingungskreis hervorgerufen. Diese Stromschwankungen müssen durch eine weitere Röhre gleichgerichtet sowie verstärkt, einem Oszillographen zugeleitet und von ihm aufgezeichnet werden.

Das Messprinzip ist von den englischen Eisenbahngesellschaften bei Brückenuntersuchungen verwertet worden, wird aber für den rauhen Betrieb an der Messtelle als weniger geeignet bezeichnet.

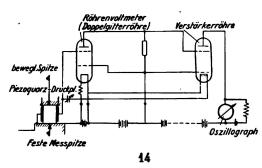


Fig. 13.

Elektrisch-optischer Dehnungsmesser nach dem elektromagnetischen Verfahren. Elektrisches Schaltschema nach Kamerer-Bernhard.

Appareil électrique et optique pour la mesure des allongements d'après la méthode électromagnétique. Schéma de montage d'après Kamerer-Bernhard.

Electrical and Optical Extensometer by the Electromagnetic Method. Wiring Diagram according to Kamerer-Bernhard.

Sender. — Transmetteur. — Transmitter.

Empfänger. — Récepteur. — Receiver.

1, 2: Feststehende Magnete (Senderteil). — Aimants fixes (Transmetteur). — Fixed magnets (Transmitter part).

3. Beweglicher Magnet (Senderteil), — Aimant mobile. — Movable magnet (Transmitter part).

4. Wattmetrische Schleife im Oszillographen (Empfängerteil). — Equipage mobile wattmétrique de l'oscillographe. — Wattmeter moving coil in the oscillograph (Receiver part).

5. Wechselstromgenerator (Empfängerteil). — Source de courant alternatif. — A. C. generator (Receiver part).

Fig. 14.

Elektrisch-optischer Beschleunigungsmesser nach dem Piezoquartzverfahren. Elektrisches Schaltschema nach Kluge und Linckh.

Appareil électrique et optique pour la mesure des accélérations d'après la méthode du quartz piézoélectrique. Schéma de montage d'après Kluge et Linckh.

Electrical and Optical Acceleration Recorder by the Piezoquartz Method. Wiring Diagramm according to Kluge and Linckh.

Bewegliche Messpitze. — Pointe mobile de mesure. Movable measuring point. Piezoquartz-Druckplatten. — Plaques de quartz-piezoelectrique travaillant à la compression. — Piezo-quartz

press plates. Feste Messpitze. -

Feste Messpitze. — Pointe fixe de mesure. — Fixed measuring point.
Röhrenvoltmeter (Doppelgitterröhre). — Voltmètre électronique (tube à deux grilles). — Valve voltmeter (Double grid valve).

Verstärkerröhre. — Amplificateur. — Amplifying valve. Oszillograph. — Oscillographe. — Oscillograph.

c. Spannungsmessung nach dem elektromagnetischen Verfahren 1 (Kammerer-Bernhard) (Abb. 13):

Das Verfahren, welches auch in den Vereinigten Staaten von Nordamerika verwendet worden ist, beruht ebenso wie das unter b genannte Messprinzip

^{1.} Veröffentlichungen der Westinghouse Elec. Mgf Co Pittsburgh. Versuchslaboratorium, Messgerät für kleine Dehnungen (Patent 31. März 1931).

auf Induktionswirkung eines in einem elektromagnetischen Felde beweglichen Ankers. Der zwischen den Magnetspulen des Senders angeordnete Anker ist mit der beweglichen Messpitze, die beiden Magnetspulen mit der festen Messspitze verbunden. Die Längenänderungen des Baugliedes und mithin Bewegungen des Ankers induzieren Ströme, die von einem, mit wattmetrischen Schleifen versehenen Oszillographen (Wechselstromoszillographen) aufgezeichnet werden. Wattmetrische Schleifen, d. h. Scleifen, die das Produkt aus Stromstärke und Spannung messen, sind gewählt worden, um die Schwierigkeit bei der Auswertung von sonst unvermeidlichen Umhüllungskurven zu umgehen.

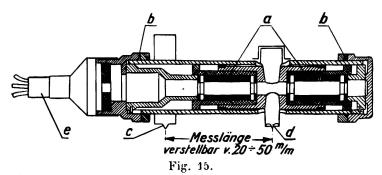
Sowohl die Magnetspulen des Senders, als auch die des Oszillographen zur Erzeugung der elektrischen Felder, werden mit ein- und demselben Wechselstrom von gleicher Periode gespeist. Die Frequenz des Wechselstroms (Trägerwelle) ist so hoch gewählt, dass die Oszillographenschleifen durch diesen Strom nicht in Schwingungen geraten.

Der Vorteil gegenüber den erstgenannten beiden elektrischen Verfahren liegt in dem Fortfall jeglicher Elektronenröhre. Das von der Deutschen Reichsbahn entwickelte Messgerät soll demnächst gleichfalls praktisch auf einer Brücke ausprobiert werden.

d. Beschleunigungsmessung nach dem Piezoquarz-Verfahren 1 (Risch, sowie Kluge-Linckh) (Abb. 14):

Die Druckänderung infolge irgendwelcher Beschleunigungen ruft Anderung der elektrischen Ladung eines oder mehrerer aufeinander gelegter Piezoquarz-kristalle hervor. Der Anodenstrom einer Elektronenröhre wird durch das Gitter dieser Röhre entsprechend der Ladungsänderung des Kristalls gesteuert. Diese Röhre muss unmittelbar neben dem Piezoquarzkristall angeordnet werden, sowohl um die Ladungsverluste durch Isolationsströme, die sich niemals ganz vermeiden lassen, möglichst zu verkleinern, als auch um die Kapazität niedrig zu halten und damit die Empfindlichkeit zu steigern. Diese erste Röhre gehört also mit zum Senderteil. Ihr Anodenstrom kann durch eine weitere Röhre verstärkt und dem Oszillographen zur Aufzeichnung zugeleitet werden.

Das Verfahren ist im Bauwesen u.a. bei Beschleunigungsmessungen von Verkehrserschütterungen praktisch verwertet worden. Die Beschleunigungskräfte, welche auf ein über den Piezoquarzkristallen angeordnetes Gewicht wirken, setzen sich in Druck- und mithin Ladungsschwankungen des Piezoquarzkristalls um.


Ein Vorteil der unter a, b und d genannten Verfahren liegt in der Möglichkeit, mit Hilfe von Elektronenröhren eine fast unbeschränkte, masselose Vergrösserung erzielen zu können. Inwieweit die empfindlichen Röhren dem rauhen Betrieb und sonstigen Einflüssen auf der Messtelle gewachsen sind, muss praktischen Versuchen vorbehalten bleiben.

^{1.} Messung von Verkehrserschütterungen. Risch. Verkehrstechnik 1929, Heft 40. Piezoelektrische Messungen von Druck- und Beschleunigungskräften. Kluge and Linckh. Zeitschrift des VDI, 1929, Heft. 37.

e. Spannungs-, Beschleunigungs- und Durchbiegungsmesser nach dem Kohledruckverfahren¹. Kohlefernmesser (Bernhard) (Abb. 15):

Der Kohlefernmesser ist im vorigen Bericht vom Verfasser² bereits genau beschrieben worden. Auf das Messverfahren soll daher hier nicht näher eingegangen werden. Wiederholt sei nur das Messprinzip, das auf dem in Abhängigkeit vom Druck veränderlichen elektrischen Widerstand von Kohleplättchen beruht.

Der Kohlefernmesser ist zur Zeit das einzige praktisch erprobte elektrische Sendegerät, welches ohne jede Elektronenröhre auskommt und trotzdem die erforderliche Vergrösserung erreicht. Ausserdem ist es von den elektrischen Sendegeräten dasjenige, welches bereits eine mehrjährige praktische Erprobung an Brücken durchgemacht hat. In Bezug auf sämtliche, bisher beschriebenen Verfahren ist hervorzuheben, dass es ohne nennenswerte Anderungen gleich-

Elektrisch-optischer Dehnungs- (Spannungs-) Beschleunigungs- (Schwingungs-) und Durchbiegungsmesser nach dem Kohledruckverfahren.
Längsschnitt durch einem Kohlefernmesser (Bernhard).

Appareil électrique et optique pour la mesure des allongements (efforts), des accélérations (oscillations), et des fléchissements, par compression de disques de charbon. Coupe longitudinale d'un télémètre à disques de charbon (Bernhard).

Electrical and Optical Recorder for Elongation (Stress), Acceleration (Oscillation), and Deflection, by the Carbon-resistance Method. Section of a Carbon-disc Telemeter (Bernhard).

Messlänge verstellbar von 20 bis 50 mm. - Longueur de mesure, réglable de 20 à 50 mm. - Measured length adjustable between 20 and 50 mm.

a) Kohlenringe. Disques de charbon. — Carbon disks.
b) Gewinde zur Veränderung der Vorspannung von a. — Écrou borgne pour réglage de la pression initiale des disques a. — Thread for changing the pressure in a.
c) Feste Spitze. — Pointe fixe de mesure. — Fixed point.
d) Bewegliche Spitze. — Pointe mobile de mesure. — Movable measuring point.
e) Kabelführung. — Arrivée et départ des càbles. — Cable inlet.

zeitig als Dehnungs- (Spannungs-), Durchbiegungs-, Schwingungs- und Beschleunigungsmesser an Bauwerken bereits verwendet worden ist. Die Weiterentwicklung gerade dieses Gerätes ist die folgerichtige Fortsetzung der Ergebnisse von Versuchen seit dem Jahre 1925, bei denen festgestellt wurde, dass die damals bestehenden Messgeräte den an sie zu stellenden Anforderungen noch nicht genügten. Es ist inzwischen gelungen, das Gewicht eines Senders auf 400 g bei einer Einbaulänge von nur 16 cm herunterzudrücken (Abb. 16). Ein noch kleineres Gerät von etwa 75 g Gewicht und 12 cm Einbaulänge befindet sich im Versuchsstadium.

^{1.} New Development in Electrical Telemeters. Petens. Am. soc. Testing. Mat., 1923, S. 592. Ferndehnungsmessungen an Schiffskörpern. Siemann. Zeitzchrift des VDI, 1926, S. 539.

^{2.} R. Bernhard, Bericht über die II, Internat. Tagung für Brücken- und Hochbau. Wien (Ausgabe 1929).

Bei Verwendung des Senders als Schwingungs- oder Beschleunigungsmesser ist nur eine andere Aufspannung erforderlich. Die bewegliche Messspitze wird dabei nicht in den Werkstoff gedrückt, sondern muss mit einem kleinen Zusatz-

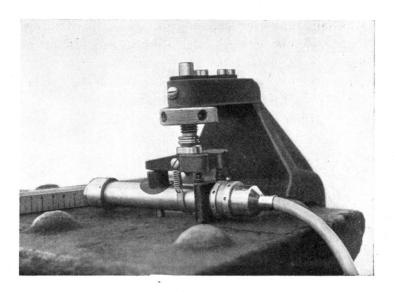


Fig. 16.

 $Kohle fermesser\ als\ Spannungs-\ (Dehnungs-)\ messer.$

Télémètre à disque de charbon utilisé comme appareil pour la mesure des efforts (allongements).

Carbon-disc Telemeter used as Stress (Elongation) Measuring Instrument.

gewicht versehen, frei in der Richtung der zu messenden Beschleunigungen ausschwingen können (Abb. 17). Der Sender arbeitet auch in diesem Fall als

Überfrequenzgerät, also anders als die sonst allgemein üblichen Schwingungsmesser der Erdbebenforschung, die meistens als Unterfrequenzmesser wirken.

Bei Verwendung des Senders als Durchbiegungsmesser müssen die, im Verhältnis zu den Spannungsdehnungen grossen Durchbiegungswerte verkleinert werden. Infolge des geringen Gewichtes und der kleinen Ausmasse des Senders genügt eine leichte Blattfederuntersetzung. Die dadurch hervorgerufene Verminderung der Eigenschwingungszahl bleibt weit über dem Vierfachen der raschesten Durchbiegungsfrequenzen.

Die grösste, bisher angewandte Vergrösserung betrug, in Verbindung mit einem Oszillographen, rd. 20 000, so dass Messungen an Massivstrassenbrücken bei Belastungen durch nur

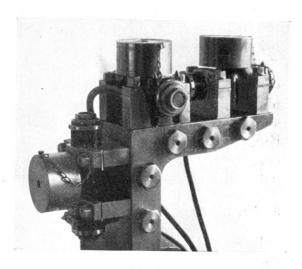


Fig. 17.

Kohlefernmesser. Sendergruppe als Dreikomponentenbeschleunigungs- (Schwingungs-) messer.

Télémètre à disque de charbon. Groupe transmetteur utilisé comme appareil de mesure des accélérations suivant les trois composantes (oscillations).

Carbon-disc Telemeter. Sending Set used as Acceleration (Oscillation) measuring device, by the Three-component Method.

ein einziges Belastungsfahrzeug ohne Schwierigkeiten durchgeführt werden konnten.

Wenngleich auch das Messprinzip, auf Grund veränderlicher Berührungswiderstände Messungen durchzuführen, in der Elektrotechnik nicht gern verwendet wird, so haben sich Befürchtungen, dass die Kohleplättchen raschen Schwingungen nicht schnell genug folgen könnten, als unbegründet herausgestellt; im Mikrophon, das auf demselben Grundsatz beruht, werden bekanntlich Sprachschwingungen von wesentlich höheren Frequenzen einwandfrei übertragen. Vor- und Nachteile seien hier, obgleich sie im vorigen Bericht bereits teilweise angeführt wurden, nochmals zusammengestellt und ergänzt.

Die Vorteile der elektrisch-optischen Messversahren sind hohe Apparateeigenschwingung und Vergrösserungsmöglichkeit, Bedienung und leichte Überwachung vieler Messgeräte gleichzeitig von einer Zentralstelle aus, also Ersparnis an Arbeitskräften; serner ist die absolute Koinzidenz der verschiedenen
Vorgänge auf einem Streisen, sowie Verringerung der Diagrammzahl durch
Wiedergabe auf einem Papierband von in weitesten Grenzne regelbarem Vortrieb, der damit verbundene Zeitgewinn und schliesslich die bei Beschaffung
mehrerer Sender kaum höheren Kosten als Vorteil zu bezeichnen.

Die Nachteile der elektrisch-optischen Verfahren liegen zweisellos in der nicht leichten Bedienung des Oszillographen, wobei freilich zu bemerken ist, dass auch sämtliche, selbst die einfachsten mechanischen, rein statischen Messgeräte unbedingt eingearbeitete Hilfskräfte erfordern; auch bedeutet die Notwendigkeit, die photographischen Diagramme erst entwickeln zu müssen, einen gewissen Zeitverlust.

Die Durchführung einer Grosszahlforschung ist nur durch gleichzeitiges Ansetzen vieler Apparate durchführbar. Die Erfassung mehrerer Messgrössen schon bei einer Belastungsfahrt wird durch elektrische Fernbedienung wesentlich erleichtert.

Die bisher durchgeführten, zahlreichen Messungen haben jedenfalls gezeigt, dass einige der auf elektrisch optischer Übertragung beruhenden Verfahren nicht nur als wissenschaftliche Laboratoriumsmethode geeignet sind, sondern auch in der Bauwerksmesstechnik mit Erfolg verwendet werden können. Kontrollmessungen oder einfachere Untersuchungen mit andern Messgeräten, deren Brauchbarkeitsgrenze hiermit gegebenenfalls festzustellen wäre, sollen jedoch damit keineswegs ausgeschlossen werden.

5. Zusammentassung.

Einige Hauptbedingungen, die demnach an registrierende Messgeräte zur Untersuchung dynamischer Vorgänge im Bauwesen gestellt werden müssen, sind kurz zusammengefasst zur Zeit etwa folgende:

- 1) Hohe Apparateeigenschwingungszahl. Grösser oder gleich 1200 H, damit masstabsgetreue Anzeige von Frequenzen bis zu 300 II sichergestellt ist.
- 2) Phasengleichheit; um Verzerrung von Teilschwingungen zu vermeiden.
- 3) Genauigkeit; bei mindestens tausendfacher Vergrösserung ± 2,5 %.
- 4) Einfache Eichmöglichkeit.

- 5) Leichte Bedienung; tunlichst mehrerer Messgeräte von einer zentralen Stelle aus.
- 6) Rascher Diagrammvortrieb; zur Aufnahme kurzer Vorgänge schneller Papier- (Film-) vortrieb (möglichst bis 2 m/sec regelbar).
- 7) Zeitliche Uebereinstimmung; möglichst Anzeigen von mehreren Messstellen auf einem Diagramm.

Für Spannungs- (Dehnungs-) messer:

- 8) Kurze Messlängen; möglichst unter 20 cm.
- 9) Empfindlichkeit; Anzeigen von etwa 5 kg/cm².

Diese Grundlagen stimmen im wesentlichen mit den bereits im vorigen Bericht gestellten Forderungen überein. Ob sie überhaupt alle durch einen einzigen Apparat erfüllt werden können, bleibt noch dahingestellt.

III. Besondere Hilfsmittel.

Schwingungsmaschine.

Zu den Hilfsmitteln, welche dynamische Untersuchungen erleichtern sollen und auf die in dem vorigen Bericht bereits hingewiesen wurde, gehören die Ver-

suche mit Schwingungsmaschinen 1.

Das Messverfahren beruht grundsätzlich auf der Erregung von Bauwerken zu Schwingungen mit Hilfe von künstlich erzeugten periodischen Impulsen, um durch Untersuchung des Verhaltens der Bauten gegenüber derartigen Lasten von genau bekannter, beliebig einstellbarer Grösse, Lage und Frequenz, Schlüsse auf die Eigenschaften und gegebenenfalls den Zustand des Bauwerks ziehen zu können.

Versuchsanordnung und Auswertung sollen wegen der Neuartigkeit des ganzen Verfahrens genauer beschrieben werden.

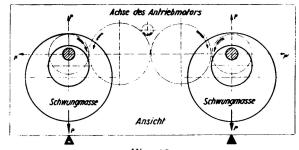


Fig. 18.

Schwingungsmaschine. Schema der Schwingmassenanordnung (Späth-Losenhausen).

Machine pour l'essai d'oscillation. Disposition des masses de mise en oscillation (Späth-Losenhausen).

Oscillating Machine. General Arrangement of the Oscillating Masses (Späth-Losenhausen).

Achse des Antriebsmotors. — Arbre de commande. — Axis

of the driving motor. Schwungmasse. — Masse de mise en oscillation. — Oscillating mass.

Ansicht. — Disposition d'ensemble. — Side view.

1. Versuchsanordnung: Die Schwingungserregung, bezw. die Ausübung von beliebig gerichteten und verschieden starken Kräften oder auch Kräftepaaren irgendwelcher Frequenz, die rein sinusförmig zu-, bezw. abnehmen, wird auf folgende Weise hervorgerufen :

Zwei exzentrisch gelagerte Scheiben, deren Drehsinn, sowie Exzentrizität beliebig einstellbar sind, werden durch einen Elektromotor angetrieben (Abb. 18). Je nach dem Drehsinn und der Stellung der beiden Schwungmassen zueinander (gleich- oder entgegengerichtet), können lotrechte bezw. wangerechte Impulse (P), und zwar Kräfte oder Momente in beliebigen Ebenen, auf das Bauwerk ausgeübt werden.

^{1.} Rein dynamische Verfahren zur Untersuchung der Beanspruchung von Bauwerken.

R. Bernhard und W. Späth. Der Stahlbau, 1929, Heft 6.

Während die lotrechten Kräfte z. B. bei Brücken in erster Linie zur Untersuchung der Hauptträger in Frage kommen, können die waagerechten Kräfte, vor allem winkelrecht zur Fahrbahnachse, zu Messungen an den Wind-, Bremsoder Schlingerverbänden Verwendung finden. Durch Momente (Kräftepaare) in lotrechten Ebenen, ebenfalls winkelrecht zur Gleisachse, ist die Torsionsteifigkeit von Brücken zu erforschen, also die räumliche Zusammenwirkung von Hauptträgern. Wind- und Querverbänden, was u. a. für einseitige Belastung zweigleisiger Brücken von Bedeuntung sein kann ¹.

Die nicht gewünschten Impulse (P) der beiden Schwungmassen heben sich infolge der gewählten Gegenläufigkeit von selbst auf. Durch Einstellen der Exzentrizität kann die absolute Grösse der Zentrifugalkräfte von beiden Schwungscheiben weitgehend verändert werden. Zur Bestimmung der in den verschiedenen Exzenterstellungen ausgeübten Zentrifugalkräfte wird das von den Scheiben ausgeübte Drehmoment auf einer sogennanten Schwerpunktswaage ausgewogen, wie sie zum Ausbalancieren von Rotationskörpern vielfach Verwendung findet. Hierauf kann durch Rechnung für jede Tourenzahl die zugehörige Zentrifugalkraft Z bestimmt werden, und zwar nach der bekannten Formel:

$$Z = m \cdot r \cdot \omega^2$$

worin m die Masse der Schwungscheiben, r die Exzentrizität und ω die Winkelgeschwindigkeit = $2.\pi$. n bedeutet (n = Anzahl der Schwingungen je Sekunde).

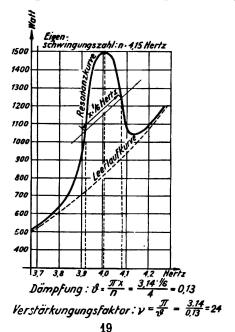
2. Versuchsauswertung: Der Strom zum Antrieb des Elektromotors muss, um Netzschwankungen auszuschalten, einer ortsbeweglichen Akkumulatorenbatterie entnommen werden. Nach Einschalten des Stromes wird die Tourenzahl langsam erhöht, und das Verhalten des Bauwerks bei den verschiedenen Umdrehungszahlen beobachtet. Jedes Bauwerk zeigt hierbei das Verhalten eines mechanischen Schwingungssystems. Die Durchbiegungen unter den periodischen Belastungen sind im allgemeinen sehr klein, erreichen jedoch in dem eng begrenzten Gebiet der Resonanz ausserordentlich grosse Werte.

Dieses Verhalten eines Bauwerks ist messtechnisch mit Hilfe verschiedener Methoden festzustellen. Man kann z. B. an beliebigen Stellen die sich ergebenden Durchbiegungen oder Spannungen mit Hilfe der früher ausgeführten registrierenden Messgeräte bestimmen. Durch Auftragen der Schwingungsamplituden in Abhängigkeit von der Frequenz wird dann eine Art Resonanzkurve des Bauwerks erhalten.

Da die im Bauwerk schwingende Energie proportional mit dem Quadrat der Schwingungsausschläge wächst, kann vorteilhaft nicht die Auslenkung selbst, sondern deren Quadrat aufgetragen werden.

Eine weitere Messung von besonderer Bedeutung besteht nun darin, die Leistung des Antriebsmotors zu bestimmen. Die vom Motor zu deckende Leistung wächst genau wie die oben erwähnte Energiekurve — Quadrat des Aus-

^{1.} Theorie und Berechnung der eisernen Brücken, F. Bleich.


Über die Verwindungssteifigkeit von zweigleisigen Eisenbahnfachwerkbrücken.

R. Bernhard. Der Stahlbau, 1930, Heft 8 u. 1931, Heft 21.

dizu	Bezeichnung		Messgrösser		E	-r 3 (z)	Sender				Empfänger			Besondere Vorteile	Besondere			
Messprinzip	Über- frequenz	Unter- frequenz	(bisher angewandt)	Messbereich etwa	Ver- grösserung	Eigen- schwingung (Hertz) etwa	Zahl	Mess- länge	Art	Gewicht	Zahl	Retric	egis- erung	Besond	Vorte	Nachteile		
Mechanisch	Schwei- zerische Bundes- bahnen		Dehnungen	20-1000 _r s cm ²	1:100		1	20 cm u. 40 cm		1 kg	ohne Vor- trieb			ramm	ınbar	Vergrösserung begrenzt		
		Vibrograph	Schwingun- gen	-	1:21	0,001-1	1	_	Schwere Masse 2 Hebel 5 Gelenke	1,6 kg	1			Diagramm unmitelbar erkeunbar		Niedrige Eigenfrequenz		
	Ritzver- fahren		Dehnungen	50-1000 ^{kg} / _{cm} ²	1:1	~ 2000	i	20 cm fest		0,5 kg)			K te Sen	iner der	Auswertung mit Mikroskop Vergr. bis 500 fach		
Mechanisch Optisch	Optograph	_	Durchbie- gung			_	1		Tripte Prisma	0.5 kg	~ 12	Photographisch-Film m Uhrweikvortrieb		Sync	hro- nus	Auswertung mit Mikroskop. Umrech- nung auf Dehnongen		
	Mikro- photograph	_	Durchbie- gung Dehnungen	$\frac{0.01\text{-}60 \text{ mm}}{30\text{-}1000^{\text{kg}}/_{\text{cm}}^2}$	2:1 bis 1:20 1:70	_	1	20 cm fest	Spule	15 kg	1					Vergrösserung begrenzt		
	rereday Palmer	_	Dehnungen	50-1000 ^{kg} cm ²	1:100	~ 170	1	50,8 cm fest	Spreget 1 Hebel	10 kg	1							
	·	3 Kompo- nenten Erschütte- rungsmesser	Schwingun- gen		bis 1:3000	~ 5	3		3 Spiegel 3 Hebet	33 kg	1			En findl ke	ip- lich- eit	Niedrige Eigenfrequenz		
Elektrisch-Optisch	Kondensator		Dehnungen		beliebig	_	1	_	2 Konden- satorplat- ten		~ 6	2 Rohren (12)	(12) Vortrieb			Niedrige Eigenfrequenz Elektronen- röhren Photographische Entwicklung		
	Induktion	_	Dehnungen	_		liebig	liebig		1	_	Eisenkern und Spule	_	~ 6	2 Röhren (12	Oszillograph Protograph,-Film mit Uchtr. Vortrieb	Beliebige Vergrösserung	Synchronismus	röhren (olumbir)
	Elektro- magnetisch		Dehnungen				1		3 Spulen	_	~ 6		illogra n mit Be Verg	Be Verg	Sync	Pho		
	Piezoquarz	_	Schwingung Beschleu- nigung	_		_	1	_	Piezoquarz u. 1 Rohre	,	~ 6	1 Röhre (6)	Osz phFiln			Elektronen- röhren		
	Kohlefern- messer		Durchbiegung Dehnungen Schwingungen Beschlenzigung	5-2000 kg 12	bis 20 600	1200 bis 1000	1	2-50 n.m	Kohle- plattchea	0.4 kg Ben- Ger	~ 6		Photogra	Photogra K einer Sender				

schlags — beim Durchgang durch eine kritische Eigenfrequenz des Bauwerks erheblich an.

Trägt man daher auf der X- Achse die Tourenzahl der Schwingungsmaschine und auf der Y- Achse die jeweilige Leistung des Antriebsmotors auf, was durch besondere Registrierinstrumente selbsttätig erfolgen kann, so erhält man Frequenzleistungsdiagramme (Abb. 19). Derartige Kurven sind massgebend

für das dynamische Verhalten eines Bauwerks und bilden die Grundlage für alle weiteren Untersuchungen.

Die gestrichelte Linie zeigt hierbei den Verbrauch an Leerlaufarbeit zur Überwindung der elektrischen und mechanischen Verluste der Prüfanordnung. Diese Kurve muss vorher für sich aufgenommen werden, wobei die Schwing-

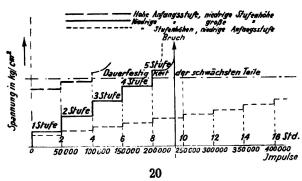


Fig. 19

Ergebnis eines Schwingungsversuches mit der Schwingungsmaschine. Frequenz-Leistungsdiagramm einer Brücke.

Résultats des essais d'oscillation effectués avec la machine spéciale de mise en oscillation. Diagramme fréquence. - Puissance absorbée, dans un pont.

Results of an Oscillation Test with the Oscillating Machine. Power-frequency Diagram on a Bridge.

Eigenschwingungzahl. — Fréquence propre d'oscillation. — Natural frequency. Resonanzkurve. — Courbe de résonance. — Resonance curve. Leerlaufkurve. — Courbe de marche à vide. — No-load curve. Dämpfung. — Amortissement. — Damping. Verstärkungsfaktor. - Coefficient d'amplification. - Amplifying factor.

Fig. 20.

Ergebnis eines Zerstörungsversuches mit der Schwingungsmaschine. Stufendiagramm bei einer Arbeitsfrequenz von rund 7 Hertz.

Résultats des essais de destruction effectués avec la machine d'essai d'oscillation. Diagramme progressif pour une fréquence de travail d'environ 7 Hertz.

Results of a Test to Destruction with the Oscillating Machine. Stage-Diagram for a working frequency of about 7 Hertz.

```
Spannung in kg/cm<sup>2</sup>. — Efforts en kg par cm<sup>2</sup>. — Stress in kg/cm<sup>2</sup>.

1. Stufe. — 1<sup>st</sup> échelon du taux de travail. — 1<sup>st</sup> step.

2. Stufe. — 2<sup>st</sup> échelon du taux de travail. — 2<sup>nd</sup> step.
Bruch. - Rupture. - Rupture
```

Dauerfestigkeit des schwächsten Teils. — Resistance à la fatigue des parties les plus faibles. — Fatigue Strength of the weakest parts.

Std. — Heures. — Hours. Impulse. — Nombres d'impulsions. — Impulses.

Hohe Anfangsstufe, niedrige Stufenhöhe. - Taux initial élevé, échelons faibles. - High initial stress, small

Niedrige Anfangsstufe, grosse Stufenhöhe. – Taux initial faible, echelons élevés. – Low initial stress, high

Niedrige Anfangsstufe, niedrige Stufenshöhen. — Taux initial faible, échelons faibles. — Low initial stress, low increases.

ungsmaschine auf eine starre Unterlage gestellt wird. Der Antriebsmotor hat in diesem Falle lediglich die Leerlaufverluste zu decken, während die eigentliche Arbeitsleistung, also die Erzeugung von Schwingungen durch die starre Lagerung künstlich auf Null gehalten wird.

3. Schwingungsversuche: Die eigentlichen Versuche mit der Schwingungsmaschine dienen nicht zur Untersuchung des Baustoffs selbst und auch im Allgemeinen nicht einzelner Punkte des Bauwerks, sondern wollen das Verhalten des gesamten Baukörpers und zwar auf rein dynamischem Wege erfassen. Dazu können also die eingangs erwähnten einzelnen statischen oder dynamischen Messungen von Dehnungen, Spannungen, Durchbiegungen, Schwingungen oder Beschleunigungen nicht gerechnet werden.

Die Erregung von Eisenbahnbrücken zu Schwingungen durch eine darüberfahrende Lokomotive und erst recht durch ganze Züge ist ein so verwickelter
Vorgang, dass eine Trennung von Ursache und Wirkung sehr erschwert wird.
Die Vereinfachung und klare Erfassung des Erregervorganges durch derartige
Schwingungsversuche ist zur Aufstellung systematischer Versuche sehr erwünscht.

Es sei hier erwähnt, dass bei weiteren Versuchen an Brücken angestrebt wird, die dämpfende Wirkung der Fahrbahn von Schienen, Schwellen, Bettung, sowie Längs- und Querträgern wahlweise auszuschalten, um gleichzeitig ihren Einfluss auf den Überbau selbst feststellen zu können.

4. Dauer- und Zerstörungsversuche: Man hat diese Versuchsmethode weiter ausgebaut und ist zu Dauerversuchen¹ übergegangen, die bis zur Zerstörung des Bauwerks durchgeführt werden.

Die Beanspruchung bis zum Bruch unter dauernd wechselnden Lasten, die sogenannte Dauerfestigkeit, beträgt nur einen Teil, etwa herunter bis zu 20 %, der einmaligen statischen Bruchbelastung. Die Bestimmung der Dauerfestigkeit spielt daher bei den neueren Werkstoffuntersuchungen eine wichtige Rolle.

Es sind Versuchsträger, Dachbindern oder kleinen Brückenbauten entsprechend, hergestellt worden, und nun die Impulszahl und -stärke, hervogerufen durch die Schwingungsmaschine, welche auf diesen Versuchsträgern befestigt war, so lange gesteigert worden, bis die ersten Brüche eintraten.

Ein Beispiel für ein Stufendiagramm, bei dem auf der X-Achse die Anzahl der stufenweise gesteigerten Impulse, und auf der Y-Achse die durch diese Impulse verursachte Spannung in dem zuerst zerstörten Bauglied aufgetragen ist, geht aus Abb. 20 hervor. Der Bruch trat in dem in der Abb. 20 gezeichneten Beispiel nach 235 000 Impulsen und 9 1/2 Stunden Versuchsdauer bei \pm 2 000 kg/cm² Beanspruchung der zerstörten Verbindung in der 5. Belastungsstufe ein.

Nur um einen Anhalt für die Bedeutung derartiger Zerstörungsversuche zu gewinnen, kann man sich z. B. eine Brücke vorstellen, die in 24 Stunden von 50 Zügen befahren wird und bei jeder Überfahrt einen derartigen Stoss als Höchstwert erleidet. Die Zerstörung nach 235 000 Impulsen käme dann einer Betriebsdauer von rund 13 Jahren gleich.

^{1.} Dauerversuche an genieteten und geschweissten Brücken.

R. Bernhard. Zeitschrift des VDI, 1929, Heft 47.

Auf diese Weise sind bereits eine Anzahl von Versuchsträgern aus verschiedenen Stahlsorten mit verschieden ausgebildeten Nietverbindungen, sowie auch geschweissten Knotenpunkten, untersucht worden.

Durch Einschaltung von schwächeren Gliedern, bezw. Verbindungen, können in gleicher Weise auch Versuche an Einzelstäben vorgenommen werden.

Ergänzt sind diese Versuchsreihen mit Hilfe von Temperaturmessungen. Durch Anbringung von Temperaturmessgeräten an den vermutlich zuerst zum Bruch neigenden Stellen, werden die auftretenden Wärmeschwankungen registriert. Es ist auf diese Weise gelungen, schwache Stellen der Konstruktion, deren Erwärmung vermutlich innerer Reibungsarbeit zuzuschreiben ist, lange vor Eintreten des ersten Bruches einwandfrei nachzuweisen.

5. Zusammenfassung.

- a) Vorteile des Verfahrens mit Schwingungsmaschinen.
- 1. Die Durchführung der Versuche ist verhältnismässig einfach und stellt keine besonderen Anforderungen an das Bedienungspersonal. Nach dem Aufsetzen auf das zu untersuchende Bauwerk ist die Schwingungsmaschine in wenigen Minuten messbereit.
- 2. Die Messung der grundlegenden Kennzisser eines Bauwerks, der Eigenabstimmung, ist auf etwa 1/10 H genau möglich. Diese Bestimmung erlaubt eine genaue Berechnung der übrigen dynamischen Eigenschaften.
- 3. Die Versuchsbedin jungen selbst, z. B. die Grösse der dynamischen Belastung, sind genau einstellbar und können insbesondere bei Kontrollmessungen beliebig oft wiederholt werden, eine grundlegende Forderung für vergleichbare Brückenprüfungen.
- 4. Gewöhnliche Belastungsversuche sind im allgemeinen nur in lotrechter Richtung, diese Versuche dagegen in beliebiger Richtung möglich, da sie von der Schwerkraft unabhängig sind.
 - b) Nachteile des Verfahrens.
- 1. Als Nachteil muss vorläufig die heute noch unentschiedene Frage betrachtet werden, ob es überhaupt gelingen wird, bestimmte charakteristische dynamische Eigenschaften der Bauwerke in Abhängigkeit von ihrem jeweiligen Bauzustand einwandfrei zu erkennen. Erst dann kann von einer praktischen Bedeutung des Verfahrens zur Überwachung z. B. von Brücken während des Betriebes, die Rede sein.
- 2. Die Frage, an welchem Punkte des Bauwerks bei schlechten Ergebnissen nun die schwache Stelle zu suchen ist, bleibt bei derartigen Verfahren ungelöst und wird dagegen stets örtlichen Untersuchungen. bezw, Messungen, vorbehalten bleiben.

IV. Anwendungsgebiete der Messverfahren.

Die Verwendung der nach obigen Grundsätzen entwickelten, dynamischen Messgeräte und- verfahren erstreckt sich auf das gesamte Gebiet des Bau- und Maschinenwesens, von dem hier nur einige wenige Beispiele genannt werden sollen.

1. Hoch- und Tiefbau.

Die Verhinderung der Übertragung von Schwingungen und Geräuschen im Erdboden und Gebäuden¹ ist eine wichtige Aufgabe im Hochbau. Die Schwingungs- und Geräuschdämpfung in grossen Sälen oder die zweckmässige Weiterleitung des Schalles ist vor allem durch Beschleunigungs- und Schwingungsmessungen (auch akustischer Natur) zu verfolgen. An die Erdbebenforschung (Seismik) muss dabei angeknüpft werden. Hier werden in vielen Fällen einfachere Messgeräte gute Dienste leisten, da die Anforderungen in Bezug auf die Aufnahme hoher Schwingungszahlen herabgesetzt werden können.

Im Tiefbau kommt in erster Linie die Erdbebenforschung, die Untersuchung der Tragfähigkeit verschiedener Bodenarten, die Bestimmung ihrer Bettungsziffer usw. in Frage. Hier sind u. a. Versuche mit Schwingungsmaschinen begonnen worden? Auch sind in diesem Zusammenhang dynamische Untersuchungen von Strassenfahrbahnen zu erwähnen; Versuche betreffend den Widerstand ihrer Oberfläche gegenüber verschieden bereiften, schnell fahrenden Fahrzeugen, sowohl in Bezug auf die Dauerhaftigkeit der Strassendecke, als auch in Bezug auf die Weiterleitung der Stösse und Geräusche in die Nachbarschaft, kommen dabei in Frage.

Im Tiefbau erstreckt sich ferner die Untersuchung von dynamischen Beanspruchungen insbesondere auf Fundamente. Die Berechnung von Maschinenunterbauten, deren Eigenfrequenzen möglichst oberhalb der Maschinendrehzahl liegen müssen, gehört mit zu den Aufgaben des Bauingenieurs. Bei rasch laufenden Turbinen, wo sich diese Forderung meistens nicht durchführen lässt, verlangt die Vermeidung einer Übereinstimmung zwischen Betriebsdrehzahl und irgend einer Fundamenteigenschwingung, bezw. eines Obertons, meist schwierige Berechnungen.

2. Maschinenbau.

Im Maschinenbau ist die Untersuchung von dynamischen Beanspruchungen bereits am weitesten fortgeschritten, in der Luftfahrttechnik sind jedoch die verschiedensten, dynamischen Probleme noch zu lösen. Eine Übereinstimmung der Torsionseigenschwingungszahlen von Kurbelwellen mit ihren Drehzahlen hat schon oft zu den gefährlichsten Dauerbrüchen geführt.

Im Schiffbau sind dynamische Untersuchungen, vor allem im hohen Wellengang, zu erwähnen. Resonanzerscheinungen an Zwischendecks oder der Aussenhaut in Verbindung mit dem Schraubenantrieb können zu besonders unangenehmen Störungserscheinungen führen. Auch hier sind u. a. Versuche mit Schwingungsmaschinen begonnen worden.

3. Eisenbahnbau.

Ferner ergibt der Eisenbahnbau mit Messungen an Fahrzeugen und am Oberbau ein weites dynamisches Arbeitsfeld. Die Bestimmung der Bewegung

^{1.} Messung von Verkehrserschütterungen, Risch, Verkehrstechnik, 1929. Heft 40.

^{2.} Die dynamische Bodenuntersuchung. Herrwig, Bauingénieur, 1931, Heft 25 u. 26.

der Fahrzeuge während der Fahrt durch dynamische Messgeräte spielt u. a. für die Begrenzung des Lichtraumprofils und die Beanspruchung des Fahrgestells eine wichtige Rolle. Am Oberbau ist gleichfalls die Bettungsziffer und die Spannung in den Schienen während der Überfahrt rasch fahrender Züge zu erforschen.

4. Brückenbau.

Schliesslich bildet der Brückenbau mit das wichtigste technische Neuland, da hier die dynamischen Beanspruchungen erhebliche Werte erreichen können, die noch wenig erforscht sind. Durch genaue Kenntnis der Schwingungsvorgänge lassen sich gegebenenfalls praktische Ersparnisse erreichen. Die Verringerung des Abstandes zwischen zulässiger Spannung und Streckgrenze, bezw. Dauerfestigkeit, wird wohl bei sicherer Messung der wirklich im Höchstfall auftretenden statischen und dynamischen Beanspruchungen, sowie genauerer Festlegung der Dauerfestigkeit der Werkstoffe und ihrer Verbindungen sich ermöglichen lassen.

Auf einige Untersuchungen im Brückenbau soll im nächsten Abschnitt näher eingegangen werden.

C. Zusammenfassung der bisherigen Ergebnisse.

I. Spannungs- und Schwingungsmessungen.

Als Ergebnis der bisher beobachteten dynamischen Zusammenhänge zwischen Fahrzeug und Brückenbau 1 kann man, wenn zunächst nur die lotrechten Schwingungen sowohl von den Überbauten wie auch von den Fahrzeugen als Ganzes in Betracht gezogen werden, vorläufig folgende Einteilung, ähnlich wie sie bereits im englischen Bericht 2 durchgeführt worden ist, vornehmen:

1. Eisenbahnbrücken.

- a. Bei Eisenbahnbrücken mit grossen Spannweiten, also niedriger lotrechter Eigenfrequenz, kann eine annähernde Übereinstimmung mit den lotrechten Lokomotiv-und Schwerwageneigenfrequenzen auftreten. Die dämpfende Wirkung der Federn der Fahrgestelle wird jedoch ein Aufschaukeln zu grösseren Schwingungen des Überbaues, und mithin erhöhten Stosszahlen, kaum zulassen.
- b. Bei Brücken mit mittleren Spannweiten und entsprechend höherer Eigenschwingung kommt eine Übereinstimmung mit den Fahrzeugeigenfrequenzen kaum in Frage; dagegen werden möglicherweise die unausgeglichenen, hin und hergehenden Massen von Dampflokomotivtriebwerksteilen als Erregerkräfte wirksam werden. Bei höheren, sogenannten kritischen Fahrgeschwindigkeiten können diese Erregerkräfte mit den Brückeneigenschwingungen zusammenfallen und gegebenenfalls zu erheblichen Aufschaukelungen und mithin erhöhten Stosszahlen führen.
 - c. Bei Brücken mit kleineren Spannweiten, also hohen Eigenfrequenzen,

^{1.} Brücke und Fahrzeug. Betrachtungen über ihre dynamischen Zusammenhänge. R. Bernhard. Bauingenieur, 1930, Heft 28.

^{2.} Report of the Bridge Stress Committee, London, 1928.

werden sowohl die lotrechten, verhältnismässig langsamen Eigenschwingungen der Fahrzeuge, als auch die Anstösse durch unausgeglichene Schwungmassen nicht zu Aufschaukelungen führen, schon allein aus dem Grunde, weil die Einwirkung der Erregerkräfte sich nur auf die sehr kurze Zeit der Überfahrt erstreckt.

Die durch unmittelbare Stosswirkung erhöhten dynamischen Beanspruchungen, die in erster Linie örtliche Verformungen und auch Schwingungen von Einzelgliedern hervorrufen, werden von diesen Betrachtungen nicht berührt. Der Stossweg, d. h. der räumliche Abstand zwischen Stosserregung und ihrer Auswirkung, also der jeweiligen Messtelle, spielt eine wesentliche Rolle.

2. Strassenbrücken

Bei Strassenbrücken liegen die Verhältnisse etwas anders. Es treten keine Erregerkräfte durch unausgeglichene Massen auf. Die durch rauhes Strassenpflaster hervorgerufenen Stösse erfolgen fast immer völlig unregelmässig. Sie können aber trotzdem zu erheblichen Schwankungen des Fahrzeugchassis und mithin, bei annähernder Übereinstimmung von Überbau und Fahrzeugeigenschwingung, zu Aufschaukelungen und erhöhten Stosszahlen führen. Insbesonders begünstigt hierbei die Fahrzeugabfederung eine Energieübertragung auf die Brücke und führt leicht zu Schwebungserscheinungen 1.

Im übrigen trifft die für Eisenbahnbrücken durchgeführte Dreiteilung in Strassenüberbauten mit grossen, mittleren und kleinen Spannweiten in gewissem Sinne gleichfalls zu.

Gefahrenpunkte bilden alle nicht genügend steifen Überbauten und Einzelglieder, also besonders schlaffe Schrägen, wie sie namentlich bei älteren Brücken häufig vorkommen.

Aus den bisher besprochenen Ergebnissen mit Dehnungsmessern geht hervor, dass es möglich ist, allein durch Auswerten von Spannungsdiagrammen bereits einige schwingungstechnische Erkenntnisse zu gewinnen. Dass diese Erkenntnisse nur einen ersten, kleinen Schritt auf dem grossen Gebiet der Brückendynamik bedeuten und durch eingehende theoretische Untersuchungen ergänzt werden müssen, ist selbstverständlich. Insbesondere muss eine Art Grosszahlforschung, an den einfachsten Trägern beginnend, systematisch weiter durchgeführt werden, um durch schrittweises Vorgehen zu immer schwierigeren Tragwerken, auch die vielfach zusammengesetzten Erscheinungen erkennen zu können.

Zusammenfassend kann gesagt werden:

- 1. Die Stosszahl, die den dynamischen Einfluss der Verkehrslasten erfassen soll, ist in bestimmten Fällen von der Spannweite des Überbaues, dem Fahrzeuggewicht und der Fahrgeschwindigkeit nur mittelbar abhängig.
- 2. Fahrzeug und Brücke sind in ihrer gegenseitigen Beeinflussung wesentlich von ihren schwingungstechnischen Eigenschaften abhängig. Die dynamischen Konstanten der Fahrzeuge haben einen erheblichen Einfluss auf die Stosszahl.
- 3. Es muss zwischen verschiedenen Schwingungsformen der Brücken und Fahrzeuge unterschieden werden.

^{1.} Brücke und Fahrzeug. Betrachtungen über ihre dynamischen Zusammenhänge.

R. Bernhard. Bauingenieur, 1930, Heft 28.

- 4. Bei Berechnung der Eigenschwingungszahlen ist der jeweilige Belastungszustand von Brücke und Fahrzeug zu berücksichtigen.
- 5. Inwieweit die beobachteten ungünstigsten Fälle nur Ausnahmen darstellen, insbesondere, ob bei Eisenbahnbrücken infolge der grossen Dämpfung der Fahrzeugfedern sowie der erhöhten Fahrgeschwindigkeiten (Impulszahl und Impulsfrequenz) und der mithin fehlenden Aufschaukelzeit Schwingungserscheinungen, die zu einer nennenswerten Erhöhung der Stosszahl führen, überhaupt regelmässig auftreten können, muss durch zahlreiche weitere Untersuchungen, die sich insbesondere auch mit den dynamischen Fahrzeugeigenschaften befassen, erst geklärt werden.

II. Schwingungsversuche.

Auf Grund der bisher durchgeführten Versuche mit Schwingungsmaschinen am fertigen Bauwerk und an fertigen Fahrzeugen kann wohl gesagt werden, dass eine Erweiterung der Kenntnisse unserer Bauwerksdynamik auch mit diesem neuen Verfahren zu erhoffen ist.

Es lassen sich Ermüdungs- und Alterungserscheinungen infolge periodischer Belastung in verhältnismässig kurzer Zeit studieren, die gegebenenfalls zur Verbesserung der dynamischen Eigenschaften der Bauwerke und Fahrzeuge, also zu konstruktiven Änderungen führen werden.

Dem Idealbild eines Bauwerkes gleicher Festigkeit, auch gegenüber dynamischen Beanspruchungen, wird man auf diese Weise möglicherweise näher kommen. Nur nach Messungen an zahlreichen, auf andere Weise bereits untersuchten neuen, sowie alten Bauwerken, deren guter bezw. schlechter Bauzustand daher im voraus bekannt ist, wird man in der Lage sein, für die mit diesem Verfahren dann neu zu messenden Bauwerke gleichsam Zeugnisse auf Grund ihres dynamischen Verhaltens aufzustellen.

III. Dauerversuche.

Die Ergebnisse der Dauerversuche können vorläufig wie folgt zusammengefasst werden:

1. Das Verfahren ermöglichst die Durchführung derartiger *Dauerversuche* an Versuchsüberbauten und Vergleiche zwischen verschiedenen Konstruktionen in verhältnismässig kurzer Zeit.

Insbesondere bei geschweissten Bauwerken wird dieses Versuchsverfahren Bedeutung gewinnen, da die üblichen Verfahren der dynamischen Werkstoffprüfung an einzelnen Schweissraupen oder Schweissnähten schwer durchzuführen sind.

- 2. Eine gewisse Erhöhung der Eigenfrequenz scheint innerhalb einer bestimmten Anzahl von Lastwechseln einzutreten.
- 3. Eine Erholung nach längeren Pausen, die im praktischen Betrieb stets vorhanden sind, wird auch nach Überschreitung des Höchstwertes obiger Erscheinung zunächst ebenfalls zugunsten der Dauerfestigkeit der Konstruktion anzunehmen sein.
- 4. Brüche einzelner Konstruktionsteile machen sich in einer sprunghaften Erniedrigung der Eigenfrequenz der verschiedenen Freiheitsgrade bemerkbar.

III. Essais de fatigue.

Les résultats actuels des essais de fatigue peuvent être résumés comme suit :

1. La méthode permet l'exécution des essais de fatigue sur des ouvrages d'essai en superstructure; elle permet également de faire une comparaison, dans un temps relativement court, entre différents ouvrages.

Elle présente une importance toute particulière en ce qui concerne l'essai des constructions soudées, étant donné que les méthodes courantes d'essai dynamique sur les cordons de soudure sont d'une exécution difficile.

2. Il semble que l'application d'un nombre déterminé d'alternances, dans le cas des charges variables, provoque, dans une certaine mesure, une augmentation de la fréquence propre.

3. Lorsque l'influence d'une série continue d'oscillations a dépassé les limites normales, il semble qu'après un temps d'arrêt assez long, la reprise de ces phénomènes exerce une action favorable sur la résistance de la construction à la fatigue. C'est d'ailleurs ce qui se passe toujours dans la pratique.

4. Des ruptures individuelles dans les éléments des ouvrages se manifestent par une réduction brusque de la fréquence propre, pour les différents degrés de liberté.

Zusammenfassung.

Der vorliegende Bericht enthält allgemeine Angaben über Messgrössen, Messgrenzen und Anforderungen an dynamische Messgeräte, sowie ihre Fehlerquellen und ihre Eichung. Nach kurzem Hinweis auf die Wahl der verschiedenen Messverfahren erfolgt eine Beschreibung der seit dem letzten Bericht des Verfassers auf der Internationalen Tagung für Brücken- und Hochbau in Wien 1928 weiter-, sowie neuentwickelten Messverfahren. Auf die in den gemeinschaftlichen Versuchen des internationalen Eisenbahnverbandes, insbesondere der Schweizerischen Bundesbahnen, der Französischen Nordbahn, der Englischen Südbahn und der Deutschen Reichsbahngesellschaft geprüften Messgeräte wird näher eingegangen. Auch einige, in letzter Zeit mehrfach verwendete, besondere Hilfsmittel neuzeitlicher Bauwerksmesstechnik werden beschrieben. Die Anwendungsgebiete der geschilderten Messverfahren sind gestreift. Zum Schluss folgt eine Zusammenfassung der bisherigen Messergebnisse mit den neuen Geräten.

Résumé.

Le rapport qui précède contient des indications générales sur les valeurs à mesurer, sur les possibilités et les limites d'application des méthodes de recherche scientifique, sur les exigences auxquelles doivent satisfaire les appareils de mesures dynamiques, ainsi que leurs sources d'erreurs et les méthodes d'étalonnage.