Zeitschrift: Boissiera : mémoires de botanique systématique

Herausgeber: Conservatoire et Jardin Botaniques de la Ville de Genève

Band: 68 (2015)

Artikel: Aves (Aves) da Reserva Biológica de Pedra Talhada

Autor: Studer, Anita

DOI: https://doi.org/10.5169/seals-1036097

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

6.10

AVES (AVES)

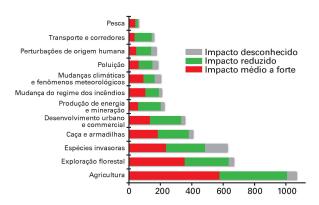
DA RESERVA BIOLÓGICA DE PEDRA TALHADA

Anumará, Curaeus forbesi.

INTRODUÇÃO

A redescoberta na natureza em janeiro de 1980, do anumará, *Curaeus forbesi*, na borda da floresta de Pedra Talhada foi a gênese dos esforços para a sua transformação em uma Reserva Biológica: um trabalho de preservação de grande envergadura que prossegue até os dias de hoje (ver Epílogo).

Nesse lapso de tempo de mais de 30 anos, direcionamos a nossa atenção ao estudo das aves, e em especial, a uma análise detalhada dos aspectos relativos à reprodução, construção dos ninhos, adaptação ao meio ambiente e estratégias de defesa contra predadores. Esses itens da biologia reprodutiva das aves são importantes para subsidiar medidas conservacionistas (Marini, 2007) e serão os temas de destaque que abordaremos neste capítulo.


RIQUEZA E AMEAÇAS Avifauna do Brasil

Com 1.901 espécies de aves identificadas até o momento em seu território (CBRO, 2014), o Brasil é o segundo país com o maior número de espécies de aves, sendo precedido somente pela Colômbia que acolhe aproximadamente 1.903 espécies (Donegan et al., 2013). Alguns autores afirmam que o Brasil pode atingir e até ultrapassar o numero de 2.000 espécies, na medida em que novas aves descobertas forem sendo devidamente identificadas e descritas (Silveira et al., 2003).

Entretanto, apesar da riqueza da avifauna brasileira, há o receio de que algumas espécies venham a desaparecer, uma vez que a destruição das áreas florestadas e outros habitats naturais vem provocando o declínio de populações de aves e engrossando as fileiras da lista vermelha das espécies ameaçadas de extinção (6.10.1).

Ainda assim, algumas espécies têm conseguido adaptar-se aos ambientes antrópicos (transformados pelo homem) e são chamadas de espécies onívoras ou generalistas, por não apresentarem um regime alimentar especializado. Dentre essas espécies destacam-se alguns Turdídeos (sabiás), Tiranídeos (bem-te-vis, 6.10.2), Fringilídeos e algumas aves de rapina.

Diferente das espécies generalistas, algumas aves não são capazes de adaptar-se às transformações ambientais provocadas pela ocupação humana e mantêm-se confinadas a habitats ainda preservados. É o caso, principalmente, das espécies que se alimentam de insetos terrícolas florestais, como, por exemplo, certos Formicarídeos e Furnarídeos cuja sobrevivência depende da existência de um meio ambiente original e intacto. Em consequência dessas exigências por habitats conservados, essas espécies são as mais vulneráveis e ameaçadas de extinção.

6.10.1. Ameaças a avifauna em nível nacional www.concervations-nature.fr/article2.php?id=126

6.10.2. O popularíssimo bem-te-vi, *Pitangus sulphuratus*, é onívoro e se adapta em diferentes ambientes. O seu canto onomatopéico "bem-te-vi" ressoa tanto nos parques e jardins das grandes metrópoles brasileiras quanto nas clareiras da floresta da Pedra Talhada.

6.10.**3.** O discreto patinho, *Platyrinchus mystaceus*, cuja sobrevivência é estreitamente relacionada com as florestas tropicais primárias.

6.10.4. Essa porção da floresta escapou por pouco dos desmatamentos: o seu topo arborizado se ergue, solitário, no meio de uma paisagem à mercê das estiagens.

6.10.5. O limite entre as áreas de pastagem e das zonas florestais é contrastante durante as estiagens e ilustra a fragilidade desse ecossistema.

Avifauna de Pedra Talhada

Os remanescentes florestais localizados em meio às pastagens ou às plantações da cana-de-açúcar nos estados de Alagoas e Pernambuco desempenham um papel fundamental de refúgio para muitas espécies (6.10.3).

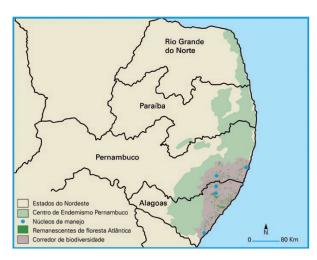
Alguns desses refúgios foram protegidos e mantiveram-se preservados graças à sua altitude ou ao seu relevo escarpado. Nessas áreas, a vegetação remanescente, que se assemelha a "chapéus florestais", é restrita aos topos das colinas e retém a umidade que favorece a formação dos chamados brejos de altitude (6.10.4, 6.10.5).

A Reserva Biológica de Pedra Talhada é um desses refúgios, que apesar de abranger uma área relativamente modesta, apenas 4.469 ha, abriga ainda uma riquíssima biodiversidade (Studer, 1985).

O inventário preliminar realizado na Reserva de Pedra Talhada, incluindo uma zona de transição de 3km de largura ao redor de todo o seu perímetro, indicou a presença de 255 espécies de aves distribuídas em 56 famílias (veja inventário XXIII).

ESPÉCIES ENDÊMICAS E AMEAÇADAS

A Reserva Biológica de Pedra Talhada (Reserva) é considerada uma área importante para a conservação das aves (IBA "Important Bird Area"), e devido ao número de espécies ameaçadas e endêmicas, considerada prioritária para a conservação da biodiversidade (BirdLife International, 1998).


A Reserva está inserida no Centro de Endemismo Pernambuco, representado pela porção nordeste da Mata Atlântica, ao norte do rio São Francisco. Esse centro de biodiversidade é particularmente interessante graças ao seu posicionamento como zona de convergência para a avifauna das florestas Amazônica e Atlântica (Teixeira et al., 1986; Silveira et al., 2003, 6.10.6, 6.10.7).

Dentre as 255 espécies registradas até o momento para a área, 16 táxons são endêmicos do Centro de Endemismo Pernambuco, e pelo menos 25 se encontram em perigo de extinção, em diferentes níveis de ameaça (MMA, 2003; 2008; IUCN 2012).

Algumas das espécies mais representativas deste centro de endemismo presentes na Reserva, foram descritas pela ciência somente na década de 1980, como o zidedê-do-nordeste, *Terenura sicki*, e o cara-pintada, *Phylloscartes ceciliae*, e outras como o arapaçú-rajado-do-nordeste, *Xiphorhynchus atlanticus*, e o papa-taoca-de-pernambuco, *Pyriglena pernambucensis*, foram desmembradas recentemente e hoje são consideradas espécies plenas e distintas de seus "parentes" Atlânticos e Amazônicos.

O refúgio da Reserva de Pedra Talhada desempenha um papel importante na conservação das espécies ameaçadas de extinção. Tanto que das

6.10.**6.** O araçari, *Pteroglossus inscriptus*, é um representante amazônico da comunidade de aves da Reserva de Pedra Talhada.

6.10.**7.** O Centro de Endemismo Pernambuco, em comparação com outros centros de endemismo, possui o maior numero de aves ameaçadas do Brasil. http://www.avesderapinabrasil.com/materias/avesderapina_mataatlantica.htm.

276 espécies de aves ameaçadas do Brasil (MMA 2003; 2008), 25, ou seja 9,1%, sobrevivem e nidificam na floresta de Pedra Talhada ou na sua região de entorno, ainda que essa floresta represente, em superfície, menos de um milionésimo do território brasileiro (Superfície do Brasil = 8.500.000 km², Pedra Talhada = 4,5 km²).

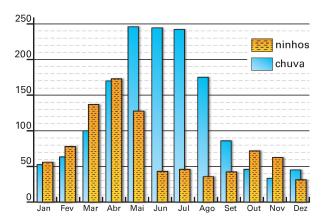
Dentre as espécies ameaçadas de extinção presentes na área, destacam-se o gavião-de-pescoçobranco, Leptodon forbesi, o anambé-de-asa-branca, Xipholena atropurpurea, a maria-do-nordeste, Hemitriccus mirandae, e a araponga-do-nordeste, Procnias averano. Há ainda na Reserva táxons considerados ameaçados somente em nível sub-específico,

como o jacupemba, *Penelope superciliaris alago*ensis, o urú-do-nordeste, *Odontophorus capueira* plumbeicollis, o patinho, *Platyrinchus mystaceus* niveigularis, e a saíra-militar, *Tangara cyanocephala* corallina (MMA, 2008).

O pintor-verdadeiro, *Tangara fastuosa* (6.10.8), é uma das espécies ameaçadas mais emblemáticas da Reserva, por causa da sua plumagem exuberante. Esse pássaro alimenta-se de frutos, bagos e insetos encontrados nas árvores da floresta. Normalmente, ele não se aventura no exterior da floresta, mas, eventualmente pode ser encontrado em áreas de vegetação secundária, se estas forem suficientemente densas e ricas em bromélias ou bananeiras, que servem de suporte para a sua nidificação.

Infelizmente, esse pássaro sempre despertou a cobiça de criadores e gaioleiros e durante muito tempo foi alvo de tráfico e captura excessiva. Esse fato, associado com a perda de habitat, fez com que o pintor-verdadeiro fosse incluído na lista das espécies consideradas criticamente ameaçadas de extinção (Collar et al., 1992 e Silveira et al., 2003).

6.10.8. Normalmente, o pintor-verdadeiro, *Tangara fastuosa*, nidifica na roseta das bromélias, mas na Reserva ele elege frequentemente domicílio nos cachos de banana.


ESTAÇÕES DE NIDIFICAÇÃO

As estações de nidificação das aves são estreitamente correlacionadas àquelas das chuvas. A maioria das espécies constrói seu ninho no princípio da estação das chuvas. Essa atividade corresponde também ao despertar da natureza, ao aparecimento das flores e dos insetos.

O histograma (6.10.9) ilustra a correlação entre o ciclo das chuvas e a nidificação: os primeiros temporais se formam em janeiro/fevereiro, o que é suficiente para provocar as primeiras construções de ninhos; a chuva se intensifica substancialmente em março/abril e a nidificação atinge o seu auge em abril. De maio a julho, a chuva se instala: tudo se alaga e a atividade de construção de ninhos diminui. Daí em diante os adultos são acompanhados dos seus filhotes e a alimentação é abundante para a maioria das espécies.

O gráfico ainda mostra que a nidificação também acontece nas outras estações: os beija-flores, por exemplo, nidificam em diferentes épocas do ano. Tudo depende da floração que, em determinados ambientes, é mais frequente na estação seca do que na estação das chuvas.

O período de nidificação é uma época delicada porque é nesse momento que as aves ficam mais expostas às intempéries e aos predadores (LACK, 1950a, 1950b).

6.10.9. Número do ninhos comparado ao histograma pluviométrico: precipitações médias mensais do município de Quebrangulo (AL), SUDENE 1912-1990, ILPISA 2001-2002, SEMARHN/AL 2007-2010, ANA 2011-2013 (ANA 2009).

ESTRATÉGIAS DE SOBREVIVÊNCIA DAS AVES DA RESERVA

A vida de uma ave é sempre condicionada pela disponibilidade alimentar e pela possibilidade de se reproduzir. Os espaços, as localizações, as alturas em relação ao solo, as formas e os materiais utilizados são partes integrantes das adaptações antipredadores.

Cada espécie de ave evoluiu segundo as suas próprias necessidades e exigências morfológicas e alimentares. As pressões antrópicas também influenciaram certos comportamentos ou até mesmo provocaram novas adaptações.

Para criar a sua ninhada com êxito e em boas condições, um pássaro deve encontrar compatibilidades entre todos esses fatores e adotar as melhores estratégias de sobrevivência.

As estratégias adotadas pelas espécies levam em conta os seguintes fatores: as estações do ano, as características do habitat, o espaço e a localização do ninho, o tipo de ninho, os materiais utilizados, o número e a cor dos ovos, os comportamentos, etc. (RICKLEFS, 1977).

As aves que optam por uma construção simples, localizada ao nível do solo ou a pequena altura mostram com frequência uma grande criatividade na camuflagem do ninho: o ninho é fortemente exposto, mas se torna invisível graças ao seu revestimento (6.10.10, 6.10.11, 6.10.12, 6.10.13, 6.10.14, 6.10.15, 6.10.16, 6.10.17).

6.10.**10.** O beija-flor-de-costas-violetas, *Thalurania watertonii*, recobre as paredes externas do ninho com pequenos fragmentos de musgos e liquens que apresentam as mesmas cores que aquelas da vegetação circundante, de maneira a obter uma camuflagem perfeita.

6.10.**11.** O rabo-branco-rubro, *Phaethornis ruber*, e o balança-rabo-de-bico-torto, *Glaucis hirsuta*, suspendem os seus ninhos na extremidade de uma folha pendente, ou sobre o limbo de uma folha (bananeira, palmeira ou outra).

6.10.12. As paredes externas dos ninhos são revestidas de fragmentos de musgos e liquens. Para completar a camuflagem, eles se prolongam com um longo apêndice de finas partículas pregadas com a ajuda de fios de teias de aranhas, que o fazem parecer com as partículas vegetais em suspensão disseminadas por todas as partes na floresta

6.10.**13.** O beija-flor-preto, *Florisuga fusca*, constrói o seu ninho sobre uma folha pendente. À distância, o ninho se confunde com outras manchas claras, características dessa folhagem.

Roubo de néctar

Na Reserva uma espécie de Acanthaceae, a cuia ou *Ruellia cearensis*, produz o néctar na base da sua flor cor-de-rosa em forma de tubo recurvado. O beija-flor rabo-branco-acanelado, *Phaethornis ruber*, se alimenta desse néctar. Enquanto ele suga o néctar, o pólen da flor se gruda na base do seu bico. Em seguida, quando ele visitar uma outra flor, ele depositará esse pólen no seu estigma, proporcionando assim a sua fecundação.

O bico curto de uma outra espécie de beijaflor, o beija-flor-de-costas-violetas, o *Thalurania watertonii*, não lhe permite alcançar esse depósito de néctar. Mas a ave é muito esperta e consegue, apesar de tudo, acessar as reservas de néctar da flor, mesmo se a sua morfologia não é adaptada para esta tarefa. Para conseguir isso, ele perfura a corola da flor lateralmente, mais ou menos no meio do seu comprimento. Assim fazendo, sua língua atinge a base da corola e ele rouba o néctar para se alimentar, mas sem polinizar a flor.

O beija-flor-de-costas-violetas em voo estacionário roubando o néctar numa corola de *Ruellia cearensis*.

O tubo da corola da *Ruellia cearensis* perfurado depois do roubo de néctar.

6.10.**14.** Fêmea do beija-flor-preto, *Florisuga fusca* ao chegar no ninho.

6.10.**15.** A fêmea do beija-flor-preto, *Florisuga fusca,* alimentando os seus filhotes.

6.10.**16.** O japacanim, *Donacobius atricapilla*, vive nas áreas brejosas das margens da floresta: ela agrega mudas de pele de cobras sobre as paredes externas do seu ninho: será que é para assustar os eventuais intrusos?

6.10.**17.** O ninho do beija-flor-preto, *Florisuga fusca*, é construído com fibras vegetais sedosas, colados com firmeza com numerosos fios de teia de aranha. Vale notar que a penugem dos filhotes é da mesma cor amarelada que o ninho, proporcionando uma camuflagem perfeita.

Os beija-flores, também chamados colibris, não são os únicos artistas da camuflagem. Várias outras espécies incorporam toda uma gama de fragmentos vegetais à estrutura externa dos seus ninhos para camuflá-los: esses ninhos se parecem assim com banais montículos de folhas secas agarradas nos ramos das árvores (BROSSET, 1974).

A preocupação com a proteção do ninho pode levar certas espécies a acumular várias estratégias: camuflagem da entrada do ninho (túnel encurvado, entrada falsa), lugar e tipo de fixação do ninho, dissuasão dos predadores graças ao revestimento das paredes externas com elementos repulsivos (mudas de pele de cobras, por exemplo) (6.10.16, 6.10.17) ou espinhosos.

O campeão da camuflagem é, com certeza, a mãe-da-lua, *Nyctibius griseus*, que utiliza nada mais nada menos que o seu próprio corpo para camuflar o seu ovo ou o seu ninhego (6.10.18, 6.10.19).

6.10.**18.** A mãe-da-lua, *Nyctibius griseus, se imobiliza, estica o pescoço e fecha os olhos quando um inimigo se aproxima, imitando assim um prolongamento do galho.

6.10.**19.** Ao cair da noite, os dois adultos se revezam para alimentar o único filhote com insetos capturados em pleno voo.

O número de ovos de uma postura é parte integrante da estratégia de sobrevivência: se o pássaro opta por uma postura modesta de um ou dois ovos, um ninho pequeno e simples localizado a pouca altura, é para ter tempo de fugir em caso de ataque de um eventual predador, mesmo que para isso ele tenha que abandonar o ninho e os filhotes e assim conservar energia suficiente para construir um novo ninho em outro lugar (RICKLEFS, 1970). Esse comportamento faz com que, conforme já observado, algumas espécies iniciem o processo de postura e incubação várias vezes na mesma estação reprodutiva.

Sabe-se que o tamanho das posturas diminui à medida que nos aproximamos dos trópicos (Perrins, 1977; Slagsvold, 1982; Mayo, 1980; Studer, 1994). Na região paleártica o número médio das posturas dos passeriformes se situa em torno de 4,5 ovos/ninho, enquanto que na região neotropical, específicamente na Reserva, essa quantidade atinge apenas 2,4 ovos/ninho (extremos 1-6 ovos/ninho, análise baseada em 1.705 ninhos e 4.098 ovos).

Pode-se supor que mesmo as cores e a presença ou ausência de manchas nos ovos fazem parte das estratégias de sobrevivência: os ovos da maioria dos ninhos construídos a céu aberto são mais ou menos manchados, enquanto que os ovos daqueles situados em cavidades mais sombrias são em geral brancos. Com certeza há uma correlação entre essas características dos ovos e os tipos de localizações dos ninhos: as manchas intensificam a camuflagem, borrando os contornos nítidos dos ovos nos ninhos edificados em lugares visíveis, o que não é necessário nos ninhos construídos nas cavidades (Oniki, 1979).

COMPORTAMENTOS

Alguns comportamentos fazem parte das estratégias anti-predatórias. Na maioria dos casos, mesmo um ovo com marcas muito crípticas ou um ninho perfeitamente camuflado não bastariam para proteger a ninhada contra eventuais predadores se o comportamento dos adultos não viesse completar o cenário (6.10.20).

Uma estratégia comportamental comum é a discrição da espécie no ninho e na sua proximidade. É assim, por exemplo, quando um inimigo se aproxima do ninho e os pássaros penetram discretamente na vegetação circundante, quando ficam imóveis e

6.10.**20.** O canário-do-mato, *Basileuterus flaveolus*, na entrada do seu ninho. Se ele é surpreendido por um predador ele toma a atitude de um pássaro ferido.

dissimulados, ou ainda quando recobrem os ovos antes de afastarem-se do ninho.

A higiene do ninho pode ser primordial e a maioria dos pássaros é rigorosa com relação à limpeza. Assim, para diminuir os eventuais odores que poderiam atrair os predadores ou parasitas, os adultos jogam os dejetos fora do ninho ou até mesmo as engolem (6.10.21). As cascas vazias dos ovos ou os filhotes mortos também são transportados para longe do ninho. Uma atitude agressiva pode ser adotada e não é raro observar casos onde pássaros mostram uma incrível bravura perseguindo inimigos bem maiores que eles.

6.10.**21.** A saíra-de-papo-preto, *Hemithraupis guira*, transportando os dejetos que aparecem envoltas em uma membrana gelatinosa de cor branca chamada "bolsa fecal". A sua função é de facilitar a coleta e o transporte para longe do ninho, a fim de manter o ninho limpo e inodoro. Essa adaptação anti-predatória é observada na maioria dos passeriformes.

Algumas aves, em particular as que nidificam ao nível do solo, podem também simular que estão feridas. Por exemplo, a fim de atrair o inimigo e afastá-lo do ninho, o pássaro foge arrastando uma asa dando assim a impressão de ser uma presa fácil: quando a ave atinge uma distância do ninho que ela considera segura, ela sai voando sã e salva, deixando o inimigo atônito.

OCUPAÇÕES DE NINHOS

Um pequeno número de espécies não constrói seu próprio ninho, mas ocupa os ninhos construídos por outras aves. Essas espécies não devem ser consideradas como parasitas já que elas não interferem na ninhada do proprietário do ninho e buscam somente um ninho desocupado reunindo as melhores condições para a reprodução (6.10.22).

6.10.**22.** O bem-te-vi-pirata, *Legatus leucophaius*, ocupa um antigo ninho de bico-chato-de-orelha-preta, *Tolmomyias sulphurescens*.

NIDIFICADORES COMUNITÁRIOS

Na borda da floresta ou nas suas clareiras observamos duas espécies que constroem um ninho comunitário: O anu-branco, *Guira guira* (6.10.23), e o anú-preto, *Crotophaga ani*, ambos da família dos Cuculidae. Várias fêmeas põem seus ovos no mesmo ninho que pode assim conter, em média, 6,3 ovos (extremos 3-9) para *Guira guira* e 11,2 ovos (extremos 3-27) para *Crotophaga ani*. Machos e fêmeas se revezam para incubar os ovos, alimentar os jovens e defender os ninhos.

6.10.23. Ninhada do anu-branco, *Guira guira*. As gargantas coloridas dos ninhegos apresentam marcas em relevo no palato e na língua. O significado biológico para os sinais dessa espécie ainda precisa ser investigado. APPERT (1967) achou tais sinais nas gargantas de ninhegos em locais escuros, o que não é o caso dessa espécie que nidifica em lugares bem iluminados.

AJUDANTES NO NINHO

Outras espécies recebem o apoio de ajudantes nas tarefas de administração do ninho: um ou vários indivíduos da mesma espécie ajudam o casal reprodutor na alimentação dos filhotes (6.10.24). Eles podem ser jovens da ninhada precedente (6.10.25), machos excedentes (6.10.26) ou ainda adultos que ainda não conseguiram encontrar as condições ideais para nidificar (estiagem prolongada, habitat restrito ou escassez de locais apropriados à nidificação) e que se associam a um casal reprodutor a fim de ajudá-lo na alimentação dos filhotes e na proteção do ninho. (Gowaty, 1990, Skutch, 1961, Stacy & König, 1990).

6.10.**24.** As ninhadas do urú-do-nordeste, *Odontophorus capueira*, observadas na Reserva são com frequência assistidas por um ou dois ajudantes adultos.

6.10.**25.** Um juvenil pintor-verdadeiro, *Tangara fastuosa*, ajuda na alimentação dos filhotes.

6.10.**26.** Dois machos do tiê-sangue, *Ramphocelus bresilius*, alimentam a ninhada.

POSTURAS PARASITAS

Algumas espécies não constroem os seus ninhos nem criam os seus filhotes. Elas põem os seus ovos nos ninhos dos outros. É o caso do Icteridae virabosta, *Molothrus bonariensis*, e do Cuculidae saci, *Tapera naevia*, ambas espécies presentes na Reserva. Elas vivem perto da floresta, penetrando ao seu interior somente pelos grandes corredores de desmatamento encontrados na Reserva, como, por exemplo, aqueles que se produziram nos sítios João Ferreira em Pernambuco ou Timbó em Alagoas.

São duas espécies parasitas de comportamento diferente: o jovem vira-bosta não é agressivo e não expulsa os seus congêneres e, com frequência, convive com os filhotes do proprietário do ninho até poderem sair voando. O jovem saci, contudo,

não suporta nenhuma presença e ataca o ovo ou o filhote do legítimo proprietário do ninho assim que ele sai do ovo (6.10.27). Vale ressaltar que quase sempre ele nem precisa chegar a esse extremo, uma vez que quando a fêmea do saci põe o seu ovo ela geralmente perfura os ovos do hospedeiro.

6.10.**27.** Um jovem saci, *Tapera naevia,* mostrando uma atitude agressiva.

ECTOPARASITISMO

A mosca *Philornis* sp. põe os seus ovos em ninhos onde as suas larvas se desenvolvem lesando os passarinhos (6.10.28). Mesmo se elas não devoram os seus hospedeiros, elas os enfraquecem sugando o seu sangue e o rápido desenvolvimento das larvas pode entravar o bom funcionamento de órgãos vitais e ocasionar a morte dos ninhegos. Os ciclos biológicos dessa mosca ainda não foram completamente estudados, mas a sua observação na Reserva mostra que ela está mais ou menos presente em todos os habitats e em todos os tipos de ninhos da maioria das espécies de aves.

6.10.**28.** Depois que as larvas parasitas que o infestavam foram retiradas, esse jovem caboclinho, *Sporophila bouvreuil.* saiu voando são e salvo.

PREDAÇÃO

A predação dos ninhos é frequente na floresta, independente do tipo de ninho ou da altura da qual ele esteja localizado. Várias espécies de cobras, mamíferos e aves de rapina já foram observadas atacando ninhos. Entretanto, a falta de comprovações tangíveis se deve ao fato da maioria desses ataques acontecerem à noite ou de surpresa a qualquer hora do dia. Por outro lado, formigas e vespas foram documentadas invadindo o ninho de algumas espécies: nesses casos, em alguns minutos, os passarinhos foram mortos e devorados (6.10.29, 6.10.30).

6.10.**29.** As formigas destruíram completamente essa ninhada de guaracavuçu, *Cnemotricchus fuscatus*, no seu ninho situado a 1,5 m do solo em plena floresta.

6.10.**30.** As vespas e as formigas mataram esse jovem sabiá-barranco, *Turdus leucomelas.*

COMÉRCIO ILÍCITO

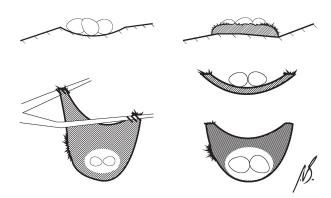
Hoje em dia, os gaioleiros continuam a exercer a sua funesta atividade na Reserva, capturando aves para em seguida vendê-los em circuitos de comércio ilícito (6.10.31, 6.10.32). As espécies visadas são, em primeiro lugar, os pássaros canoros, que emitem cantos melódiosos, como o sabiá-coleira, *Turdus albicollis*, o curió, *Oryzoborus angolensis*, ou ainda as espécies que apresentam plumagens muito coloridas como o azulão, *Cyanocompsa brissonii*, o pintor-verdadeiro, *Tangara fastuosa*, ou ainda o pintassilgo-do-nordeste, *Carduelis yarrellii*. Estas duas últimas aves estão inscritas na lista vermelha das espécies ameaçadas de extinção.

6.10.**31.** Infelizmente ainda se encontram nestas regiões muitos passarinheiros que capturam regularmente aves para gaiolas (Pereira & Mendes de Azevedo, 2011).

6.10.**32**. Parece incrível que ainda hoje, em 2015, se vendem aves nativas e ameaçadas nas praças públicas de cidades vizinhas à Reserva.

As aves da Reserva colonizam um amplo leque de nichos, situados em alturas que vão desde o nível do solo a mais de 20 m, podendo chegar até 100 m de altura, nos penhascos. Os ninhos apresentam uma gama muito larga de formas e uma qualidade de acabamento variável indo dos mais rudimentares aos extremamente trabalhados. É provável que o comportamento construtor de uma espécie resulte da evolução da estratégia anti-predatória que ela desenvolveu ao longo do tempo.

Para entender melhor a importância desse comportamento e analisar as chances de sobrevivência, vamos examinar com uma particular atenção as estruturas dos ninhos.


Em primeiro lugar, decidimos chamar "ninho" o lugar onde o pássaro põe os seus ovos e onde ele cria os seus filhotes. Depois, propomos classificar os ninhos segundo critérios que nos parecem significativos e optamos por uma classificação em dois tipos principais: uma categoria de ninhos de tipo "aberto" e uma categoria de ninhos de tipo "fechado".

Os ninhos "abertos"

Esse tipo reúne todos os ninhos a céu aberto, onde os ovos são, em princípio, visíveis do alto. Eles podem ser muito simples: um substrato nu ou uma singela plataforma feita de raminhos para a postura dos ovos, mas também podem ser bem mais trabalhados, em forma de taças achatadas ou profundas, assentadas ou suspensas (6.10.33, 6.10.34, 6.10.35).

6.10.33. Ninho aberto do pintassilgo-do-nordeste, *Carduelis yarrellii*.

6.10.34. Tipos de ninhos abertos.

6.10.35. Ninho aberto do azulão, Cyanocompsa brissonii.

Exemplos de ninhos abertos sem nenhuma construção

Na categoria dos ninhos abertos, alguns não necessitam de nenhum material de construção. É o caso de várias espécies de gaviões e urubus que usam uma concavidade no penhasco de Pedra Talhada onde eles poem os seus ovos diretamente no chão (6.10.36, 6.10.37, 6.10.38).

6.10.38. O acauã, Herpetotheres cachinnans, também deposita os seus ovos diretamente no substrato que se acumula nos nichos de pedras ou nas ramificações de árvores. Um adulto alimenta o seu filhote com uma serpente.

6.10.37. Os urubus também depositam os seus ovos diretamente no solo: eles escolhem um lugar escondido pela presença de vegetação. Aqui, o urubu-de-cabeça-vermelha, Cathartes aura, alimenta um dos seus filhotes por regurgitação.

392

Exemplos de ninhos abertos em forma de plataforma

Algumas aves constroem uma plataforma mais ou menos espessa utilizando ramos. É o caso de aves de rapina, de garças ou socós que podem ser observados dentro ou no entorno da Reserva (6.10.39, 6.10.40, 6.10.41, 6.10.42, 6.10.43).

6.10.39. Um jovem gavião-pedrês, Buteo nitidus, se exercita antes de sair voando.

6.10.**40.** O gavião-preto, *Buteogallus urubitinga,* é uma espécie que nidifica regularmente nas imediações da floresta.

6.10.**41.** Dois jovens socós-boi, *Tigrisoma lineatum,* no seu ninho: ao menor perigo eles se esticam e se imobilizam para tentar se confundir com um ramo de árvore.

6.10.42. Dentre as espécies campeãs da construção de pequenas plataformas vale destacar o ferreiro arapongado-nordeste, *Procnias averano. O seu ninho é tão singelo que o conteúdo pode ser visto quando observado por baixo. Os moradores locais dizem que a fêmea adota essa estratégia para subtrair o ninho da visão do macho que poderia destruí-lo.

6.10.**43**. Em contrapartida, um dos ninhos mais volumosos é o do caracará, *Caracara plancus*, visto que ele reutiliza com frequência a mesma base, agregando novos ramos a cada ano.

Exemplo de ninhos abertos em forma de

A construção mais frequente é com certeza o ninho em forma de taça. Diversos tipos podem ser observados: delgados ou espessos, assentados ou suspensos, pequenos ou grandes. Também são diversos os materiais utilizados para a confecção do ninho. Eles são em geral de origem vegetal (talos, raízes, folhas, musgos, etc), ou animal (pelos, lã, plumas, etc.), mas também podem conter detritos de plástico, de papel, etc, descartados na natureza pelo homem e aproveitados pelas aves (6.10.44, 6.10.45, 6.10.46, 6.10.47, 6.10.48).

6.10.44. O cuspidor-de-máscara-preta, Conopophaga melanops, também constrói o seu ninho em forma de plataforma. Macho no ninho.

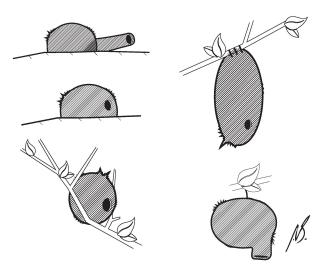
6.10.45. O cuspidor-de-máscara-preta, Conopophaga melanops, fêmea alimentendo.

6.10.46. O pariri, Geotrygon montana, cria os seus filhotes num ninho em forma de plataforma rasa.

6.10.47. Um ninho de sabiá-laranjeira, Turdus rufiventris, que apresenta uma forma clássica de taça, assentada, bem espessa, de tamanho médio.

6.10.48. O ninho do choró-boi, Taraba major, apresenta uma forma de cesta profunda, suspensa por alças que são fixadas nas forquilhas de ramos.

Os ninhos de tipo "fechado"


Essa categoria reúne todos os ninhos encobertos onde o conteúdo não pode ser visto de cima.

Eles são apresentados em dois grupos:

1. Os ninhos fechados construídos em forma de bolsa ou de forno

Vale aqui ressaltar que, ao contrário das cavidades naturais, esses ninhos em forma de bolsa ou forno são construídos pelos pássaros. A construção da estrutura externa pode levar até 20 dias, na espécie bico-chato-de-cabeça-cinza, *Tolmomyias poliocephalus*, de 20 a 45 dias na espécie tatac, *Synallaxis infuscata*, e de até 90 dias para o andorinhão-estofador, *Panyptila cayennensis*. Quando a estrutura externa está terminada, o construtor começa então a organização do espaço interno, em particular da câmara de incubação que, em geral, é uma pequena taça acolhedora, guarnecida com materiais macios de origem vegetal ou animal.

Esses ninhos apresentam uma forma esférica, ovóide ou alongada com uma entrada lateral. Eles podem ser assentados ou suspensos a alturas variáveis (6.10.49).

6.10.49. Tipos de ninhos "fechados".

Eles podem ser construídos com todo tipo de material: terra argilosa, raminhos lisos ou espinhosos, grama, musgo, folhas, sedas vegetais ou animais, uma mistura de todos ou alguns dos materiais escolhidos.

Podem ter entradas de vários tipos: curtas ou longas, situadas horizontalmente sobre um dos lados, orientadas para cima ou para baixo; elas podem também apresentar uma forma encurvada ou espiralada (6.10.50, 6.10.51, 6.10.52, 6.10.53).

2. Os ninhos fechados em cavidades

Esses ninhos são, em geral, situados nas cavidades naturais das árvores, rochedos, penhascos, túneis no chão ou em outras fendas que possam abrigar um ninho.

Os pica-paus, as ararimbas, o joão-bobo e outros, escavam eles mesmos os seus nichos.

O número de cavidades, nichos ou fendas na natureza é geralmente limitado: às vezes, disputas entre espécies podem ocorrer e, em alguns casos extremos, elas podem terminar com a expulsão do precedente ocupante e a destruição dos seus ovos.

Com frequência uma espécie é fiel à sua cavidade, que ela reutiliza durante vários anos consecutivos, sobretudo quando as suas características respondem aos critérios de profundidade e de diâmetro que asseguraram o sucesso das ninhadas precedentes.

Na Reserva, um bom exemplo é o tovaca-campainha, *Chamaeza campanisona*, cujo habitat se restringe à floresta primária de planalto, que disponibiliza uma espessa camada de folhas mortas no solo, na qual ele encontra facilmente e em abundância os insetos necessários à sua alimentação. As cavidades que ele utiliza para nidificar são localizadas nos velhos troncos, onde o acesso ao ninho passa por uma longa entrada de 1 a 2 m de comprimento e orientada para baixo (6.10.54, 6.10.55).

Tipo dos ninhos	Numero de ninhos	%
Fechados (cavidades)	236	8.7%
Fechados (forno)	561	20.7 %
Total fechados	797	29.4%
Total Abertos	1.916	70.6%
Total Geral	2.713	100 %

Tab. 6.10.**1.** Dos 2.713 ninhos observados na Reserva de 1980 à 2013, 29,4% eram de tipo fechado e 70,6% de tipo aberto.

Essas bolsas são frequentemente trançadas com varias fibras vegetais flexíveis, algumas vezes enriquecidas com fragmentos de musgo, folhas secas, fibras de micélio, cipós, teias de aranha ou outros materiais.

Algumas dessas bolsas possuem uma longa entrada em forma de túnel que pode ser reto, encurvado para cima, para baixo ou em forma de cotovelo.

6.10.**50.** O ninho do supi, *Mionectes oleagineus*, é uma esfera de musgos suspensa em um cipó, com frequência junto às encostas de rochedos beirandos rios. A entrada está situada na lateral do ninho.

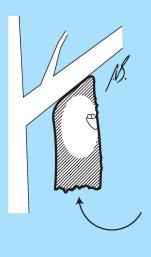
6.10.**51.** O papa-taoca-de-pernambuco, *Pyriglena pernambucensis*, na entrada do seu ninho: um forno esférico construído a partir de raminhos e folhas secas, assentado no meio da serrapilheira florestal.

6.10.**52.** Num brejo situado na borda da floresta: um ninho do curutié, *Certhiaxis cinnamomeus*, parece ter duas entradas, sendo que uma é falsa, para enganar os inimigos.

6.10.**53.** O tatac, *Synallaxis infuscata*, alimenta os seus filhotes com um inseto. O seu ninho é uma estrutura ovóide feita com raminhos e assentada na vegetação a uma altura variando de 1 a 3 m do solo.

6.10.**54.** A tovaca-campainha, *Chamaeza campanisona,* vive na Reserva, onde reutilza os mesmos troncos ocos ano após ano para nidificar.

6.10.**55.** A tovaca-campainha, *Chamaeza campanisona*, alimenta a sua ninhada com várias espécies de artrópodes de uma só vez.


As espécies seguintes constroem ninhos particularmente notáveis do ponto de vista da estrutura, da localização ou ainda dos materiais utilizados.

1. 0 ninho do andorinhão-estofador

Esse andorinhão, *Panyptila cayennensis*, constrói uma estrutura externa em forma de uma longa manga. Na parede interna dessa estrutura, na parte alta da manga ele constrói uma minúscula plataforma onde ele põe os seus ovos. Os adultos podem assim sair e entrar no ninho em pleno voo. Também graças a essa engenhosa estrutura, o

ninho está eficazmente protegido do sol, do vento e da chuva.

O andorinhão não pousa no solo, as suas patas são muito curtas para tomar um impulso suficiente para a decolagem. As suas longas asas arqueadas permitem-lhe viver toda a sua vida no ar onde ele persegue mosquitos e outros insetos voadores. Para descansar, ele se agarra às arestas dos penhascos ou sobe voando bem alto no céu, acima das nuvens, onde ele se deixa levar, deslizando no ar rarefeito.

A manga que contem o ninho do andorinhão.

O andorinhão em pleno trabalho de construção.

2. O ninho do cabeçudo

Leptopogon amaurocephalus

Uma forma esférica suspensa, com uma entrada lateral, construída inteiramente em musgo misturado com todo tipo de detritos vegetais são as características que proporcionam a esse ninho

uma camuflagem perfeita, que ainda é reforçada pela sua localização, embaixo de um barranco na floresta.

3. 0 ninho da estrelinha-preta

O Synallaxis scutata também constrói um ninho bem elaborado. Ele fica muito bem escondido numa depressão do solo da floresta, sendo acessível por um longo túnel que pode chegar a medir até 60 cm.

6.10.56. Não encontrando uma cavidade, certas espécies se contentam com simples nichos como aqui o gibão-decouro, Hirundinea ferruginea.

6.10.57. Um ninho do encontro-de-ouro, Icterus pyrrhopterus, feito a partir de filamentos ou folhas de palmeiras ou bananeiras que a ave corta e desfaz para construir o seu ninho suspenso embaixo de uma folha. O ninho é bem coberto pela folha que faz um tipo de telhado e o conteúdo não é visível de cima.

Às vezes a mesma espécie usa tipos diferentes (6.10.58, 6.10.59)

6.10.58. O casaca-de-couro-da-lama, Furnarius figulus: o local deste ninho, situado debaixo de um telhado, pode ser considerado como uma cavidade (ninho encoberto ou fechado).

6.10.**59.** Aqui, a mesma ave *Furnarius figulus* construiu o seu ninho no coração de uma bromelia. Ele fica mais ou menos encoberto pela planta, mas não pode ser considerado como ninho "fechado" (STUDER & VIELLIARD, 1990).

Comparação das taxas de sobrevivência entre os ninhos abertos e fechados

As observações mostraram que a taxa de sucesso dos ninhos é superior nos ninhos fechados, tanto nas cavidades quanto em forma de fornos. Naturalmente, a questão que nos vem ã imaginação é a razão pela qual todos os pássaros não evoluíram nessa direção, adotando unicamente estruturas fechadas.

Uma resposta plausível pode novamente ser encontrada no compromisso que cada espécie faz na escolha das suas estratégias de proteção. Um ninho aberto é realmente mais exposto aos predadores e às intempéries, mas o adulto tem mais chances de ver o predador se aproximando e assim de escapar, sacrificando os seus ovos ou a sua prole, no entanto guardando energia suficiente para refazer uma postura de substituição.

Por outro lado, um ninho fechado é mais protegido das intempéries e o seu conteúdo é menos visível pelos inimigos, mas no caso em que um predador consiga encontrá-lo a perda será bem maior pois todo o conteúdo do ninho, inclusive o adulto, será destruído: se o predador entra pela única abertura de acesso, o adulto presente no ninho para chocar os ovos ou alimentar os filhotes, não terá nenhuma possibilidade de escape.

A conclusão é que um ninho fechado protege melhor, mas em caso de predação, o sacrifício de um adulto pesa mais na balança da sobrevivência da espécie que a simples destruição de ovos ou filhotes (Studer, 1985, 1991).

A título de exemplo, a taxa de mortalidade por dia das ninhadas de três espécies de Formicaridae que se encontram no mesmo meio florestal da Reserva, calculada de acordo com MAYFIELD (1975), é a seguinte (Tab. 6.10.2):

Espécie	Numero de ninhos	Tipo de ninhos	Taxa de mortalidade por dia
Myrmeciza ruficauda	35	Aberto	5,29%
Pyriglena pernambucensis	35	Fechado forno	3,58%
Chamaeza campanisona	36	Fechado cavidade	3,13%

Tab. 6.10.2. Taxa de mortalidade por dia.

CONCLUSÃO

A Reserva de Pedra Talhada nos maravilha pela sua riqueza: sobre essa superfície de 4.469 ha, estendendo-se sobre cerca de 9km de comprimento por 5km de largura, se encontram 255 espécies de aves (veja Inventário XXIII). Cada uma delas tem a sua própria história e os seus próprios imperativos de sobrevivência.

Agora que a floresta está preservada e que ela pode se recuperar dos ataques que sofreu por parte dos homens, os pássaros também estão protegidos e poderão reproduzir-se e multiplicar-se em paz. Os corredores florestais previstos para unir a Reserva com outros maciços florestais vão permitir novas trocas genéticas vitais para as espécies endêmicas da região, e que hoje se encontram isoladas nos fragmentos florestais remanescentes.

EPÍLOGO: O ICTERIDAE ANUMARÁ, Curaeus forbesi, SÍMBOLO DA HISTÓRIA DA RESERVA

De 1880, quando a espécie foi coletada, até 1980, quando ela foi redescoberta na natureza nenhuma informação sobre suas populações e sobre sua biologia reprodutiva era conhecida.

A ave se tornou uma espécie emblemática da Reserva de Pedra Talhada pois foi graças à sua redescoberta *in situ*, em 1980, que os primeiros passos para criação da Reserva foram dados (v. introdução 6.10).

Essa ave vive em grupos mais ou menos numerosos em zonas pantanosas na borda da floresta. Nos períodos de forte estiagem pode acontecer que ele busque refúgio nos vales mais úmidos de clareiras situadas no interior da floresta. O período de reprodução se estende de fevereiro/março a abril/maio, com o início desse período sendo ditado pela chegada das chuvas. O seu ninho é assentado e suspenso lateralmente numa forquilha de uma árvore situado geralmente na parte superior da copa de folhas (STUDER, 1983).

Com frequência o casal reprodutor tem ajudantes no ninho. Em geral observa-se a presença de um único ajudante, mas o número deles pode chegar a três ou quatro. Já observamos ajudantes "fazendo fila" para alimentar os filhotes: enquanto um adulto está no ninho ocupado com a alimentação de um jovem, com a limpeza do fundo do ninho ou a manipulação de dejeções para jogá-las fora, os ajudantes esperam

a sua vez num galho adjacente, com um inseto no bico.

Outro aspecto relevante é que o anumará é o hospedeiro preferido do parasita vira-bosta, *Molothrus bonariensis*, da família dos Icteridae. Normalmente, essa espécie põe ovos miméticos, ou seja parecidos com os ovos da espécie hospedeira, como podese observar nos ninhos de saíra-de-chapeu-preto, *Nemosia pileata*, do canário-do-campo, *Emberizoides herbicola* (6.10.60), ou ainda do tico-tico, *Zonotrichia capensis*, aves também observadas na Reserva.

Em princípio, esses ovos miméticos são uma adaptação necessária para que a espécie hospedeira não possa detectar a intrusão e aceite esses ovos estrangeiros. Entretanto, nos ninhos de anumará, essa precaução não precisa ser tomada: o parasita virabosta, *Molothrus bonariensis*, põe ovos cor-de-rosa com manchas marrom, completamente diferentes dos ovos azuis com manchas pretas do anumará, que aceita chocar os ovos intrusos (6.10.61, 6.10.62). As únicas restrições observadas aconteceram quando o parasita pôs o seu ovo antes do início da postura do anumará ou quando ele pôs um número exagerado de ovos (postura no mesmo ninho de várias fêmeas do parasita).

6.10.**60.** Ninhada do canário-do-campo, *Emberizoides herbicola*, parasitada pelo *Molothrus bonariensis*: 3 ovos miméticos na parte inferior do ninho.

6.10.**61.** Ninhada do anumará, *Curaeus forbesi*, com um ovo não mimético de *Molothrus bonariensis*.

O anumará pagou um pesado tributo a esse parasitismo de postura: 64% dos ninhos achados entre 1981 e 1986 foram parasitados, atingindo 100% em 1986 (Studer & Vielliard, 1988).

De 1980 à 1995 observamos uma população de aproximadamente 150 indivíduos na borda da Reserva que se deslocava em grupos de 20 à 40 indivíduos. A sua área era muito restrita, comportando 85 árvores isoladas (a maioria *Mangifera indica*) se estendendo sobre 3 km de area parcialmente pantanosa ao longo da borda sul da Reserva de leste a oeste.

A partir dos anos 1995 a 2000, eles se dispersaram e hoje, em 2015, eles podem ser observados numa vasta zona ao redor de toda a floresta. Eles continuam apreciando construir os seus ninhos nas mangueiras (*Mangifera indica*, 6.10.63), mas o comportamento da espécie foi se modificando pouco a pouco: os ajudantes no ninho hoje são raros e a pressão do parasitismo de postura diminuiu.

A diminuição do parasitismo do vira-bosta, *Molothrus bonariensis*, pode se explicar pelo fato de que os ninhos dispersos são mais difíceis de encontrar. Além disso, a diminuição do número de ajudantes no ninho também corrobora essa hipótese: a redução das idas e vindas proporciona uma maior discrição na vizinhança do ninho do anumará.

No que diz respeito ao fenômeno da dispersão, é possível que os fatores decisivos tenham sido, por um lado, o clima (menor número de episódios de estiagem) e, por outro lado, o aumento significativo do reflorestamento nas bordas da floresta a partir do momento em que esta última foi declarada reserva. Essa dispersão, ao que parece, teve efeitos benéficos sobre a população do anumará, que, paulatinamente, vem aumentando ao longo dos anos, conforme observado em estudos em andamento e ainda não conclusivos.

6.10.**62.** Os jovens do vira-bosta, *Molothrus bonariensis*, e do anumará, *Curaeus forbesi*, chegaram à maturidade e saíram voando sete dias depois que a fotografia foi tomada.

6.10.**63.** Anumará, *Curaeus forbesi*, adulto na beira do ninho: ele alimenta a prole principalmente com insetos, tais como gafanhotos e lagartas.

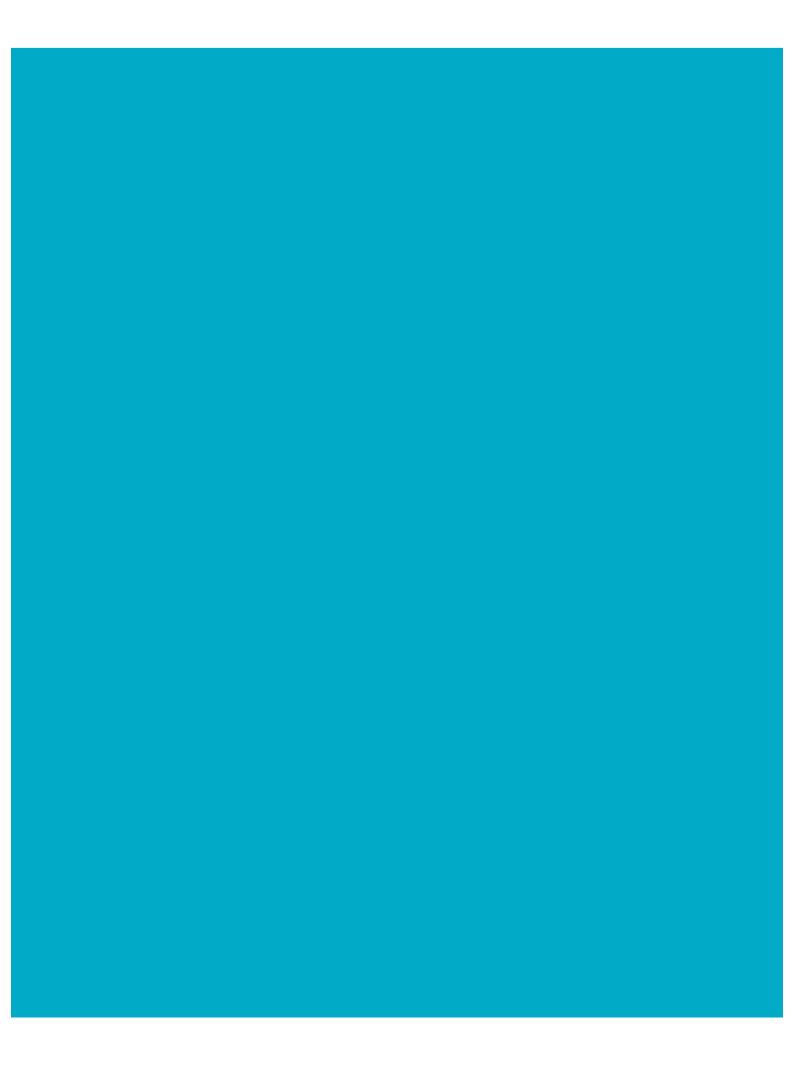
AGRADECIMENTOS

Um especial agradecimento a Dante Buzzetti pela redação da primeira parte do capítulo "Espécies endêmicas e ameaçadas" e as valiosas sugestões e correções para toda a materia. A Marcelo Cardoso de Sousa e Luís Fábio Silveira pelas sugestões e apoio na estrutura da publicação. A Wallace Telino e Cristina Martins Simões, pelas correções do texto. A Ivana Zamboni pela tradução. A Nicolas Spitznagel pelos desenhos das formas dos ninhos e a ilustração gráfica do capítulo. A Luís Batista de Freitas, Felino Pedro Celestino, Manoel Nazario, Manoel Nunes de Farias (Dema), Hermenegildo Nunes de Farias (Zome), exímios conhecedores da natureza e guias de campo. A Jacques Vielliard (*in memoriam*), pela ajuda na identificação bioacústica. A Luis Batista de Freitas, Felino Pedro Celestino, Gilvan Pereira Costa e Sergio Leal, pela contribuição de material fotográfico. A José Rosa da Silva (Dé), Adeval Pereira de Araújo, Agnaldo Pereira de Aguiar, José Mariano Lopes, Ronaldo Raimundo, Aventino Pinto, Otacílio Mendes, Luís Batista de Freitas Pai (Luisão), Sebastião Rosa da Silva, Francisco Rosa da Silva, Antonio Batista de Freitas, Cicero Batista de Freitas e a todos os moradores da mata pela ajuda no trabalho de campo. A Jeremias Davidson, Gilles Roth, Zilda Fernandes da Cruz e Família Ferreira da Paz,

pelo apoio e colaboração na pesquisa. A Neuza Falco Galvão, Maria Estela Pereira dos Santos e Selma Pereira dos Santos, pelo apoio logístico. A Marcelo Vasconcelos Lima, Andrea Maia, Ludgero Lima, Creusa Laurindo Maia (*in memoriam*) e Frederico Maia (*in memoriam*), Geraldo Lima (*in memoriam*), Paulo Tenório Camboim (*in memoriam*), pelo apoio, incentivo e acolhida, especialmente na fase inicial da pesquisa. A Associação Nordesta Reflorestamento e Educação, pelos incentivos financeiros e ajuda de custos para as viagens e hospedagens. Ao Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) e ao Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) pelo apoio e autorização das pesquisas.

ENDEREÇO DO AUTOR

ANITA STUDER, NORDESTA Reflorestamento e Educação, 19, rue de Chantepoulet, 1201 Genève, Suiça nordesta@nordesta.org


REFERÊNCIAS BIBLIOGRÁFICAS

- ANA (Agência Nacional Das Águas). 2009. *Inventário das estações pluviométricas 2 ed.*: 1-322. Agência Nacional das Águas, Brasília.
- APPERT, O. 1967. Die Rachenzeichnung beim Nestling des Braunkopf-Seidenkuckucks Coua ruficeps olivaceiceps von Madagaskar. *Ornithologische Beobachter* 64: 52-56.
- BIRD LIFE INTERNATIONAL. 2013. Espécies de Aves Brasileiros globalmente ameaçadas de extinção.
- Brosset, A.1974. La nidification des oiseaux en forêt Gabonaise: architecture, situation des nids, et prédation. *Terre et Vie* 28: 579-610.
- Comitê Brasileiro de Registros Ornitológicos (CBRO). 2014. Ed. 11.
- COLLAR, N. J., L. P. GONZAGA, N. KRABBE, A. MADROÑO NIETO, L. G. NARANJO, T. A. PARKER & D. C. WEGE. 1992. *Threatened birds of the Americas: the ICBP/IUCN Red Data Book*. International Council for Bird Preservation. Cambridge.
- Donegan, T. M., W. M. McMullan, A. Quevedo & P. Salaman. 2013. Revision of the status of bird species occurring or reported in Colombia 2013. *Conservación Colombiana* 19.

- Gowaty, P. A. 1990. The Competitive World of Cooperative Breeding in Birds (review of J. Brown's Helping and Communal Breeding in Birds). *Evolution* 44.
- Grantsau, R. 2010. *Guia completo para identificação* das aves do Brasil: 1-1249. Ed. Vento verde. Haroldo Paulo Jr, Sp. 2 vol.
- IUCN (International Union for Conservation of Nature). 2012. 2012 IUCN Red List of Threatened Species. In: http://www.iucnredlist.org.
- Lack, D. 1950a. Breeding seasons in the Galapagos. *Ibis* 92: 268-315.
- LACK, D. 1950b. The breeding seasons of European Birds. *Ibis* 92: 288-316.
- Machado, A. B. M., G. M. Drummond & A. P. Paglia 2008. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. *Biodiversidade* 19.
- MARINI, M. A., T. M. AGUILAR, R. D. ANDRADE, L. O. LEITE, M. ANCIÃES, C. E. ALENCAR CARVALHO, C. DUCA, M. MALDONADO-COELHO, F. SEBAIO & J. GONÇALVES. 2007. Biologia da nidificação de aves do sudeste de Minas Gerais, Brasil. Revista Brasileira de Ornitologia-Brazilian Journal of Ornithology 15(3): 367-376.
- MAYFIELD, H. F. 1975. Suggestions for calculating nest success. *The Wilson Bulletin* 87: 456-466.
- MAYO, O. 1980. Variance in clutsch size. *Experimentia* 36: 1061-1063.
- MMA (MINISTÉRIO DO MEIO AMBIENTE). 2003. Lista das Espécies da Fauna Brasileira Ameaçados de Extinção. Instrução Normativa 3, de 27 de maio de 2003. Diário Oficial da República Federativa do Brasil, Brasília, DF.
- MMA (MINISTÉRIO DO MEIO AMBIENTE). 2008. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. 1.ed. Brasília, DF. Belo Horizonte, MG: Fundação Biodiversitas.
- ONIKI, Y. 1979. Nest-egg combinations: possible antipredatory adaptations in Amazonian birds. Revista Brasileira de Biologia 39(4): 747-767.
- Pereira, G. A. & S. J. Mendes de Azevedo. 2011. Estudo comparativo entre as comunidades de aves de dois fragmentos florestais de Caatinga

- em Pernambuco, Brasil. *Revista Brasileira de Ornitologia-Brazilian Journal of Ornithology* 19(1): 22-31.
- Perrins, C. M. 1977. The timing of birds' breeding seasons. *Ibis* 112: 242-255.
- RICKLEFS, E. E. 1970. Clutch size in birds: outcome of opposing predator and prey adaptations. *Science N.Y.* 168: 599-600.
- RICKLEFS, R. E. 1977. On the evolution of reproductive strategies in birds: reproductive effort. American Naturalist III: 453-478.
- Roda, S. A. 2003. Avec do Centro de Endemismo Pernambuco: composição biogeografia e conservação. Tese de Doutorado. Universidade Federal do Pará. Belém.
- Roda, S. A., G. A. Pereira & C. Albano. 2011. Conservação de aves endêmicas e ameaçadas do centro de endemismo Pernambuco: 1-79. Editora Universitária UFPE.
- SILVEIRA, L. F., F. OLMOS & A. J. LONG. 2003. Birds in Atlantic Forest fragments in north-east Brazil. *Cotinga* 20: 32-46.
- Sкитсн, A. F. 1961. Helpers among birds. *Condor* 63: 198-226.
- SLAGSVOLD, T. 1982. Clutch size variation in passerine birds: the nest predation hypothesis. *Geologia* 54: 159-169.
- STACEY, B. & W. D. König. 1990. Cooperative breeding in birds: 1-615. Cambridge University Press.
- Stattersfield, A. J., M. J. Crosby, A. J. Long & D. C. Wege. 1998. *Endemic Bird Areas of the World*: 1-846 Bird Life International.
- Studer, A. 1983. *La redécouverte de l'ictéridé Curaeus forbesi au Brésil.* Monografia: 1-103. D.E.S. Univ. Nancy, France.
- Studer, A. 1985. Estudo ecológico do conjunto florestal da Serra das Guaribas e da Serra do Cavaleiro. Pedido para a Salvaguarda desta Floresta. Monografia: 1-61. Quebrangulo, Alagoas.
- Studer, A. 1994. Analysis of Nest Success in Brazilian Birds. *Journal of Ornithology* 135: 298-299.

- Studer, A. & J. Vielliard. 1988. Premières données éthoécologiques sur l'Ictéridé brésilien *Curaeus* forbesi (Sclater, 1886) (Aves, Passeriformes). Revue suisse de Zoologie 95: 1063-1077.
- Studer, A. & J. Vielliard. 1990. The nest of the Wing-banded Hornero *Furnarius figulus* in Northeastern Brazil. *Ararajuba* 1: 39-41.
- Studer, A. 1991. Taux de réussite des nids de trois peuplements d'oiseaux du Brésil et stratégies adaptatives. Thèse: 1-209. Université de Nancy II, France.
- Teixeira, D. M., J. B. Nacinovic & M. S. Tavares. 1986. Notes on some birds of northeastern Brazil. Bulletin of the British Ornithologists' Club 106(2): 70-74.

