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II 3

THEORIE DES DALLES A CHAMPIGNON

THEORIE DER PILZDECKEN

THEORY OF " MUSHROOM " SYSTEMS

Dr. M. T. RUBER,
Professeur a TEcole Polytechnique de Varsovie.

I. Introduction.

Les « dalles ä Champignon » sont en general des constructions en beton

arme, composees de hourdis horizontaux d'epaisseur constante et de piliers
sur lesquels ils s'appuient et qui sont joints rigidement ä eux. Les axes des

piliers forment sur le plan des hourdis un reseau ä mailies d'ordinaire
rectangulaires ou carrees. Les füts des piliers sont joints aux hourdis au moyen de

chapiteaux qui s'elargissent considerablement vers le haut. Ce genre de
construction est tres avantageux par le fait qu'il se comporte comme un monolithe
au point de vue de la stabilite, mais il rend difficile la determination theorique
des tensions et des deformations pour des charges donnees. Une autre difliculte
theorique consiste dans le fait que le hourdis, en raison de son armature,
ne se comporte pas exactement comme une plaque isotrope, et par consequent,
meme pour des fleches insignifiantes, on ne devrait pas, au sens rigoureux, y
appliquer l'equation differentielle de Lagrangr :

[ } D-r4 ^"d^dy* dy* B'
oü p designe la charge par unite de surface, Bla rigidite au flechissement cylin-
drique du hourdis, rapportee ä l'unite de largeur de la section.

La theorie des plaques orthotropes 4 ä 9 qui tient compte de ce que les rigi-
dites de flexion Bx et B2 dans deux directions perpendiculaires x et y de la
plaque (l'armature etant supposee repartie uniformement) sont differentes,
ne peut y remedier, car cette theorie ne correspond pas exactement non plus ä

la maniere d'armer appliquee dans les hourdis des dalles-champignons. On
sait que l'armature est plus dense le long des cötes et quelquefois aussi le long
des diagonales de chaque panneau rectangulaire du hourdis dispose entre les

quatre piliers les plus proches.
Cette theorie donne pour la surface elastique l'equation differentielle

(2) B, —. + 2 11 — 4- B2 —-A />,x ' 1 O.r4 l dx2dy2 2D.V4

4 a 9. Voir l'annexo a la fin du rapport.
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H etant egal ä
1 ^ + 1 ^ + 2C,° 2 ra2 2 mx11— — etant les constantes generalisees de Poisson,

mx m2

2 C la rigidite de torsion de la plaque.

Heureusement, dans ce qu'on appelle le premier stade (stade I) de la
deformation de la dalle qui correspond ä toutes les charges employees effecti-
vement, les differences de resistance ä la flexion pour les directions des
differentes armatures sonttellement insignifiantes, qu'on ne commettra pas d'erreur
grave en considerant la plaque comme isotrope. C'est pour cela que si l'on
considere la plaque comme illimitee, chargee completement et uniformement,
on peut y appliquer la Solution exacte de l'equation (1), d'apres la methode de

Navier, qui consiste ä se servir des series de Fourier. C'est M. Lavoinne qui,
en 1872, a le premier propose cette Solution1. Une autre Solution ancienne

proposee par M. Grashof2 et appliquee en 1913 par M. F. Eddy3 aux dalles-
champignons ne peut etre consideree que tout au plus comme une approxima-
tion assez grossiere, parce qu'elle ne satisfait pas aux conditions limites pour
l'effort tranchant.

La Solution de M. Lavoinne admet que les reactions du chapiteau rectangulaire
sont reparties uniformement. En realite, la repartition des reactions doit

dependre de la deformabilite du chapiteau, et la plaque se comporte, propre-
ment dit, comme si eile etait elastiquement encastree autour du chapiteau.

En tachant de resoudre le probleme dune maniere exacte, on se heurte
encore ä la complication due ä ce qu'on nomme « l'eclisse », c'est-ä-dire au
renflement de la plaque au-dessous et au-dessus du chapiteau (quelquefois
aussi au-dessus de la plaque). Le contour de ce renflement est un carre,
unoctogone, etc. ; il sert ä economiser une armature tres forte autour du
chapiteau du pilier. Cette eclisse (renflement) joue un role analogue ä celui de la
sellette des etais des poutres continues en bois.

Lorsqu'il s'agit d'une charge pour laquelle on peut considerer que la Solution

de M. Lavoinne est satisfaisante, les piliers sur lesquels les hourdis s'ap-
puient neprouvent qu'une simple compression sans qu'interviennent des
moments flechissants. Les cas des charges qui produisent les plus grands
moments dans les piliers ont ete etudies, que je sache, pour la premiere fois par
MM.N. J. Nielsen10 et V. Lewe1112

Les solutionsexactes de MM. Lavoinne, Lewe, MESNAGERllaet d'autres auteurs
presentent des series trigonometriques doubles qui sont pour la plupart trop
compliquees pour permettre un calcul numerique pratique. Ce fait, ä lui
seul, prouve le besoin et l'utilite de theories et de methodes approximatives.
Le calcul des differences finies l3 ä 15, surtout en connexion avec la methode de
M. H. Makcus 16' 17 qui a imagine un interessant modele de « tissu elastique »

(elastisches Gewebe), rendra un grand service dans ces theories.
L'importance et le besoin urgent de methodes approchees dans la pratique

decoulent aussi de Theterogeneite des formes qui s'imposent pour des raisons
de construction. Une certaine irregularite inevitable du reseau des piliers ou
bien des ouvertures dans le hourdis presentent des difflcultes insurmontables
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lorsqu'on s'efforce de resoudre le probleme d'une maniere exacte. C'est pour
cela que, lorsquil s'agit d'applications pratiques immediates, des methodes

approximatives simples, comme Celles qui ont ete proposees par MM. I.
R. Nichols 19, Turneaure et Maurer 20, Marcus 21 et d'autres, jouent un röle
important.

Toutes les theories qu'on a appliquees jusqu'a present se rapportent aux
tensions et aux deformations ayant lieu dans le stade I, c'est-ä-dire a celles

auxquellesparticipent les couches de beton qui s'etendent. Dansce cas on peut,
avecunegrandeapproximation, considerer la rigidite auflechissement dela plaque
comme constante, car les ecarts du beton par rapport ä la loi de Hooke n'ont
lieu prescpie exclusivement que dans le domaine des deformations permanentes
(plastiques) 2-:*2,;. Cependant, si, conformement ä la tendance de tous les
calculs de resistance nous allions chercher les tensions et les deformations qui
correspondent ä la charge limite, nous nous heurterions ä des difficultes consi-
derables, meme dans la conception theorique du probleme. Dans le stade II,
la rigidite au flechissement B diminue considerablement et reste de nouveau
invariable, presque dans l'intervalle entier. Cette nouvelle valeur de B ne se

rapporte pas ä la surface entiere de la plaque; certaines portions pour lesquelles
les valeurs des moments sont petites, conservent la valeur precedente de B.
C'est pourquoi la plaque se comporte ensuite comme si eile etait composee de

parties dont les rigidites seraient differentes 27.

Evidemment, le principe de superposition cesse de s'appliquer dans le stade
II, et par consequent, au sens rigoureux, aucune equation differentielle lineaire
d'une surface elastique n'est plus applicable. Neanmoins, un programmedetudes
theoriques futures, qui consiste ä decomposer la charge totale en deux parties,
parait possible (fig. 1). La premiere partie Q' (la rigidite au flechissement
etant B') provoque des fleches w' et des tensions <j'

qui correspondent ä la fin du stade I, l'autre partie Q-
Q' provoque des fleches supplementaires rv-w' et des
tensions supplementaires <jV qui leur sont propor-
tionnelles (le coefficient de proportionnalite n'etant
plus le meine) et qui correspondent ä une nouvelle
rigidite au flechissement B plus faible du stade II.
Au stade I, nous appliquons l'equation differentielle
de la theorie; au stade II egalement, mais seulernent

pour les charges et les fleches supplementaires.

Cependant, lorsque nous augmentons encore la
charge, en passant au stade III, c'est-ä-dire
lorsque nous approchons la charge limite (charge
de destruction), le diagramme theorique lui-meme
ne subsiste plus, car d'ordinaire les fleches deviennent si considerables, qu'elles
produisent des reactions d'extension dans la plaque. Ces reactions empechent
un aecroissement correspondant des fleches, c'est pourquoi la charge destruc-
tive est plus grande qu'on ne Taurait suppose. On a constate ceci depuis long-
temps, non pas pour des dalles-champignons, mais pour des constructions en
beton arme qui sont coneues d'une maniere analogue.

/B

(B)

W

Fig. 1.
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II. Thöories basäes sur les Solutions exactes de l'equation
du flechissement des plaques isotropes « minces ».

1. La Solution de M. Lavoinne, dont il a dejä ete question et qui a ete ensuite
trouvee independamment par M. Lewee, donne l'equation de la surface
elastique pour une charge totale et uniforme d'une plaque illimitee d'epaisseur
constante h, lorsqu'on suppose ce qui suit : les piliers sur lesquels les hourdis

s'appuient divisent la plaque en pan-
neaux rectangulaires qui se touchent, de

longueur 2 a et de largeur 2 b (fig. 2).
Les chapiteaux des piliers sont en con-
tact avec la dalle suivant des aires
egalement rectangulaires, orientees de
la meme maniere, et dont les dimensions

sont 2 a' et 2bf. Nous admettons
que les reactions des chapiteaux sont
reparties uniformement, donc definies

par la charge de l'unite de surface
ab p

Int ynttt

II- I-2ßbrmm
2*a~

26

^m^^ ^^
2a

P P a'b' ou P -h«ß

en posant a' ona, b' ß b.
Les ordonnees de la fleche w, comp-

Fi 2 tees ä partir du plan horizontal passant
par le milieu de la face superieure du

chapiteau (comme origine du Systeme x, y), sont alors determinees par la
formule (3), (en posant x= a \,y b yj) :

(3) -iL sin m-üi
mr. x

(1—cosrn^;) + V -
Z)4 sin/1::;

(1—cos/i^)-h

+ *I 1
n= 1

sin m r* a. sin n 1 — cos mnz. cos rnzr/
mr. a./i: +

n*\
b*)

On en tire les formules (4) pour les moments « suppleants »

(4 a)

(4i>)

M'—R^'-_^&X2 T2

'JQ CC

i

2pb

CO

Zum2
sinmxa

r 1 n 1

M-a=- B d*w
3.V*

sinmj;a.sinrci:ß
m -x a. n z£

1 sin/iwß

cosms; +

cosmz;.cosnxi; I

(m* b* + n*a*)* J

ViZt n* »s?

+ 2a 2 I'"
in =^ 1 n 1

COS/lTCY) +

coswttc
mr.oi.n:

\mr.q. cos /i z y;
I

i2b2 -\ n2a2f I
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On voit que d'apres la theorie des plaques minces, les moments veritables
sont determines par les formules (5), \j. etant la constante de Poisson (au lieu

de — Les efforts tranchants sont determines par les formules (6). Enfin nous
m]

calculons les moments de torsion D d'apres la formule (7).

(5).
i M. M'1+!*M',

• • (6)- • •

/ M^M'. + ^M',

\ l dx

V -1
\

2
?.'/

D B(1 ;;.)
D* "'

(M'a+MV)

Les valeurs des moments dans le cas de panneaux et de chapiteaux carres,
et calculees d'apres ces formules, sont representees par les graphiques des fig. 3

et 4, empruntes en partie ä la monographie importante de MM. Westergaard
et Slater 28. Ces graphiques fönt voir clairement combien il est avantageux
d'augmenter les chapiteaux. On diminue ainsi considerablement, non seulernent

les moments, mais aussi les efforts tranchants.
2. M. V. Lewe 12 a encore donne des Solutions semblables pour de nombreux

cas de charge d'une plaque illimitee, cas qui sontimportants au point de vue
pratique. En outre, il a calcule des tables qui facilitent beaucoup les applications.
A l'exception d'un cas dans lequel b : a 2, tous les autres se rapportent ä

un reseau carre de piliers, celui-ci etant le plus simple et le plus

avantageux. On a toujours adopte des chapiteaux carres, le rapport a etant de -11. 1

T e* ö '•> on a ensuite adopte egalement le rapport a T>

II existe une Solution qui est particulierement importante; c'est celle pour
laquelle lacharge est la plus desavantageuse pour la construction entiere de la

dalle-champignon, ce qui est le cas lorsque les panneaux disposes entre des

rangees paralleles de piliers sont charges alternativement. Des moments de
reactions apparaissent alors dans les chapiteaux. Dans l'hypothese la plus simple
au sujet de leur repartition, d'apres la fig. 5, M. Lewe trouve la Solution generale

exacte semblable ä (3) et il calcule une table pour le cas a ß=^ \a=b.
3. Les Solutions qu'on a trouvees pour une plaque illimitee ne sont evidem-

ment plus justes lorsque la plaque est appuyee non pas seulernent par le
Systeme de piliers, mais aussi le long des bordspar les parois du bätiment (fig. 6).
Lorsque la projection horizontale de la dalle est un rectangle et que l'appui
lineaire des bords ne permet pas que les coins de la plaque se soulevent, il est
souvent possible de trouver une Solution exacte par une superposition de
Solutions particulieres, comme on en trouve dans les travaux de MM. Estasave 29,

B.G. Galerkin30*33, H. Hexcky-", M. T. Hiber5* 7, H. Leitz33' 3<\ V. Lewe11' 12,

A. Mesnager37, A. Nädai38, S. Timoshenko39 et d'autres auteurs40.
Le cas d'un contour circulaire a ete traite recemment par MM. W. Flügge41

et K. Hajnal-Künyi 42.
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L'encastrement des bords de la plaque rend tres difficile la recherche de

Solutions exactes pour des plaques rectangulaires, mais il la facilite lorsqu'il
s'agit de plaques circulaires.
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+006
OV392

030a
025a

00498
00452
004Q8

M,
+O04

O20Q
*Of5a.

00359

O02

Q02 M. •00232
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-00267
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-003t9004 006(JOS92

O0498
004S2
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008 0020 0225
00210M> m:

O10

00232
002SO
00267012 002

00284
0O319-014 -004

ai6

r -<m

-020

Fig. 3. ¦ Coefficients(= M/qa-) des moments flechissants « supplcants» dans un
panneau carre ä Tinterieur dune dalle chargee uniformement.

— Beiwerte {=M/qa2) der Ersatzmomente in einem quadratischen Mittel¬
feld der gleichförmig belasteten unendlichen Pilzdecke.

— Coefficients of Bending Moments in a Square Panel in the Interior of a

uniformly loaded Fiat Slab.
Moments le long du bord (Mi) et de la ligne mediane (\l\c). — Die Ersatzmomente

längs der Seite (Mi) und längs des Medianschnittes (Mic). — Moments along the
Edge (Mi) and the Centre Line (Mic).

Moments en travers du bord (M2) et de la ligne mediane (M2c). — Die Ersatzmomente

quer zur Seite (M2) und quer zum Medianschnitte (M2C). — Moments
across the Edge (M2) and the Centre Line (M2C).

On peut d'ordinaire simplifier considerablement le calcul en admettant que
les reactions des piliers agissent comme des forces et des moments concen-
tres en un meme point; mais on ne trouve alors qu'une approximation de la
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Solution exacte. Cette approximation est tout ä fait satisfaisante pour la por-
tion entiere de la plaque qui reste lorsqu'on en elimine les surfaces des chapiteaux,

et qu'on peut prevoir aisement en vertu du principe de Saint-Venant.

4\

+00400283
00231

*002
0O239
00225
0 0210

tjT^io
M>

M, tooz'S'OBS

f004
01&

-006

-O08

-OTO

-V12

-014

-OIO

-OT18

020

022

Flg.
Moments le long des diagonales (Mi) et dans des sections perpendiculaires (M2).

Die Ersatzmomente längs des Diagonalschnittes (Mt) und quer dazu (Ma).
Moments along the Diagonals (Mi) and across them (M2

ö
Fig. 5.

Nous citerons ici deux Solutions auxiliaires pour les formes du contour de
la dalle qu'on vient de nommer.
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a) Contour rectangulaire appuye (fig. 7). La charge P est concentree au
point (xj i/i). La rigidite du flechissement de la plaque dans les elements lon-

^m^m^m^
a\\\\>\\\\\\\\\\\\\\\\\\^\\^^^ ^mNNNmw

^ 0 ^

^\\\\\\V\\\^\\V\^\\\\\\\^^^^ ^^\\\\\\W^

0

D

\v\\\\m\\\^v^^^^ mvwmw

Fig. 6.

gitudinaux paralleles ä Taxe des X est egale ä Bl3 dans les elements perpendiculaires,

ä B2. En posant :

*?*$ '?*$,-

rh
X

Fig. 7.

X y •rj Vi
~a ' r'=I> ;i_l ' r«=b i2-

a »/B,

nous Irouvons pour | ^c, :

,y, Pb* 4
/iT2 y "

[ 1 -f- n - s Cth n - z — n - s r2 Cth ra x s c2 —

/iTZc^Cth/lTTc;
Shn-£Co.Sh n-i\

sin /i^ y)! sin /i-y;Sh/i-s
Pour £_> ?i il faut remplacer dans cette equation ;2 par ;x.
Z>) Contour circulaire (fig. 8) d'une plaque isotrope. Lorsque le bord est

parfaitement encastre, et en admettant la signification des lettres indiquee
sur la figure, on peut representer la fleche par la formule relativement
simple 43 :
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Pour la fleche dans un point supportant la force concentree Q,, on trouve
d'apres l'equation (9) la formule :

Qi

i W i "i—' et —

^

(=¦%¦ r xz+ij2

rf= c*+r2- 2ci r cos($-cCi)

Fig. 8.

En vertu de la condition que dans les points d'appui les fleches dues aux
charges doivent etre annulees par des fleches dirigees vers le haut dues ä des
forces inconnues X,, nous trouvons ces forces comme reactions des piliers.

Lorsque le contour circulaire de la plaque est appuye et que les piliers sont
disposes symetriquement par rapport au centre, on peut trouver une Solution
avec une grande approximation, en composant les fleches calculees, en tenant
compte de l'encastrement du bord, avec Celles qui sont dues aux moments
d'encastrement de signes contraires, si l'on admet que ceux-ci sont repartis
uniformement.
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m. Thäorles bas6es sur des Solutions approximatives
pour des flaches de plaques isotropes minces.

La principale methode generale pour trouver des Solutions approximatives
consiste ä remplacer l'equation differentielle (l) pour la fleche de la plaque par
une equation ä differences finies. Ei divisant la plaque en un reseau de carres

dont les longueurs finies des cötes sont X (fig. 9), et en designant par p^
la charge par unite de surface du carre hachure dont le milieu se trouve au
point 1, nous trouvons pour la surface elastique l'equation suivanle ä

differences finies :

in; 20 Wj -8(>/;2+w3-f ?/'44-w5)-f 2(w6-f- w7 + ivs-\-wd)-{-

13

10 ^¦ 12

B

Cette equation fut appliquee par M. N. S. Nielsion, dans son important
memoire 10 cite plus haut, ä la Solution d'une
serie de problemesde flechissement de plaques,
et en particulier de dalles-champignon. Les
Solutions de M. Nielsen s'accordent tres bien
avec les resultats qu'on obtient en integrant
l'equation differentielle de Lagrange, sauf,
bien entendu, pour les points supportant une
force unique. Ce cote faible ne diminue cependant

pas la valeur pratique de la methode,
car les charges effectives sont toujours repar-
ties sur une surface finie.

Nous devons une importante simplification
de l'application du calcul des differences finies
ä la methode du tissu elastique de M.
H. Marcus 17, dont on a dejä parle. Celle

methode consiste ä combiner l'equation differentielle pour la fleche de la plaque
sous la forme de :

21 _L *L

fl

Fig. 9.

(12)* VZV2 _/>
B V dx3 *y

avec l'equation dilferentielle de la surface elastique d'une inembrane, d'abord
plate et tendue uniformement par un effort de S kg/cm, et iniininient faible-
ment enfonce par une charge de p' kg/cm2, perpendiculaire au plan de la meni-
brane, c'est-ä-dire avec l'equation :

\,*w' P_

S

;'3)

Comme dans la theorie des plaques

1 \ M'1 + M',_
^'W-=_± + J.)._. B

M
B

* Y2 Designation anglaise et allemande pour A.
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est l'invariantqui determine la courbure moyenne de la surface elastique, nous
ecrirons donc, en subsjtituant M w/, l'equation du flechissement de la plaque
sous la forme :

(14) vim,, —/>

Rigoureusement parlant, ceci n'est autre chose que l'equation du flechissement

d'une membrane tendue a t kg/cm et charg'ee comme fo plaque.
En integrant cette equation, nous trouvons la repartition des moments M

sur la surface de la plaque. Maintenant, nous considerons M comme la charge
par unite de surface dune autre membrane tendue avec un effort egal ä B,
conformement ä l'equation (13) ; la fleche de cette membrane donne en meme
temps celle de notre plaque.

M. Maiu.us remplace par approximation le dispositif de la membrane tendue
d'une maniere continue par un tissu ä mailles linies charge seulernent dans
les nceuds. Les fils rectilignes de tissu s'appliquent tangentiellement ä la surface

elastique, tout comme les cötes d'un polygone funiculaire ä la ligne de
flechissement dune poutre, selon l'analogie de Mohr. La structure du tissu
peut etre differente, suivant le contour de la plaque. Le Systeme du tissu permet

de remplacer les equations differentielles (13) et (14) par des equations ä

differences linies, sous la forme :

(IS) biC} — (w2 + w3 + wi+wr0)= ^l '

qui sont beaucoup plus commodes a appliquer que les equations citees au
debut de ce paragraphe (voir fig. 9).

C'est d'apres cette methode que M. Marcus a calcule la repartition des

moments dans une dalle-champignon pour une serie de cas d'appui et de charge
importants au point de vue pratique. Ces calculs ont servi ä justifier une
methode pratique approximative qu'on nomme methode des cadres suppleants 17,

admise par les reglements officiels allemands de 1925, si l'auteur du projet
n'applique pas les resultats exacts de la theorie des plaques isotropes ou des
tissus elastiques.

IV. Le röle des piliers dans la thöorie des dalles-champignons
et la niäthode approchee des cadres suppleants.

Le calcul aussi exact que possible des efforts dans les piliers sous l'in-
fluence des charges prevues pour la dalle est tout au moins aussi important
pour la securite de celle-ci que le calcul des efforts dans la plaque. II faut en
meme temps tenir compte de ce que la repartition la plus desavantageuse de

la charge utile est differente par rapport ä la plaque et par rapport au pilier.
C'est ici que se pose l'important probleme des surfaces d'influence, lequel,

que je sache, n'a pas ete traite jusqu'a present d'une maniere exacte au point
de vue theorique. Bien que les mesures des fleches et des tensions aient ete
effectuees au cours de nombreuses recherches experimentales, surtout aux
Etats-Unis28, oü les dalles-champignons se sont repandues plus tot que dans



260 M. T. Huber

les autres pays, nous devons neanmoins le premier essai de determination
experimentale des surfaces d'influence des fleches et des moments, aux
recherches de MM. Hos et Eichingkr, effectuees en 1925-1929 **.

Cependant, ces recherches ne s'oecupent que des panneaux qui touchent
immediatement le panneau etudie. Mais il n'est pas difficile de prevoir que,
s'il agit des moments au milieu des panneaux et au milieu de leurs cötes, il
faudrait tout au moins etudier egalement l'influence de la charge du troisieme
panneau voisin du panneau etudie. II serait fort desirable que les mesures
fussent completees dans ce sens ; il est vrai que ceci demande un tres gros
travail.

Les moments dans la plaque, autour du chapiteau, diminuent evidemment ä

mesure que le diametre de celui-ci croit, et elles atteignent leur valeur maximum
lorsque tous les panneaux sont charges. C'est pourquoi la surface d'influence
n'aurait pour eux qu'une importance pratique minime. La surface d'influence

hihi

illllllllllll

Fig. 10. Fig. 11.

serait par contre fort importante pour les moments dans les piliers, mais sa
determination experimentale serait encore plus difficile. Ce serait d'ailleurs une
surface composee d'autant de parties qu'il y a d'etages dans le bätiment. Une
etude de ce genre confirmerait probablement l'avis de tous les specialistes que
la charge la plus desavantageuse par rapport aux piliers correspond bien au
Schema dela fig. 10 Par contre le Schema de la fig. 11 correspond aux valeurs
maxima des moments positifs des parties medianes des panneaux chargees.

Les moments de l'encastrement des chapiteaux dans la dalle peuvent etre
tres exactement calcules, en prenant pour base la Solution de M. Lewe, citee
en II.2, d'apres la condition que l'angle d'inclinaison de la section du pilier au
sommet du chapiteau est egal ä l'angle d'inclinaison de l'element de la plaque
qui y est superposee (Lewe, 1926, p. 52-54). On peut prevoir, meme sans
calcul, que la grandeur dece moment Mc depend surtout du rapport de la rigidite
au flechissement de la plaque B, ä la rigidite relative du pilier, c'est-ä-dire
EJr
H

(Jc designe le moment d'inertie de la section du pilier, H sa hauteur.

BH
Lorsque ce rapport v p-p croit, Mc decroit. Mc doit encore dependre

iiijc
de la position du point zero des moments sur l'axe du pilier; donc du schema
de la charge des etages, et encore de ce que la base du pilier peut etre
encastree ou bien seulernent librement appuyee.
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S'il n'est pas possible d'adopter la division la plus avantageuse de la dalle
en panneaux carres, et si l'on a des panneaux rectangulaires de largeur 2 b
dans la direction de Taxe des Y, de longueur 2 a dans la direction de Taxe

des X, b etant < a, en diminuant le rapport - nous nous approchons des con-
a

ditions d'une plaque continue ä travees egales. Si Ion imagine une zone d'une
teile plaque decoupee par des sections paralleles ä X qui partagent en deux les

portees les pluspetites des deux cötes d'une rangeede piliers, celte zone se

comporte, avec une grande approximalion, comme une poutre continue posee sur
des Supports larges equidistants et qui reagissent elastiquement. Les dalles de

tous les etages et les piliers peuvent etre remplacees par le Systeme approche
d'un portique ä plusieurs etages. Ceci n'est evidemment admissible que
lorsque les charges portees par les differentes zones sont egales (fig. 12 a, b).
Pour d'autres charges, par ex. pour des charges disposees en echiquiei\fig. 12, c),
un Systeme de ce genre ne conviendrait pas.

2fe^^^^
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Fig. 12
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M. Marcus affirmedans son livre qu'une charge disposee en echiquier donne

pour les moments dans la plaque, des valeurs limites plus faibles qu'une
charge alternee de rangees de panneaux (fig. 12, a, b), et c'est pour cela qu'il
propose d'appliquer un portique fictif lorsqu'il s'agit de tous les rapports a: b

employes en pratique. II y a par consequent, pour chaque dalle-champignon,
deux systemes de portiques fictifs, perpendiculaires entre eux. Ce Systeme est
tout ä fait analogue au Systeme des plaques rectangulaires que M. Marcus
recommande pour le calcul approximatif de ces plaques, d'apres les reglements
officiels allemands. II s'agit ici d'un damier fictif, forme par des zones de la

plaque qu'on a decoupee d'abord parallelement au cote 2a, et ensuite parallelement

au cote 2 b. De nombreux theoriciens sont choques par le caractere fac-
tice de tels systemes; on s'en sert neanmoins depuis longtemps en pratique,
de meme que l'on utilise, par exemple, des charges fictives pour calculer les

poutres des ponts. Le remplacement d'une dalle-champignon par deux
systemes de portiques permet de se servir des methodes du calcul de tels
portiques qui sont perfectionnees et simplifiees depuis longtemps, et c'est pourquoi

le Systeme du portique fictif est bien accueilli par les constructeurs. Les
moments dans la plaque fournis parle calcul doivent evidemment etre repartis
entre la zone des piliers et la zone intermediaire entre les piliers, dans le rap-
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port que determinent les resultats de la theorie des plaques. Les reglements
officiels allemands contiennent des formules simplifiees convenables.

V. Autres m6thodes approximatives.
La seconde decade du siecle present a apporte de nombreux essais d'application

de la methode de Hayleigh-Ritz ä la Solution des problemes de plaques
et par consequent aussi de dalles-champignons. On a trouve par ex., dans les
cas de plaques appuyees sur les bords, des resultats completement en accord
avec les Solutions exactes de l'equation dillerentielle de Lagkange, lorsqu'on
posait un nombre infini de parametres dans le developpement de w =f [x, y)
suivant les fonctions satisfaisant aux conditions des bords. En n'introduisant

M. M*i+n
4Mi*n

^ H.
Mi

MäLS *\ M«M,
Mm

M*Mn

w
fer
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Fig. 13. — (xraphiquc rcpresentant 1'equilibrc des forces et des moments qui agissent
sur un huitieme ou un quart d'un panneau carre.

Das Gleichgewicht der Kräfte und Momente, welche ein Oktant und ein
Quadrant eines quadratischen Deckenfeldes angreifen.

Diagram showing the Equilibrium of the Forces and Couples acting on an
Octant and a Quadrant of a Square Panel.

que peu de parametres, on trouvait neanmoins des approximations assez bonnes.
Les efforts pour resoudre par cette methode le probleme des dalles-champignons
n'ont cependant pas eu de succes, comme nous le savons maintenant. Nous
renoncons ä discuter les causes de ce fait, car cela nous demanderait des deve-
loppements mathematiques etendus; nous nous bornons ä cette breve mention,
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sans citer les ouvrages qui s'y rapportent et dont on trouvera une apprecia-
tion dans l'ouvrage de M. V. Lewe12.

Avant qu'on ait trouve et applique les Solutions exactes de la theorie dont il a
ete question dans les par. II et III, les ingenieurs praticiens des differents pays
ont essaye de se rendre compte des tensions dans les dalles-champignons, au moins
avec une approximation grossiere, en se basant sur les plus simples consideralions
statiques. Les methodes ainsi elaborees n'ont ä present qu'une valeur historique,
la theorie ayant fait des progres considerables; c'est pour cela que nous pouvons
nous borner ä ne presenter ici que le principe theorique de lune de ces methodes,
elaboree aux Etats-Unis et peu connue sur le continent europeen. Ce schema
a ete le point de depart des reglements officiels americains pour le calcul des
dalles ä Champignon 19.

En admettant une plaque illimitee et divisee en panneaux carres, la surface
etant chargee uniformement, et les chapiteaux des piliers etant circulaires, on
considere l'equilibre de deux huitiemes du panneau, que l'on imagine decoupes et
qui sont representes dans la fig. 13. Si l'on designe par Q la surcharge du

panneau total, celle de chaque huitiemeest -^ En raison de la symetrie, il n'y a pas

d'efforts tranchants dans les sections AO, AB et OE, et il n'y a pas non plus
de moments de torsion ; la resultante des efforts tranchants (des reactions)

le long des BE doit donc etre egale et directement opposee ä la charge ^-
o

Par consequent, le moment des forces exterieures peut etre aisement evalue
avec une grande approximation. Ce moment est equilibre par des moments
flechissants repartis le long des quatre aretes de l'octant. Les vecteurs des
moments (absolus, et non pas par unite de largeur comme dans les formules
theoriques citees plus haut) forment un polygone ferme. La figure represente
les polygones pour les deux huitiemes qui forment un quart du panneau. On
s'apercoit immediatement que la composante horizontale du moment general
donne des forces exterieures, designee par M0, est egale ä la somme M(—) et
M(-f), c.-ä-d. ä la valeur absolue des composantes des moments flechissants
negatifs et positifs. Si nous determinons donc la valeur de Tun des membres
de l'addition, nous trouvons facilement l'autre. On trouvera une application
interessante de ce schema dans le memoire de MM. Westergaard etSLATER 28.
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R6sum6

I. Introduction.
Les diflicultes pour la determination theorique des deformations et efforts

dans une dalle ä Champignon proviennent :

1° de la connexion rigide entre la dalle et les colonnes.
2° de la flexibilite variable de la dalle et de l'influence des chapiteaux, ainsi

que
3° du changement considerable de la flexibilite qui se produit au debut du

stade II.
II. Les theories basees sur les Solutions exactes de l'equation du flechissement

des plaques isotropes « minces ».
III. Les theories basees sur des Solutions approximatives pour les fleches

de plaques isotropes « minces ».

IV. Le röle des colonnes dans la theorie des dalles ä Champignon et la
methode approximative des cadres suppleants.

V. Autres methodes approximatives.

Zusammenfassung.

I. Einleitung. Die Schwierigkeiten der theoretischen Bestimmung der
Formänderungen und Spannungen in einer Pilzdecke stecken :

1. in der steifen Verbindung der Säulen mit der Decke,
2. in der ungleichförmigen Biegungssteifigkeit der Decke und der Wirkung

der Säulenkopfplatte, und
3. im starken Wechsel der Biegungssteitigkeit beim Uebergang in das

Stadium II der Decke.
II. Die Theorien, welche sich auf strenge Lösungen der Biegungsgleichung

einer isotropen « dünnen » Platte stützen.
III. Die Anwendung von angenäherten Lösungen der Plattentheorie.

Differenzengleichungen und « elastische Gewebe ».
IV. Die Rolle der Säulen in der Theorie der Pilzdecken und die Methode

des stellvertretenden Rahmens.
V. Andere Näherungsverfahren.
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Summary.

I. Introduction. — Difficulties of theoretical investigation of stress and
strain in flat slabs are found :

1. in the rigid joints between columns and ceiling ;

2. in non-uniform rigidity of ceiling and in the effect of abacus on the
head ofthe column;

3. in rapid change of rigidity of ceiling during the transformation into stage IL
II. The theories based on exact Solution of the bending equation of a thin

isotropic plate.
III. The application of approximate Solutions ofthe plate theory. Difference

equations method and " elastic web".
IV. The function of columns in flat slabs theory and the method of " repla-

cing frames ".
V. Other approximations.
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