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l&O Deuxieme seance de travail

Troisieme question de discussion (proposee par M. Ritter) :

Dans le calcul des moments flechissants, doit-on employer le
coefficient de Poisson m —4, ou est-il justifie d'adopter pour ce
coefficient une valeur plus elevee et pourquoi?

En ce qui concerne le coefficient d'allongement transversal m il faut toujours

distinguer entre :

Welast. m e : £,, et

"»total m S '• =<i

1. —Si l'on calcule le coefficient d'allongement transversal ä partir des

deformations elastiques mesurees, donc mäast. m, c'est-ä-dire la deuxieme

constante de la theorie de l'elasticite, on obtient pour le beton une valeur qui
diminue lorsque la contrainte croit ; pour la compression, par exemple,

m diminuede m 6 km 4 (voir rapport du Dr. Gehler au Congres pour l'Essai
des Materiaux de Zürich, 1931, page 1095). II faut toutefois observer ici que
l'on ne peut employer ce mode de calcul que tant que les deformations vj

permanentes restent relativement faibles, donc, pour les poutres en beton arme,
environ jusqu'a la charge utile.

2. — Si, par contre, on determine les valeurs de :

mtoiai rn — o : Sq

on constate, au voisinage de la charge de rupture, que les valeurs de o aug-
mentent plus que Celles de o\, et que par suite les valeurs de m augmentent
lorsque la charge croit.

3_ _ Qael coefficient d'allongement transversal convient-il d'adopter pour
le calcul d'une dalle, miiasL ou mtotai

On ne peut indiquer de regle determinee que pour m^ast. rn, c'est-ä-dire

pour le cas oü l'on sc limite au domaine elastique (stade I de nos essais de

dalles). Pour le stade II, on se trouve dans des conditions tres peu claires,

par suite de l'intervention des influences de deformation plastique partielle.
Conclusion : La reponse ä la question de M. Ritter est donc la suivante :

Pour le calcul des moments flechissants dans les dalles de beton arme, il faut

adopter fe coefficient d'allongement transversal m 6.

Participants ä la discussion.
Diskussionsteilnehmer.

Participants in the discussion.

Dr.-Ing. F. SCHLEICHER,
Professor an der Technischen Hochschule, Hannover.

I. Ueber die Steifigkeit der quadratischen Eisenbetonplatten.
Es ist interessant, die Durchbiegungen der freiaufliegenden, an den Ecken

festgehaltenen quadratischen Platten mit den theoretischen Werten für die

isotrope Platte zu vergleichen. Der Elastizitätsmodul wäre dabei von den

Biegungsversuchen mit den Plattenstreifen zu entnehmen, über die im

Vorbericht leider noch keine näheren Angaben gemacht sind.
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Nach A. Nädai1 ist die grösste Durchbiegung einer gleichmässig belasteten

isotropen quadratischen Platte von der Seitenlänge a für die oben genannten
Randbedingungen gleich

f 0,00406 £=1)
a*

pr
Der Elastizitätsmodul E des Plattenmaterials, der praktisch mit der Grösse

,2 17 n aim
''S E' - - 0 0487 P--

übereinstimmt 2, kann bei Gültigkeit des Hooke'schen Gesetzes aus den «

Kennziffern » 3 für die Durchbiegungen berechnet werden. Für die Reihen 1 bis
4 der Dresdner Versuche (vgl. Seite 210 des Vorberichtes) erhält man aus Gl. 2

Stadium I E' 197 232 200 200 im Mittel 207 t/cm2
Stadium II E' 21,1 24,9 20,0 26,5 im Mittel 23,1 t/cm2

Der Vergleich mit den Plattenstreifen ist mit den im Vorbericht angegebenen

Daten leider noch nicht möglich. Es können aber schon jetzt die
Unterschiede zwischen den Stadien I und II studiert werden.

Der mittlere Wert E' 207 t/cm2 des Elastizitätsmoduls für die isotrope
Platte ohne Bisse entspricht wohl dem, was zu erwarten ist. Dagegen ist die

Steifigkeit nach Eintritt der Risse wesentlich kleiner, als man für eine isotrope
Platte erwarten würde.

Nimmt man für einen Ueberschlag an, dass die Risse im Stadium II alle bis

an die Nullinie reichen, dann hat man für die Plattensteifigkeit in den üblichen

Bezeichnungen

3) D E' (~ + n Fe (h — x)2^j E'. <|> d\
gegenüber dem Wert

4) D E'. 0,0833. d3 im Stadium I.

Wenn die Platte auch nach Eintritt der Risse noch wie eine isotrope Platte wirken

würde, d. h. mit den gleichen Eigenschaften wie im Stadium 1, nur mit ent-

X 'il h/hl xjh • Jl/Jll Sn/Si

Reihe
d

cm
hjd bh/Fe für n 6 für n - 15

beobachtet

l 12 0,858 229 0,205 6,8 0,302 3,2 9,3
2 10 0,830 185 0,224 6,3 0,330 3,0 9,3
3 12 0,858 263 0,19'. 7,6 0,285 3,6 10,0
4 12 0,850 200 0,217 6,2 0,321 3,0 7,6

Mittelwerte 6>" 3,2 9,1

sprechend verminderter Steifigkeit, so müsste die Zunahme der Durchbiegungen

etwa in den Grenzen bleiben, die ausder nicht mehr mitwirkenden Zugzone folgen.

I.A. Nädai, Elastische Platten, Berlin, 1925, Seite 127.

-2. Der Unterschied zwischen E und E' beträgt für m 0 nur 3 %.
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Für die Verhältnisse der Dresdner Versuchsreihen 1 bis 4 ergeben sich die
fofgenden Werte.

Die Zahlen für n 6 stellen wohl eine extreme Grenze dar, die durch die
wirklichen Verhältnisse kaum überschritten wird. Wenn die Zugzone nicht
ganz gerissen ist, werden die Verhältniszahlen für J[ /in etwas kleiner sein als
die obigen Werte. Der Unterschied gegenüber der Beobachtung wird dann
noch etwas grösser. Schätzt man das Verhältnis der Steifigkeiten im Mittel
gleich Ji/Jn 5, so wäre der Unterschied 9 gegen 5 aufzuklären.

Der beobachtete Unterschied wird teilweise dadurch erklärt, dass der
Elastizitätsmodul des Betons mit steigenden Spannungen abnimmt. In der Hauptsache

ist er jedoch nur dadurch zu erklären, dass die Platte nach Eintritt der
Risse nicht mehr als isotrope Platte wirkt, sondern als Trägerrost ohne
nennenswerte Drillungssteifigkeit.

Die Durchbiegung des Trägerrostes ist etwa doppelt so gross, als die der
isotropen Platte mit unverminderter Drillungssteifigkeit. Für den Trägerrost
ist also eine rd. zweimal so grosse Kennziffer Sn für die Durchbiegung als beim
isotropen Anfangszustand zu erwarten. Rechnet man nach Obigem eine
Verminderung der Steifigkeit durch die Risse auf 1/5 des ursprünglichen Betrages,
so wird die Kennziffernach Risseeintritt insgesamt rd. 10 mal so gross als für
die Piatte im Stadium I, was genügend mit der Beobachtung übereinstimmt.
Der noch verbleibende Unterschied ist dadurch erklärt, dass in der Platte
neben Gebieten ohne Drillungssteifigkeit auch noch solche mit einer gewissen
Drillungssteifigkeit vorhanden sind, ausserdem reisst die Zugzone nicht überall

gleichmässig tief ein.
Der verschiedene Charakter der Biegungsflächen für die Stadien I bezw. II

müsste übrigens bei Messung der Durchbiegungen leicht festgestefft werden
können, da die Biegungsformen für den Trägerrost in den Ecken der Platte
voller sind als für die isotrope Platte.

II. — Bemerkung über die Knickung von Eisenbetonplatten.
Bei den dünnen Platten der neuzeitlichen Eisenbetonkonstruktionen ist in

manchen Fällen auch die Stabilität zu untersuchen.
Für eine isotrope Eisenbetonplatte mit gleichmässigen Druckspannungen,

die an allen vier Bändern gelenkig gelagert ist, ergibt sich im elastischen
Bereich mit E 200 t/cm2 und m 6 eine kleinste Knickspannung von

5) mi„ 4 675 (h/h)2, in t/cm2.
Nach dieser Gleichung folgt „,;„ <*k 0,2 t/cm2, wenn die Plattenbreite b=
58 h ist, und min o-^1 0,1 t/cm2 für h 82 h.

Für das Stadium II, nach Eintritt der Risse, ist die Steifigkeit der Platte
nach dem Referat Gehler nur noch etwa 1/9 des Wertes für die Platte ohne
Risse. Nimmt man an, dass auch für die Knickung im Stadium II noch mit
genügender Genauigkeit die Gleichung für isotrope Platten verwendet werden
kann, so wird mit Dn/Di =1/9 als Knickspannung etwa

6) mi„ a tl 75 (bjh) 2, in t/cm2,

gefunden. Der dabei vorausgesetzte Zustand II wird eintreten, wenn ausser
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den Druckspannungen (gleichzeitig oder früher) auch Biegungsspannungen

wirken, die die Rissgrenze überschreiten. In solchen Fällen kann man die Gl.
6 wohl mit genügender Genauigkeit für eine erste Schätzung der Grössenord-

nung benutzen. Es ergeben sich danach die folgenden grösstzulässigen Plattenbreiten

:

min ^ 0,2 0,1 0,05 t/cm2 für

h/h= 19 27 39.

Man erkennt daraus, dass die Stabilität durchaus nicht so gross ist, als man

erwarten würde. Bei der Schätzung dieser Zahlen ist dabei weder die Abminderung

der Knickspannungen im unelastischen Bereich, noch die Abnahme

des Elastizitätsmoduls mit steigenden Spannungen berücksichtigt.
Auch bei den dünnwandigen Schalen und Kuppeln ist es manchmal

notwendig, auf die Stabiiität zu achten, wobei unter Umständen die unvermeidlichen

Abweichungen von der theoretischen Form eine Rolle spielen können.

Traduction.

1. — Rigidite des dalles carrees en beton arme.
II est interessant de faire une comparaison entre les flechissements qu'ac-

cusent les dalles carrees reposant librement sur leurs appuis, avec fixation aux

angles, et les valeurs theoriques obtenues pour la dalle isotrope. Le module

d'elasticite devrait en outre etre calcule ä partir des resultats des essais effectues

sur des tranches elementaires, question qui n'a fait l'objet d'aucune

indication precise au cours des Rapports Preliminaires.
Suivant A. Nädai x le flechissement maximum d'une dalle carree isotrope

chargee uniformement, ayant une longueur a, et soumise aux conditions

peripheriques indiquees plus haut est donne par l'expression :

/==0,00406^ (1)

Le module d'elasticite E du materiau constituant cette dalle et dont la

valeur concorde en pratique avec la valeur 2 :

B' =^ •.<»«#
peut etre calcule ä partir des chiffres caracteristiques pour les flechissements,

en considerant la loi de Llooke comme valable. Pour les series 1 ä 4 des essais

de Dresde (voir page 210 de la Publication Preliminaire), on obtient en apph-

quant l'equation (2) :

Phase I : E'= 197 232 200 200 moyenne 207 t/cm2
Phase II :E'= 21,1 24,9 20,0 26,5 moyenne 23,1 t/cm2

Malheureusement, il n'est pas encore possible d'etablir, avec les chiffres

indiques dans la Publication Preliminaire, la comparaison pour les tranches

elementaires de dalles. On peut toutefois etudier des maintenant les differences

entre les phases I et II.

1. A. Nadai, Elastische Platten, Berlin, 1925, p. 127.

2. L'ecart entre E et E', pour m 6, n'est que de 3 °/0.
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La valeur moyenne E' 207 t/cm2 du module d'elasticite, pour la dalle
isotrope sans fissure, correspond bien ä ce que l'on peut prevoir. Par contre,
fa rigidite apres fissuration est sensiblement plus faible que Eon ne pourrait le
prevoir pour une dalle isotrope.

Si l'on suppose ä titre d'approximation que dans la phase II, les fissures
s'etendent toutes jusqu'a la ligne neutre, on a pour la rigidite de la dalle, avec
les designations courantes :

D E' U + n Fc (h E'

alors que pour la phase I, on a :

D E' 0,0833 d3 (4)
Si la dalle se comportait, meme apres apparition des fissurations, encore

comme une dalle isotrope, c'est-ä-dire suivant les memes proprietes que dans
la phase I, mais avec une rigidite reduite en proportion, l'accroissement du
tlecbisseiuent resterait ä peu de cbose dans des limites correspondant ä la zone
de traction, qui d'ailleurs est hors de cause.

Dans les conditions qui correspondent aux series 1 ä 4 des essais de Dresde,
on obtient les valeurs suivantes :

Serie d
cm hjd bh/F,

xjh
pour

Jl/Jll
n 6 pour

Jl/Jll
n 15

Sn/oi
observes

1

2
3
4

12
10
12
12

0,858
0,830
0,858
0,850

229
185
263
200

0,205
0,224
0,192
0,217

6,8
6,3
7,6
6,2

0,302
0,330
0,285
0,321

3,2
3,0
3,6
3,0

9,3
9,3

10,0
7,6

Valeurs rnoyenne 6,7 3,2 9 1j, i

Les chiffres qui correspondent ä n 6 representent une marge extreme
qui doit etre ä peine depassee dans des conditions pratiques effectives. Si la
zone de traction n'est pas entierement fissuree, les coefficients correspondant
ä Ji/Jn seront legerement plus faibles que les valeurs ci-dessus. L'ecart par
rapport aux observations sera donc encore un peu plus uccentue. Si l'on
admet pour le rapport des rigidites au milieu

Ji/Ju 5

l'ecart s'etablira ä 9 au lieu de 5.
L'ecart observe s'explique en partie de ce fait que le module d'elasticite du

beton diminue lorsque la confrainte augmente. Toutefois, il ne s'explique, dans
l'ensemble, que parce que la dalle ne se comporte plus comme une dalle
isotrope apres l'apparition de la fissuration, mais plutöt comme un Systeme de
tranches perpendiculaires ne possedant aucune rigidite de torsion determinee.

Le flechissement de ce Systeme est ä peu pres le double de celui qu'accuse-
rait une dalle isotrope admettant une rigidite de torsion integrale. II faut donc
tabfer, pour ce Systeme, sur un chiffre caracteristique Sn environ deux fois pius
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eleve que pour le flechissement correspondant ä l'etat d'isotropie. Si d'apres
ce qui precede, on compte la reduction de la rigidite, par suite de la fissuration,

comme atteignant le 1/5 de la valeur initiale, on arrivera, apres la
fissuration, äun chiffre caracteristique environ 10 fois plus eleve que pour la dalle

lorsqu'elle se trouvait dans la phase I, resultat qui Concorde suffisamment bien

avec les observations. La difference qui subsiste s'explique de ce fait qu'il existe
dans la dalle, ä cöte de regions ne possedant aucune rigidite de torsion, des

regions qui accusent encore pour cette rigidite une certaine valeur ; en outre la

zone de traction ne subit pas partout une fissuration d'une profondeur uniforme.
La difference d'allure entre les deformations de flechissement dans les phases

I et II devrait d'ailleurs pouvoir etre mise en evidence facilement par la

mesure, car les surfaces de deformation que prend ce Systeme de tranches

perpendiculaires dans les angles de la dalle, sont plus nettement accusees que
dans le cas de la dalle isotrope.

2. — Remarque sur le flambage des dalles en beton arme.

Dans les dalles minces que l'on emploie pour les constructions en beton

arme modernes, il importe d'etudier, dans de nombreux cas, la question de la
stabilite.

Si l'on considere une dalle isotrope en beton arme soumise ä des contraintes
uniformement reparties et admettant des appuis articules sur ses quatre bords,
la contrainte minimum de flambage, dans le domaine elastique, avec E 200

t/cm2 et m 6 est de

min^= 675 (h/b)2 eu t/cm2 (5)

D'apres cette relation, pour une largeur de dalle

h 58 h on obtient :

min 4' 0,2 t/cm2

Et pour b 82 h on obtient :

min af 0,1 t/cm2

En ce qui concerne la phase II et apres apparition de la fissuration, d apres
le rapport de M. Gehler, la rigidite de la dalle n'est plus que le 1/9 de la

valeur qui correspond pour cette dalle ä l'absence de fissuration. Si l'on admet

que meme pour le flambage dans la phase II, on puisse employer l'equation des

dalles isotropes avec une precision süffisante, on aura, avec Dn/Üi= 1/9 comme
contrainte de flambage,

min acl 75 (h/h)2, en t/cm2 (6)

Le passage ä la phase II, ici admis, se produira lorsqu'aux contraintes de

compression viendront s'ajouter, simultanement ou ulterieurement, des contraintes
de flexion feiles que la limite de fissuration se trouve depassee. En pareil cas,

on peut pour une premiere estimation de 1'ordre de grandeur, faire appel avec

une precision süffisante ä l'equation (6). On en deduit pour les largeurs des

dalles ci-dessous, les valeurs maxima admissibles suivantes :
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mn uei 0,2 0,1 0,05 t/cm2 pour :

h/h 19 27 39

On voit que la stabilite n'est pas tout ä fait aussi elevee que l'on pourrait
prevoir. Dans l'esttmation approximative de ces valeurs, on ne tient compte
ni de la diminution des contraintes de flambage dans le domaine elastique, ni
de la diminution que subit le module d'elasticite lorsque les contraintes croissent.

Dans les coupoles et les voütes minces elles-memes, il est frequemment
necessaire de veiller ä cette consideration de stabilite, car dans certains cas,
les derogations qu'il est impossible d'eviter par rapport aux formes theoriques
peuvent intervenir dans des proportions importantes.

Dr. Ing. M. HUBER,
Professeur ä l'Ecole Polytechnique, Varsovie.

I. — Die wirtschaftliche Ausnutzung der statischen Wirkung der Pilzdecken
erfordert eine möglichst genaue Erforschung ihres Formänderungs- und
Spannungszustandes im Zusammenhange mit dem Sicherheitsgrade bei jeder möglichen

Belastungsart. In meinem Berichte habe ich versucht, den heutigen Stand
des Problems einer zuverlässigen statischen Berechnung der Pilzdecken zu
schildern. Ich bin mir bewusst, dass vielleicht manche schätzenswerte Ergebnisse

und Arbeiten meiner Aufmerksamkeit entgangen sind und werde
etwaige Beiträge der Herren Kongressteilnehmer gerne zur Kenntnis nehmen
und prüfen. Ich bemerke aber dabei, dass gewisse Näherungstheorien und
darauf gegründete Berechnungsverfahren vor vollkommeneren, wissenschaftlich
besser begründeten Methoden zurückweichen müssen. Letztere wurden deshalb
vor allem behandelt.

In der Einleitung meines Berichtes habe ich auf die zahlreichen Schwierigkeiten

einer vollständigen und exakten Lösung des Problems hingewiesen und
zwar :

1. Die steife Verbindung der Säulen mit der Deckenplatte.
Sie verursacht, dass bei unsymmetrischen Belastungen der Decke ihre

allgemeine Biegung von der Säulenbiegung stark abhängig ist. Betrachtet man die
Decke als « dünne », elastische, näherungsweise isotrope Platte, so wird die
Lösung der klassischen Biegungsgleichung von Lagrange durch statisch
unbestimmte Flächenstützung ausserordentlich erschwert.

2. Die ungleichförmige Biegungssteifigkeit der Decke und die
Wirkung der Säulenkopfplatte.

Die Unterschiede der Biegungssteifigkeiten in verschieden orientiert gedachten
Plattenstreifen sind zwar im Stadium I praktisch vernachlässigbar; dieses

gilt aber nicht immer im Stadium II, nach welchem bekanntlich die Sicherheit
beurteilt wird. Die Säulenkopfplatte bildet eine plattenförmige, elastische Stützung

dieser Deckenteile, welche ohne Kopfplatte ausserordentlich beansprucht
wären.

3. Der starke Wechsel der Biegungssteifigkeit beim Uebergange
in das Stadium II der Decke wirkt insofern erschwerend, als der neue
(verminderte) Wert der Biegungssteifigkeit nur gewisse Teilgebiete der Plat-
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tenfläche beherrscht. Infolgedessen wirkt die Decke etwa wie eine heterogene
Platte, welche aus homogenen Flecken von verschiedener Stärke zusammengefügt

ist.
Trotzdem führen die bisherigen Versuche mit Eisenbetonplatten in Deutschland

(Stuttgart und Dresden) zu dem überraschenden Ergebnis, dass in guter
Annäherung eine lineare Abhängigkeit der Durchbiegungen bezw. Formänderungen

von den Belastungsgrössen (bezw. Spannungen) auch im Stadium II
stattfindet. Abb. 1 zeigt diese Abhängigkeit, wobei die Durchbiegungen w als
Abszissen und die Spannungen (bzw. Biegungsmomente und dgl.) als Ordinaten
gemessen sind.

Ich glaube, dass die künftige Entwicklung der Theorie dieses Schema als
Ausgangspunkt wählen wird.

II. — Die bisherigen Theorien und Berechnungsmethoden beziehen sich
hauptsächlich auf das Stadium I und verfolgten den Zweck, die wirklichen
Spannungen, welche von der Nutzlast herrühren, zu berechnen. Dabei dürfen
die durch verschieden starke Bewehrung bedingten Unterschiede der Biegungs-
steifigkeiten in der Reget vernachlässigt werden, fofgfich kommt die klassische
Theorie der dünnen isotropen Platten zur Anwendung.

Die entsprechenden, strengen Lösungen im Falle einer totalen, gleichförmigen

Belastung einer unbegrenzten Platte, welche nach Abb. 2 gestützt ist,
findet man bereits in einer halb vergessenen Arbeit von Lavoinne aus dem
Jahre 1872. Die Ergebnisse sind in den Formeln (3 bis 7) zusammengestellt.
Die nach diesen Formeln errechneten Momentwerte sind in den Abb. 3 und
4 übersichtlich dargestellt.

Die Lösung im wichtigen in der Abb. 5 dargestellten Belastungsfalle
verdankt man der Arbeit 1- 2 von Dr. Lewe, welcher auch gebrauchsfertige
Tabellen für diesen und andere Fälle berechnet hat.

Obige Lösungen gelten nicht mehr für Deckenfelder, welche durch
Umfassungswände gestützt sind. In diesen Fällen geben aber viele im Bericht zitierte
Arbeiten entweder die fertige Lösung, öderes können die dort gefundenen Ergebnisse

zur Lösung der in der Abb. 6 veranschaulichten Fälle verwendet werden.
Beispiele wichtiger Einzellösungen geben Abb. 7 mit der Formel (8) und

Abb. 8 mit den Formeln (9) und (10). Ich möchte noch hinzufügen, dass Herr
E. Melan3 eine der Lösung (9) äquivalente Formel gefunden hat. Im Falle
freier Auflagerung der kreisförmigen Ränder einer Pilzdecke ist freilich die
Michell-Mefansche Lösung nicht anwendbar. Angesichts dessen ist Herr
K. Hajnal-Könyi * von der Föpplschen 5 Lösung in Form einer Fourierschen
Reihe ausgegangen, um die Stützkräfle und Biegungsmomente in praktisch

1. V. Lewe, Die Lösung- des Pilzdeckenproblems durch Fouriersche Reihen. Bauingenieur,

1920, N° 22, 1922, N° 4, 10, 11.
2. V. Lewe, Pilzdecken, Berlin, 1926.
3. E. Melan, Die Durchbiegung- einer exzentrisch durch eine Einzellast belasteten Kreisplatte

(Eisenbau, 1920, N° 10).
4. K.IIajnal-Könyi, Die Berechnung von kreisförmig-begrenzten Pilzdecken, Berlin, 1929.

5. A. Föppl, Die Biegung einer kreisförmigen Platte, Sitzungsbericht der Akad.
München, 1912, S. 155.

A. u. L. Föppl, Drang- und Zwang, Bd. I, 2. Aufl., 1924.
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wichtigen Spezialfällen zu berechnen. Die seiner Arbeit beigefügten Zahlentafeln
erleichtern die praktische Anwendung.

III. — Es gibt aber sehr viele praktisch wichtige Stützungsbedingungen und
Belastungsfälle, welche einer praktisch verwertbaren, exakten Lösung nicht
zugänglich sind. Dann leistet die Methode der Differenzengleichungen in
Verbindung mit der Methode, der elastischen Gewebe von Herrn H. Marcus sehr gute
Dienste. Es muss hier hervorgehoben werden, dass diese Methoden zur unmittelbaren

Anwendung durch den Konstrukteur ebensowenig geeignet sind wie viele
sehr verwickelte Lösungsformeln der strengen Theorie dünner Platten. Ihre
Bedeutung beruht vielmehr darauf, dass sie zur Prüfung und Korrektur der
rohen Annahmen in vereinfachten Berechnungsvorschriften bequem herangezogen

werden können. (Die xVrbeiten von Nielsen und Marcus.)

III, IV. — Bei der Berechnung der Säulen einer Pilzdecke wird die ungünstigste

(gleichförmig verteilte) Belastung nach dem in Abb. 10 veranschaulichten
Schema angenommen. Dem gegenüber zeigt Abb. 11 die ungünstigste
Belastung für die positiven Biegungsmomente in der Mitte der Plattenfelder. Die
grössten negativen Biegungsmomente in der Deckenplatte rings um die Säulenköpfe

finden infolge einer totalen Belastung der betreffenden Decke statt.
Wenn man auf eine genauere Berechnung an Hand der Lösungen und

Zahlentafeln von Lewe verzichten muss, so gibt die in meinem Berichte kurz
skizzierte Methode des stellvertretenden Rahmens, welche besonders von Marcus
entwickelt wrorden ist, eine gute Annäherung.

Als Beispiel einer Berechnung in erster Annäherung wurde endlich die
Methode angeführt, welche in den Ver. Staaten von Amerika seiner Zeit als
Grundlage für amtliche Vorschriften gedient hat. Diese gewissermassen «

theoretisch-empirische » Methode beruht auf einfachen Betrachtungen des Gleichgewichts

der äusseren und inneren Kräfte in einem Oktanten eines quadratischen
Deckenfeldes (Abb. 13), als einem System von doppelter Symmetrie. Die
Verallgemeinerung der Anwendung des Hauptergebnisses : Mo M (_) -f- M (+)
auf rechteckige Plattenfelder dürfte aber nur dann als genügend angenähert
gelten, wenn das Seitenverhältnis a : h nicht viel von 1 abweicht.

Traduction.

I. — L'utilisation pratique des dalles ä Champignon necessite une etude aussi
precise que possible de leur regime de tensions et de deformations, en faisant
intervenir le coefficient de securite et pour chaque mode possible d'application
des charges. Dans mon rapport, je me suis efforce de montrer l'etat actuel du
probleme que constitue le calcul rationnel des dalles ä Champignon. Quelques
travaux interessants m'ont certainement echappe et je serai heureux de prendre
connaissance des Communications que feront MM. les Congressistes ä ce

sujet. Je dois toutefois signaler que certaines theories approchees et certaines
methodes de calcul basees sur ces theories doivent laisser place ä des methodes
reposant sur des basss plus exactes. Ce sont ces dernieres que nous avons prin-
cipalement etudiees.

Dans l'introduction de mon rapport, j'ai attire l'attention sur les nombreuses
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difficultes que presente la Solution complete et exacte du probleme et qui
sont les suivantes :

1° La connexion rigide entre les colonnes et les dalles.
Elle a pour consequence, dans le cas des charges dissymetriques, que la flexion

des dalles depend etroitement de la deformation des poteaux; si l'on considere
le plancher lui-meme comme une dalle isotrope elastique mince, la Solution de

l'equation classique de la flexion d'apres Lagrange est rendue considerablement
plus difficile, par suite de ce soutenement superficiel statiquement indetermine.

2° La flexibilite variable de la dalle et l'influence des chapiteaux
couronnant les colonnes.

Les differences de rigidite dans des tranches elementaires d'orientations
differentes sont negligeables, en pratique, dans le stade I; il n'en est toutefois

pas toujours de meme dans le stade II, d'apres lequel se trouve defini le
coefficient de securite. Le chapiteau forme un soutenement elastique plan, pour
les parties du plancher qui subiraient sans lui des efforts tres eleves.

3° Le changemen t dans la rigidite au moment du passage dans le
stade II complique le probleme, etant donne que la nouvelle valeur reduite
de la rigidite ne se rapporte qu'ä certaines zones du plancher. II en resulte que
le plancher se comporte en quelque sorte comme une dalle heterogene,
constituee par des parties de differentes epaisseurs.

Les essais effectues jusqu'a maintenant en Aitemagne (Dresde et Stuttgart)
conduisent toutefois ä ce resultat surprenant que, avec une approximation assez
bonne, on peut admettre pour le stade II egalement, une relation lineaire entre
les flechissements (ou les deformations) et les valeurs des charges (ou tensions).
La figure 1 met en evidence cette relation; les flechissements w sont portes en
abscisses et les efforts (moments flechissants) en ordonnees.

J'estime que le developpement ulterieur de la theorie des dalles-champignons

sera base sur cette relation.

II. — Les theories et methodes de calcul presentees jusqu'a maintenant
concernent principafement fe stade I et ont pour but de permettre fe calcul des
tensions effectives qui se trouvent mises en jeu par suite de l'application de la
charge utile. Dans ce cas, on peut negliger les differences de rigidite provenant

des sections differentes des armatures et on en arrive ä employer la theorie

classique des dalles isotropes minces.
Les Solutions correspondant au cas d'une charge absolument uniforme, repartie
sur une dalle illimitee, avec appuis disposes ainsi que le montre la figure 2,

ont dejä ete exposees par Lavoinne, en 1872, dans un travail ä moitie oublie ;

les resultats sont groupes dans les formules 3 ä 7. Les valeurs des moments
calcules d'apres ces formules sont representees par les figures 3 et 4.

Nous sommes redevables au Dl'Lewe 1- 2(p. 190) de la Solution correspondant
au cas tres interessant que represente la figure 5. Le Dr Lewe a d'ailleurs etabli
des tables, tant pour ce cas que pour d'autres.

Les Solutions qui precedent ne sont plus valables pour des parties de la dalle

qui reposent sur des murs de soutenement de pourtour. Dans ce dernier cas,
de nombreux travaux cites dans le rapport donnent soit des Solutions com-
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pletes, soit des resultats partiels qui peuvent etre mis ä contribution pour la
Solution des problemes indiques sur la figure 6.

La figure 7 et la formule 8, d'une part, la figure 8 et les formules 9 et 10,
d'autre part, constituent des exemples interessants de Solutions particulieres'.
II faut ajouter ici que M. E. Melan a trouve une formule 3 equivalente ä la Solution

9.
Dans le cas d'un appui libre de la peripherie circulaire d'une dalle-champignon,

la Solution de Michell-Melan ne peut evidemment pas etre employee.
C'est pourquoi M. Hajnal-Konyi * s'est base sur la Solution de Föppl 5 presen-tee sous la forme d'une serie de Fourier, pour calculer dans certains cas
speciaux de la pratique, les reactions sur les appuis et les moments flechissants
Les tableaux annexes ä son etude en facilitent l'emploi pratique.

III. — II existe toutefois, dans fa pratique, de nombreux cas de charge et d'appui
interessants qui ne sont pas susceptibles de recevoir une Solution pratique

exacte. Ici, la methode des equations ä differences finies rend d'excellents
Services, en liaison avec la methode du tissu elastique de M. H. Marcus. II
importe d'ailleurs de signaler ici que ces methodes se pretent mal ä une utili-
sation par le constructeur lui-meme ; il en est de meme des nombreuses for-
mutes compliquees de la theorie exacte des plaques minces. Leur interet
provient plutöt de ce qu'elles permettent le contröle des hypotheses sur lesquelles
sont basees les prescriptions simplifiees concernant le calcul pratique.

HL IV. Pour le calcul des poteaux d'un plancher-champignon, on suppose le
cas le plus dangereux (charge uniformement repartie), suivant le schema de la
figure 10. La figure 11 indique la repartition de charge la plus dangereuse, pourdes moments flechissants positifs dans le milieu des panneaux. Les moments
negatifs maxima tout autour de la tete du poteau se manifestent lorsque l'on
charge toute la surface du plancher.

Si l'on ne peut pas efieetuer un calcul plus exact, en se basant sur les Solutions

et sur les tableaux de Lewe, on pourra adopter la methode des cadres
suppleants, indiquee brievement dans mon rapport et qui conduit ä une bonne
approximation; cette methode a ete particulierement developpee par M. Marcus.

On a enfin choisi, ä titre d'exemple d'un calcul de premiere approximation,
la methode qui a, en son temps, servi de base ä l'etablissement des Beglements
Officiels aux Etats-Unis. Cette methode, que l'on peut considerer ä la fois
comme theorique et empirique, repose sur les considerations simpies de l'equi-
libre des tensions exterieures et inferieures dans la huitieme partie du panneau

1. V. Lewe, Die Lösung des Pilzdeckenproblems durcb Fourierscbe Reiben. Bauingenieur,
1920, N° 22, 1922, N° 4, 10, 11

2. V. Lewe, Pilzdecken, Berlin, 1926.
3. E. Melan, Die Durchbiegung einer exzentrisch durch eine Einzellast belastelen

Kreisplatte (Eisenbau, 1920, N° 10).
4. K. Hajnal-Könyi, Die Berechnung von kreisförmig begrenzten Pilzdecken, Berlin, 1929.
5. A. Föppl, Die Biegung einer kreisförmigen Platte, Situngsbericht der Akad.

München, 1922, S. 155.
A. et L. Föppl, Drang und Zwang-, vol. I, 2e edition, 1924.
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carre (figure 13), considere comme constituant un Systeme de double symetrie'.
Toutefois, la generalisation de l'emploi du resultat prineipal

Mo M(H + M(+)

aux dalles rectangulaires ne doit etre consideree comme donnant une approximation

süffisante que lorsque le rapport entre les deux dimensions du rectangle
ne s'ecarte pas trop de l'unite.

Dr. M. RITTER,
Professor an der Eidgenössischen Technischen Hochschule, Zürich.

Die Versuche von Herrn Prof. Gehler mit rechteckigen, allseitig aufliegenden

Eisenbetonplatten gewähren einen trefflichen Einblick in das statische
Verhalten dieser Konstruktionen ; die Deutung der Versuchsergebnisse wird
durch die Einführung der verschiedenen Kennziffern wesentlich erleichtert.

Von besonderer Wichtigkeit erscheinen mir die Kennziffern für die Einsenkung

in Plattenmitte. Im Stadium I verhalten sich die kreuzweise bewehrten
Platten praktisch wie isotrope Platten. Im Stadium II (Stadium der Rissebildung)

steigt die Kennziffer der Einsenkung unvermittelt auf den sieben- bis
neunfachen Betrag an. Diese grosse Zunahme der Kennziffer der Einsenkung
lässt sich durch die Abminderung der Trägheitsmomente durch die Rissebildung

des Betons allein nicht erklären und ist aucli bei den vergleichsweise
geprüften Plattenstreifen nicht vorhanden. Es ist wohl zu beachten, dass die
bedeutende Zunahme der Kennziffer der Einsenkung bereits bei einer Belastung
erfolgt, bei der die Eisenspannungen noch weit unterhalb der Fliessgrenze
liegen. Für die Zunahme der Kennziffer der Einsenkung gibt es zwei verschiedene

Erklärungsmöglichkeiten : Entweder kommt darin die sogenannte
Membranwirkung der Platte zum Ausdruck oder die Ursache liegt in der Verminderung

der Drillungssteifigkeit der Platte durch die Rissebildung. Es ist
darauf hinzuweisen, dass sich die beobachteten Durchbiegungen aus der

Abminderung der Trägheitsmomente im Verein mit der Verkleinerung der

Drillungssteifigkeit infolge der Rissebildung zwanglos erklären lassen und für
eine Membranwirkung meines Erachtens keine Anhaltspunkte vorliegen. Die
Membranwirkung ist im Bruchstadium der Platte vielleicht vorhanden, ist
jedoch ohne Bedeutung für die überraschend grosse Aenderung der Kennziffer
der Durchbiegung im Stadium II.

Traduction.

Les essais effectues par M. le Professeur Gehter sur des dafles de beton

arme rectangulaires, reposant sur leurs quatre cötes, permettent d'obtenir une
representation remarquable du comportement statique de ces elements de

construction. L'interpretation des resultats fournis par ces essais est d'ailleurs
largement facilitee par l'introduction des differentes grandeurs caracteristiques
considerees.
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A mon avis, les caracteristiques de flechissement au centre de la dalle sont
d'une importance toute particuliere. Dans la phase I, les dalles armees en
croix se comportent pratiquement comme des dalles isotropes. Dans la phase
II (phase de fissuration), les valeurs de la caracteristique de flechissement
montent brusquement jusqu'a atteindre le rapport 7 ou 9. La diminution que
subit le moment d'inertie par suite de la formation des fissurations dans le
beton ne peut pas suffire, ä eile seule, pour justifier cette considerable
augmentation de la caracteristique de flechissement, qui n'a d'ailleurs pas ete
constatee dans les essais comparatifs effectues sur des tranches. II est ä

remarquer que cette importante augmentation de la caracteristique de flechissement

se manifeste forsque Eon atteint une charge pour laquelle les contraintes
des fers d'armature se trouvent encore notablement au-dessous de la limite
d'ecoulement. Deux theses differentes se presentent pour expliquer cette
augmentation : il s'agit soitd'une mise en jeu de i'effet dit «de membrane w, soit
d'une reduction de la rigidite de la dalle ä la torsion sous l'influence de la
formation des fissures. II est ä observer ä ce sujet que les fleches observees
peuvent en effet s'expliquer aisement par l'intervention simultanee des
influences resultant de la diminution des moments d'inertie et de l'affaiblisse-
ment de la rigidite de torsion de la dalle. A mon avis, il n'y a pas lieu d

envisager une Intervention de l'effet de membrane. Cette influence se manifeste
peut-etre dans la phase de rupture de la dalle ; toutefois, eile n'intervient pas
dans la Variation extremement importante qu'accuse la caracteristique de
flechissement dans la phase II.

II 3

THEORIE DES DALLES A CHAMPIGNON

THEORIE DER PILZDECKEN
THEORY OF « MÜSHROOM » SYSTEMS

Dr. M. T. HUBER,

Professeur k l'Ecole Polytechnique, Varsovie.

Voir aussi « Publication Preliminaire », p. 249. —Siehe :iucli « Vorhericlit », S. 249.
See also " Preliminary Publicalion ". p. 249.

Im Vorbericht findet man (S. 188) folgende Behauptung des Herrn Kollegen
Gehler : « Bei den Platten besteht Einigkeit darüber, dass sie unterhalb der
Bisslast (Stadium I) als homogene und isotrope Platten wirken. » Es handelt
sich hier gewiss um eine Feststellung, welche den seiner Zeit in Stuttgart und
jetzt in Dresden ausgeführten Versuchen praktisch gut entspricht. Wenn man
aber bedenkt, dass die Unterschiede der beiden Biegungssfeifigkeiten

B1(=E/,JX); B2(=E/.J5);
bei allen Versuchen nur verhältnismässig klein waren und dabei nur die
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