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II3
THEORIE DES DALLES A GHAMPIGNON

THEORIE DER PILZDECKEN
THEORY OF ¢ MUSHROOM " SYSTEMS .

Dr. M. T. HUBER,
Professeur & I'Ecole Polytechnique de Varsovie.

I. Introduction.

Les « dalles a champignon » sont en général des constructions en béton
armé, composées de hourdis horizontaux d'épaisseur constante et de piliers
sur lesquels ils s'appuient et (ui sont joints rigidement a eux. Les axes des
piliers forment sur le plan des hourdis un réseau 4 mailles d'ordinaire rectan-
gulaires ou carrées. Les fiits des piliers sont joints aux hourdis au moyen de
chapiteaux qui s'élargissent considérablement vers le haut. Ce genre de con-
struction est trés avantageux par le fait qu'il se comporte comme un monolithe
au point de vue de la stabilité, mais il rend difficile la détermination théorique
des tensions et des déformations pour des charges données. Une autre difliculté
théorique consiste dans le fait que le hourdis, en raison de son armature,
ne se comporte pas exactement comme une plaque isotrope, et par conséquent,
méme pour des fleches insignifiantes, on ne devrait pas, au sens rigoureux, y
appliquer 1'équation différentielle de LaGRaNGE :

YD 1, 4,,
) . . ... Ry o o b
¥ h) 1‘4 d xre ) y2 (/y4 B

ou p désigne la charge par unité de surface, B larigidité au fléchissement cylin-
drique du hourdis, rapportée a I'unité de largeur de la section.

La théorie des plaques orthotropes *2? qui tient compte de ce que les rigi-
dités de flexion B, et B, dans deux directions perpendiculaires x et y de la
plaque (I'armature étant supposée répartie uniformément) sont dilférentes,
ne peut y remédier, car cette théorie ne correspond pas exactement non plus a
la maniére d'armer appliquée dans les hourdis des dalles-champignons. On
sait que 1'armature est plus dense le long des cotés et quelquefois aussi le long
des diagonales de chaque panneau rectangulaire du hourdis dispos¢ entre les
quatre piliers les plus proches.

Cette théorie donne pour la surface élastique 1'équation différentielle
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4 a4 9. Voir I'annexe & la fin du rapport,
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H étant égal a ; -|—1 By + 2C,
: my

1

1
— , — étant les constantes généralisées de Poisson,
m,’ m
1 My

2 C la rigidité de torsion de la plaque.

Heureusement, dans ce qu'on appelle le premier stade (stade I) de la
déformation de la dalle qui correspond a toutes les charges emplovées effecti-
vement, les différences de résistance & la flexion pour les directions des diffé-
rentes armatures sont tellement insignifiantes, qu'on ne commettra pas d’erreur
grave en considérant la plaque comme isoirope. C'est pour cela que si l'on
considére la plaque comme illimitée, chargée complétement et uniformément,
on peut y appliquer la solulion exacte de I'équation (1), d’aprés la méthode de
NAVIER, qui consiste & se servir des séries de Fourier. C'est M. Lavoizxne qui,
en 1872, a le premier proposé cette solution!. Une autre solution ancienne
proposée par M. GrasHor? et appliquée en 1913 par M. F. Epov?® aux dalles-
champignons ne peut étre considérée que tout au plus comme une approxima-
tion assez grossiére, parce qu'elle ne satisfait pas aux conditions limites pour
I'effort tranchant.

La solution de M. Lavoixse admet que les réactions du chapiteau rectangu-
laire sont réparties uniformément. En réalité, la répartition des réactions doit
dépendre de la déformabilité du chapiteau, et la plaque se comporte, propre-
ment dit, comme si elle était élastiquement encastrée autour du chapiteau.

En tachant de résoudre le probleme d'une maniére exacte, on se heurte
encore a la complication due & ce qu'on nomme « l'éclisse », c'est-a-dire au
renflement de la plaque au-dessous et au-dessus du chapiteau (quelquefois
aussl au-dessus de la plaque). Le conlour de ce renflement est un carré,
un octogone, elte. ; il sert a économiser une armature trées forte autour du cha-
piteau du pilier. Cette éclisse (renflement) joue un role analogue a celui de la
sellette des étais des poutres continues en bois.

Lorsqu'il s’agit d'une charge pour laquelle on peut considérer que la solu-
tion de M. LavoInNNE est satisfaisante, les piliers sur lesquels les hourdis s’ap-
puient n'éprouvent qu'une simple compression sans (u'interviennent des
moments fléchissants. Les cas des charges qui produisent les plus grands
moments dans les piliers ont été étudiés, que je sache, pour la premiére fois par
MM. N. J. NieLsen'® et V. Lewg!! 1%

Les solutions exactes de MM. Lavoinng, LEwg, MesNaGer!2 et d'autres auteurs
présentent des séries trigonométriques doubles qui sont pour la plupart trop
compliquées pour permettre un calcul numérique pratique. Ce fait, & lui
seul, prouve le besoin et I'utilité de théories et de méthodes approximatives.
Le calcul des différences finies 13 @ 15 surtout en connexion avec la méthode de
M. H. Magcus ' 7 qui a imaginé un intéressant modéle de « tissu élastique »
{elastisches Gewebe), rendra un grand service dans ces théories.

L 1mporlance et le besoin urgent de méthodes approchees dans la prathue
découlent aussi de I'hétérogénéité des formes qui s’'imposent pour des raisons
de construction. Une certame irrégularité inévitable du réseau des piliers ou
bien des ouvertures dans le hourdis présentent des difficultés insurmontables
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lorsqu'on s’efforce de résoudre le probleme d'une maniére exacte. C'est pour
cela que, lorsqu'il s’agit d’applications pratiques immédiates, des méthodes
approximatives simples, comme celles qui ont été proposées par MM. L.
R. Nicors 12, TurNEAURE et MACURER 2, Marcrs ® et d’autres, jouent un role
important.

Toutes les théories qu'on a appliquées jusqu'a présent se rapportent aux
tensions et aux déformations ayant lieu dans le stade I, c’est-a-dire a celles
auxquelles participent les couches de béton qui s’étendent. Dans ce cas on peut,
avecunegrandeapproximation, considérerlarigidité aufléchissement dela plaque
comme constante, car les écarts du béton par rapport & la loi de Hooke n'ont
lieu presque exclusivement que dans le domaine des déformations permanentes
(plastiques) 22420, Cependant, si, conformément a la tendance de tous les cal-
culs de résistance nous allions chercher les tensions et les déformnations ui
correspondent i la charge limite, nous nous heurterions & des difficultés consi-
dérables, méme dans la conception théorique du probléme. Dans le stade II,
la rigidité au fléchissement B diminue considérablement et reste de nouveau
invariable, presque dans l'intervalle entier. Cette nouvelle valeur de B ne se
rapporte pas & la surface entiére de la plaque; certaines portions pour lesquelles
les valeurs des moments sont petites, conservent la valeur précédente de B.
C'est pourquoi la plaque se comporte ensuite comme si elle était composdée de
parties dont les rigidités seraient différentes 27,

Evidemment, le principe de superposition cesse de s'appliquer dans le stade
11, et par conséquent, au sens rigoureux, aucune équalion différentielle linéaire
d'une surface élastique n’est plus applicable. Néanmoins, un programme d'études
théoriques futures, qui consiste a décomposer la charge totale en deux parties,
parait possible (fig. 1). La premiére partie Q' (la rigidité au fléchissement
¢tant B') provoque des tleches 1 et des tensions ¢ 6
quicorrespondent a la fin du stadel, 'autre partis Q- /
Q' provoque des fleches supplémentaires w-w' et des (B)
tensions supplémentaires ¢-5’ qui leur sont propor-
tionnelles (le coefficient de proportionnalité n'étant
plus le méme) et qui correspondent & une nouvelle
rigidité au fléchissement B plus faible du stade 11. Iy
Au stade I, nous appliquons I'équation différentielle

de la théorie; au stade Il également, mais seule- & !

ment pour les charges et les fleches supplémen- !

taires. J W
Cependant, lorsque nous augmentons encore la e W]

charge, en passant au stade III, c’est-a-dire W

lorsque nous approchons la charge limite (charge Fig. 1.

de destruction), le diagramme théorique lui-méme

ne subsiste plus, car d'ordinaire les fleches deviennent si considérables, qu'elles
produisent des réactions d'extension dans la plaque. Ces réactions empéchent
un accroissement correspondant des fleches, c’est pourquoi la charge destruc-
tive est plus grande qu'on ne l'aurait supposé. On a constaté ceci depuis long-
temps, non pas pour des dalles-champignons, mais pour des constructions en
béton armé (ui sont con¢ues d'une maniére analogue.
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Il. Théories basées sur les solutions exactes de 1'équation
du fléchissement des plaques isotropes « minces ».

1. La solution de M. Lavoixxg, dont il a déja été question et quia été ensuite
trouvée indépendamment par M. LEwrE, donne I'équation de la surface élas-
tique pour une charge totale et uniforme d’une plaque illimitée d'épaisseur
constante h, lorsquon suppose ce qui suit : les piliers sur lesquels les hourdis
L s’appuient divisent la plaque en pan-

mﬂ neaux rectangulaires qui se touchent, de
T — ' T longueur 2 a et de largeur 2 b (fig. 2).
Les chapiteaux des piliers sont en con-
tact avec la dalle suivant des aires
également rectangulaires, orientées de
la méme maniére, et dont les dimen-
sions sont 2a’ et 2b5’. Nous admettons
que les réactions des chapiteaux sont
réparties uniformément, donc définies
2b par la charge de 1'unité de surface
| pr=r —111)11’ ou p' = £

| ap
AN X :
R NN en posant a’ = aa, b’ =2_0b.

2a | Les ordonnées de la fleche w, comp-

Fig. 2. tées a partir du plan horizontal passant

par le milieu de la face supérieure du

chapiteau (comme origine du systéme «, y), sont alors déterminées par la for-
mule (3}, (en posant z=a 5,y = b ) :

Qo
2 Yat sinmza b4 smr 15
(3) w=-—= =P — - ———-('l—cosm,._ +>‘ ——— (1—cosn=zg)+
=B mt mza =P
m=1 n=1
» ® R . _
e A Esmmzz.smnnﬁ 1 —cosmnZ.cosnzqy
- mzx.nws ) m2  n2
m=1 n=1 a2 + ]72

On en tire les formules (4) pour les moments « suppléants » :

et .
d2w0 2pa? 1 sinmrza
(&a) M =—B—, =— p2 — . ——— .cosm=i+
or o m mewa
m=1
® [- 2] . . 0
~ 3 sinmza.SInnTd COSMTE.COSNTY
4+ 2ht m2, - . TR T
mza.nwd (m2 b% 4 n2a?)
m=1 n=H{
2 b2 \0 1 sinnxf
. acw P A sinnwd
4 b) . My=— _— — . ——— .cosnxwr -+
( T dy? = n2’ nxj !
-n=1

N sinmza.SInNws cosSmrwZ.cosnz
—|—2a4 n2

mrza.nzl " (m2%b2 4 n2a2)?
m=1 n=1
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On voit que d’apres la théc_)rie des plaques minces, les moments véritables
sont déterminés par les formules (5), p. étant la constante de Poisson (au lieu

1 :
de E)’ Les efforts tranchants sont déterminés par les formules (6). Enfin nous

calculons les moments de torsion D d'apres la formule (7).

¥ D ! /
: [ My=M)+ M, " Vi= 55 (MM
[ M= M, + oM, V,— % (M, M)
oy
, Q2w
(7) P l)-B(l—p.)aJ;ay

Les valeurs des moments dans le cas de panneaux et de chapiteaux carrés,
et calculées d’aprés ces formules, sont représentées par les graphiques des fig. 3
et 4, empruntés en partie & la monographie importante de MM. WESTERGAARD
et Stater 28. Ces graphiques font voir clairement combien il est avantageux
d’augmenter les chapiteaux. On diminue ainsi considérablement, non seule-
ment les moments, mais aussi les efforts tranchants.

2. M. V. Lewe 2 a encore donné des solutions semblables pour de nombreux
cas de charge d'une plaque illimitée, cas qui sont importants au point de vue pra-
tique. En outre, il a calculé des tables qui facilitent beaucoup les applications.
A l'exception d'un cas dans lequel b : a = 2, tous les autres se rapportent &
un réseau carré de piliers, celui-ci étant le plus simple et le plus avan-

. . 1
tageux. On a toujours adopté des chapiteaux carrés, le rapport x étant de 3
[\

et % ; on a ensuite adopté égulement le rapport x = 3

Il existe une solution qui est particuliérement importante; c’est celle pour
laquelle lacharge est la plus désavantageuse pour la construction entiére de la
dalle-champignon, ce qui est le cas lorsque les panneaux disposés entre des
rangées paralleles de piliers sonl chargés alternativement. Des moments de
réactions apparaissent alors dans les chapiteaux. Dans'hvpothése la plus simple
au sujet de leur répartition, d'apres la tig. 3, M. LEWE trouve la solution géné-
rale exacte semblable a (3) et il calcule une table pour le cas x = 2 = % sa=h,

3. Les solutions qu'on a trouvées pour une plaque illimitée ne sont évidem-
ment plus justes lorsque la plaque est appuyée non pas seulement par le sys-
teme de piliers, mais aussi le long des bords par les parois du batiment (fig. 6).
Lorsque la projection horizontale de la dalle est un rectangle et que 'appui
linéaire des bords ne permet pas que les coins de la plaque se soulévent, il est
souvent possible de trouver une solution exacte par une superposition de solu-
tions particuliéres, comme on en trouve dans les travaux de MM. Esraxave 29,
B. G. Garergix 32 H. Hexeky?, M. T. Hoser? 7, H. Lei1z % 3, V. Lewe th 12
A. Mesnacer 37, A. Nipa138, S. TimosueEnko 39 et d’autres auteurs 49,

Le cas d’'un contour circulaire a été traité récemment par MM. W. Frucee #
et K. Hasxar-Konyr 22,

sy
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L'encastrement des bords de la plaque rend trés difficile la recherche de
solutions exactes pour des plaques rectangulaires, mais il la facilite lorsqu'il
s'agit de plaques circulaires.
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Fig. 3. — Coefficients (= M /¢ a*) des moments fléchissants « suppléants » dans un
panneau carré a l'intérieur d'une dalle chargée uniformément.
— Beiwerte (=M/q a*) der Ersatzmomente in einem quadratischen Mitlel-
feld der gleichformig belasteten unendlichen Pilzdecke.
—= Coefficients of Bending Moments in a Square Panel in the Interior of a
uniformly loaded Flat Slab. T
Moments le long du bord (M,) et de la ligne médiane (M,c}. — Die Ersatzmomente
lings der Seite (M;) und liings des Medianschnittes (Mi¢). — Moments along the
Edge (M,) and the Centre Line (M;c).
Moments en travers du bord (Ms) et de la ligne médiane (M,¢). — Die Ersatzmo-
mente quer zur Scite (M;) und quer zum Medianschnitte (Ms¢). — Moments
across the Edge (M.) and the Centre Line (Mac).

On peut d’ordinaire simplifier considérablement le calcul en admettant que
les réactions des piliers agissent comme des forces et des moments concen-
trés en un méme point; mais on ne trouve alors qu'une approximation de la
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solution exucle. Cette approximation est tout a fait satisfaisante pour la por-
tion entiére de la plaque qui reste lorsqu’on en élimine les surfaces des chapi-
teaux, et qu'on peut prévoir aisément en vertu du principe de SAiNT-VENANT.

~o22

Fig. 4.
Moments le long des diagonales (M)} et dans des sections perpendiculaires {Ms).
Die Ersatzmomenle lings des Diagonalschnittes (My) und quer dazu (My).
Moments along the Diagonals (M) and across them (Mg,

(I |||l|||||||||||||||||||||||||IIIIIIIIII||||I|l|||l||l||||||||I|I||||I
I ¥ %__l -

|

|

|

| | | |
| | !
|

Fig. 5. .

Nous citerons ici deux solutions auxiliaires pour les formes du conlour de
la dalle qu'on vient de nommer.
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a) Contour rectangulaire appuyé (fig. 7). La charge P est concentrée au
point (r, y;). La rigidité du fléchissement de la plaque dans les éléments lon-

AN N S \\ \\ \Q
B N
Sy N
\\T N
N 8 ; N IR \
N N
; N\
) 8 N\
AN N :\\ SANNNNNNN N \
AT R T Y
- § AR W
N N S W
O
5]
N N N N N
X
AR S

Fig. 6.

gitudinaux paralléles a I'uxe des X est égale a B, dans les éléments perpendi-
culaires, & B,. En posant :

Y
x,sag, x=a €~
b ﬁ’—[
9=87,
| X
Qa
Fig. 7
e L y “ Ty Y . . . a ! B_z
;:5, G:E’ ;1:—3 , 7;1:5, ;221—;1, ;’.—_—7) 1?1
nous trouvons pour £ <Z:
: Phz * /B, \ 1 . .
(8) w= 7B, \//E Z - (14+nz:Cthnz:—n=e:,Cthnz:3, —
n=1
Shnzzz,.Shnz:s

—nzeiCthnrel)

" sinnzr, sinnzy,
Shnxs 1

Pour = > %, il faut remplacer dans cette équation %, par Z,.
b) Contour circulaire (fig. 8) d'une plaque isotrope. Lorsque le bord est
parfaitement encastré, et en admettant la signification des lettres indiquée

sur la figure, on peut représenter la fleche par la formule relativement
simple 43 :
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\ Qiaz / / 1 _’
O+ w= e = — ) — it logmat 14 (1 —8)1 —¢) |

Pour la flecche dans un point supportant la force concentrée Q;, on trouve
d’apres 'équation (9) la formule :

___Qi32 c?\?
(|0>..7(,——m(\1——)

PY

r2= Xa_,_ye

5= (%) (-3

rw=cl+ri2cr cos( 19—«,-)

S
]

\-&O
[}
s Qs |l

e
n

Fig. 8.

En vertu de la condition que dans les points d’appui les fleches dues aux
charges doivent étre annulées par des fleches dirigées vers le haut dues a des
forcesinconnues X;, nous trouvons ces forces comme réactions des piliers.

Lorsque le contour circulaire de la plaque est appuyé et que les piliers sont
disposés symétriquement par rapport au centre, on peut trouver une solution
avec une grande approximation, en composant les fleches calculées, en tenant
compte de l'encastrement du berd, avec celles qui sont dues aux moments
d’encastrement de signes contraires, si 'on admet que ceux-ci sont répartis
uniformément.

17
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III. Théories basées sur des solutions approximatives
pour des fleches de plaques isotropes minces.

La principale méthode générale pour trouver des solutions approximatives
consiste a remplacer I'équation différentielle (1) pour la fleche de la plaque par
une équation a dilférences finies. I divisant la plaque en un réseau de car-
rés dont les longueurs finies des cotés sont  (fig. 9), et en désignant par p,
la charge par unité de surface du carré hachuré dont le milicu se trouve au
point 1, nous trouvons pour la surface élastique I'équation suivante a diffé-
rences finies :

AN, . . . 20w, — 8wy wytwy+wy)+ 2(wg + w4 w4 wy) -+
4
+- 10yt wy Wit w0y == Tfi

Cette équation fut appliquée par M. N. S. NieLsuy, dans son important
mémoire 10 cité plus haut, a la solution d'une
13 série de problémesde fléchissement de plaques,
et en particulier de dalles-champignon. Les
solutions de M. NieLsEN s’accordent trés bien
avec les résultats qu’on obtient en intégrant
I'équation différentielle de Lacrance, sauf,
10 12 §\§/§ 4 72 bien entendu, pour les points supportant une
N § force unique. Ce coté l'aib'le ne diminue cepen-
dant pas la valeur pratique de la méthode,
car les charges effectives sont toujours répar-
ties sur une surface linie.
/A Nous devons une importante simplification
~_,I _—.._,\_. de I'application du calcul des différences finies
a la méthode du tissu élastique de M.
H. Marces 17, dont on a déja parlé. Celte
méthode consiste a combiner I'équation dillérentielle pour la tleche de la plaque
sous la forme de :

* 2'2 _pP / 2:£_ Bi
(12 ... yrvie=4 (v —ax2+ay2)’

T
A

}

3
S

i

Fig. 9.

avec l'équation différentielle de la surface élastique d'une membrane, d'abord
plate et tendue uniformément par un effort de S kg/cm, et infiniment faible-
ment enfoncé par une charge de p’ kg/em2, perpendiculaire au plan de la mem-
brane, c’est-a-dire avec 1'équation : \

~

~

V2w’:—

2]

Comme dans la théorie des plaques

] 1 1 M.+M, M

* ¢2 = Désignation anglaise et allemande pour A.
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est I'invariant qui détermine la courbure moyenne de la surface élastique, nous
écrirons donc, en substituant M=w/’, I’équation du fléchissement de la plaque
sous la forme ;

8 . . ... ... ... vViw=—p

Rigoureusement parlant, ceci n’est autre chose (ue 1'équation du fléchisse-
ment d’'une mewmbrane tendue 2 1 kg/cm et chargée comme Fa plaque.

En intégrant cette équation, nous trouvons la répartition des moments M
sur la surface de la plaque. Maintenant, nous considérons M comme la charge
par unité de surface d'une autre membrane tendue avec un eflort égal a B,
conformément a I'équation (13); la fleche de cette membrane donne en méme
temps celle de notre plaque.

M. Marcus remplace par approximation le dispositif de la membrane tendue
d'une maniére continue par un tissu a mailles flinies chargé sculement duns
les neeuds. Les fils rectilignes de tissu s’appliquent tangentiellement a la sur-
face élastique, tout comme les cotés dun polygone funiculaire & la ligne de
fléchissement d'une poutre, selon I'analogie de Monr. La structure du tissu
peut étre dilférente, suivant le contour de la plaque. Le systéme du tissu per-
met de remplacer les é¢quations différentielles (13) et(14) par des équations &
différences linies, sous la forme :

v WPy,
(A5) . . . .o hwy—(wy vy + w0y g = N
qui sont beaucoup plus commodes & appliquer (ue les équations cilées au
début de ce paragraphe (voir fig. 9).

C'est d’apres cette méthode que M. Marcus a calculé la répartition des
moments dans une dalle-champignon pour une série de cas d’appui et de charge
importants au point de vue pratique. Ces calculs ont servi a juslilier une
méthode pratique approximative qu'on nomme méthode des cadres suppléants 17,
admise par les réglements ofticiels allemands de 1925, si l'auteur du projet
n'applique pas les résultals exacts de la théorie des plaques isotropes ou des
tissus élastiques.

IV. Lerdle des piliers dans la théorie des da.lles,.-chainpignons
et la méthode approchée des cadres suppléants.

Le calcul aussi exact que possible des efforts dans les piliers sous l'in-
fluence des charges prévues pourla dalle est tout au moins aussi important
pour la sécurité de celle-ci que le calcul des efforts dans la plaque. Il faut en
méme temps tenir comple de ce que la répartition la plus désavantageuse de
la charge utile est différente par rapport a la plaque et par rapport au pilier.

C'est ici que se pose l'important probleme des surfaces d'influence, lequel,
(ue je sache, n’a pas été traité jusqu’d présent d'une maniére exacte au point
de vue théorique. Bien que les mesures des fleches et des tensions aient été
effectuées au cours de nombreuses recherches expérimentales, surtout aux
Etats-Unis 28, o les dalles-champignons se sont répandues plus tot que dans
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les autres pays, nous devons néanmoins le premier essai de détermination
expérimentale des surfaces d'influence des fleches et des moments, aux
recherches de MM. IRos et Eiwcuinger, effecluées en 1925-1929 4,

Cependant, ces recherches ne s’occupent que des panneaux qui touchent
immédiatement le panneau étudié. Mais il n'est pas difficile de prévoir que,
s'll agit des moments au milieu des panneaux et au milieu de leurs cotés, il
faudrait tout au moins éludier également l'influence de la charge du troisiéme
panneau voisin du panneau étudié. Il serait fort désirable que les mesures
fussent complétées dans ce sens; il est vrai que ceci demande un trés gros
travail. ‘

L.es moments duns la plaque, autour du chapiteau, diminuent évidemment &
mesure que le diameétre de celui-ci croit, et elles atteignent leur valeur maximum
lorsque tous les panneaux sonl chargés. C'est pourquoi la surface d'influence
n'aurait pour eux u'une importance pratique minime. La surface d'influence

il
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Fig. 10. Fig. 11.

serait par contre fort importante pour les moments dans les piliers, mais sa
détermination expérimentale serait encore plus difficile. Ce serait d’ailleurs une
surface composée d’autant de parties qu'il y a d’étages dans le batiment. Une
étude de ce genre confirmerait probablement I'avis de tous les spécialistes que
la charge la plus désavantageuse par rapport aux piliers correspond bien au
schéma de la fig. 10. Par contre le schéma de la fig. 11 correspond aux valeurs
maxima des moments positils des parties médianes des panneaux chargées.
Les moments de l'encastrement des chapiteaux dans la dalle peuvent étre
trés exactement calculés, en prenant pour base la solution de M. Lewk, citée
en 11.2, d’apreés la condition que 'angle d’inclinaison de la section du pilier au
sommet du chapiteau est égal a 'angle d'inclinaison de 'élément de la plaque
qui y est superposée (Lewe, 1926, p. 52-54). On peut prévoir, méme sans
calcul, que la grandeur de ce moment M, dépend surtout du rapport de la rigidité
au fléchissement de la plaque B, & la rigidité relative du pilier, c’est-a-dire
EJ,
H

. (Jo désigne le moment d'inertie de la section du pilier,'H sa hauteur‘.)

BH ‘ :
Lorsque ce rapport v = == croit, M, décroit. M, doit encore dépendre

EJ,
de la position du point zéro des moments sur I'axe du pilier; donc du schéma
de la charge des étages, et encore de ce que la base du pilier peul étre
encastrée ou bien seulement librement appuyéé.
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S’il n’est pas possible d’adopter la division la plus avantageuse de la dalle
en panneaux carrés, et si I'on a des panneaux rectangulaires de largeur 25
dans la direction de l'axe des Y, de longueur 2a daps la direction de l'axe

. b
des X, b étant <C a, en diminuant le rapport - nous nous approchons des con-
a

ditions d'une plaque continue a travées égales. Si 'on imagine une zone d'une
telle plaque découpée pardes sections paralleles a X qui partagent en deux les
portées les plus petites des deux cotés d'une rangée de piliers, celte zone se com-
porte, avec une grande approximalion, comme une poulre continue posée sur
des supporls larges équidistants et ui réagissent élastiquement. Les dalles de
tous les étages et les piliers peuvent étre remplacées par le systéme approché
d'un portique i plusieurs étages. Ceci n’est évidemment admissible que
lorsque les charges portées par les différentes zones sont égules (fig. 12 a, b.
Pour d’autres charges, par ex. pour des charges disposées en échiquier fig. 12, ¢),
un systéme de ce genre ne conviendrait pas.

M. Marcus affirme dans son livre qu'une charge disposée en échiquier donne
pour les moments dans la plaque, des valeurs limites plus faibles qu’une
charge alternée de rangées de panneaux (fig. 12, a, b), et c’est pour cela qu'il
propose d'appliquer un portique fictif lorsqu’il s’agit de tous les rapportsa. b
employés en pratique. 1l y a par conséquenl, pour chaque dalle-champignon,
deux systemes de portiques fictifs, perpendiculaires entre eux. Ce systéme est
tout a [ait analogue au systeme des plaques rectangulaires que M. Marcus
recommande pour le calcul approximalif de ces plaques, d’apres les réglements
officiels allemands. Il s’agit ici d'un damier fictif, formé par des zones de la
plaque qu’'on a découpée d’abord parallélement au coté 2a, et ensuite paralle-
lementau coté 2 b. De nombreux théoriciens sont choqués par le caractére fac-
tice de tels systémes; on s’en sert néanmoins depuis longtemps en pratique,
de méme que l'on utilise, par exemple, des charges fictives pour calculer les
poulres des ponts. Le remplacement dune dalle-champignon par deux sys-
temes de portiques permet de se servir des méthodes du calcul de tels por-
tiques qui sont perfectionnées et simplifiées depuis longtemps, et c’est pour-
quoi le systéme du portique fictif est bien accueilli par les constructeurs. Les
moments dans la plaque fournis par le calcul doivent évidemment étre répartis
entre lazone des piliers et la zone intermédiaire entre les piliers, dans le rap-
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port que déterminent les résultats de la théorie des plaques. Les réglements
officiels allemands contiennent des formules simplifiées convenables.

V. Autres méthodes approximatives.

La seconde décade du siécle présent a apporté de nombreux essais d'applica-
tion de la méthode de RayLricH-Rirz & la solution des probléemes de plaques
el par conséquent aussi de dalles-champignons. On a trouvé par ex., dans les
cas de plaques appuyées sur les bords, des résultats complétement en accord
avec les solutions exactes de l'équation dilférentielle de Lacrange, lorsqu’on
posait un nombre infini de paramétres dans le développement de w ==f (z, y)
suivant les fonctions satisfaisant aux conditions des bords. En n'introduisant
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Fig. 13. — Graphique représentant 1'équilibre des forces et des moments qui agissent

sur un huitiéme ou un quart d'un pannecau carré.

Das Gleichgewicht der Krifte und Momente, welche ein Oktant und ecin
Quadrant cines quadratischen Deckenfeldes angreifen.

Diagram showing the Equilibrium of the Forces and Couples acting on an
Octant and a Quadrant of a Square Panel.

que peu de paramétres, on trouvait néanmoins des approximations assez bonnes.
Les efforts pour résoudre par cette méthode le probleme des dalles-champignons
n'ont cependant pas eu de succés, comme nous le savons maintenant. Nous
renongons a discuter les causes de ce fait, car cela nous demanderait des déve-
loppements mathématiques étendus; nous nous bornons a cette bréve mention,
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sans citer les ouvrages qui s’y rapportent et dont on trouvera une apprécia-
tion dans l'ouvrage de M. V. LEwg12.

Avant qu'on ait trouvé et appliqué les solutions exactes dela théorie dontil a
été question dans les par. Il et III, les ingénieurs praticiens des différents pays
ont essayé de se rendre compte des tensions dans les dalles-champignons, au moins
avec une approximalion grossiére, en se basant sur les plus simples considéralions
statiques. Lies méthodes ainsi élaborées n'ont a présent qu'une valeur historique,
la théorie ayant fait des progrés considérables; c'est pour cela ue nous pouvons
nous borner a ne présenter ici que le principe théorique de 1'une de ces méthodes,
élaborée aux Etats-Unis et pcu eonnue sur le continent européen. Ce schéma
a été le point de départ des réglements officiels américains pour le calcul des
dalles a champignon 9.

En admettant une plaque illimitée et divisée en panneaux carrés, la surface
étant chargée uniformément, et les chapiteaux des piliers étant circulaires, on
considére I'équilibre de deux huitiémes du panneau, que l'on imagine découpés et
qui sont représentés dans la tig. 13. Si 'on désigne par Q la surcharge du pan-
neau total, celle de chaque huitiemeest % . En raison de la symétrie, il n’y a pas
d’efforts tranchants dans les sections AOQ, AB et OE, et il n'y a pas non plus
de moments de torsion; la résultante des eflorts tranchants (des réactions)

le long des BE doit donc étre égale et directement opposée a la charge g

Par conséquent, le moment des forces extérieures peut étre aisément évalué
avec une grande approximation. Ce moment est équilibré par des moments
fléchissants répartis le long des quatre arétes de l'octant. Les vecteurs des
moments (absolus, et non pas par unité de largeur comme dans les formules
théoriques citées plus haul) forment un polygone fermé. La figure représente
les polygones pour les deux huitiemes qui forment un quart du panneau. On
s’apergoit immédiatement que la composante horizontale du moment général
~donné des forces extérieures, désignée par M,, est égale a la somme M(—) et
M(+), c.-a-d. a la valeur absolue des composantes des moments fléchissants
négatifs et positifs. Si nous déterminons donc la valeur de 1'un des membres
de I'addition, nous trouvons facilement 'autre. On trouvera une application
intéressante de ce schémadans le mémoire de MM. WEgSTERGAARD et SLATER 28.
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Résumé

[. Introduction.

Les difficultés pour la détermination théorique des déformations et efforls
dans une dalle a champignon proviennent :

1o de la connexion rigide entre la dalle et les colonnes.

20 de la flexibilité variable de la dalle et de I'influence des chapiteaux, ainsi
(que

3° du changement considérable de la flexibilité qui se produit au début du
slade 1I.

II. Les théories basées sur les solutions exactes de I'équation du fléchisse-
ment des plaques isotropes « minces ».

I1I. Les théories basées sur des solutions approximatives pour les fleches
de plaques isotropes « minces ».

IV. Le role des colonnes dans la théorie des dalles a4 champignon et la
méthode approximative des cadres suppléunts.

V. Autres méthodes approximatives,

Zusammenfassung.

I. Einleitung. Die Schwierigkeiten der theorelischen Bestimmung der For-
miinderungen und Spannungen in einer Pilzdecke stecken :

1. in der steifen Verbindung der Siulen mit der Decke,

2. in der ungleichférmigen Biegungssteifigkeit der Decke und der Wirkung
der Siwlenkopfplatte, und

3. im starken Wechsel der Biegungssteiftigkeit heim Uebergang in das Sta-
dium II der Decke.

II. Die Theorien, welche sich auf strenge Losungen der Biegungsgleichung
einer 1sotropen « diinnen » Plalte stiitzen.

III. Die Anwendung von angeniherten [osungen der Platltentheorie. Dif-
ferenzengleichungen und « elastische Gewebe ».

IV. Die Rolle der Siulen in der Theorie der Pilzdecken und die Methode
des stellvertretenden Rahmens.

V. Andere Niaherungsverfahren,
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Summary.

I. Introduction. — Difficulties of theoretical investigation of stress and
strain in flat slabs are found :

1. in the rigid joints between columns and ceiling ;

2. in non-uniform rigidity of ceiling and in the effect of abacus on the
head of the column;

3. inrapid change ofrigidity of ceiling during the transformation into stage II.

[l1. The theories based on exact solution of the bending equation of a thin
isotropic plate.

III. The application of approximate solutions of the plate theory. Difference
equations method and ‘¢ elastic web .

IV. The function of columns in flat slabs theory and the method of *‘ repla-
cing frames ”
V. Other approximations.
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