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Abstract

Schwarz M., Zimmermann N.E., Wildi O. and Kienast F. 2004. Mapping of land cover
continuous fields using MODIS data in Switzerland. Bot. Helv. 114/2: 151-167.

The assessment of large-scale land cover pattern is an important input for monito-
ring and modeling of ecological and environmental processes. Considerable efforts
have recently resulted in the development of global continuous fields for different land
cover types at large spatial scales based on NOAA-AVHRR and TERRA-MODIS
data. In this study, a new methodology is described for deriving continuous fields of
tree cover (coniferous/deciduous) and vegetation not covered by trees as well as non-
vegetated land cover for complex topography at the regional scale of Switzerland. The
methodology is based upon generalized linear models (GLM). MODIS (MODO09A1)
data at a spatial resolution of 500 m was used to calibrate the GLM models. For pur-
pose of validation we compared the resulting continuous fields of tree cover and an
available global data set, namely the TERRA-MODIS Vegetation Continuous Fields
product (MOD44B) against an independent reference dataset. In comparison with the
available global tree continuous field data set (MOD44B), our regional GLM-based
tree model obtained significantly better results for all calculated accuracy measures.
Tests of the resulting maps showed that non-vegetated, bare ground and vegetation
covered by trees were predicted accurately, with weighted Kappa values (x,,) reaching
0.87 and 0.85 respectively. Due to the heterogeneous character of “non-tree vegetati-
on” this latter landcover type was predicted with lower precision (x,, = 0.79). We con-
clude that generalized linear models are appropriate for deriving continuous fields of
different land cover types for complex topography at a regional scale. Regional cali-
bration of land cover continuous fields offers significantly improved predictions com-
pared to globally calibrated models and may serve as a valuable tool for regional moni-
toring of land cover pattern and its temporal change.

Key words: Change detection, land cover continuous fields, GLM, MODIS, moni-
toring, remote sensing.
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Einleitung

Der Alpenraum ist immer stirker und sich rascher dndernden Einfliissen ausge-
setzt. Nur mit zeitlich hoch aufgelosten, zuverldssigen Informationen iiber die Vertei-
lung der Bodenbedeckung ist das Ausmass des fortschreitenden Landschaftswandels
zu erfassen (Tasser und Tappeiner 2002). Linderiibergreifende, konsistente und
flichendeckende Informationen der Bodenbedeckung bilden dabei eine wertvolle
Basis fiir die Untersuchung thematischer Aspekte wie Landschaftsverinderung, Ener-
giehaushalt, Wasserhaushalt, Okosystem-Monitoring, Klimafolgenforschung oder fiir
andere Anwendungen im Bereich von Resourcenmanagement (Townshend et al.
1994). Verschiedene Untersuchungen von NOAA-AVHRR-Satellitendaten belegen,
wie Satellitendaten bereits seit geraumer Zeit fiir grossflidchiges Monitoring Verwen-
dung finden (DeFries und Los 1999; Eidenshink und Faundeen 1994). Ende 1999
wurde mit Terra-EOS ein weiterer Umweltbeobachtungssatellit erfolgreich auf seine
Umlaufbahn gebracht. Der sich auf Terra befindende MODIS-Sensor (Moderate
Resolution Imaging Spectroradiometer) bietet die Moglichkeit, iiber grosse Flichen
zeitlich hochaufgeloste Bodenbedeckungsinformationen zu beziehen. Dabei wird die
gesamte Erdoberfldche innerhalb von 48 Stunden mit 36 verschiedenen Kanilen erfas-
st. Im Gegensatz zu NOAA-AVHRR mit einer nominellen rdumlichen Auflésung von
1100 m, weist MODIS mit 250-1000 m eine bessere raumliche sowie eine wesentlich
bessere spektrale Auflosung auf. Die prozessierten und georeferenzierten Reflektanz-
Werte der einzelnen Kanile sind unter dem MODIS-Produkt MODO9 erhiltlich (Ver-
mote et al. 1997). Anhand von MOD09-Daten wollen wir mit diesem Artikel eine neue
Methode vorstellen, welche es erlaubt, die Verbreitung und die zeitliche Veranderung
von Baum- und iibrigem Griinland, sowie von vegetationsfreien Flichen mit hoher
zeitlicher Auflésung zu erfassen und gegebenenfalls zu iiberwachen.

Ein weit verbreiteter Ansatz zum Erfassen der Bodenbedeckung charakterisiert die
Erdoberflache anhand diskreter Klassen und weist jedem Pixel (=Bildpunkt) einen
Bodenbedeckungstypen zu. Solche Karten werden oft als Habitat-, Vegetations- oder
Landnutzungskarten bezeichnet. Der englische Begriff land cover beschreibt den kar-
tierten Inhalt aber wesentlich besser. In den letzten Jahren wurden grosse Anstren-
gungen unternommen, um die Generierung von kontinentalen und globalen land cover
Datensédtzen basierend auf Satellitendaten (z.B. NOAA-AVHRR, MODIS,
SPOT/VEGETATION) voranzutreiben. Die wichtigsten sind: 1) Global Land Cover
2000 (Latifovic et al. 2004), 2) IGBP global land classification (Townshend et al. 1994;
Loveland und Belward 1997), 3) UMD Global land cover classification (Hansen et al.
2000) oder 4) MODIS (MOD12) Global land cover classification (Friedl et al. 2002).

Infolge des kleinrdumigen Landschaftsmusters in der Schweiz (bzw. des gesamten
Alpenraumes) erweist sich dieser Ansatz fiir Satellitendaten mit einer rdumlichen Auf-
16sung von =250m als problematisch und fiihrt zu einem starken Informationsverlust,
da innerhalb eines Pixels meist keine reinen Bodenbedeckungstypen vorkommen und
das reflektierte Signal somit eine Kombination verschiedener Bodenbedeckungstypen
darstellt (= Mischpixel; Aplin und Atkinson 2001). Aus diesem Nachteil ist das Bediirf-
nis entstanden, Methoden zu entwickeln, anhand derer die heterogene Zusammenset-
zung eines Pixels beschrieben werden kann. Mit einem derartigen Ansatz wird die
Erdoberfldache nicht durch diskrete Klassen, sondern durch kontinuierliche Felder
(continuous fields) charakterisiert (Foody 1996). Das bedeutet, dass fiir jeden Pixel der
relative Anteil eines bestimmten Bodenbedeckungstypes bestimmt wird. Kontinuierli-
che Bodenbedeckungskarten weisen zudem den Vorteil auf, dass sie Landschaftsver-
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dnderungen rascher und inhaltlich differenzierter erfassen konnen (Hansen et al.
2002). Die rdaumliche Auflosung von 250-1000 m dieser Bilddaten wirkt etwas limitie-
rend, doch fiir ein grossflichiges Landschaftsmonitoring stellt dies kein gravierendes
Problem dar.

Die Forschung zur Entwicklung kontinuierlicher Bodenbedeckungskarten mittels
Satellitendaten grober Auflésung ist bisher vorwiegend an der Universitdt von
Maryland vorangetrieben worden (Hansen et al. 2002; DeFries et al. 1998; DeFries und
Los 1999). So wurden globale Karten basierend auf einem hierarchisch gegliederten
statistischen Modell (regression tree kombiniert mit linearen Regressionsmodellen pro
terminal node) fiir ausgewihlte Bodenbedeckungstypen (Baume insgesamt, Laubbéu-
me, Nadelbdume, vegetationsfreie Flidchen) erzeugt. Als Datengrundlage werden
MODIS-Satellitendaten mit einer rdumlichen Auflésung von 500 m verwendet und die
resultierenden Karten sind unter dem MODIS-Produkt MOD44B erhiltlich (Hansen
et al. 2002).

Das Ziel unserer Studie ist es, mittels MODIS-Satellitendatendaten (MODO09A1)
optimierte Karten fiir 5 wichtige Bodenbedeckungstypen (Baumanteil gesamt, Nadel-
bidume, Laubbiume, iibriges Griinland, vegetationsfreie Flichen) in der kleinrdumig
gegliederten Landschaft des alpinen Raumes herzustellen. Dazu verwenden wir gene-
ralisierte lineare (Regressions-) Modelle (GLM), welche sich fiir solche Fragestellun-
gen besonders eignen. Wir beschrinken uns dabei auf die Schweiz als Testgebiet, wel-
che alle vorhandenen Landschaftstypen im Alpenraum abdeckt. Durch die Kalibrie-
rung mit regionalen Trainingsdaten sollen die generierten Bodenbedeckungskarten auf
die Verhiltnisse im Alpenraum optimiert und angepasst werden. Dadurch sollen
Grundlagen fiir regionales Monitoring von Landschaftsverdnderungen erarbeitet wer-
den. Der GLM-Ansatz stellt eine grundsitzliche Erweiterung der klassischen linearen
Regression dar, da ganz unterschiedliche Modell-Familien angewandt werden konnen.
Die binomiale Familie, besser bekannt als Logit-Regression, eignet sich sehr gut fiir
binomial verteilte Zielvariablen (McCullagh und Nelder 1989).

Material und Methoden
Kalibrationsdaten (MODIS-Daten)

Fiir die Kalibration der Modelle verwendeten wir Satellitendaten von TERRA-
MODIS. Ein besonderes Merkmal von TERRA-MODIS ist, dass die Rohdaten nach
automatisierten Verfahren und Algorithmen aufbereitet und dem Endnutzer gratis als
georeferenzierte und vollstindig prozessierte Bilder zur Verfiigung gestellt werden.
Nebst den Rohdaten der 36 Kanile werden iiber 40 abgeleitete Produkte angeboten
(Blattflaichenindex, Nettoprimdrproduktion, Schneekarten, Oberflichentemperatur,
Landcover etc.). Fiir diese Untersuchung verwendeten wir das MODIS Produkt
MOD09A1 (Vermote et al. 1997). Dabei handelt es sich um 8-Tages Komposite der
Kanile 1-7 (sichtbarer bis infraroter Bereich des elektromagnetischen Spektrums) mit
einer rdumlichen Auflésung von 500 m. Bei der Herstellung dieses Produktes wird pro
Pixel der beste Wert aus 8 aufeinander folgenden Tagen ausgewahlt. Damit wird sicher-
gestellt, dass die Pixel die geringste atmosphirische Triibung, Bewolkung oder ander-
weitige Storung aufweisen. Die von uns verwendeten Daten stammen vom Jahr 2001
und wurden auf die geographischen Koordinaten der Schweizerischen Landestopogra-
phie umprojiziert und weiterverarbeitet. Um die Datenmenge und qualitdtsmindern-
den Einfliisse zu verringern, wurden analog dem Vorgehen von Holben (1986) die
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8-Tages-Komposite zu monatlichen Werten zusammengefasst: In einem ersten Schritt
wurde fiir jedes 8-Tage-Komposit der Normalized Difference Vegetation Index (NDVI)
berechnet. In einem zweiten Schritt wurde fiir jeden Monat nur die spektrale Informa-
tion des Komposits beriicksichtigt, das den héchsten NDVI-Wert aufweist. Analog zu
Hansen et al. (2002) verwendeten wir in der Folge nur jene 8 Monatsdaten mit dem
hochsten NDVI-Wert. Basierend auf diesen 8 ,besten Monatswerten wurde ein
Datensatz abgeleitet, der fiir jeden Reflektanzkanal (inklusive NDVI) Mittelwert
(Ave), Maximum (Max), Minimum (Min), Spanne (Range) und Standardabweichung
(Std) beinhaltet. Dies fiihrt zu einem Datensatz mit 40 (8x 5) erklirenden Variablen.
Wie DeFries et al. (1995, 1998) zeigten, sind diese Parameter geeignet, um den phéno-
logischen Verlauf der Vegetation zu charakterisieren. Die phinologischen Verschie-
bungen, welche durch Klima und Héhenlage (insbesondere Schnee) verursacht wer-
den, kénnen so minimiert, aber nicht ganz ausgeschlossen werden. Der so aggregierte
jdhrliche Datensatz ist im Vergleich zu monatlichen Parametern weniger sensitiv beziig-
lich der phénologischen Stadien, der regionalen atmosphirischen Triibungen und der
Bewdlkung (Hansen et al. 2002). Fiir die in dieser Studie entwickelten Regressionsana-
lysen stellt dieser abgeleitet MODIS-Datensatz das Set der erklirenden Variablen dar.

Trainingsdaten

Die verwendeten Trainingsdaten basieren auf drei unterschiedliche Datenquellen:
- Die Karte des Waldmischungsgrades der Schweiz (WMG25) weist eine ridumliche
Auflésung von 25 m auf und basiert auf 11 Landsat-5 TM Bildern der Jahre 1990-1992
(Bundesamt fiir Statistik 2001). Die Satellitenbilder bedecken die ganze Schweiz voll-
stindig und wurden alle im Zeitraum zwischen 14. Juli und 15. September erfasst. Bei
TM handelt es sich um einen optischen Sensor, der auf dem Satelliten Landsat-5 instal-
liert ist und die Erdoberfliche mit einer riumlichen Auflésung von etwa 30 m abtastet.
Die WMG?25-Karte unterscheidet zwischen Wald und Nicht-Wald und gliedert den
Wald nach verschiedenen Mischungsstufen, anhand derer der relative Anteil von
Nadel- bzw. Laubwald bestimmt werden kann. Diese Daten werden verwendet, um die
Abgrenzung der Waldfl4ache und den Anteil von Nadelbidumen bzw. Laubbiumen zu
bestimmen.
- Informationen des 2. Schweizerischen Landesforstinventars (Brassel et al. 1999) wur-
den verwendet, um fiir jedes Pixel innerhalb der Waldfléiche (basierend auf WMG25-
Karte) den effektiven Baumdeckungsgrad zu bestimmen. Anhand einer multiplen lin-
earen Regression wird der Baumdeckungsgrad (Zielvariable) durch topographische
und bioklimatische Variablen (erklirende Variable) modelliert. Mittels dieser statistis-
chen Regression lassen sich die Wald-Pixel aus dem ersten Datensatz in relative
Baumdeckungsgrade umwandeln.
- Die Arealstatistik gibt Auskunft {iber die Verteilung der Bodennutzung und -bedeck-
ung in den Bereichen Wald, Siedlung, Gras- und Kulturland sowie unproduktive
Flichen (Jordi 2001). Gesamthaft werden 69 Kategorien unterschieden. Es handelt
sich dabei um einen stichprobenbasierten Datensatz, dem ein regelmissiges Netz von
100 m x 100 m zugrunde liegt. Die Interpretation erfolgt auf Luftbildern (Aufnahme-
datum: 1992-1997) und weist jedem Stichprobenpunkt eine der 69 Kategorien des
Nutzungskataloges zu, welche fiir den ganzen Bildpunkt gilt. Ahnlich wie DeFries et al.
(1998) weisen wir den verschiedenen Nutzungskategorien ausserhalb des Waldes einen
mittleren Deckungsgrad (fiir jeden Bodenbedeckungstyp) zu. Fiir die Baumbedeckung
ausserhalb der Waldfldche wurden beispielsweise folgende Regeln aufgestellt: Hecken
und Baumgruppen wurde ein Deckungsgrad von 40% zugewiesen, Obstbauflichen ein
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Deckungsgrad von 30%, Gebaudeumschwung ein Deckungsgrad von 15% und Erhol-
ungs- und Griinanlagen ein Deckungsgrad von 20%.

Der Trainingsdatensatz fiir die Baumbedeckung bzw. Nadel- und Laubbaumantei-
le basiert auf einer Kombination der drei Datenquellen: Innerhalb der Waldfldche
wurde der berechnete Baumdeckungsgrad verwendet und ausserhalb der Waldflache
wurden die festgelegten Deckungsgrade basierend auf der Arealstatistik verwendet.
Die Trainingsdatensitze fiir ,,iibriges Griinland“ und ,,vegetationsfreie Flichen“ basie-
ren ausschliesslich auf den festgelegten Deckungsgraden der einzelnen Nutzungskate-
gorien der Arealstatistik. Die Daten wurden in einem néchsten Schritt auf die rdumli-
che Auflésung von MODIS skaliert, wobei fiir jeden Bodenbedeckungstyp der relati-
ve Anteil innerhalb eines 500 m-MODIS-Pixels berechnet wurde. Dies fiihrt zu 5
Datensétzen (fiir jeden Bodenbedeckungstyp einen), welche je 165’622 Datenpunkte
und eine rdumliche Auflésung von 500 m aufweisen. Als Trainingsgebiet fiir die
Modellkalibration dient der 6stliche Teil der Schweiz (Abb. 1), wobei gesamthaft nur
7% der Pixel innerhalb des Trainingsgebietes verwendet werden. Anhand der fiir das
Modell nicht verwendeten Pixel kann die Modellkalibration innerhalb des Trainings-
gebietes evaluiert werden. Zusitzlich wird die Modellqualitidt ausserhalb des Trai-
ningsgebietes in einem rdumlich unabhingigen Testgebiet (westlicher Teil der Schweiz,
Abb. 1) getestet.

Die Genauigkeit der Trainingsdaten wird einerseits durch den unterschiedlichen
Datenerhebungszeitpunkt (Trainingsdaten verglichen mit Kalibrationsdaten) und
andererseits durch die verwendete Methodik der Datenerhebung beeinflusst. Auf-
grund der eher restriktiven Gesetzgebung in der Schweiz geschieht die Land-Umnut-
zung vor allem im Bereich Wald-Nicht-Wald eher langsam. Die durch die zeitliche Ver-
schiebung zwischen Trainings- und Kalibrationsdaten erzeugten Inkonsistenzen wir-
ken sich daher nicht stark auf die Modellqualitit aus. Dies zeigt sich in den erzielten
Korrelationskoeffizienten zwischen Trainings- und Kalibrationsdaten. Eine exakte
Abschitzung des Fehlers ist aber anhand der vorhandenen Daten nicht moglich. Die
Verwendung von modernern Trainingsdaten wiirde die Modellgenauigkeit allerdings
erhohen.

Vergleichsdaten (MOD44B)

Unter der MODIS-Produktebezeichnung MOD44B (Hansen et al. 2002) sind glo-
bale Karten erhiltlich, welche die kontinuierliche Verteilung unterschiedlicher Boden-
bedeckungstypen abbilden. Zum Zeitpunkt der Studie (2003) war nur ein Datensatz
fiir Baumbedeckung erhiltlich. Dieser globale Datensatz wird mit dem in der Schweiz
optimierten GLM-Modell verglichen. Damit soll abgeschitzt werden, inwiefern die
Qualitit unseres Modells fiir die Baumbedeckung durch eine Optimierung auf regio-
nale Verhiltnisse verbessert werden kann. Die Algorithmen fiir die Berechnung der
globalen Karten wurden im Auftrag der NASA von der Universitdt von Maryland ent-
wickelt. Um die relativen Anteile eines bestimmten Bodenbedeckungstypes zu schit-
zen, wurden Regressions-Bdume (regression tree) in Kombination mit linearer

Regression (pro terminalem Knoten) angewandt. Die rdumliche Aufldsung betrégt
ebenfalls 500 m.

Unabhiingiger Referenzdatensatz

Zusétzlich zum Test in einem unabhingen Gebiet wird die Genauigkeit des globa-
len MODIS-MOD44B Datensatzes und unseres GLM-basierten Modells fiir Baumbe-
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D Referenz fur Validierung
Testgebiet

Trainingsgebiet

0 25 50 100 Kilometer

Abb. 1. Uberblick iiber das Untersuchungsgebiet. 7% der 500 m Rasterdaten im Trainingsge-
biet wurden verwendet, um das Modell zu kalibrieren. Die iibrigen Daten wurden fiir die
Validierung innerhalb des Kalibrationsgebietes, sowie in einem neuen Testgebiet verwendet. Das
nordlich gelegene Referenzgebiet stellt eine Testregion dar, wo mit neuen, unabhingigen, TM-
basierten Daten getestet wurde.

deckung mit einem unabhingigen Referenzdatensatz verglichen und validiert. Fiir die
Herstellung dieses Datensatzes verwendeten wir ein Landsat-7 TM Satellitenbild vom
15.08.2001 (rdumliche Ausdehnung vgl. Abb. 1); es wurde somit im selben Jahr wie die
MODIS-Kalibrationsdaten aufgenommen. Zahlreiche Untersuchungen in der Schweiz
haben in der Vergangenheit gezeigt, dass mit TM-Daten eine zuverldssige Waldklassi-
fikation moglich ist (Bundesamt fiir Statistik 2001; Kellenberger 1996). Die erzielten
Genauigkeiten liegen bei 90-92%. Das TM-Bild wurde analog dem Vorgehen in dieser
Studie bearbeitet. Als Trainingsdaten dienten punktgenaue, luftbildbasierte Auswer-
tungen, welche im Rahmen des Schweizerischen Landesforstinventars fiir die ganze
Schweiz erhoben werden (Bréindli und Brassel 2001). Die 7 Kanile des Landsatbildes
wurden als erkldrende Variable verwendet. Damit wurde ein GLM-Modell kalibriert
(D? = 0.85), welches anschliessend auf das ganze Bild angewendet wurde, womit ein
flichendeckender Datensatz fiir die prozentuale Baumbedeckung hergestellt werden
konnte. Auch dieser Datensatz wurde anschliessend auf die rdumliche Auflésung eines
MODIS-Pixels skaliert, um den relativen Anteil der Baumbedeckung pro 500 m-Pixel
zu bestimmen.

Statistische Modellentwicklung

Mit einem statistischen Modell wird die Beziehung einer Zielvariablen (hier
Deckungsgrad einzelner Bodenbedeckungstypen) von einem Set erklidrender Varia-
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blen (hier abgeleitet statistische Werte der MODIS Reflektanzkanile) hergeleitet. Im
Falle von kontinuierlichen Bodenbedeckungsdaten wurde dies bisher anhand von
Regressionsbdumen (DeFries et al. 1997), von ,,Linear Mixture Models“ (Adams et al.
1995), oder von neuronalen Netzen (Atkinson et al. 1997) kalibriert. Grundsétzlich las-
sen sich solche Probleme auch mit klassischer multipler Regression 16sen. Die multiple
Regression stellt allerdings restriktive Bedingungen an die Zielvariable und an die
Verteilung der Residuen. So miissen die Residuen normalverteilt sein, und die Zielva-
riable sollte nicht durch eine untere und obere Begrenzung des Giiltigkeitsbereiches
limitiert sein. Solche Fille kénnen mittels Generalisierten Linearen Modellen (GLM)
gelost werden, welche eine Erweiterung des so genannten ,linearen Modells*“ (klassi-
sche Regression) darstellen (Dobson 2002; Green und Silverman 1994; McCullagh und
Nelder 1989). GLMs erlauben dabei eine breitere Anwendung und unterstiitzen zahl-
reiche zusitzliche Verteilungsfamilien (Binomial, Poisson etc.). Eine Ubersicht iiber
GLM und dhnliche Modelle sowie deren Verwendung in der Okologie ist in Guisan
und Zimmermann (2000) zusammengefasst.

Fiir jeden der 5 Bodenbedeckungstypen wurde ein separates Modell entwickelt,
wobei wir jeweils den binomialen Verteilungstyp verwendeten (auch bekannt als Logit
Regression). Die unter , Trainingsdaten“ aufgearbeiteten und konvertierten Daten
wurden als Zielvariable verwendet. Als erkldrende Variablen wurden die unter ,,Kali-
brationsdaten (MODIS-Daten)“ beschriebenen und weiterverarbeiten MODIS-Daten
verwendet. Ausgehend von einem maximalen Modell (40 Variablen), welches alle mog-
lichen Variablen in linearer und quadratischer Form umfasst, wurden die Modelle
schrittweise statistisch optimiert, wobei mittels der ,,backward“ und ,,forward“ Metho-
de (Guisan und Zimmermann 2000) die nicht-signifikanten Variablen eliminiert wur-
den. Fiir die Kalibrierung der Modelle wurde von den 165’622 Bildpunkten des Trai-
ningsdatensatzes nur 11’387 verwendet (= 7% ), welche sich ausschliesslich auf das Trai-
ningsgebiet beziehen (Abb. 1). Die Qualitdt der Modellkalibration wird bei GLMs
mittels des D? ausgewiesen, analog zum R? bei der linearen Regression.

Validierung und Vergleich

Um die Qualitit des Modells zu testen, wurden die simulierten Karten fiir die 5
Bodenbedeckungstypen einerseits mit den fiir die Kalibration nicht verwendeten
Punkten innerhalb des Trainingsgebietes und andererseits mit den Punkten ausserhalb
des Trainingsgebietes verglichen (Testgebiet; Abb. 1). Zusitzlich wurde der simulierte
Baumdeckungsgrad sowohl fiir das GLM-Modell wie auch fiir den globalen MODIS-
VCF Datensatz mit einem unabhingigen Referenzdatensatz (siche ,,Unabhéngiger
Referenzdatensatz) verglichen.

Fiir die Abschitzung der Genauigkeiten wurden verschiedene statistische Masse
verwendet: 1) der Mittelwert der absoluten Fehlerrate (MAE), 2) die korrekte Klassi-
fikationsrate (CCR, bzw. CCR;; Fielding 1999), 3) Kappa (x) wie auch gewichtetes
Kappa (k) sowie 4) der quadrierte Korrelationskoeffizient (Pearson R?). Fiir die
Berechnung der Masse 2 und 3 werden die simulierten Daten mittels einer Kreuzta-
belle den beobachteten Testdaten in 20% Bedeckungsklassen gegeniiber gestellt. Die
Bedeckung ist dann perfekt simuliert, wenn alle simulierten Werte in dieselbe (20%)-
Klasse fallen wie die beobachteten Werte. Der Wert CCR,, beschreibt den Anteil der
korrekt simulierten Klassen.

Der von Cohen (1960) eingefiihrte Kappa-Koeffizient (k) ist ein verbreitetes Mass,
um auf dhnliche Weise die Ubereinstimmung zweier Datensitze zu bestimmen; er wird
oft fiir Kartenvergleiche verwendet (Monserud und Leemans 1992). Dabei wird die
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Ubereinstimmung zweier Datensitze anhand einer Kontingenzmatrix mit der Zufall-
siibereinstimmung verglichen, wie sie anhand der a priori Wahrscheinlichkeiten der
Klassen zu erwarten wiren. Der hochstmogliche Wert fiir x ist gleich 1, er bedeutet per-
fekte Ubereinstimmung. Ein x von 0 ist gleichbedeutend mit zufalhger Ubereinstim-
mung der Datensitze, wihrend negative Werte systematische Fehler anzeigen.

P-P
— (2] e 1
Tr (1)
wobei
B :pri (2) und P, :Zpi. xp, (3)
i=1

i=1

p;; steht fiir die Pixelzahl, welche in beiden Karten fiir die Klasse i iibereinstimmt.
p; steht fiir den Anteil Pixel der Klasse i in der geschétzten oder simulierten Karte und
p.; steht fiir den Anteil Pixel der Klasse i in der Referenzkarte. Das Produkt p; x p ; ist
die erwartete Zufallsuberelnstlmmung zweier Karten fiir die Klasse i. Der gewichtete
Kappa-Koeffizient (x,,) ist ein von k abgeleitetes Mass und wurde von Cohen (1968)
und Fleiss et al. (1969) entwickelt. Er kann verwendet werden, um eine Gewichtung
der auftretenden Fehler vorzunehmen. Das Gewicht (w;) quantifiziert den Grad der
Ahnlichkeit zweier Klassen, indem Fehler beim Verwechseln von Klassen mit grosser
Ahnlichkeit weniger stark gewichtet werden als Fehler zwischen stark unihnlichen
Klassen.

P . -P

o(w) e(w)
o o L 4
e (4)
e(w)
wobei
IATS Zzwi;pij (5) und P = ZZWUPiP j (6)
i J i J

Die Gew1chtung w;; wird entsprechend der gleichmissig verteilten und absoluten
Differenz zweier Klassen berechnet. w;; quantifiziert den Grad des Fehlers zwischen
zwei Klassen i und j. Bildpunkte, die auf der Diagonalen einer Kontingenztabelle zu
liegen kommen, weisen ein w; i von 1 auf; wobei Bildpunkte mit grossem Unterschied
von i und j eine Gewichtung nahe 0 erhalten. Dieses Mass eignet sich speziell fiir das
Testen von Klassen mit abgestufter Ahnlichkeit, da es eine Gewichtung der Fehler
zulésst (Cicchetti und Allison 1971).

iz
ST

(™)

In unserer Untersuchung verwenden wir das gewichtete Kappa (k,,), da geringe
Abweichungen der modellierten von den beobachteten Deckungswerten weniger

stark gewichtet werden sollen als starke Abweichungen. Das Gewicht ergibt sich aus
der Differenz.
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Tab.1. Kalibrierte GLM-Modelle fiir die fiinf untersuchten Bodenbedeckungstypen. Die
Modellqualitit bezeichnet, wie gut die Kalibration ist. Die Modellgenauigkeiten sind berechnete
Genauigkeitsmasse anhand unabhéngiger Daten 1) innerhalb des Trainingsgebietes (anhand von
Pixeln, welche fiir die Kalibration nicht verwendet wurden), und 2) in einem neuen Testgebiet
(ausserhalb des Trainingsgebietes).

vegetationsfreie ibriges  Baumbedeckung Nadelbaum Laubbaum
Flichen Griinland

Modellqualitét
D2 0.73 0.51 0.73 0.65 0.67
Modell- Training Test Training Test Training Test Training Test Training Test
genauigkeit
Ky 087 088 079 077 085 08 083 085 085 085
CCR, 076 082 037 031 057 059 060 067 080 080
MAE 010 008 016 017 009 010 009 009 005 0.06
Resultate

Fiir alle fiinf Bodenbedeckungstypen lisst sich ein giiltiges Modell kalibrieren mit
den in Tabelle 1 angegebenen Modellqualititen und -genauigkeiten. Mit Ausnahme
des iibrigen Griinlandes (D? = 0.51) liefern die Modelle eine dhnlich hohe Modellqua-
litdt. Die D?>-Werte weichen nicht stark voneinander ab und variieren zwischen 0.65
und 0.73. Die Modellgenauigkeiten sind jeweils getrennt nach Trainingsgebiet (Ost)
und Testgebiet (West) angegeben (Abb. 1) und zeigen ein dhnliches Bild wie die
Modellqualitdten: Die erzielten Genauigkeiten fiir den Bodenbedeckungstyp ,,iibriges
Griinland* sind deutlich schlechter im Vergleich zu den anderen Bodenbedeckungsty-
pen. Ausserdem sind keine signifikanten Unterschiede zwischen Trainingsgebiet und
Testgebiet festzustellen. In Abbildung 2 sind die aus dem Modell berechneten
Deckungsanteile der jeweiligen Bodenbedeckungstypen gegen die beobachteten
Deckungsanteile der Referenzpixel in einem Diagramm dargestellt. Um die einzelnen
Graphiken iibersichtlicher zu gestalten, sind nur 10% der verwendeten Trainingspixel,
welche zufillig ausgewidhlt wurden, dargestellt. Fiir das Modell GLM-Baumbedeckung
wurde ein R? von 0.72 erzielt, die entsprechenden R2-Werte fiir die Nadel- und Laub-
baum Modelle betragen 0.61 bzw. 0.64. Am besten kalibriert wurde das Modell ,,vege-
tationsfrei“ (R? = 0.77), wihrend das Modell ,,iibriges Griinland“ am schlechtesten
abschnitt (R? = 0.54).

Die simulierten Karten der Schweiz fiir die Baumbedeckung, fiir ,,iibriges Griin-
land* und fiir ,,vegetationsfreie Fldchen* sind in den Abbildungen 3a—c dargestellt. Die
Abbildung 4 stellt eine Kombination dieser drei Karten in Form eines RGB-Farbkom-
posits dar. Der Rotkanal entspricht dem Anteil ,,vegetationsfreier Flichen®, der Blau-
kanal entspricht der Baumbedeckung® und der griine Kanal reprisentiert den Anteil
»ubriges Griinland* pro Pixel. Entsprechend dieser Farbzuordnung erscheinen von
Béumen dominierte Flichen blau, vorwiegend vegetationsfreie Fliachen erscheinen rot
und von ,,librigem Griinland“ dominierte Fldchen sind griin eingefdrbt.

In Tabelle 2 sind die berechneten Genauigkeiten der Validierung des GLM-
Modells Baumbedeckung und dem globalen MODIS-VCF Datensatz mit dem unab-
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relativer Anted Obriges Grinland

Abb. 2. Zusammenhang zwischen simulierten und effektiven Anteilen der untersuchten Boden-
bedeckungstypen. Der Grad der Korrelation ist durch den quadrierten Korrelationskoeffizienten
(R?) angegeben. Die 1:1 Linie ist zur erleichterten Analyse der Grafiken eingefiigt.

hingigen, TM-basierten Referenzdatensatz zusammengestellt. Mit dem GLM-Modell
wird die totale von Bidumen bedeckte Fliche um 6.5% unterschiitzt. Gesamthaft wer-
den 50% aller Pixel in der richtigen 20%-Klasse simuliert und der mittlere absolute
Fehler (MAE) betrégt 0.13. Der Wert des gewichteten Kappa’s (k) betréigt 0.83 (Tab.
2). Der Datensatz MODIS-VCEF iiberschitzt die aufsummierte von Bdumen bedeckte
Fliche um +25% und weist einen CCR, Wert von 0.40 auf. Der MAE betrégt 0.23 und
K, erreicht 0.40 (Tab. 2).

Diskussion

Die erzielten Genauigkeiten (Tab. 1) zeigen, dass sich MODO09A1-Daten und
GLM-Modelle gut fiir die Kalibration des relativen Deckungsgrades der untersuchten
Bodenbedeckungstypen eignen. Das beste Modell wurde fiir ,,vegetationsfreie Fli-
chen® erzielt. Dies ist vor allem auf die ausgedehnten hochalpinen Flichen zuriickzu-
fiihren, in welchen die dominierenden Bodenbedeckungen Schnee, Eis und Fels mit
hoher Zuverléssigkeit erkannt werden. Wie Abbildung 4 zeigt, werden aber auch die
urbanen Ballungszentren gut wiedergegeben. Die Deckungsanteile von Biumen wer-
den ebenfalls gut erkannt. Probleme treten vor allem in steilen Hanglagen auf. An
nordlich exponierten Héngen tendiert das Modell zu einer Uberschitzung des Baum-
anteiles, im Gegensatz zu siidlich exponierten Hingen. Beides kann auf den Sonnen-
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Deckungsgrad Baumbadeckung

Deckungsgrad tbriges Griinland

Abb. 3c. MODIS-basierte Anteile der ,,vegetationsfreien Flichen® in der Schweiz.
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Abb. 4. Farbkomposit der Modelle fiir Baumbedeckung, vegetationsfreie Flachen und iibriges
Griinland. Der Rotkanal entspricht der Karte fiir vegetationsfreie Flichen, der Griinkanal
derjenigen fiir das ibrige Griinland und der blaue Kanal wird durch den Baumdeckungsgrad
wiedergegeben.

einfallswinkel zuriickgefiihrt werden, welcher fiir Beschattung (Nordhinge) und Uber-
strahlung (Stidhdnge) verantwortlich ist. Durch Einbezug von topographischen
Zusatzinformationen, welche von einem digitalen Hohenmodell (DHM) abgeleitet
werden, konnten diese Effekte zum Teil korrigiert werden. Die hohen Korrelationsko-
effizienten fiir Nadel- und Laubbaum (0.61 bzw. 0.64) deuten darauf hin, dass Nadel-
bdume und Laubbdume gut voneinander unterschieden werden konnen. Dies ist auch
daraus ersichtlich, dass die Summe der Deckungsanteile von Nadel- und Laubbidumen
fast identisch ist mit den simulierten Baum-Anteilen. Mit einem R’ von 0.54 wird
»ibriges Griinland“ am wenigsten gut simuliert. Dies ist auf den sehr heterogenen
Charakter dieses Bodenbedeckungstyps zuriickzufiihren. Neben landwirtschaftlichen
Fldchen, die ihr Erscheinungsbild im Laufe eines Jahres sehr stark dndern, umfasst die-
ser Bodenbedeckungstyp auch alle Trocken-, Fett- und Magerwiesen sowie urbane
Griinflichen, verbuschte Wiesen und Weiden sowie andere kraut- und grasdominierte
Nichtwaldflichen. Dieser heterogene Charakter erschwert eine eindeutige Klassifika-
tion. Eine feinere Unterscheidung in mehrere Klassen kénnte das Erfassen mittels
GLM-Modellen wesentlich verbessern, verlangt aber entsprechende Kalibrationsda-
ten. Trotz diesen Problemen liefert die resultierende Vertellungskarte einen guten
Uberblick, aus der auch der Griinlandanteil in urbanen Gebieten wie Parkanlagen,
Vorgirten etc. gut ersichtlich wird.
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Tab.2. Validierung des GLM-Modells fiir Baumbedeckung und des globalen MODIS-VCF
Datensatzes mit einem unabhiéngigen, TM-basierten Referenzdatensatz.

GLM-Baumbedeckung MODIS-VCF

Total Flache [km?] 13640 13640
Von Biumen bedeckte Fliche Referenz [km?] 5139 5139
Von Biumen bedeckte Fliche simuliert [km?] 4805 6406
Mittlerer Fehler (Bias) —6.5% +24.7%
Mittlerer Absolutfehler (MAE) 0.13 0.22
CCR, 0.50 0.40
K, 0.82 0.73

Die Validierung der Baumbedeckung des GLM-Models und des MODIS-VCF
Datensatzes zeigt, dass die regional kalibrierte Waldkarte eine deutlich h6here Genau-
igkeit aufweist. Alle berechneten Genauigkeitsmasse sind zum Teil deutlich héher als
diejenigen des MODIS-VCF Datensatzes. In Abbildung 5 ist der mittlere Fehler (Bias)
in Abhéngigkeit des Baumdeckungsgrades dargestellt. Positive Abweichungen deuten
auf eine Uberschitzung, negative Abweichungen auf eine Unterschitzung des simu-
lierten Deckungsgrades hin. Es wird deutlich, dass der Baumdeckungsgrad mit dem
MODIS-VCF Datensatz generell iiberschitzt wird, wobei der Bias bis zu einem relati-
ven Baumdeckungsgrad von 75% positiv (= Uberschitzung des Waldanteiles) ist. Lati-
fovic und Olthof (2004) errechneten in ihrer Validierung von globalen Landbe-
deckungskarten Gesamtgenauigkeiten zwischen 0.27-0.45. Die von uns erzielte
Gesamtgenauigkeit fiir die Baumbedeckung liegt mit 0.5 leicht iliber diesen Werten.
Dies zeigt, dass der GLM-Datensatz mindestens eine vergleichbare Qualitidt aufweist,
obwohl anzumerken bleibt, dass ein Vergleich mit diskreten Landbedeckungskarten
nur bedingt sinnvoll ist, da sich die angewandte Methodik stark unterscheidet.

Schlussfolgerungen

Wie bereits mehrere Untersuchungen zu diesem Thema gezeigt haben (DeFries et
al. 1998; Foody und Cox 1994; Hansen et al. 2002), bieten kontinuierliche bodenbe-
deckungsspezifische Erfassungstechniken eine wertvolle Alternative zu herkdmmli-
chen diskreten Klassifikationen. Kontinuierliche Bodenbedeckungsdaten bieten eine
hohere Informationsdichte bei gleicher rdumlicher Auflosung und eine hohere Flexi-
bilitdt, um Landschaftsverdnderungen im Sub-Pixel Bereich relativ rasch zu erfassen.
Wegen der hohen zeitlichen Auflosung konnen mittels MODIS Daten bereits nach
wenigen Monaten neue Modelle kalibriert werden.

Die simulierten Karten weisen im Allgemeinen eine hohe Korrelation mit den Trai-
ningsdaten auf. Die Modellgenauigkeiten unterscheiden sich dabei nicht signifikant,
wenn man innerhalb des Trainingsgebietes oder ausserhalb des Trainingsgebietes
(Testgebiet) in einem raumlich getrennten Gebiet testet. Dies bedeutet, dass die ange-
wendete Methode robust ist und mit Vorsicht auf das erweiterte Alpengebiet ange-
wendet werden kann. Wir sind allerdings der Meinung, dass eine Verbesserung der
Resultate erzielt werden kann, indem der Bodenbedeckungstyp ,,iibriges Griinland*
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Abb.5. Mittlere Abweichung fiir das Modell fir Baumbedeckung und fiir den globalen
MODIS-VCF Datensatz in Abhéngigkeit des Bedeckungsgrades. Die fiir die Modellkalibration
verwendeten Punkte wurden von der Analyse ausgeschlossen.

feiner differenziert wird (z.B. Magerwiesen, Fettwiesen, verbuschtes Griinland, Moore
etc.). Hierzu ist allerdings der verwendete Trainingsdatensatz ungentigend.

Die hergestellten Daten liefern eine wertvolle Basis fiir das Uberwachen von Land-
schaftsverdnderungen im regionalen Kontext der Schweiz (oder des Alpenraumes).

Die vorgestellte Methode basiert auf einer hohen zeitlichen Auflésung, der fiir die
Kalibration verwendeten Daten, wobei Komposit-Bilder (7 Kanéle) im 8-Tagesrhyth-
mus verwendet wurden. Fiir die verwendete rdumliche Auflosung von 500 m sind keine
zusétzlichen spektralen Informationen erhiltlich. Erst in einer Auflésung von 1 km
sind weitere 29 Kanéle erhiltlich. Es ist denkbar und bleibt zu untersuchen, ob die
Modellqualitit mit dieser zusétzlichen Information verbessert werden konnte.

Wie der Vergleich mit dem globalen MODIS-VCF Datensatz zeigt, sind unsere
Resultate fiir die Baumbedeckung deutlich besser. Dies bedeutet einerseits, dass sich
die statistische Regression mittels GLM gut fiir die Kalibration der kontinuierlichen
Deckungsanteile eignet. Andererseits wird deutlich, dass sich durch die regionale
Anpassung des Modells auf den alpinen Raum deutlich bessere Resultate erzielen las-
sen.
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Anhang

Modellparameter der Kkalibrierten GLM-Modelle fiir die funf untersuchten Boden-
bedeckungstypen. Es sind nur diejenigen Variablen (Ave, Min, Max, Std, Range) der 8 Kanile
(B1-B7 & NDVI) aufgelistet, welche in mindestens einem der 5 Modelle verwendet wurden.

Modellparameter  vegetationsfrei iibriges ~ Baumbedeckung Nadelwald Laubwald
Griinland
Konstante 3.3657E+00 -8.1180E+00 —4.7137E+00  -2.0094E+01 3.3657E+00
B1_Ave -1.3140E-02  -5.6440E-03 6.7266E-03 1.1934E-02  -1.3140E-02
B1_Ave® 9.1010E-07 1.7083E-06  -1.0480E-07  -3.6790E-07 9.1010E-07
Bl Max —1.7668E-05 1.7049E-03  -9.3163E-04 1.0809E-03  -1.7668E-05
B1_Max? 6.8100E-08  -1.0200E-07 -8.1600E-08  -2.9400E-07 6.8100E-08
B2_Ave 2.1401E-03 1.2330E-03 9.2604E-04  -3.7361E-03 2.1401E-03
B2_Ave? —4.9290E-07 1.3760E-07  -3.8180E-07 1.9230E-07 —4.9290E-07
B2 Max 2.5961E-04  -2.3470E-04 -8.1039E-04 -1.6657E-03 2.5961E-04
B2_Max? —2.4600E-08 4.5000E-09 1.1020E-07 2.0780E-07  -2.4600E-08
B3_Ave -7.3225E-04  -6.1746E-03 9.5563E-03  -2.5448E-03 -7.3225E-04
B3_Ave? -1.2520E-07 0.7630E-07  -7.8140E-07 1.5160E-06  -1.2520E-07
B3 Max -7.6610E-04 3.1493E-04 -5.2604E-04 1.2408E-03  -7.6610E-04
B3_Max? 4.6300E-08  -9.6000E-09 -3.9000E-08  -1.5600E-07 4.6300E-08
B4_Ave 1.2674E-02 1.3597E-02 -1.7217E-02  -6.2623E-03 1.2674E-02
B4_Ave? —4.8830E-07  -2.8600E-06 7.5160E-07 -1.3920E-06  —4.8830E-07
B4_Max 6.2888E-04 -2.3156E-03 1.7683E-03  -1.4606E-03 6.2888E-04
B4_Max’ —9.2300E-08 1.2620E-07 6.4400E-08 2.8830E-07 -9.2300E-08
B5_Ave —2.5526E-03  -5.8851E-04 -3.2206E-03 5.9755E-03  -2.5526E-03
B5_Ave? 5.5840E-07  -2.8800E-07 8.5370E-07 -2.6470E-07 5.5840E-07
B5_Max 1.3857E-04 8.9356E-05 5.2841E-04 1.7571E-04 1.3857E-04
B5_Max’ —9.6000E-09 1.2000E-09 -8.2200E-08 -7.1500E-08 -9.6000E-09
B6_Ave —2.3383E-03 4.5172E-04 7.9006E-03 -5.6156E-03 -2.3383E-03
B6_Ave® 1.2300E-08 4.5580E-07 -2.2218E-06  -3.8500E-07 1.2300E-08
B6_Max —1.9096E-04 8.4801E-04 -8.3373E-04 43129E-04 -1.9096E-04
B6_Max? 3.8700E-08  -1.0760E-07 1.5530E-07 9.5100E-08 3.8700E-08
B7_Ave 5.3474E-03  -5.2655E-03 1.5579E-04 4.1703E-03 5.3474E-03
B7_Ave? -1.1813E-06 9.6700E-07 5.1810E-07 -7.1270E-07 -1.1813E-06
B7_Max 1.6663E-04  -2.9434E-04 -2.7071E-04 -1.1758E-03 1.6663E-04
B7_Max? -3.2700E-08 6.2900E-08  -9.5000E-09 1.2520E-07  -3.2700E-08
NDVI_Ave -1.0079E-03 3.1816E-02 4.3961E-04 3.0328E-02  -1.0079E-03
NDVI_Ave? -1.2172E-05  -3.0227E-05 1.3725E-05  -8.7430E-06 -1.2172E-05
NDVI_Max 6.9574E-04 5.2203E-03  —7.4685E-03 2.2886E-02 6.9574E-04
NDVI_Max’ —6.6830E-07 3.0974E-06 1.7791E-06  -1.3347E-05 -6.6830E-07
NDVI_Min 2.2348E-03  -1.6486E-02 1.5297E-03  -1.3349E-02 2.2348E-03
NDVI_Min’ -1.7370E-07 9.2778E-06  -2.6810E-07 9.5774E-06  -1.7370E-07
NDVI_Range 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
NDVI_Range® 2.3926E-06  -5.8826E-06 -2.9758E-06  -1.0380E-05 2.3926E-06
NDVI_Std —5.9608E-03  —1.9667E-02 1.4188E-02 8.4535E-03  -5.9608E-03
NDVI_Std? —1.0149E-05 2.8990E-05 1.0966E-05 73816E-06  -1.0149E-05
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