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Dans le calcul desmoments fléchissants, doit-onemployer le coef-
ficient de Poisson m==4%, ou est-il justifié d’adopter pour ce coef-
ficient une valeur plus élevée et pourquoi?

Troisiéme question de discussion (proposée par M Ratten):

En ce qui concerne le coefficient d’allongement transversal m il faut toujours
distinguer entre :

Mglast, =M == ¢ ! g et
Miotal = M =23 © q
1. — Si l'on calcule le coefficient d’allongement transversal a partir des
déformations ¢lastiques mesurées, donc Mmyast. =— M, ¢’est-a-dire la deuxieme

constante de la théorie de élasticité, on obtient pour le béton une valeur qui
diminue lorsque la contrainte croit ; pour la compression, par exemple,
m diminue de m = 6 4 m = 4 (voirrapport du Dr. Gehler au Congrés pour I'lssai
des Matériaux de Zurich, 1931, page 1095). Il faut toutefois observer ici que
I'on ne peut employer ce mode de calcul que tant que les déformations 4 per-
manentes restent relativement faibles, donc, pour les poutres en béton armé,
environ jusqu'a la charge utile.
2. — Si, par contre, on détermine les valeurs de :
Mol — 0 — ¢ 3(1

on conslate, au voisinage de la charge de rupture, que les valeurs de ¢ aug-
mentent plus que celles de 3, et que par suite les valeurs de m augmentent
lorsque la charge croit.

3. — Quel coefficient d’allongement transversal convient-il d’adopter pour
le calcul d'une dalle, mgst. 0U Mgl ?
On ne peut indiquer de régle déterminée que pour Mmaas. = m, cest-a-dire

pour le cas ou I'on se limite au domaine élastique (stadeI de nos essais de
dalles). Pour le stade II. on se trouve dans des conditions trés peu claires
) P )
par suite de l'intervention des influences de déformation plastique partielle.
Conclusion: La réponse & la question de M. Ritter est donc la smivante :
Pour le calcul des moments fléchissants dans les dalles de béton armé il faut
b2
adopter le coefficient d’allongement transversal m = 6.

Participants a la discussion.
Diskussionsteilnehmer.
Participants in the discussion.

Dr.-Ing. F. SCHLEICHER,

Professor an der Technischen Hochschule, Hannover,

I. — Ueber die Steifigkeit der quadratischen Eisenbetonplatten.

Es ist interessant, die Durchbiegungen der freiaufliegenden, an den Ecken
festgehaltenen quadratischen Platten mit den theoretischen Werten fur die
isotrope Platte zu vergleichen. Der Elastizititsmodul wire dabei von den
Biegungsversuchen mit den Plattenstreifen zu entnehmen, iber die im Vor-
bericht leider noch keine nitheren Angaben gemacht sind.
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Nach A. Nuadailist die grosste Durchbiegung einer gleichmissig belasteten
isotropen quadratischen Platte von der Seitenlinge a fiir die oben genannten
Randbedingungen gleich

2t

1) f ==(L004065%3~.

Der Elastizititsmodul E des Plattenmaterials, der praktisch mit der Grosse
m? - B e

N\ ! R i IS o5 / ey 0

2) E ] 0,0487 R

iibereinstimmt 2, kann bei Giiltigkeit des Hooke'schen Gesetzes aus den « Kenn-
zitfern » 3 fiir die Durchbiegungen berechnet werden. Fiir die Reihen 1 bis
& der Dresdner Versuche (vgl. Seite 210 des Vorberichtes) erhilt man aus Gl. 2

Stadium I E = 197 232 200 200 im Mittel 207 t/cm?
Stadium II E = 211 249 20,0 26,5 im Mittel 23,1 t/cm?

Der Vergleich mit den Plattenstreifen ist mit den im Vorbericht angegebe-
nen Daten leider noch nicht moglich. Es konnen aber schon jetzt die Unter-
schiede zwischen den Stadien I und II studiert werden.

Der mittlere Wert B = 207 t/cm?2 des Elastizititsmoduls fiir die isotrope
Platte ohne Risse entspricht wohl dem, was zu erwarten ist. Dagegen 1st die
Steifigkeit nach Eintritt der Risse wesentlich kleiner, als man fur eine 1sotrope
Platte erwarten wirde.

Nimmt man fiir einen Ueberschlag an, dass die Risse im Stadium 1I alle bis
an die Nullinie reichen, dann hat man fiir die Plattensteifigkeit in den {ibli-
chen Bezeichnungen

3
3) Iy (%—1- n B (b — $)2) — B gt

(&N

o]

egentber dem Wert
) D= E’. 0,0833. d3im Stadium L.

Wenn die Platte auch nach Eintritt der Risse noch wie eine isotrope Platte wir-
ken wiirde, d. h. mit den gleichen Eigenschaften wie im Stadium 1, nur mit ent-

=

0 a/h Jiidn x/h Ji/du S11/81
cthe hid bh/F beobach-
Reihe AL /¢ e el oo L =

t 12 0,858 229 0,205 6,8 0,302 3,2 9,3

2 10 0,830 185 0,224 6,3 0,330 3,0 9,3

3 12 0,858 263 0,192 7,6 0,285 3,6 10,0

4 12 0,850 200 0,217 6,2 0,321 3,0 7,6
ML ELA BT E oo v by 5o St & s sotiis s imile: siaie iomie 5 6,7 3,2 9.1

sprechend verminderter Steifiglkeit, so miisste die Zunahme der Durchbiegungen
elwa in den Grenzen bleiben, die ausdernicht mehr mitwirkenden Zugzone folgen.

1. A. Nipar, Elastische Platten, Berlin, 1925, Seite 127.
2. Der Unterschied zwischen E und E' betriigt fiic m — 6 nur 3 °/,.
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Fiir die Verhaltnisse der Dresdner Versuchsreihen 1 bis 4 ergeben sich die
folgenden Werte.

Die Zahlen fur n = 6 stellen wohl eine extreme Grenze dar, die durch die
wirlklichen Verhiltnisse kaum tberschritten wird. Wenn die Zugzone nicht
ganz gerissen ist, werden die Verhiltniszahlen far Jy /Jy, etwas kleiner sein als
die obigen Werte. Der Unterschied gegeniiber der Beobachtung wird dann
noch etwas grosser. Schitzt man das Verhiltnis der Steifigkeiten im Mittel
gleich Ji/Ji; = 3, so wiire der Unterschied 9 gegen 5 aufzuklaren,

Der beobachtete Unterschied wird teilweise dadurch erklirt, dass der Iila-
stizitaitsmodul des Betons mit steigenden Spannungen abnimmt. In der Haupt-
sache ist er jedoch nur dadurch zu erkliren, dass die Platte nach Eintritt der
Risse nicht mehr als isotrope Platte wirkt, sondern als Triigerrost ohne nen-
nenswerte Drillungssteifigkeit.

Die Durchbiegung des Triigerrostes ist etwa doppelt so gross, als die der
isotropen Platte mit unverminderter Drillungssteifigkeit. Fiir den Trigerrost
ist also eine rd. zweimal so grosse Kennziffer 3y fir die Durchbiegung als beim
isotropen Anfangszustand zu erwarten. Rechnet man nach Obigem eine Ver-
minderung der Stelhgkelt durch die Risse auf 1/5 des urspriinglichen Betrages,
so wird dlt, Kennziffer nach Risseeintritt insgesamt rd. 10 mal so gross als fiir
die Platte im Stadium 1, was geniigend mit der Beobachtung tibereinstimmt.
Der noch verbleibende Unterschied 1st dadurch erklirt, dass in der Platte
neben Gebieten ohne Drillungssteifigkeit auch noch solche mit einer gewissen
Drillungssteitigkeit vorhanden sind, ausserdem reisst die Zugzone nicht tiber-
all gleichmiissig tief ein.

Der verschiedene Charakter der Biegungsflichen fir die Stadien I bezw. II
miisste tibrigens bei Messung der Durchbiegungen leicht festgestellt werden
konnen, da die Biegungsformen fiir den Tréagerrost in den Ecken der Platte
voller sind als fir die isolrope Platte.

[I. — Bemerkung tber die Knickung von Eisenbetonplatten.

Bei den diinnen Platten der neuzeitlichen Eisenbetonkonstruktionen ist in
manchen Fillen auch die Stabilitiat zu untersuchen.

Fiir eine isotrope Kisenbetonplatte mit gleichmissigen Druckspannungen,
die an allen vier Rindern gelenkig gelagert ist, ergibt sich im elastischen

Bereich mit & = 200 t/cm? und m = 6 eine kleinste Knickspannung von
) min 05 = 675 (h/b)2, in t/cm2.
Nach dieser Gleichung folgt i, g =) ,2 t/em?2, wenn die Plattenbreile b=

08 hst, und i, 5%1 = 01t lem? fup bl =820 /1

Fir das Stadium 11, nach Eintritt der Risse, ist die Steifigkeit der Platte
nach dem Referat Gehler nur noch etwa 1/9 des Wertes fiur die Platte ohne
Risse. Nimmt man an, dass auch fur die Koickung im Stadium IT noch mit
gentigender Genauigkeit die Gleichung fiir isotrope Platten verwendet werden
kann, so wird mit Dy/D; = 1/9 als Knickspannung etwa

6) min T K — i (b/h) 2, n t/Clle,
gefunden. Der dabei vorausgesetzte Zustand II wird eintreten, wenn ausser
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den Druckspannungen (gleichzeitig oder frither) auch Biegungsspannungen
wirken, die die Rissgrenze tiberschreiten. In solchen IMillen kann man die Gl.
6 wohl mit geniigender Genauigkeit fiir eine erste Schitzung der Grossenord-
nung benutzen. Es ergeben sich danach die folgenden grosstzulassigen Platten-
breiten :
min 0g = 02 041 0,05 t/em? fir
blh= 19 271 39.

Man erkennt daraus, dass die Stabilitit durchaus nicht so gross ist, als man
erwarten wirde. Bei der Schilzung dieser Zahlen ist dabei weder die Abmin-
derung der Knickspannungen im unelastischen Bereich, noch die Abnahme
des Elastizititsmoduls mit steigenden Spannungen berticksichtigt.

Auch bei den dinnwandigen Schalen und Kuppeln ist es manchmal not-
wendig, auf die Stabilitit zu achten, wobei unter Umstinden die unvermeid-
lichen Abweichungen von der theoretischen Form eine Rolle spielen kinnen.

Traduction.

1. — Rigidité des dalles carrées en béton armé.

11 est intéressant de faire une comparaison entre les fléchissements qu’ac-
cusent les dalles carrées reposant librement sur leurs appuis, avec fixation aux
angles, et les valeurs théoriques obtenues pour la dalle isotrope. Le module
d’élasticité devrait en outre étre calculé a partir des résultats des essais effec-
tués sur des tranches élémentaires, question qui n'a fait 'objet d’aucune indi-
cation précise au cours des Rapports Préliminaires.

Suivant A. Nadai?l le fléchissement maximum d'une dalle carrée isotrope
chargée uniformément, ayant une longueur a, et soumise aux conditions péri-
phériques indiquées plus haut est donné par l'expression :

s Lo6 2 at
f—0,00406 22 (1)

Le module d’élasticité E du matériau constituant cette dalle et dont la
valeur concorde en pratique avec la valeur? :

: m?. for D at ;
,: —_—— 2
E = 0,0{81[”]13 (2)

peut étre calculé a partir des chiffres caractéristiques pour les fléchissements,
en considérant la loi de Hooke comme valable. Pour les séries 1 & 4 des essais
de Dresde (voir page 210 de la Publication Préliminaire), on obtient en appli-
quant I'équation (2) :

Phase I : B/ = 197 232 200 200 moyenne 207  t/em?

PhaseI1: E'— 241 24,9 20,0 26,5 moyenne 23,1 t/em?

Malheureusement, il n'est pas encore possible d’établir, avec les chillres

indiqués dans la Publication Préliminaire, la comparaison pour les tranches
élémentaires de dalles. On peut toutefois étudier dés maintenant les différences
entre les phases I et 11.

1. A. Nadai, Elastische Platten, Berlin, 1925, p. 127.
9. L’écart entre E et E, pour m = 6, n’est que de 3 /.
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La valeur moyenne B/ = 207 t/cm? du module d'élasticitc, pour la dalle
isotrope sans fissure, correspond bien i ce que 'on peut prévoir. Par contre,
la rigidité apres lissuration est sensiblement plus faible que 1’on ne pourrait le
prévoir pour une dalle isotrope.

Si l'on suppose & titre d’approximation que dans la phase II, les fissures

s'étendent Loutes jusqu'a la ligne neutre, on a pour la rigidité de la dalle, avec
les désignations courantes :

3
D=E (F4nF. oo = B0 (3)
alors que pour la phase I, on a :
D=E’. 0,0833 d3 (4)

Si la dalle se comportait, méme aprées apparition des fissurations, encore
comme une dalle isotrope, c'esl-a-dire suivant les mémes propriétés que dans
la phase [, mais avec une rigidité réduite en proportion, 'accroissement du
fléchissement resterait & peu de chose dans des limites correspondant & la zone
de traction, qui d'ailleurs est hors de cause.

Dans les conditions qui correspondent aux séries 1 4 4 des essais de Dresde,
on obtient les valeurs suivantes :

/ J1/J Ji/J S11/8
Série g hjd bhF, s |y N Be
£1a pour n — 6 pour n = 15 OI)SCIVOS

1 12 0,858 229 0,205 6,8 0,302 3,2 9,3

2 10 0,830 185 0,226 | 6,3 1330 Bis g 9,3

3 12 0,858 263 0,192 7,6 0,285 3,6 10,0

% 12 0,850 200 0,217 | 6.2 0,321 3,0 7,6

Valeurs moyennes. . ... £l ey e O ey e O e AL 6,7 3,2 9,1
Les chiffres qui correspondent & n = 6 représentent une marge extréme

qui doit étre & peine dépassée dans des conditions pratiques effectives. Si la
zone de traction n’est pas entiérement fissurée, les coefficients correspondant
a Ji/Jy seront légerement plus faibles que les valeurs ci-dessus. [écart par
rapport aux observations sera donc encore un peu plus accentué. Si l'on
admet pour le rapport des rigidités au milieu

Jifilg =5
Iécart s’établira & 9 au lieu de 5.

L’écart observé s’explique en partie de ce fait que le module d'élasticité du
béton diminue lorsque la contrainte augmente. Toutefois, il ne s'explique, dans
I'ensemble, que parce que la dalle ne se comporte plus comme une dalle iso-
trope apres l'apparition de la fissuration, mais plutét comme un systéme de
tranches perpendiculaires ne possédant aucune rigidité de lorsion déterminée.

Le fléchissement de ce systéme est & peu pres le double de celui qu'accuse-
rait une dalle isotrope admettant une rigidité de torsion intégrale. Il faut donc
tabler, pour ce systeme, sur un chiffre caractéristique 3;; environ deux fois plus
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élevé que pour le fléchissement correspondant a 1'état d’isotropie. Si d’apres
ce qui précéde, on compte la réduction de la rigidité, par suite de la fissura-
tion, comme atteignant le 1/5 de la valeur initiale, on arrivera, aprés la fissu-
ration, a un chiffre caractéristique environ 10 fois plus élevé que pour la dalle
lorsqu'elle se trouvait dans la phase I, résultat qui concorde suffisamment bien
avec les observations. La différence qui subsiste s’explique de ce fait qu'il existe
dans la dalle, a coté de régions ne possédant aucune rigidité de torsion, des
régions qui accusent encore pour cette rigidité une certaine valeur; en outre la
zone de traction ne subit pas partout une tissuration d'une profondeur uniforme.

La différence d’allure entre les déformations de fléchissement dans les phases
I et Il devrait d’ailleurs pouvoir étre mise en évidence facilement par la
mesure, car les surfaces de délormation que prend ce systeme de tranches

perpendiculaires dans les angles de la dalle, sont plus netlement accusées que
dans le cas de la dalle isotrope.

2. — Remarque sur le flambagedes dalles en béton armé.

Dans les dalles minces que I'on emploie pour les constructions en béton
armé modernes, il importe d'étudier, dans de nombreux cas, la question de la
stabilité.

Si l'on considére une dalle isotrope en béton armé soumise i des contrainles
uniformément réparties et admettant des appuis articulés sur ses quatre bords,
la contrainte minimum de flambage, dans le domaine élastique, avec 1i = 200
t/cm2 et m = 6 est de

ain 05 = 675 (k/b)? en t/em?® (5)

D'aprés cette relation, pour une largeur de dalle

b= 38 h on oblient :
o a‘fé —u0 282
it pour b= 382 I on obtient :

En ce qui concerne la phase II et apres apparition de la fissuration, d’apres
le rapport de M. Gehler, la rigidité de la dalle n’est plus que le 1/9 de la
valeur qui correspond pour cette dalle a I'absence de fissuration. Silon admet
que méme pour le flambage dans la phase I, on puisse employer I'équation des
dalles isotropes avec une précision suffisante, on aura, avec Dy/Dy=1/9 comme
contrainte de flambage,

E iy (b/R)2, en t/em? (6)

Le passage a la phase II, ici admis, se produira lorsqu’aux conlrainles de com-
pression viendront s’ajouter, simultanément ou ultérieurement, des contraintes
de flexion telles qque la limite de [issuration se trouve dépassée. En pareil cas,
on peut pour une premiére estimation de 'ordre de grandeur, faire appel avec
une précision suffisante a l'équation (6). On en déduit pour les largeurs des
dalles ci-dessous, les valeurs maxima admissibles suivantes :
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m Gl = 0,2 0,4 0,05 t/cm?2 pour :
bih = 19 7Y

On voit que la stabilité n'est pas tout a fait aussi élevée que l'on pourrait
prévoir Dans l'estimation approximative de ces valeurs, on ne tient compte
ni de la diminution des contraintes de flambage dans le domaine élastique, ni
de la diminution que subit le module d’ elasl;lclte lorsque les contraintes croissent.

Dans les coupoles et les vottes minces elles-mémes, il est fréquemment
nécessaire de veiller & cette considération de stabilité, car dans certains cas,
les dérogations qu'il est impossible d’éviter par rapport aux formes théoriques
peuvent intervenir dans des proportions importantes.

Dr. Ing. M. HUBER

Professeur a I'Ecole Polytechnique, Varsovie.

[. — Die wirtschaftliche Ausnutzung der statischen Wirkung der Pilzdecken
erfordert eine moglichst genaue Erforschung ihres Formianderungs- und Span-
nungszustandes im Zusammenhano’e mit dem Sicherheitsgrade bel jeder mogli-
chen Belastungsart. In meinem Bemchte habe ich versucht den heutigen Stand
des Problems einer zuverldssigen statischen berechnun«r der Pllzdecken Zu
schildern. Ich bin mir bewusst, dass vielleicht manche schdtzenswer‘te Frgeb-
nisse und Arbeiten meiner Aulfmerksamkeit entgangen sind und werde
etwaige Beitrige der Herren Kongressteilnehmer gerne zur Kenntnis nehmen
und priifen. Ich bemerke aber dabei, dass gewisse Naherungstheorien und
darauf gegriindete Berechnungsverfahren vor vollkommeneren, wissenschaftlich
besser begriindeten Methoden zuriickweichen miissen. Letztere wurden deshalb
vor allem behandelt.

In der Einleitung meines Berichtes habe ich auf die zahlreichen Schwierig-
keiten einer vollstindigen und exakten Losung des Problems hingewiesen und
Zwar .

1. Die steife Verbindung der Siaulen mit der Deckenplatte.

JSie verursacht, dass bei unsymmetrischen Belastungen der Decke ihre allge-
meine Biegung von der Siulenbiegung stark abhingig ist. Betrachtet man die
Decke als « diinne », elastische, niaherungsweise isotrope Platte, so wird die
Losung der klassischen Biegungsgleichung von Lagrange durch statisch unbe-
stimmte Ilichensliitzung ausserordentlich erschwert.

2. Die ungleichférmige Biegungssteifigkeit der Decke und die
Wirkung der Sidulenkopfplatte.

Die Unterschiede der Biegungssteifigkeiten in verschieden orientiert gedach-
ten Plattenstreifen sind zwar im Stadium I praktisch vernachlissigbar; dieses
gilt aber nicht immer im Stadium II, nach welchem bekanntlich die Sicherheit
beurteilt wird. Die Siaulenkopfplatte bildet eine plattenférmige, elastische Stiit-
zung dieser Deckenteile, welche ohne Kopfplatte ausserordentlich beansprucht
wadaren.

3. Der starke Wechsel der Biegungssteifigkeit beim Uebergange
in das Stadium II der Decke wirkt insofern erschwerend, als der neue
(verminderte) Wert der Biegungssteifigkeit nur gewisse Teilgebiete der Plat-
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tenfliiche beherrscht. Infolgedessen wirkt die Decke etwa wie eine heterogene
Platte, welche aus homogenen Ilecken von verschiedener Stirke zusammen-
gefiigt ist.

Trotzdem fiithren die bisherigen Versuche mit Eisenbetonplatten in Deutsch-
land (Stuttgart und Dresden) zu dem iiberraschenden Ergebnis, dass in guter
Anniherung eine lineare Abhingigkeit der Durchbiegungen bezw. Forménde-
rungen von den Belastungsgrissen (bezw. Spannungen) auch im Stadium II
statttindet. Abb. 1 zeigt diese Abhangiglkeit, wobei die Durchbiegungen w als
Abszissen und die Spannungen (bzw. Biegungsmomente und dgl.) als Ordinaten
gemessen sind.

Ich glaube, dass die kiinftige Entwicklung der Theorie dieses Schema als
Ausgangspunkt withlen wird.

II. — Die bisherigen Theorien und Berechnungsmethoden beziechen sich
hauptsiichlich auf das Stadium I und verfolgten den Zweck, die wirklichen
Spannungen, welche von der Nutzlast herrithren, zu berechnen. Dabei durfen
die durch verschieden starke Bewehrung bedingten Unterschiede der Biegungs-
steifigkeiten in der Regel vernachlissigt werden, folglich kommt die klassische
Theorie der diinnen isotropen Platten zur Anwendung. :

Die entsprechenden, strengen Losungen im Falle einer totalen, gleichfor-
migen Belastung einer unbegrenzten Platte, welche nach Abb. 2 gestitzt ist,
tindet man bereits in einer halb vergessenen Arbeit von Lavoinne aus dem
Jahre 1872. Die Ergebnisse sind in den Formeln (3bis 7) zusammengestellt.
Die nach diesen Formeln errechneten Momentwerte sind in den Abb. 3 und
4 ubersichtlich dargestellt.

Die Losung im wichtigen in der Abb. 5 dargestellten Belastungsfalle ver-
dankt man der Arbeit 2 von Dr. Lewe, welcher auch gebrauchsfertige
Tabellen fir diesen und andere Fille berechnet hat.

Obige Losungen gelten nicht mehr fiir Deckenfelder, welche durch Umfas-
sungswiinde gestiitzt sind. In diesen Fallen geben aber viele im Bericht zitierte
Arbeiten entweder die fertige Losung, oder es kénnen die dort gefundenen Ergeb-
nisse zur Losung der in der Abb. 6 veranschaulichten Iille verwendet werden.

Beispiele wichtiger Einzellssungen geben Abb. 7 mit der Formel (8) und
Abb. 8 mit den Formeln (9) und (10). Ich mochte noch hinzufiigen, dass Herr
E. Melan ® eine der Losung (9) dquivalente Formel gefunden hat. Im Falle
freler Auflagerung der kreistérmigen Réander einer Pilzdecke ist freilich die
Michell-Melansche Lésung nicht anwendbar. Angesichts dessen ist Herr
K. Hajnal-Kényi ¢ von der Fopplschen 8 Losung in Form einer Fourierschen
Reihe ausgegangen, um die Stiitzkrifle und Biegungsmomente in praktisch

1. V. Lewe, Die Losung des Pilzdeckenproblems durch Fouriersche Reihen. Bauinge-
nieur, 1920, No 22 1922 Ne¢ 4, 10, 11.

2. V. Lewe, Pilzdecken, Berlin, 1926.

3. E. Merax, Die Durchbiegung einer exzentrisch durch eine Einzellast belasteten Kreis-
platte (Eisenbau, 1920, N°¢ 10].

&, K.HasNaL-Konve, Die Berechnung von kreisférmig begrenzten Pilzdecken, Berlin, 1929.

5. A. Foepr, Die Biegung einer kreisférmigen Platle, Sitzungsbericht der Akad. Min-
chen, 1912, S. 155.

A. u. L. Forer, Drang und Zwang, Bd. I, 2. Aull., 1924.
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wichtigen Spezialfallen zu berechnen. Die seiner Arbeit heigefigten Zahlenta-
feln erleichtern die praktische Anwendung,

IIT. — Esgibt aber sehr viele praktisch wichtige Stiitzungsbedingungen und
Belastungsfille, welche einer praktisch verwertbaren, exakten Losung nicht
zuginglich sind. Dann leistet die Methode der Differenzengleichungen in Ver-
bindung mit der Methode der elastischen Gewebe von Herrn H. Marcus sehr gute
Dienste. Iis muss hier hervorgehoben werden, dass diese Methoden zur unmittel-
baren Anwendung durch den Konstrukteur ebensowenig geeignet sind wie viele
sehr verwickelte Losungsformeln der strengen Theorie diinner Platten. Ihre
Bedeutung beruht vielmehr darauf, dass sie zur Prifung und Korrektur der
rohen Annahmen in vereinfachten Berechnungsvorschriften bequem herange-
zogen werden konnen. (Die Arbeiten von Nielsen und Marcus.)

III, IV. — Bei der Berechnung der Saulen einer Pilzdecke wird die ungiins-
tigste (gleichformig verteilte) Belastung nach dem in Abb. 10 veranschaulichten
Schema angenommen. Dem gegeniiber zeigt Abb. 11 die ungiinstigste Bela-
stung fur die positiven Biegungsmomente in der Mitte der Plattenfelder. Die
grossten negativen Biegungsmomente in der Deckenplatte rings um die Séulen-
kopfe finden infolge einer totalen Belastung der betreffenden Decke statt.

Wenn man auf eine genauere Berechnung an Hand der Losungen und Zah-
lentafeln von Lewe verzichten muss, so gibt die in meinem Berichte kurz skiz-
zierte Methode des stellvertretenden Rahmens, welche besonders von Marcus

entwickelt worden ist, eine gute Anniherung.

Als Beispiel einer Berechnung in erster Annitherung wurde endlich die
Methode angefiihrt, welche in den Ver, Staaten von Amerika seiner Zeit als
Grundlage fir amtliche Vorschriften gedient hat. Diese gewissermassen « theo-
retisch-empirische » Methode beruht auf einfachen Betrachtungen des Gleichge-
wichts der dusseren und inneren Kriifte in einem Oktanten eines quadratischen
Deckenfeldes (Abb. 13), alseinem System von doppelter Symmetrie. Die
Verallgemeinerung der Anwendung des Hauptergebnisses: Mo =M (- M (4,
aul rechteckige Plattenfelder diirfte aber nur dann als geniigend angenihert
gelten, wenn das Seitenverhiltnis a : b nicht viel von 1 abweicht.

Traduction.

[. — L’utilisation pratique des dalles & champignon nécessite une étude aussi
précise que possible de leur régime de tensions et de déformations, en faisant
wtervenir le coefficient de sécurité et pour chaque mode possible d’application
des charges. Dans mon rapport, je me suis efforcé de montrer 'état actuel du
probleme que constitue le calcul rationnel des dalles & champignon. Quelques
travaux intéressants m’ont certainement échappé et je serai heureux de prendre
connaissance des communications que feront MM. les Congressistes a ce
sujet. Je dois toutefois signaler que certaines théories approchées et certaines
méthodes de calcul basées sur ces théories doivent laisser place a des méthodes
reposant sur des bases plus exactes. Ce sont ces derniéres que nous avons prin-
cipalement étudiées.

Dans U'Introduction de mon rapport, j’ai attiré 'attention sur les nombreuses
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difficultés que présente la solution complete et exacte du probleme et qui
sont les suivantes :

1° La connexion rigide entre les colonnes et les dalles.

Elle a pour conséquence, dans le cas des charges dlssvmetrlques que la flexion
des dalles dépend étroitement de la (1ef01‘mat10n des poteaux st 'on considére
le plancher lui-méme comme une dalle 1sotrope élastique mince, la solution de
I'équation classique de la flexion d’apres Lagrange est rendue considérablement
plus difficile, par suite de ce souténement superficiel statiquement indéterminé.

2° La flexibilité variable de la dalle et I'influence des chapiteaux
couronnant les colonnes.

Les différences de rigidité dans des tranches élémentaires d'orientations
différentes sont négligeables, en pratique, dans le stade I; il n’en est toute-
fois pas toujours de méme dans le stade II, d’apres lequel se trouve défini le
coefficient de sécurité, Le chapiteau forme un souténement élastique plan, pour
les parties du plancher qui subiraient sans lui des efforts trés élevés.

3° LLe changement dans larigidité au moment du passage dans le
stade 1I complique le probleme étant donné que la nouvelle valeur réduite
de la rigidité ne se rapporte qu’a certaines zones du plancher. 1l en résulte que
le planche[ se comporte en quelque sorte comme une dalle hétérogéne, cons-
tituée par des parties de différentes épaisseurs.

Les essais effectués jusqu'a maintenant en Allemagne (Dresde et Stuttgart)
conduisent toutefois & ce résultat surprenant que, avec une approximation assez
bonne, on peut admettre pour le stade II également, une relation linéaire entre
les fléchissements (ou les déformations) et les valeurs des charges (ou tensions).
La figure 1 met en évidence cette relation ; les fléchissements w sont portés en
abscisses et les elforts (moments fléchissants) en ordonnées.

Jestime que le développement ultérieur de la théorie des dalles-champi-
gnons sera basé sur cette relation.

II. — Les théories et méthodes de calcul présentées jusqu’'a maintenant con-
cernent principalement le stade I et ont pour but de permettre le calcul des
tensions effectives qui se trouvent mises en jeu par suite de 'application de la

charge utile. Dans ce cas, on peut négliger les dilférences de rigidité prove-
nant des sections différentes des armatures et on en arrive a
rie classique des dalles isotropes minces.

Les solutions correspondant au cas dune charge absolument uniforme, répar-
tie sur une dalle illimitée, avec appuis disposés ainsi que le montre la figure 2
ont déja été exposées par Lavoinne, en 1872, dans un travail a moitié oublié ;
les résultats sont groupés dans les formules 3 a 7. Les valeurs des moments
caleulés d'apres ces formules sont représentées par les figures 3 et 4.

Nous sommes redevables au D' Lewe - 2(p. ’190) de la solution correspondant
au cas tres intéressant que représente la figure 5. Le D* Lewe a d'ailleurs établi
des tables, tant pour ce cas que pour d’ dlltleS.

Les solutions qui précédent ne sont plus valables pour des parties de la dalle
qui reposent sur des murs de souténement de pourtour. Dans ce dernier cas,
de nombreux travaux cités dans le rapport donnent soit des solutions com-

emplover la théo-
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plétes, soit des résultats partiels qui peuvent étre mis a contribution pour la
solution des problemes indiqués sur la figure 6.

La figure 7 et la formule 8, d'une part, la figure 8 et les formules 9 et 10,
d'autre part, constituent des exemples intéressants de solutions particulieres,
Il faut ajouter ici que M. E. Melan a trouvé une formule 3 équivalente & la solu-
tion 9.

Dans le cas d'un appui libre de la périphérie circulaire d’une dalle-cham-
pignon, la solution de Michell-Melan ne peut évidemment pas étre employée.
(est pourquoi M. Hajnal-Kényi 4 s’est basé sur la solution de Foppl > présen-
tée sous la forme d'une série de Fourier, pour calculer dans certains cas spé-
ciaux de la pratique, les réactions sur les appuis et les moments fléchissants

X »

Les tableaux annexés a son étude en facilitent I'emploi pratique.

ITI. — Il existe toutefois, dans la pratique, de nombreux cas de charge et d’ap-
pui intéressants qui ne sont pas susceptibles de recevoir une solution pratique
exacte. Ici, la méthode des équations a différences finies rend d’excellents ser-
vices, en liaison avec la méthode du tissu élastique de M. H. Marcus. Il
importe d’ailleurs de signaler ici que ces méthodes se prétent mal a une utili-
sation par le constructeur lui-méme; il en est de méme des nombreuses for-
mules compliquées de la théorie exacte des plaques minces. Leur intérét pro-
vient plutot de ce qu’elles permettent le controle des hypothéses sur lesquelles
sont basées les prescriptions simplifiGes coneernant le caleul pratique.

HI. TV. Pourle calcul des poteaux d'un plancher-champignon, on suppose le
cas le plus dangereux (charge uniformément répartie), suivant le schéma de la
figure 10. La figure 11 indique la répartition de charge la plus dangereuse, pour
des moments fléchissants positifs dans le milieu des panneaux. [Les moments
négatifs maxima tout autour de la Léte du potean se manifestent lorsque 1'on
charge toute la surface du plancher,

Sil'on ne peut pas elfectuer un calcul plus exact, en se basant sur les solu-
tions et sur les tableaux de Lewe, on pourra adopter la méthode des cadres
suppléants, indiquée brievement dans mon rapport et qui conduit & une bonne
approximation; cette méthode a été particulierement développée par M. Mar-
cus. '

On a enfin choisi, & titre d’exemple d'un calcul de premiere approximation,
la méthode qui a, en son temps, servi de base a 1'établissement des Reéglements
Officiels aux Etats-Unis. Cetle méthode, que l'on peut considérer a la fois
comme théorique et empirique, repose sur les considérations simples de 1'équi-
libre des tensions extérieures et intérieures dans la huitieme partie du panneau

1. V. Lewe, Die Loésung des Pilzdeckenproblems durch Fouriersche Reihen. Bauinge-
nieur, 1920, N° 22,1922 Ne 4, 10, 11,

2. V. Lewgs, Pilzdecken, Berlin, 1926.

3. E. Meran, Die Durchbiegung einer exzentrisch durch eine Einzellast belaslelen
Kreisplatte (Eisenbau, 1920, Ne¢ 10).

k. K. Haswar-Kéxvr, Die Berechnung von kreisférmig begrenzten Pilzdecken, Berlin, 1929.

3. A. Foeer, Die Biegung einer kreisférmigen Platle, Situngsbericht der Akad. Miin-
chen, 1922, S, 155,

A. et L. Férper, Drang und Zwang, vol. I, 2¢ &dilion, 1924,
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carré (figure 13), considéré comme constituant un systeme de double symétrie.
Toutefois, la généralisation de I'emploi du résultat principal

Mo = M) + My,
aux dalles rectangulaires ne doit étre considérée comme donnant une approxi-

mation suffisante que lorsque le rapport entre les deux dimensions du rectangle
ne s'écarte pas trop de I'unité.

Dr. M. RITTER,

Professor an der Eidgendossischen Technischen Hochschule, Zirich.

Die Versuche von Herrn Prof. Gehler mit rechteckigen, allseitig aufliegen-
den Eisenbetonplatten gewithren einen trefflichen Einblick in das statische
Verhalten dieser Konstrulktionen ; die Deutung der Versuchsergebnisse wird
durch die Einfithrung der verschiedenen Kennziffern wesentlich erleichtert.

Von besonderer Wichtigkeit erscheinen mir die Kennziffern fiir die Einsen-
kung in Plattenmitte. Im Stadium I verhalten sich die kreuzweise bewehrten
Platten praktisch wie isotrope Platten. Im Stadium 1I (Stadium der Rissebil-
dung) steigt die Kennziffer der Einsenkung unvermittelt auf den sieben- bis
neunfachen Betrag an. Diese grosse Zunahme der Kennziffer der Einsenkung
liisst sich durch die Abminderung der Trigheitsmomente durch die Rissebil-
dung des Betons allein nicht erkliren und ist auch bei den vergleichsweise
gepriiften Plattenstreifen nicht vorhanden. Es ist wohl zu beachten, dass die
bedeutende Zunahme der Kennziffer der Einsenkung bereits bei einer Belastung
erfolgt, bei der die LEisenspannungen noch weit unterhalb der Fliessgrenze
liegen. Fiir die Zunahme der Kennziffer der Einsenkung gibt es zwei verschie-
dene Erklirungsmoglichkeiten : Entweder kommt darin die sogenannte Mem-
branwirkung der Platte zum Ausdruck oder die Ursache liegt in der Vermin-
derung der Drillungssteifigkeit der Platte durch die Rissebildung. Es ist
darauf hinzuweisen, dass sich die beobachteten Durchbiegungen aus der
Abminderung der Trigheitsmomente im Verein mit der Verkleinerung der
Drillungssteifigkeit infolge der Rissebildung zwanglos erkliren lassen und fur
eine Membranwirkung meines Erachtens keine Anhaltspunkte vorliegen. Die
Membranwirkung ist im Bruchstadium der Platte vielleicht vorhanden, ist
jedoch ohne Bedeutung fir die iiberraschend grosse Aenderung der Kennzilfer
der Durchbiegung im Stadium IL.

Traduction.

Les essais effectués par M. le Professeur Gehler sur des dalles de béton
armé rectangulaires, reposant sur leurs quatre cotés, permettent d’obtenir une
représentation remarcuable du comportement statique de ces éléments de
construction. L'interprétation des résultats fournis par ces essals est d’ailleurs
largement facilitée par l'introduction des différentes grandeurs caractéristiques
considérées.
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“ A mon avis, les caractéristiques de fléchissement au centre de la dalle sont
d'une importance toute particuliere. Dans la phase I, les dalles armées en
croix se comportent pratiquement comme des dalles isotropes. Dans la phase
I (phase de fissuration), les valeurs de la caractéristique de fléchissement
montent brusquement jusqu’a atteindre le rapport 7 ou 9. La diminution que
subit le moment d'inertie par suite de la formation des fissurations dans le
béton ne peut pas sullire, a elle seule, pour justifier cette considérable aug-
mentation de la caractéristique de fléchissement, qui n'a d'ailleurs pas été
constatée dans les essals comparatifs effectués sur des tranches. Il est a
remarquer que cette importante augmentation de la caractéristique de fléchis-
sement se manifeste lorsque l’on atteint une charge pour laquelle les contraintes
des fers d’armature se trouvent encore notablement au-dessous de la limite
d’écoulement. Deux theses différentes se présentent pour expliquer cette aug-
mentation : il s’agit soitd'une mise en jeu de l'effet dit « de membrane », soit
d’une réduction de la rigidité de la dalle a la torsion sous l'influence de la for-
mation des fissures. Il est a observer a ce sujet que les fleches observées
peuvent en effet s’expliquer aisément par l'intervention simultanée des
influences résultant de la diminution des moments d'inertie et de 'affaiblisse-
ment de la rigidité de lorsion de la dalle. A mon avis, il n’y apas lieu d'envi-
sager une mmtervention de l'effet de membrane. Cette influence se manifeste
peut-étre dans la phase de rupture de la dalle ; toutefois, elle n'intervient pas
dans la variation extrémement importante qu'accuse la caractéristique de flé-
chissement dans la phase II.

II 3

THEORIE DES DALLES A CHAMPIGNON
THEORIE DER PILZDECKEN
THEORY OF « MUSHROOM » SYSTEMS

Dr. M. T. HUBER,
Professeur & I'Ecole Polytlechnique, Varsovie.

Voir aussi « Publication Préliminaire », p. 249. — Siehe auch « Vorberichl », S. 243,
Sce also ‘* Preliminary Publicalion 7, p. 249,

Im Vorbericht findet man (S. 188) folgende Behauptung des Herrn Kollegen
Gehler : « Bei den Platten besteht Einigkeit dartiber, dass sie unterhalb der
Risslast (Stadium I) als homogene und isotrope Platten wirken. » Es handelt
sich hier gewiss um eine Feststellung, welche den seiner Zeit in Stuttgart und
jetzt in Dresden ausgefithrten Versuchen praktisch gut entspricht. Wenn man
aber bedenkt, dass die Unterschiede der beiden Biegungssteiligkeiten

Bl(zEx’-Jx)§ By (= Eyf'JS);

bei allen Versuchen nur verhiltnismissig klein waren und dabel nur die



	Participants in the discussion of question II2
	Diskission
	Discussion
	Diskussion
	Discussion
	Diskussion
	Discussion


