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Buckling of Extraordinary Deep and Slender Concrete Box Girders
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girders.

SUMMARY

It is necessary to consider the stability problem of very long-span deep and slender concrete box girders or
concrete folded plate structures. The computer-based nonlinear finite element numerical technique involving
large deflection theory, nonlinear material characteristics, cracking, concrete rebar interface etc. is used for the
calculation of the instability of reinforced concrete plate elements and folded plate model.

RESUME

Il faut considérer le probleme de la stabilité des poutres-caissons profondes et minces de trés longue portée ou
des structures en béton faites en plaques plissées. Un programme d' éléments finis non linéaires tenant compte
des grandes déformations, des propriétés non linéaires des matériaux, de la fissuration et de l'interface acier-
béton a été utilisé pour le calcul de l'instabilité des plaques et plaques plissées en béton arme.

ZUSAMMENFASSUNG

Es ist notwendig, das Stabilitdtsproblem sehr langer, hoher und schlanker Stege von Betonhohlkdsten zu
betrachten. Fur ihre Stabilitdtsberechnung als Stahlbetonscheiben und -faltwerke werden numerische Verfahren
der Finite-Element-Methode eingesetzt, die die Nichtlinearitét infolge grosser Deformationen, hoher Materialaus-
nutzung, Rissbildung, Verbundschlupf usw. berlicksichtigen.
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1. INTRODUCTION

Reinforced and prestressed concrete panels are commonly used as structural
elements of large box girder bridges, folded plate roofs, etc. Very deep and
slender concrete box girder sections may be considered as thin folded plate
structures and it is conceivable that some form of buckling may take place un-
der the action of various load combinations, smaller in magnitude than those
methods which do not consider stability. Complex geometric shapes and the
concrete material with stress-strain relationships exhibiting different be-
haviors in tension and in compression of the above mentioned structures, ef-
fective and useful prediction of buckling response or post-buckling load car-
rying capacity via analytical approaches is generally very difficult. There-
fore, numerical means such as the nonlinear finite element

method is used in this instability study.

Separate modeling is used for the rebar and the concrete. Rebar is treated as
an elastic-plastic metal. The concrete itself is modeled with an elastic-
plastic-failure theory due to Chen and Chen’s model [1,2]. This is an as-
sociated flow, isotropic hardening theory based on the yield surfaces written
in terms of the first two stress invariants and parameters which are chosen to
fit uniaxial and biaxial yield and failure data.

2. STRESS-STRAIN RELATIONS OF CONCRETE

A plasticity model originally developed by Chen and Chen [1,2] is utilized to,
represent the stress-strain response of concrete. The model consists of a
compressive yield/flow surface to model the concrete response in predominantly
compressive states of stress, together with damaged elasticity

to represent cracks that will occur at a material calculation point.

The model thus uses the classical concepts of plasticity theory: a strain rate
decomposition into elastic and inelastic strain rates; elasticity; yield; flow
and hardening [1,2,3,8]. Cracking dominates the material behavior when the
state of stress is predominantly tensile. Cracking failure is defined by the
maximum principal strain reaching a critical value, with cracks normal to that
direction. In cracked zones a strain softening model is assumed for the
direct stress across the cracks, and for the shear stiffness. Subsequent to
cracking failure, elastic-plastic calculations are continued in a reduced
stress space containing those components not associated with the crack normal
direction so long as the cracks are open. The basis of the post cracked be-
havior is the brittle fracture concept of Hilleborg [4]. The uniaxial be-
havior of concrete is shown in Fig. 1 and failure surfaces are shown in Fig.
2.

3. MODELING OF REINFORCEMENTS

It is intended that reinforced concrete modeling be accomplished by combining
standard elements, using the plain concrete model with rebar elements, defined
singly or embedded, that use one dimensional strain theory. This modeling ap-
proach allows the concrete behavior to be considered independently of the
rebar. The nonlinear effects of the rebar and concrete interface, such as
dowel action and aggregate interlock were modeled through the uses of "tension
stiffening" and "shear retention strain" [1 thru. 3] which will simulate the
load transfer across cracks through the rebars.
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4. NUMERICAL ANALYSIS

The constitutive relations of reinforced concrete outlined in references [1,
2] have been implemented into a nonlinear finite element program ABAQUS (3]
for application purposes. ABAQUS is a nonlinear incremental finite element
structural analysis program for large strain and large displacement problems.
The program provides a general interface so that the user may introduce own
material constitutive model in a "user subroutine”. To illustrate the ap-
plicability of the above constitutive model, the buckling responses of four-
teen reinforced concrete rectangular plates and of a long-span reinforced con-
crete folded plate model were examined by the finite element analysis
(5,6,7,8]. The reason for choosing these R.C. rectangular plates and the
folded plate model for the analysis is that the experimental data are avail-
able for comparison [9,10,11].

4.1 Rectangular plates

Fourteen rectangular reinforced concrete plates selected [5,6,8] for nonlinear
buckling analysis, have the dimensions as shown in Fig. 3, 4 ft. (1,219 mm) x
8 ft. (2,436 mm). They are reinforced by two layers of welded wire mesh. The
eight node thin shell elements, S8R5 ( 5 D.O.F. per node) with four integra-
tion points on the surface and nine integration points through the thickness
of the element are used in the finite element model. Various plate thickness,
reinforcement ratios, maximum concrete compressive strengths, and the com-
parison of experimental buckling and post-buckling results with that of non-
linear numerical results are summarized in reference [5,6,8]. The maximum
load-deflection plots, buckling-load points, and the post buckling load points
for the plates no. 19 and 23 are shown in Figs. 4 and 5. The plot of non-
dimensional buckling stress versus slenderness ratio and the comparison of ex-
perimental results with that of F.E. results are

shown in Fig. 6 [5,8].

Plate No. 19 [Plate thickness, 0.757 inch; nominal steel area %, 0.50; cyl.
strength, 3,448 psi]

Buckling lLoad Post-buckling load
Experimenﬁ-70.lk (314.05KkN) Experiment-84.9% (380.35kN)
F.E.-65.05 (291.2kN) F.E.-80.9% (362.43 KkN)

Plate No. 23 [Plate thickness,0.763 inch; nominal steel area %, 1.0; cyl.
strength, 3,396 psi]

Buckling Load Post-buckling load
Experiment-70.0K (313.6kN) Experiment-78.0% (349.44kN)
F.E.-68.2% (305.54kN) F.E.-79.8K (357.5kN)

The numerical buckling and post buckling analysis [5,6,8] of R.C. rectan-
gular plates agreed very well with that of experimental results [9,10].

4.2 long-span reinforced and prestressed concrete folded plate model

A uniformly loaded post-tensioned lightweight concrete folded plate unit was
tested by I. Martin [11]. During the experiment, a buckling failure mode was
detected. The overall dimensions of the model is shown in Figs. 7 and 8. To
solve the problem numerically, a finite element model (Fig. 9) is developed
and more than forty-five nonlinear incremental analyses are performed through
the computer program ABAQUS [3]. There are 84 elements and 293 nodes in the
model. Material properties given [11], and other estimated values [1,2,3] for
the constitutive formulations of concrete and steel are shown in Tables 1 and
2. The results of the analysis are shown in Figs. 10

thru 13.
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Buckling Load
Experiment-34.0 psf (1,628 Pa)

F.E.-31.9 psf (1,527 Pa)

Post-buckling Load

Experiment-Not available
F.E.-38.8 psf (1,858 Pa)
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Z-unif. Load (psf)

Elastic Modulus E, = 2.31 x 10° ps1

Poissons Ratio v = 0.2
Uniaxial compressive yield @ zero plastic strain o = 2320 psi
Uniaxial compressive failure strength- o' = 5160 psi
Plastic strain at uniaxial compressive failure €," = 0.0025
Biaxial to uniaxial compressive strength ratio r,’ = 1.16
Uniaxial tension to compression strength ratio r, = 0.075
Ratio of plastic strain in biaxial compressieon

to uniaxial compression failure r,' = 1.28

Cracking failure ratio in plane stress with
one principal stress at compressive failure £ =o0,/0"=0.233
Y= 4.0 x 0
€ = 0.005
= 1.51 x 10°° lb-sec®/in*

Post-failure strain of tension stiffening effect
O:luo = 1.0 @

[ &
Shear retention factor and strain

Mass density Pea

Note: 1 psi = 6.895 kPa; 1 lb'sec’/in* = 0.1069 N-sec?/ca”

Table 1 Concrete Proparties - Folded Plats Model

Steel field Yield Ultimate Elastic

Name Stress strain Strength Modulus
(ksi) (ks1i) (ksi)

Steel No. 1 60.0 0.00207 90.2 29,000

#3 & #4 bars

Steel No. 2 192.0 0.00662 240.0 29,000

prestress tendon

Mass Density p, = 7.33 x 10™ lb-sec?/in®

Note: 1 ksi = 6,895 kPa; 1 lb-sec/in* = 0.1069 N-sec?/ca";
1 in = 25.4 mm

Table 2 Stesl Matarial Properties - Polded Plate Modal

Z-unit. Load (psf)

PB (308 paf)

Buckling point (31.9 psfi*

Experimental Buckling - 34.0 psf(11)

oo LR o

Y-disp (In}
* Indicated by the negative eigenvalue generated from the system matrix which is not positive definite
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5. CONCLUSIONS

(1) Local buckling may take place in very deep.and slender box girder sections
under the action of various load combinations, smaller in magnitude
than those methods which do not consider buckling.

(2) The experimental buckling load for the folded plate model [1ll1] is equal
to 34.0 psf which is in fact the post-buckling load and it fits exceptionally
well between the numerical buckling load of 31.9 psf and the numerical
post-buckling load of 38.8 psf obtained from the F.E. method.

(3) Nonlinear F.E. analysis method involving elasto-plastic associated flow
isotropic hardening constitutive relations for concrete and rebar treated as
elastic-plastic metal can successfully predict the buckling load and the
post-buckling strength of R.C. plate elements, folded plate structures and
other R.C. structures,
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