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Abstract

Schwarz M., Zimmermann N.E., Wildi O. and Kienast F. 2004. Mapping of land cover
continuous fields using MODIS data in Switzerland. Bot. Helv. 114/2:151-167.

The assessment of large-scale land cover pattern is an important input for monitoring

and modeling of ecological and environmental processes. Considerable efforts
have recently resulted in the development of global continuous fields for different land
cover types at large spatial scales based on NOAA-AVHRR and TERRA-MODIS
data. In this study, a new methodology is described for deriving continuous fields of
tree cover (coniferous/deciduous) and vegetation not covered by trees as well as non-
vegetated land cover for complex topography at the regional scale of Switzerland. The

methodology is based upon generalized linear models (GLM). MODIS (MOD09A1)
data at a spatial resolution of 500 m was used to calibrate the GLM models. For
purpose of validation we compared the resulting continuous fields of tree cover and an
available global data set, namely the TERRA-MODIS Vegetation Continuous Fields
product (MOD44B) against an independent reference dataset. In comparison with the
available global tree continuous field data set (MOD44B), our regional GLM-based
tree model obtained significantly better results for all calculated accuracy measures.
Tests of the resulting maps showed that non-vegetated, bare ground and vegetation
covered by trees were predicted accurately, with weighted Kappa values (kw) reaching
0.87 and 0.85 respectively. Due to the heterogeneous character of "non-tree vegetation"

this latter landcover type was predicted with lower precision (kw 0.79). We
conclude that generalized linear models are appropriate for deriving continuous fields of
different land cover types for complex topography at a regional scale. Regional
calibration of land cover continuous fields offers significantly improved predictions
compared to globally calibrated models and may serve as a valuable tool for regional
monitoring of land cover pattern and its temporal change.

Key words: Change detection, land cover continuous fields, GLM, MODIS,
monitoring, remote sensing.
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Einleitung

Der Alpenraum ist immer stärker und sich rascher ändernden Einflüssen ausgesetzt.

Nur mit zeitlich hoch aufgelösten, zuverlässigen Informationen über die Verteilung

der Bodenbedeckung ist das Ausmass des fortschreitenden Landschaftswandels
zu erfassen (Tasser und Tappeiner 2002). Länderübergreifende, konsistente und
flächendeckende Informationen der Bodenbedeckung bilden dabei eine wertvolle
Basis für die Untersuchung thematischer Aspekte wie Landschaftsveränderung,
Energiehaushalt, Wasserhaushalt, Ökosystem-Monitoring, Klimafolgenforschung oder für
andere Anwendungen im Bereich von Resourcenmanagement (Townshend et al.
1994). Verschiedene Untersuchungen von NOAA-AVHRR-Satellitendaten belegen,
wie Satellitendaten bereits seit geraumer Zeit für grossflächiges Monitoring Verwendung

finden (DeFries und Los 1999; Eidenshink und Faundeen 1994). Ende 1999
wurde mit Terra-EOS ein weiterer Umweltbeobachtungssatellit erfolgreich auf seine
Umlaufbahn gebracht. Der sich auf Terra befindende MODIS-Sensor (Moderate
Resolution Imaging Spectroradiometer) bietet die Möglichkeit, über grosse Flächen
zeitlich hochaufgelöste Bodenbedeckungsinformationen zu beziehen. Dabei wird die
gesamte Erdoberfläche innerhalb von 48 Stunden mit 36 verschiedenen Kanälen erfas-
st. Im Gegensatz zu NOAA-AVHRR mit einer nominellen räumlichen Auflösung von
1100 m, weist MODIS mit 250-1000 m eine bessere räumliche sowie eine wesentlich
bessere spektrale Auflösung auf. Die prozessierten und georeferenzierten Reflektanz-
Werte der einzelnen Kanäle sind unter dem MODIS-Produkt MOD09 erhältlich (Ver-
mote et al. 1997). Anhand von MOD09-Daten wollen wir mit diesem Artikel eine neue
Methode vorstellen, welche es erlaubt, die Verbreitung und die zeitliche Veränderung
von Baum- und übrigem Grünland, sowie von vegetationsfreien Flächen mit hoher
zeitlicher Auflösung zu erfassen und gegebenenfalls zu überwachen.

Ein weit verbreiteter Ansatz zum Erfassen der Bodenbedeckung charakterisiert die
Erdoberfläche anhand diskreter Klassen und weist jedem Pixel Bildpunkt) einen
Bodenbedeckungstypen zu. Solche Karten werden oft als Habitat-, Vegetations- oder
Landnutzungskarten bezeichnet. Der englische Begriff land cover beschreibt den
kartierten Inhalt aber wesentlich besser. In den letzten Jahren wurden grosse Anstrengungen

unternommen, um die Generierung von kontinentalen und globalen land cover
Datensätzen basierend auf Satellitendaten (z.B. NOAA-AVHRR, MODIS,
SPOT/VEGETATION) voranzutreiben. Die wichtigsten sind: 1) Global Land Cover
2000 (Latifovic et al. 2004), 2) IGBP global land classification (Townshend et al. 1994;
Loveland und Beiward 1997), 3) UMD Global land cover classification (Hansen et al.
2000) oder 4) MODIS (MOD12) Global land cover classification (Friedl et al. 2002).

Infolge des kleinräumigen Landschaftsmusters in der Schweiz (bzw. des gesamten
Alpenraumes) erweist sich dieser Ansatz für Satellitendaten mit einer räumlichen
Auflösung von a 250m als problematisch und führt zu einem starken Informationsverlust,
da innerhalb eines Pixels meist keine reinen Bodenbedeckungstypen vorkommen und
das reflektierte Signal somit eine Kombination verschiedener Bodenbedeckungstypen
darstellt Mischpixel; Aplin und Atkinson 2001). Aus diesem Nachteil ist das Bedürfnis

entstanden, Methoden zu entwickeln, anhand derer die heterogene Zusammensetzung
eines Pixels beschrieben werden kann. Mit einem derartigen Ansatz wird die

Erdoberfläche nicht durch diskrete Klassen, sondern durch kontinuierliche Felder
(continuous fields) charakterisiert (Foody 1996). Das bedeutet, dass für jeden Pixel der
relative Anteil eines bestimmten Bodenbedeckungstypes bestimmt wird. Kontinuierliche

Bodenbedeckungskarten weisen zudem den Vorteil auf, dass sie Landschaftsver-
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änderungen rascher und inhaltlich differenzierter erfassen können (Hansen et al.

2002). Die räumliche Auflösung von 250-1000 m dieser Bilddaten wirkt etwas limitierend,

doch für ein grossflächiges Landschaftsmonitoring stellt dies kein gravierendes
Problem dar.

Die Forschung zur Entwicklung kontinuierlicher Bodenbedeckungskarten mittels
Satellitendaten grober Auflösung ist bisher vorwiegend an der Universität von
Maryland vorangetrieben worden (Hansen et al. 2002; DeFries et al. 1998; DeFries und
Los 1999). So wurden globale Karten basierend auf einem hierarchisch gegliederten
statistischen Modell (regression tree kombiniert mit linearen Regressionsmodellen pro
terminal node) für ausgewählte Bodenbedeckungstypen (Bäume insgesamt, Laubbäume,

Nadelbäume, vegetationsfreie Flächen) erzeugt. Als Datengrundlage werden
MODIS-Satellitendaten mit einer räumlichen Auflösung von 500 m verwendet und die
resultierenden Karten sind unter dem MODIS-Produkt MOD44B erhältlich (Hansen
et al. 2002).

Das Ziel unserer Studie ist es, mittels MODIS-Satellitendatendaten (MOD09A1)
optimierte Karten für 5 wichtige Bodenbedeckungstypen (Baumanteil gesamt,
Nadelbäume, Laubbäume, übriges Grünland, vegetationsfreie Flächen) in der kleinräumig
gegliederten Landschaft des alpinen Raumes herzustellen. Dazu verwenden wir
generalisierte lineare (Regressions-) Modelle (GLM), welche sich für solche Fragestellungen

besonders eignen. Wir beschränken uns dabei auf die Schweiz als Testgebiet, welche

alle vorhandenen Landschaftstypen im Alpenraum abdeckt. Durch die Kalibrierung

mit regionalen Trainingsdaten sollen die generierten Bodenbedeckungskarten auf
die Verhältnisse im Alpenraum optimiert und angepasst werden. Dadurch sollen
Grundlagen für regionales Monitoring von Landschaftsveränderungen erarbeitet werden.

Der GLM-Ansatz stellt eine grundsätzliche Erweiterung der klassischen linearen
Regression dar, da ganz unterschiedliche Modell-Familien angewandt werden können.
Die binomiale Familie, besser bekannt als Logit-Regression, eignet sich sehr gut für
binomial verteilte Zielvariablen (McCullagh und Neider 1989).

Material und Methoden

Kalibra.tionsd.aten (MODIS-Daten)

Für die Kalibration der Modelle verwendeten wir Satellitendaten von TERRA -

MODIS. Ein besonderes Merkmal von TERRA-MODIS ist, dass die Rohdaten nach
automatisierten Verfahren und Algorithmen aufbereitet und dem Endnutzer gratis als

georeferenzierte und vollständig prozessierte Bilder zur Verfügung gestellt werden.
Nebst den Rohdaten der 36 Kanäle werden über 40 abgeleitete Produkte angeboten
(Blattflächenindex, Nettoprimärproduktion, Schneekarten, Oberflächentemperatur,
Landcover etc.). Für diese Untersuchung verwendeten wir das MODIS Produkt
MOD09A1 (Vermote et al. 1997). Dabei handelt es sich um 8-Tages Komposite der
Kanäle 1-7 (sichtbarer bis infraroter Bereich des elektromagnetischen Spektrums) mit
einer räumlichen Auflösung von 500 m. Bei der Herstellung dieses Produktes wird pro
Pixel der beste Wert aus 8 aufeinander folgenden Tagen ausgewählt. Damit wird
sichergestellt, dass die Pixel die geringste atmosphärische Trübung, Bewölkung oder
anderweitige Störung aufweisen. Die von uns verwendeten Daten stammen vom Jahr 2001

und wurden auf die geographischen Koordinaten der Schweizerischen Landestopographie

umprojiziert und weiterverarbeitet. Um die Datenmenge und qualitätsmindern-
den Einflüsse zu verringern, wurden analog dem Vorgehen von Holben (1986) die
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8-Tages-Komposite zu monatlichen Werten zusammengefasst: In einem ersten Schritt
wurde für jedes 8-Tage-Komposit der Normalized Difference Vegetation Index (NDVI)
berechnet. In einem zweiten Schritt wurde für jeden Monat nur die spektrale Information

des Komposits berücksichtigt, das den höchsten NDVI-Wert aufweist. Analog zu
Hansen et al. (2002) verwendeten wir in der Folge nur jene 8 Monatsdaten mit dem
höchsten NDVI-Wert. Basierend auf diesen 8 „besten" Monatswerten wurde ein
Datensatz abgeleitet, der für jeden Reflektanzkanal (inklusive NDVI) Mittelwert
(Ave), Maximum (Max), Minimum (Min), Spanne (Range) und Standardabweichung
(Std) beinhaltet. Dies führt zu einem Datensatz mit 40 (8 x 5) erklärenden Variablen.
Wie DeFries et al. (1995,1998) zeigten, sind diese Parameter geeignet, um den phäno-
logischen Verlauf der Vegetation zu charakterisieren. Die phänologischen Verschiebungen,

welche durch Klima und Höhenlage (insbesondere Schnee) verursacht werden,

können so minimiert, aber nicht ganz ausgeschlossen werden. Der so aggregierte
jährliche Datensatz ist im Vergleich zu monatlichen Parametern weniger sensitiv bezüglich

der phänologischen Stadien, der regionalen atmosphärischen Trübungen und der
Bewölkung (Hansen et al. 2002). Für die in dieser Studie entwickelten Regressionsanalysen

stellt dieser abgeleitet MODIS-Datensatz das Set der erklärenden Variablen dar.

Trainingsdaten
Die verwendeten Trainingsdaten basieren auf drei unterschiedliche Datenquellen:

- Die Karte des Waldmischungsgrades der Schweiz (WMG25) weist eine räumliche
Auflösung von 25 m auf und basiert auf 11 Landsat-5 TM Bildern der Jahre 1990-1992
(Bundesamt für Statistik 2001). Die Satellitenbilder bedecken die ganze Schweiz
vollständig und wurden alle im Zeitraum zwischen 14. Juli und 15. September erfasst. Bei
TM handelt es sich um einen optischen Sensor, der auf dem Satelliten Landsat-5 installiert

ist und die Erdoberfläche mit einer räumlichen Auflösung von etwa 30 m abtastet.
Die WMG25-Karte unterscheidet zwischen Wald und Nicht-Wald und gliedert den
Wald nach verschiedenen Mischungsstufen, anhand derer der relative Anteil von
Nadel- bzw. Laubwald bestimmt werden kann. Diese Daten werden verwendet, um die
Abgrenzung der Waldfläche und den Anteil von Nadelbäumen bzw. Laubbäumen zu
bestimmen.
- Informationen des 2. Schweizerischen Landesforstinventars (Brassel et al. 1999) wurden

verwendet, um für jedes Pixel innerhalb der Waldfläche (basierend auf WMG25-
Karte) den effektiven Baumdeckungsgrad zu bestimmen. Anhand einer multiplen
linearen Regression wird der Baumdeckungsgrad (Zielvariable) durch topographische
und bioklimatische Variablen (erklärende Variable) modelliert. Mittels dieser statistischen

Regression lassen sich die Wald-Pixel aus dem ersten Datensatz in relative
Baumdeckungsgrade umwandeln.
- Die Arealstatistik gibt Auskunft über die Verteilung der Bodennutzung und -bedeck-
ung in den Bereichen Wald, Siedlung, Gras- und Kulturland sowie unproduktive
Flächen (Jordi 2001). Gesamthaft werden 69 Kategorien unterschieden. Es handelt
sich dabei um einen stichprobenbasierten Datensatz, dem ein regelmässiges Netz von
100 m x 100 m zugrunde liegt. Die Interpretation erfolgt auf Luftbildern (Aufnahmedatum:

1992-1997) und weist jedem Stichprobenpunkt eine der 69 Kategorien des
Nutzungskataloges zu, welche für den ganzen Bildpunkt gilt. Ähnlich wie DeFries et al.
(1998) weisen wir den verschiedenen Nutzungskategorien ausserhalb des Waldes einen
mittleren Deckungsgrad (für jeden Bodenbedeckungstyp) zu. Für die Baumbedeckung
ausserhalb der Waldfläche wurden beispielsweise folgende Regeln aufgestellt: Hecken
und Baumgruppen wurde ein Deckungsgrad von 40% zugewiesen, Obstbauflächen ein
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Deckungsgrad von 30%, Gebäudeumschwung ein Deckungsgrad von 15% und Erhol-
ungs- und Grünanlagen ein Deckungsgrad von 20%.

Der Trainingsdatensatz für die Baumbedeckung bzw. Nadel- und Laubbaumanteile
basiert auf einer Kombination der drei Datenquellen: Innerhalb der Waldfläche

wurde der berechnete Baumdeckungsgrad verwendet und ausserhalb der Waldfläche
wurden die festgelegten Deckungsgrade basierend auf der Arealstatistik verwendet.
Die Trainingsdatensätze für „übriges Grünland" und „vegetationsfreie Flächen" basieren

ausschliesslich auf den festgelegten Deckungsgraden der einzelnen Nutzungskategorien

der Arealstatistik. Die Daten wurden in einem nächsten Schritt auf die räumliche

Auflösung von MODIS skaliert, wobei für jeden Bodenbedeckungstyp der relative

Anteil innerhalb eines 500 m-MODIS-Pixels berechnet wurde. Dies führt zu 5

Datensätzen (für jeden Bodenbedeckungstyp einen), welche je 165'622 Datenpunkte
und eine räumliche Auflösung von 500 m aufweisen. Als Trainingsgebiet für die
Modellkalibration dient der östliche Teil der Schweiz (Abb. 1), wobei gesamthaft nur
7% der Pixel innerhalb des Trainingsgebietes verwendet werden. Anhand der für das
Modell nicht verwendeten Pixel kann die Modellkalibration innerhalb des Trainingsgebietes

evaluiert werden. Zusätzlich wird die Modellqualität ausserhalb des
Trainingsgebietes in einem räumlich unabhängigen Testgebiet (westlicher Teil der Schweiz,
Abb. 1) getestet.

Die Genauigkeit der Trainingsdaten wird einerseits durch den unterschiedlichen
Datenerhebungszeitpunkt (Trainingsdaten verglichen mit Kalibrationsdaten) und
andererseits durch die verwendete Methodik der Datenerhebung beeinflusst.
Aufgrund der eher restriktiven Gesetzgebung in der Schweiz geschieht die Land-Umnut-
zung vor allem im Bereich Wald-Nicht-Wald eher langsam. Die durch die zeitliche
Verschiebung zwischen Trainings- und Kalibrationsdaten erzeugten Inkonsistenzen wirken

sich daher nicht stark auf die Modellqualität aus. Dies zeigt sich in den erzielten
Korrelationskoeffizienten zwischen Trainings- und Kalibrationsdaten. Eine exakte
Abschätzung des Fehlers ist aber anhand der vorhandenen Daten nicht möglich. Die
Verwendung von modernern Trainingsdaten würde die Modellgenauigkeit allerdings
erhöhen.

Vergleichsdaten (MOD44B)
Unter der MODIS-Produktebezeichnung MOD44B (Hansen et al. 2002) sind

globale Karten erhältlich, welche die kontinuierliche Verteilung unterschiedlicher
Bodenbedeckungstypen abbilden. Zum Zeitpunkt der Studie (2003) war nur ein Datensatz
für Baumbedeckung erhältlich. Dieser globale Datensatz wird mit dem in der Schweiz
optimierten GLM-Modell verglichen. Damit soll abgeschätzt werden, inwiefern die
Qualität unseres Modells für die Baumbedeckung durch eine Optimierung auf regionale

Verhältnisse verbessert werden kann. Die Algorithmen für die Berechnung der
globalen Karten wurden im Auftrag der NASA von der Universität von Maryland
entwickelt. Um die relativen Anteile eines bestimmten Bodenbedeckungstypes zu schätzen,

wurden Regressions-Bäume (regression tree) in Kombination mit linearer
Regression (pro terminalem Knoten) angewandt. Die räumliche Auflösung beträgt
ebenfalls 500 m.

Unabhängiger Referenzdatensatz

Zusätzlich zum Test in einem unabhängen Gebiet wird die Genauigkeit des globalen

MODIS-MOD44B Datensatzes und unseres GLM-basierten Modells für Baumbe-
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I Referenz fur Validierung
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Abb. 1. Uberblick über das Untersuchungsgebiet. 7% der 500 m Rasterdaten im Trainingsgebiet
wurden verwendet, um das Modell zu kalibrieren. Die übrigen Daten wurden fur die

Validierung innerhalb des Kalibrationsgebietes, sowie in einem neuen Testgebiet verwendet. Das
nördlich gelegene Referenzgebiet stellt eine Testregion dar, wo mit neuen, unabhängigen, TM-
basierten Daten getestet wurde.

deckung mit einem unabhängigen Referenzdatensatz verglichen und validiert. Fur die
Herstellung dieses Datensatzes verwendeten wir ein Landsat-7 TM Satellitenbild vom
15.08.2001 (raumliche Ausdehnung vgl. Abb. 1); es wurde somit im selben Jahr wie die
MODIS-Kalibrationsdaten aufgenommen. Zahlreiche Untersuchungen in der Schweiz
haben in der Vergangenheit gezeigt, dass mit TM-Daten eine zuverlässige Waldklassifikation

möglich ist (Bundesamt für Statistik 2001; Kellenberger 1996). Die erzielten
Genauigkeiten hegen bei 90-92%. Das TM-Bild wurde analog dem Vorgehen in dieser
Studie bearbeitet. Als Trainingsdaten dienten punktgenaue, luftbildbasierte Auswertungen,

welche im Rahmen des Schweizerischen Landesforstinventars für die ganze
Schweiz erhoben werden (Brändli und Brassel 2001). Die 7 Kanäle des Landsatbildes
wurden als erklärende Variable verwendet. Damit wurde ein GLM-Modell kalibriert
(D2 0.85), welches anschliessend auf das ganze Bild angewendet wurde, womit ein
flächendeckender Datensatz für die prozentuale Baumbedeckung hergestellt werden
konnte. Auch dieser Datensatz wurde anschliessend auf die räumliche Auflösung eines
MODIS-Pixels skaliert, um den relativen Anteil der Baumbedeckung pro 500m-Pixel
zu bestimmen.

Statistische Modellentwicklung
Mit einem statistischen Modell wird die Beziehung einer Zielvariablen (hier

Deckungsgrad einzelner Bodenbedeckungstypen) von einem Set erklärender Varia-
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blen (hier abgeleitet statistische Werte der MODIS Reflektanzkanäle) hergeleitet. Im
Falle von kontinuierlichen Bodenbedeckungsdaten wurde dies bisher anhand von
Regressionsbäumen (DeFries et al. 1997), von „Linear Mixture Models" (Adams et al.
1995), oder von neuronalen Netzen (Atkinson et al. 1997) kalibriert. Grundsätzlich lassen

sich solche Probleme auch mit klassischer multipler Regression lösen. Die multiple
Regression stellt allerdings restriktive Bedingungen an die Zielvariable und an die
Verteilung der Residuen. So müssen die Residuen normalverteilt sein, und die Zielvariable

sollte nicht durch eine untere und obere Begrenzung des Gültigkeitsbereiches
limitiert sein. Solche Fälle können mittels Generalisierten Linearen Modellen (GLM)
gelöst werden, welche eine Erweiterung des so genannten „linearen Modells" (klassische

Regression) darstellen (Dobson 2002; Green und Silverman 1994; McCullagh und
Neider 1989). GLMs erlauben dabei eine breitere Anwendung und unterstützen
zahlreiche zusätzliche Verteilungsfamilien (Binomial, Poisson etc.). Eine Übersicht über
GLM und ähnliche Modelle sowie deren Verwendung in der Ökologie ist in Guisan
und Zimmermann (2000) zusammengefasst.

Für jeden der 5 Bodenbedeckungstypen wurde ein separates Modell entwickelt,
wobei wir jeweils den binomialen Verteilungstyp verwendeten (auch bekannt als Logit
Regression). Die unter „Trainingsdaten" aufgearbeiteten und konvertierten Daten
wurden als Zielvariable verwendet. Als erklärende Variablen wurden die unter „Kali-
brationsdaten (MODIS-Daten)" beschriebenen und weiterverarbeiten MODIS-Daten
verwendet. Ausgehend von einem maximalen Modell (40 Variablen), welches alle
möglichen Variablen in linearer und quadratischer Form umfasst, wurden die Modelle
schrittweise statistisch optimiert, wobei mittels der „backward" und „forward" Methode

(Guisan und Zimmermann 2000) die nicht-signifikanten Variablen eliminiert wurden.

Für die Kalibrierung der Modelle wurde von den 165'622 Bildpunkten des
Trainingsdatensatzes nur 11'387 verwendet (=7%), welche sich ausschliesslich auf das
Trainingsgebiet beziehen (Abb. 1). Die Qualität der Modellkalibration wird bei GLMs
mittels des D2 ausgewiesen, analog zum R2 bei der linearen Regression.

Validierung und Vergleich

Um die Qualität des Modells zu testen, wurden die simulierten Karten für die 5

Bodenbedeckungstypen einerseits mit den für die Kalibration nicht verwendeten
Punkten innerhalb des Trainingsgebietes und andererseits mit den Punkten ausserhalb
des Trainingsgebietes verglichen (Testgebiet; Abb. 1). Zusätzlich wurde der simulierte
Baumdeckungsgrad sowohl für das GLM-Modell wie auch für den globalen MODIS-
VCF Datensatz mit einem unabhängigen Referenzdatensatz (siehe „Unabhängiger
Referenzdatensatz") verglichen.

Für die Abschätzung der Genauigkeiten wurden verschiedene statistische Masse
verwendet: 1) der Mittelwert der absoluten Fehlerrate (MAE), 2) die korrekte
Klassifikationsrate (CCR0 bzw. CCRj; Fielding 1999), 3) Kappa (k) wie auch gewichtetes
Kappa (kw) sowie 4) der quadrierte Korrelationskoeffizient (Pearson R2). Für die
Berechnung der Masse 2 und 3 werden die simulierten Daten mittels einer Kreuztabelle

den beobachteten Testdaten in 20% Bedeckungsklassen gegenüber gestellt. Die
Bedeckung ist dann perfekt simuliert, wenn alle simulierten Werte in dieselbe (20%)-
Klasse fallen wie die beobachteten Werte. Der Wert CCR0 beschreibt den Anteil der
korrekt simulierten Klassen.

Der von Cohen (1960) eingeführte Kappa-Koeffizient (k) ist ein verbreitetes Mass,
um auf ähnliche Weise die Übereinstimmung zweier Datensätze zu bestimmen; er wird
oft für Kartenvergleiche verwendet (Monserud und Leemans 1992). Dabei wird die
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Übereinstimmung zweier Datensätze anhand einer Kontingenzmatrix mit der
Zufallsübereinstimmung verglichen, wie sie anhand der a priori Wahrscheinlichkeiten der
Klassen zu erwarten wären. Der höchstmögliche Wert für k ist gleich 1, er bedeutet
perfekte Übereinstimmung. Ein k von 0 ist gleichbedeutend mit zufälliger Übereinstimmung

der Datensätze, während negative Werte systematische Fehler anzeigen.

P -P
K -2 (1)

1 ~Pe
V '

wobei

Po=YuP„ (2) und Pe=TJP!xp, (3)
1=1 1=1

Pu steht für die Pixelzahl, welche in beiden Karten für die Klasse i übereinstimmt.
Pi steht für den Anteil Pixel der Klasse i in der geschätzten oder simulierten Karte und
p i steht für den Anteil Pixel der Klasse i in der Referenzkarte. Das Produkt pt x p t ist
die erwartete Zufallsübereinstimmung zweier Karten für die Klasse i. Der gewichtete
Kappa-Koeffizient (kw) ist ein von k abgeleitetes Mass und wurde von Cohen (1968)
und Fleiss et al. (1969) entwickelt. Er kann verwendet werden, um eine Gewichtung
der auftretenden Fehler vorzunehmen. Das Gewicht (w0 quantifiziert den Grad der
Ähnlichkeit zweier Klassen, indem Fehler beim Verwechseln von Klassen mit grosser
Ähnlichkeit weniger stark gewichtet werden als Fehler zwischen stark unähnlichen
Klassen.

P -P
K —

>

(4)
l~Pe,e(w)

wobei

^«"ZHw.jP.j (5) und (6)
' ' > i

Die Gewichtung w,y wird entsprechend der gleichmässig verteilten und absoluten
Differenz zweier Klassen berechnet. wtj quantifiziert den Grad des Fehlers zwischen
zwei Klassen i und j. Bildpunkte, die auf der Diagonalen einer Kontingenztabelle zu
liegen kommen, weisen ein wtj von 1 auf; wobei Bildpunkte mit grossem Unterschied
von i und j eine Gewichtung nahe 0 erhalten. Dieses Mass eignet sich speziell für das
Testen von Klassen mit abgestufter Ähnlichkeit, da es eine Gewichtung der Fehler
zulässt (Cicchetti und Allison 1971).

In unserer Untersuchung verwenden wir das gewichtete Kappa (kw), da geringe
Abweichungen der modellierten von den beobachteten Deckungswerten weniger
stark gewichtet werden sollen als starke Abweichungen. Das Gewicht ergibt sich aus
der Differenz.
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Tab 1 Kalibrierte GLM-Modelle fur die fünf untersuchten Bodenbedeckungstypen Die
Modellqualitat bezeichnet, wie gut die Kalibration ist Die Modellgenauigkeiten sind berechnete
Genauigkeitsmasse anhand unabhängiger Daten 1) innerhalb des Trainingsgebietes (anhand von
Pixeln, welche fur die Kalibration nicht verwendet wurden), und 2) m einem neuen Testgebiet
(ausserhalb des Traimngsgebietes)

vegetationsfreie
Flachen

übriges
Grünland

Baumbedeckung Nadelbaum Laubbaum

Modellqualitat
D2 0 73 0 51 0 73 0 65 0 67

Modell-
genauigkeit

Training Test Training Test Training Test Training Test Traimng Test

Kw

CCR0
MAE

0 87 0 88
0 76 0 82
0 10 0 08

0 79 0 77
0 37 0 31

0 16 0 17

0 85 0 85 0 83 0 85

0 57 0 59 0 60 0 67
0 09 010 0 09 0 09

0 85 0 85

0 80 0 80
0 05 0 06

Resultate

Fur alle fünf Bodenbedeckungstypen lasst sich ein gültiges Modell kalibrieren mit
den in Tabelle 1 angegebenen Modellqualltaten und -genauigkeiten. Mit Ausnahme
des übrigen Grünlandes (D2 0.51) liefern die Modelle eine ähnlich hohe Modellqualitat.

Die D2-Werte weichen nicht stark voneinander ab und variieren zwischen 0.65
und 0.73. Die Modellgenauigkeiten sind jeweils getrennt nach Trammgsgebiet (Ost)
und Testgebiet (West) angegeben (Abb. 1) und zeigen ein ähnliches Bild wie die
Modellquahtaten: Die erzielten Genauigkeiten fur den Bodenbedeckungstyp „übriges
Grünland" sind deutlich schlechter im Vergleich zu den anderen Bodenbedeckungstypen.

Ausserdem sind keine signifikanten Unterschiede zwischen Trammgsgebiet und
Testgebiet festzustellen. In Abbildung 2 sind die aus dem Modell berechneten
Deckungsanteile der jeweiligen Bodenbedeckungstypen gegen die beobachteten
Deckungsanteile der Referenzpixel in einem Diagramm dargestellt. Um die einzelnen
Graphiken übersichtlicher zu gestalten, sind nur 10% der verwendeten Trainingspixel,
welche zufällig ausgewählt wurden, dargestellt Fur das Modell GLM-Baumbedeckung
wurde ein R2 von 0.72 erzielt, die entsprechenden R2-Werte fur die Nadel- und Laubbaum

Modelle betragen 0.61 bzw. 0.64. Am besten kalibriert wurde das Modell
„vegetationsfrei" (R2 0.77), wahrend das Modell „übriges Grünland" am schlechtesten
abschnitt (R2 0.54).

Die simulierten Karten der Schweiz fur die Baumbedeckung, fur „übriges Grünland"

und fur „vegetationsfreie Flachen" sind m den Abbildungen 3a-c dargestellt. Die
Abbildung 4 stellt eine Kombination dieser drei Karten m Form eines RGB-Farbkom-
posits dar. Der Rotkanal entspricht dem Anteil „vegetationsfreier Flachen", der
Blaukanal entspricht der Baumbedeckung" und der grüne Kanal repräsentiert den Anteil
„übriges Grünland" pro Pixel. Entsprechend dieser Farbzuordnung erscheinen von
Baumen dominierte Flachen blau, vorwiegend vegetationsfreie Flachen erscheinen rot
und von „übrigem Grünland" dominierte Flachen sind grun emgefarbt.

In Tabelle 2 sind die berechneten Genauigkeiten der Validierung des GLM-
Modells Baumbedeckung und dem globalen MODIS-VCF Datensatz mit dem unab-
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relativer Antel vegetationsfreie Rachen
02 04 06 08
relativer Antel übriges Grünland

Abb. 2. Zusammenhang zwischen simulierten und effektiven Anteilen der untersuchten
Bodenbedeckungstypen. Der Grad der Korrelation ist durch den quadrierten Korrelationskoeffizienten
(R2) angegeben. Die 1:1 Linie ist zur erleichterten Analyse der Grafiken eingefügt.

hängigen, TM-basierten Referenzdatensatz zusammengestellt. Mit dem GLM-Modell
wird die totale von Bäumen bedeckte Fläche um 6.5% unterschätzt. Gesamthaft werden

50% aller Pixel in der richtigen 20%-Klasse simuliert und der mittlere absolute
Fehler (MAE) beträgt 0.13. Der Wert des gewichteten Kappa's (kw) beträgt 0.83 (Tab.
2). Der Datensatz MODIS-VCF überschätzt die aufsummierte von Bäumen bedeckte
Fläche um +25% und weist einen CCR0 Wert von 0.40 auf. Der MAE beträgt 0.23 und
kw erreicht 0.40 (Tab. 2).

Diskussion

Die erzielten Genauigkeiten (Tab. 1) zeigen, dass sich MOD09A1-Daten und
GLM-Modelle gut für die Kalibration des relativen Deckungsgrades der untersuchten
Bodenbedeckungstypen eignen. Das beste Modell wurde für „vegetationsfreie
Flächen" erzielt. Dies ist vor allem auf die ausgedehnten hochalpinen Flächen zurückzuführen,

in welchen die dominierenden Bodenbedeckungen Schnee, Eis und Fels mit
hoher Zuverlässigkeit erkannt werden. Wie Abbildung 4 zeigt, werden aber auch die
Urbanen Ballungszentren gut wiedergegeben. Die Deckungsanteile von Bäumen werden

ebenfalls gut erkannt. Probleme treten vor allem in steilen Hanglagen auf. An
nördlich exponierten Hängen tendiert das Modell zu einer Überschätzung des
Baumanteiles, im Gegensatz zu südlich exponierten Hängen. Beides kann auf den Sonnen-
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Abb. 3a. MODIS-basierte Verteilung der Baumbedeckung in der Schweiz.

0 26 SO 100 Kilometer
1 i I i i 1 1 1

Abb. 3b. MODIS-basierte Anteile des „übrigen Grünlandes" in der Schweiz.

Abb. 3c. MODIS-basierte Anteile der „vegetationsfreien Flächen" in der Schweiz.
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Abb. 4. Farbkomposit der Modelle für Baumbedeckung, vegetationsfreie Flächen und übriges
Grünland. Der Rotkanal entspricht der Karte für vegetationsfreie Flächen, der Grünkanal
derjenigen für das übrige Grünland und der blaue Kanal wird durch den Baumdeckungsgrad
wiedergegeben.

einfallswinkel zurückgeführt werden, welcher für Beschattung (Nordhänge) und
Überstrahlung (Südhänge) verantwortlich ist. Durch Einbezug von topographischen
Zusatzinformationen, welche von einem digitalen Höhenmodell (DHM) abgeleitet
werden, könnten diese Effekte zum Teil korrigiert werden. Die hohen Korrelationskoeffizienten

für Nadel- und Laubbaum (0.61 bzw. 0.64) deuten darauf hin, dass
Nadelbäume und Laubbäume gut voneinander unterschieden werden können. Dies ist auch
daraus ersichtlich, dass die Summe der Deckungsanteile von Nadel- und Laubbäumen
fast identisch ist mit den simulierten Baum-Anteilen. Mit einem R2 von 0.54 wird
„übriges Grünland" am wenigsten gut simuliert. Dies ist auf den sehr heterogenen
Charakter dieses Bodenbedeckungstyps zurückzuführen. Neben landwirtschaftlichen
Flächen, die ihr Erscheinungsbild im Laufe eines Jahres sehr stark ändern, umfasst dieser

Bodenbedeckungstyp auch alle Trocken-, Fett- und Magerwiesen sowie urbane
Grünflächen, verbuschte Wiesen und Weiden sowie andere kraut- und grasdominierte
Nichtwaldflächen. Dieser heterogene Charakter erschwert eine eindeutige Klassifikation.

Eine feinere Unterscheidung in mehrere Klassen könnte das Erfassen mittels
GLM-Modellen wesentlich verbessern, verlangt aber entsprechende Kalibrationsda-
ten. Trotz diesen Problemen liefert die resultierende Verteilungskarte einen guten
Überblick, aus der auch der Grünlandanteil in Urbanen Gebieten wie Parkanlagen,
Vorgärten etc. gut ersichtlich wird.
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Tab 2 Validierung des GLM-Modells fur Baumbedeckung und des globalen MODIS-VCF
Datensatzes mit einem unabhängigen, TM basierten Referenzdatensatz

GLM-Baumbedeckung MODIS-VCF

Total Flache [km2] 13640 13640
Von Baumen bedeckte Flache Referenz [km2] 5139 5139
Von Baumen bedeckte Flache simuliert [km2] 4805 6406

Mittlerer Fehler (Bias) -6 5% +24 7%
Mittlerer Absolutfehler (MAE) 013 0 22

CCR0 0 50 0 40

kw 0 82 0 73

Die Validierung der Baumbedeckung des GLM-Models und des MODIS-VCF
Datensatzes zeigt, dass die regional kalibrierte Waldkarte eine deutlich höhere Genauigkeit

aufweist. Alle berechneten Genauigkeitsmasse sind zum Teil deutlich hoher als

diejenigen des MODIS-VCF Datensatzes In Abbildung 5 ist der mittlere Fehler (Bias)
m Abhängigkeit des Baumdeckungsgrades dargestellt. Positive Abweichungen deuten
auf eine Überschätzung, negative Abweichungen auf eine Unterschatzung des
simulierten Deckungsgrades hm Es wird deutlich, dass der Baumdeckungsgrad mit dem
MODIS-VCF Datensatz generell überschätzt wird, wobei der Bias bis zu einem relativen

Baumdeckungsgrad von 75% positiv Überschätzung des Waldanteiles) ist. Lati-
fovic und Olthof (2004) errechneten m ihrer Validierung von globalen
Landbedeckungskarten Gesamtgenauigkeiten zwischen 0.27-0.45. Die von uns erzielte
Gesamtgenauigkeit fur die Baumbedeckung hegt mit 0.5 leicht über diesen Werten.
Dies zeigt, dass der GLM-Datensatz mindestens eine vergleichbare Qualität aufweist,
obwohl anzumerken bleibt, dass ein Vergleich mit diskreten Landbedeckungskarten
nur bedingt sinnvoll ist, da sich die angewandte Methodik stark unterscheidet

Schlussfolgerungen

Wie bereits mehrere Untersuchungen zu diesem Thema gezeigt haben (DeFries et
al. 1998, Foody und Cox 1994, Hansen et al. 2002), bieten kontinuierliche bodenbe-
deckungsspezifische Erfassungstechniken eine wertvolle Alternative zu herkömmlichen

diskreten Klassifikationen. Kontinuierliche Bodenbedeckungsdaten bieten eine
höhere Informationsdichte bei gleicher räumlicher Auflosung und eine höhere
Flexibilität, um Landschaftsveranderungen im Sub-Pixel Bereich relativ rasch zu erfassen.
Wegen der hohen zeitlichen Auflosung können mittels MODIS Daten bereits nach

wenigen Monaten neue Modelle kalibriert werden
Die simulierten Karten weisen im Allgememen eine hohe Korrelation mit den Trai-

mngsdaten auf Die Modellgenauigkeiten unterscheiden sich dabei nicht signifikant,
wenn man innerhalb des Trainingsgebietes oder ausserhalb des Trainingsgebietes
(Testgebiet) m einem raumlich getrennten Gebiet testet Dies bedeutet, dass die
angewendete Methode robust ist und mit Vorsicht auf das erweiterte Alpengebiet
angewendet werden kann. Wir sind allerdings der Meinung, dass eine Verbesserung der
Resultate erzielt werden kann, indem der Bodenbedeckungstyp „übriges Grünland"
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Abb. 5. Mittlere Abweichung für das Modell für Baumbedeckung und für den globalen
MODIS-VCF Datensatz in Abhängigkeit des Bedeckungsgrades. Die für die Modellkalibration
verwendeten Punkte wurden von der Analyse ausgeschlossen.

feiner differenziert wird (z.B. Magerwiesen, Fettwiesen, verbuschtes Grünland, Moore
etc.). Hierzu ist allerdings der verwendete Trainingsdatensatz ungenügend.

Die hergestellten Daten liefern eine wertvolle Basis für das Überwachen von
Landschaftsveränderungen im regionalen Kontext der Schweiz (oder des Alpenraumes).

Die vorgestellte Methode basiert auf einer hohen zeitlichen Auflösung, der für die
Kalibration verwendeten Daten, wobei Komposit-Bilder (7 Kanäle) im 8-Tagesrhyth-
mus verwendet wurden. Für die verwendete räumliche Auflösung von 500 m sind keine
zusätzlichen spektralen Informationen erhältlich. Erst in einer Auflösung von 1 km
sind weitere 29 Kanäle erhältlich. Es ist denkbar und bleibt zu untersuchen, ob die
Modellqualität mit dieser zusätzlichen Information verbessert werden könnte.

Wie der Vergleich mit dem globalen MODIS-VCF Datensatz zeigt, sind unsere
Resultate für die Baumbedeckung deutlich besser. Dies bedeutet einerseits, dass sich
die statistische Regression mittels GLM gut für die Kalibration der kontinuierlichen
Deckungsanteile eignet. Andererseits wird deutlich, dass sich durch die regionale
Anpassung des Modells auf den alpinen Raum deutlich bessere Resultate erzielen
lassen.
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Anhang
Modellparameter der kalibrierten GLM-Modelle fur die fünf untersuchten
Bodenbedeckungstypen. Es sind nur diejenigen Variablen (Ave, Mm, Max, Std, Range) der 8 Kanäle
(B1-B7 & NDVI) aufgelistet, welche m mindestens einem der 5 Modelle verwendet wurden.

Modellparameter vegetationsfrei übriges
Grünland

Baumbedeckung Nadelwald Laubwald

Konstante 3.3657E+00 -8.1180E+00 -4.7137E+00 -2 0094E+01 3.3657E+00

Bl_Ave -1.3140E-02 -5.6440E-03 6.7266E-03 11934E-02 -1.3140E-02
Bl_Ave2 9.1010E-07 1.7083E-06 -1.0480E-07 -3.6790E-07 9.1010E-07

Bl_Max -1.7668E-05 1.7049E-03 -9.3163E-04 1.0809E-03 -1.7668E-05
Bl_Max2 6.8100E-08 -1.0200E-07 -8.1600E-08 -2.9400E-07 6.8100E-08

B2_Ave 2.1401E-03 1.2330E-03 9.2604E-04 -3.7361E-03 2.1401E-03
B2_Ave2 ^1.9290E-07 1.3760E-07 -3.8180E-07 1.9230E-07 ^1.9290E-07

B2_Max 2.5961E-04 -2.3470E-04 -8.1039E-04 -1.6657E-03 2.5961E-04
B2_Max2 -2.4600E-08 4.5000E-09 1.1020E-07 2.0780E-07 -2.4600E-08
B3_Ave -7.3225E-04 -6.1746E-03 9.5563E-03 -2.5448E-03 -7.3225E-04
B3_Ave2 -1.2520E-07 9.7630E-07 -7.8140E-07 1.5160E-06 -1.2520E-07
B3_Max -7.6610E-04 3 1493E-04 -5.2604E-04 1.2408E-03 -7.6610E-04
B3_Max2 4.6300E-08 -9.6000E-09 -3.9000E-08 -1.5600E-07 4.6300E-08

B4_Ave 1.2674E-02 1.3597E-02 -1.7217E-02 -6.2623E-03 1.2674E-02
B4_Ave2 -4.8830E-07 -2.8600E-06 7.5160E-07 -1.3920E-06 -4.8830E-07

B4_Max 6.2888E-04 -2 3156E-03 1.7683E-03 -1.4606E-03 6.2888E-04
B4_Max2 -9.2300E-08 1.2620E-07 6.4400E-08 2.8830E-07 -9.2300E-08
B5_Ave -2.5526E-03 -5.8851E-04 -3.2206E-03 5.9755E-03 -2.5526E-03
B5_Ave2 5.5840E-07 -2.8800E-07 8.5370E-07 -2.6470E-07 5.5840E-07

B5_Max 1.3857E-04 8.9356E-05 5.2841E-04 1.7571E-04 1.3857E-04
B5_Max2 -9.6000E-09 1.2000E-09 -8.2200E-08 -7.1500E-08 -9.6000E-09
B6_Ave -2.3383E-03 4.5172E-04 7.9006E-03 -5.6156E-03 -2.3383E-03
B6_Ave2 1.2300E-08 4.5580E-07 -2.2218E-06 -3 8500E-07 1.2300E-08

B6_Max -1.9096E-04 8.4801E-04 -8.3373E-04 4 3129E-04 -1.9096E-04
B6_Max2 3.8700E-08 -1.0760E-07 1.5530E-07 9.5100E-08 3.8700E-08

B7_Ave 5.3474E-03 -5.2655E-03 1.5579E-04 4.1703E-03 5.3474E-03
B7_Ave2 -1.1813E-06 9.6700E-07 5.1810E-07 -7.1270E-07 -1.1813E-06

B7_Max 1.6663E-04 -2.9434E-04 -2.7071E-04 -1.1758E-03 1.6663E-04
B7_Max2 -3.2700E-08 6.2900E-08 -9.5000E-09 1.2520E-07 -3.2700E-08
NDVI_Ave -1.0079E-03 3.1816E-02 4.3961E-04 3.0328E-02 -1.0079E-03
NDVI_Ave2 -1.2172E-05 -3.0227E-05 1.3725E-05 -8.7430E-06 -1.2172E-05

NDVI_Max 6.9574E-04 5.2203E-03 -7.4685E-03 2.2886E-02 6.9574E-04
NDVI_Max2 -6.6830E-07 3.0974E-06 1.7791E-06 -1.3347E-05 -6.6830E-07

NDVI_Min 2.2348E-03 -1.6486E-02 1.5297E-03 -1.3349E-02 2.2348E-03
NDVI_Mm2 -1.7370E-07 9.2778E-06 -2.6810E-07 9.5774E-06 -1.7370E-07

NDVI_Range O.OOOOE+OO 0.0000E+00 O.OOOOE+OO 0.0000E+00 0.0000E+00

NDVI_Range2 2.3926E-06 -5.8826E-06 -2.9758E-06 -1.0380E-05 2.3926E-06

NDVI_Std -5.9608E-03 -1.9667E-02 1.4188E-02 8.4535E-03 -5.9608E-03
NDVI_Std2 -1.0149E-05 2.8990E-05 1 0966E-05 7.3816E-06 -1.0149E-05
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