Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 1 (1932)

Artikel: Discussion
Autor: Spiller, J.W.

DOI: https://doi.org/10.5169/seals-618

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Selective formulae were also derived to determine which of the five possible

states of bridge oscillation is applicable in any particular case.

With the aid of the simplified formulae curves have been plotted for a wide variation of bridge masses and free frequencies, axle loads and hammer blows and for a given minimum diameter of driving wheel and further curves were drawn enveloping all mass frequency combinations to cover the maximum impact effects for each of the loadings considered. Finally a formula was derived to satisfy all these enveloping curves. The formula is expressed as an impact factor allowance in the familiar form of a proportion of the maximum live load and in terms of three elements only:

Engine hammer blow at some constant speed.

Axle loads.

Span length.

A paper dealing fully with the investigation outlined above will, it is hoped, be read shortly before the Institution of Civil Engineers.

Traduction.

En partant des conclusions formulées par le Bridge Stress Committee, subventionné par le Department of Scientific and Industrial Research, à titre de fondation, une étude théorique de l'effet de choc a été effectuée par certains de mes Collaborateurs au cours de ces deux dernières années. L'objet initial de ces recherches était d'élaborer des formules susceptibles d'être mises en application pour le calcul des ponts des chemins de fer coloniaux ; ces ouvrages, quoique présentant un caractère de simplicité, offrent cependant les caractéristiques les plus accusées.

L'importance de l'effet de choc produit par la locomotive varie comme le carré de la vitesse et l'influence d'impact résultante est maximum lorsque les pulsations produites par les machines sont en synchronisme avec la fréquence

d'oscillation du pont.

Pour les ponts de grande portée, le nombre d'oscillations par seconde est inférieur à la vitesse maximum des roues motrices en tours par seconde et le synchronisme ne peut se produire qu'aux faibles vitesses, c'est-à-dire lorsque l'importance de l'effet de choc pulsatoire produit par la machine est faible. La vitesse pour laquelle se produit le synchronisme dans les ponts à grande portée correspondra toujours à la fréquence d'oscillation du pont à pleine charge et est dénommée vitesse critique inférieure.

Dans les ponts de portée moyenne, le synchronisme complet peut également se produire, mais la valeur de la vitesse critique inférieure, pour ces portées, est plus élevée que pour les grandes portées. En outre, le synchronisme peut se produire à la vitesse critique supérieure, qui correspond à peu près à

la fréquence du pont non chargé.

Pour les ponts de faible portée, la vitesse critique d'oscillation du pont, en période par seconde, dépasse toute vitesse possible de la machine en tours par seconde; seul, un synchronisme partiel peut se produire entre les effets d'impulsion produits par la machine et la fréquence d'oscillation du pont.

Pour une gamme complète de portées, pour toute charge et pour toute impor-

tance de l'effet de choc pulsatoire exercé par la machine, il existe cinq conditions pour lesquelles peut se produire l'oscillation maximum du pont, une seule de ces conditions étant susceptible de produire l'effet de choc maximum pour une portée déterminée.

1. — L'oscillation maximum peut se produire à la vitesse critique inférieure,

les ressorts des locomotives étant bloqués par le frottement.

2. — L'oscillation maximum peut se produire à la vitesse critique inférieure, les ressorts étant en action.

3. — L'oscillation maximum peut se produire à la vitesse critique supérieure, les ressorts étant en action.

4. — L'oscillation maximum peut se produire à la vitesse limite de rotation des roues motrices de la locomotive, les ressorts étant en action.

5. — L'oscillation maximum peut se produire à la vitesse limite, les res-

sorts étant bloqués par le frottement.

Des formules ont été établies pour chacun des cinq cas d'oscillation du pont, dans lesquelles on a fait rentrer les caractéristiques les plus importantes des ponts et des charges; ces formules ont été ensuite simplifiées, de manière à ne laisser subsister que les éléments ci-dessous :

Masse du pont. — Fréquence propre. — Longueur de la portée. — Effet de

choc pulsatoire exercé par la locomotive. — Charges sur les essieux.

Des formules particulières ont été également établies pour permettre de déterminer laquelle des cinq conditions d'oscillation du pont peut être appliquée

dans un cas particulier déterminé.

En partant des formules simplifiées, on a tracé des courbes intéressant une gamme très étendue de masses de ponts et de fréquence propres d'oscillation, de charges par essieu et d'effets de choc dus aux machines, cela pour un diamètre minimum donné pour les roues motrices ; d'autres courbes se rapportent à toutes les combinaisons possibles entre les masses et les fréquences, couvrant les effets de choc maxima pour chacune des charges considérées. Enfin, une formule a été établie pour représenter toutes ces enveloppes. Cette formule est exprimée sous forme de valeur admissible pour le coefficient de choc ; on a adopté la forme habituelle d'un rapport à la charge roulante, en fonction de trois éléments seulement :

Effet de choc pulsatoire produit par la machine;

Charge sur les essieux;

Longueur de la portée.

On pense qu'un mémoire, exposant dans leur détail les investigations qui viennent d'être esquissées, pourra être présenté prochainement à l'Institution of Civil Engineers.

Dr. Ing. F. SCHLEICHER,

Professor an der Technischen Hochschule Hannover.

Für die angenäherte Berechnung der Eigenfrequenzen von elastischen Stabsystemen, wie z. B. von kontinuierlichen Balken und Vollwandrahmen, ist die Methode von Lord Rayleigh besonders gut geeignet. Diese Methode ist in der