Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 1 (1932)

Artikel: Discussion

Autor: Timoshenko, S.

DOI: https://doi.org/10.5169/seals-600

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

To simplify the problem, we can neglect the moving masses in comparison with the mass of the bridge and replace them by moving forces. In such a case we can investigate vibration of the bridge without any difficulty. In this manner it can be shown that smoothly running loads produce only a small dynamical effect. The principal causes of the impact effect are:

- 1. unbalance in locomotives and
- 2. impact due to various irregularities in the track and uneveness in locomotive wheels.

Investigation of vibrations shows that the principal mode of vibration of the bridge is the most important, and that a satisfactory approximation can be obtained by considering only this mode of vibration. In such a case we can take into consideration, not only the mass of the bridge, but also the moving mass and the damping in the bridge and in the locomotive springs. Proceeding in this way the British « Bridge Stress Committee » have shown that the amplitudes of vibration produced by locomotive unbalance can be calculated with a sufficient degree of accuracy. The calculations required are very laborious and till now they have not resulted in any simple formulae which can be easily applied.

This problem presents a great field for further investigations. We believe that in preparing a program for such investigations we must be guided by theoretical solutions. Further progress in the solution of the impact problem in bridges can be accomplished only by close contact between those doing theoretical work and those doing experimental work.

Traduction.

L'influence dynamique des charges mobiles sur les ponts est de grande importance, de sorte que dès l'établissement des premiers projets de ponts de chemin de fer l'ingénieur s'y est intéressé. Néanmoins, jusqu'à maintenant, la solution de ce problème n'a pas encore pu être établie d'une façon satisfaisante. Les règles pratiques adoptées dans les différents pays pour la détermination de l' « effet de choc » n'ont généralement aucune base scientifique, elles sont plutôt complètement empiriques.

Pour simplifier le problème on peut, par rapport à la masse du pont, négliger la masse des charges roulantes et remplacer ces dernières par des forces mobiles. En ce cas, le calcul des vibrations ne présente aucune difficulté et on peut prouver que des charges roulant sans secousses ne produisent qu'un effet dynamique peu important.

Les raisons principales des effets dynamiques sont :

- 1) un équilibrage imparfait des masses des locomotives,
- 2) des irrégularités de la voie ferrée et des inégalités dans la surface de roulement des roues des locomotives.

Les recherches ont démontré que l'oscillation principale d'un pont est le phénomène prépondérant, de sorte qu'elle seule constitue déjà une approximation satisfaisante de l'état de vibration réelle. En limitant les recherches à cette vibration principale, on peut tenir compte non seulement de la masse du pont, mais également de la masse mobile et de l'amortissement des vibrations

dans le pont et dans les ressorts des locomotives. Ce procédé a permis au «Bridge Stress Comittee» anglais de calculer les amplitudes des vibrations produites par les masses non-équilibrées des locomotives. Mais ces calculs sont très longs et n'ont pas encore abouti à une formule simple et facilement applicable.

Là se présente encore aux ingénieurs un vaste champ d'investigation. D'après notre avis, le programme des recherches doit être fixé suivant des considérations théoriques. De nouveaux progrès dans l'étude des influences dynamiques sur les ponts ne peuvent être obtenus que par une liaison étroite entre les recherches théoriques et expérimentales.

Dr. Ing. F. BLEICH, Baurat, Wien.

Herr Prof. Timoshenko hat in seinem Schlussatz einen Gedanken ausgesprochen, den ich als Motto vor meinen Bericht hätte setzen können; ich meine damit seinen Hinweis auf die Notwendigkeit der Zusammenarbeit zwischen Theorie einerseits und Versuchsforschung andererseits.

In der Geschichte der Bauwerksdynamik, die bis vor kurzen im wesentlichen eine Dynamik der Brücken war, sind deutlich 3 Phasen zu unterscheiden. In der ersten Epoche waren bedeutende Ingenieure bemüht, den grundlegenden Aufgaben der Dynamik auf theoretischem Wege beizukommen. Bedeutende Fortschritte sind hier zuerst in Frankreich und England später in Deutschland und Russland erzielt worden.

Die theoretischen Verfahren reichten aber nicht aus, besonders schwierige Fragen der Brückendynamik restlos zu beantworten.

Die scheinbar geringe Leistungsfähigkeit der Theorie war der Anlass, dass man in der zweiten Epoche, die etwa seit 1920 zählt, den dynamischen Problemen versuchstechnisch beizukommen bestrebt war. Das Ergebnis dieser Bemühungen sind ausgezeichnete Werkzeuge zur Messung der Schwingungen und zur Feststellung des dynamischen Verhaltens der Bauwerke.

Es scheint aber, dass auch auf diesem Wege keine endgiltigen und eindeutigen Ergebnisse, die dem Ingenieur bei der Bemessung der Brückenbauwerke dienen könnten, gewonnen werden konnten.

Und nun stehen wir am Beginn der jüngsten, dritten Phase, die mit der Erkenntnis ihren Anfang genommen hat, dass nur in der Zusammenarbeit von Theorie und Versuchsforschung jene Lösung liegt, die zum Erfolge führen kann.

Ohne Arbeitshypothese ist keine gedeihliche Versuchsforschung möglich, das ist eine alte Erfahrung jeder Wissenschaft. Wir sind mit der Theorie so weit, dass der Versuchsforschung eindeutige und klare Fragen gestellt werden können. Umgekehrt verfügen wir heute über die Apparate, die die Beantwortung dieser Fragen durch den Versuch ermöglichen. Eine Korporation von Theorie und Versuch muss daher zum Gelingen führen.

Mein Referat hat den Zweck gehabt, Ihnen einiges von dem vorzuführen, was von der theoretischen Seite her zu der zukünftigen gemeinsamen Arbeit