Zeitschrift: Botanica Helvetica

Herausgeber: Schweizerische Botanische Gesellschaft

Band: 100 (1990)

Heft: 1

Artikel: Palynostratigraphische Untersuchungen zur spät- und postglazialen

Vegetationsgeschichte der nordwestlichen Kalkvoralpen

Autor: Wegmüller, Samuel / Lotter, André F.

DOI: https://doi.org/10.5169/seals-69711

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Palynostratigraphische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte der nordwestlichen Kalkvoralpen

Samuel Wegmüller und André F. Lotter

Systematisch-Geobotanisches Institut der Universität Bern, Altenbergrain 21, CH-3013 Bern, Schweiz

Manuskript angenommen am 23. Januar 1990

Abstract

Wegmüller S. and Lotter A. F. 1990. Palynostratigraphic investigations of the late-glacial and holocene vegetation history of the northwestern calcareous Swiss Prealps. Bot. Helv. 100: 37–73.

Two mires in the montane and subalpine belt of the Bernese Oberland (Switzerland) were studied: Aegelsee at 995 m a.s.l., and Schwarzmoos at 1770 m a.s.l.

The present vegetation of both mires was mapped (Figs. 4, and 10) and the lithostratigraphy was investigated by means of several corings (Figs. 5, 6, 11, and 12): minerogenic limnic deposition began already before Bölling. The onset of organic sedimentation at Aegelsee started during Boreal (ca 9000 B.P.) whereas at Schwarzmoos it took place at the transition from Atlantic to Subboreal (5000 B.P.).

The main features of the vegetation history at both elevations are summarized in Tab. 3. Reforestation at Aegelsee occurred at about 12,700 B.P. by *Juniperus-Hippophaë* stands which were replaced by tree birch around 12,500 B.P. A regressive phase in vegetation development occurring before 12,000 B.P. has been evidenced. The expansion of *Pinus* started at 12,000 B.P. and the occurrence of the Laacher See Tephra-layer allowed a precise location of the transition from the Alleröd to the Younger Dryas chronozone (11,000 B.P.). During the Younger Dryas the timberline was situated above Aegelsee.

Schwarzmoos and its surroundings were above timberline during the whole Late-Glacial: a sparse pioneer vegetation with a *Juniperus* and *Salix* scrub grew on open soils.

At Aegelsee the species of the Quercetum mixtum as well as *Corylus* spread during Boreal. The migration and spread of *Abies* occurred between 6600 and 6300 B.P. whereas *Picea* spread at 5000 B.P.

At Schwarzmoos an increase in birch is observed during Preboreal. At the onset of the Boreal, species-rich alpine meadows expanded and were eventually displaced by the expanding spruce-forest at the end of the Younger Atlantic. The migration of *Pinus cembra* together with *Larix* is evidenced at about 8500 B.P.

The migration of *Picea* into the subalpine belt took place at 5500 B.P. (first traces at 6500 B.P.). Its spread at 5000 B.P. is evidenced by the abundance of its macrofossils. As a consequence the timberline rose above Schwarzmoos, and until the Younger Subat-

lantic (1000 B.P.) the vegetation of the subalpine region was characterized by *Picea* forests and on exposed places by *Pinus mugo* stands.

At Aegelsee first traces of anthropogenic indicators in the pollen diagrams were detected between 5400 and 5000 B.P. after the spread of *Picea*. Forest clearing occurred also during the late Bronze Age and especially during the Middle Ages. In the subalpine belt the important clearings for pastures took place during the Younger Subatlantic.

Key words: Late-Glacial and Holocene vegetation, chronostratigraphy, human impact, timberline fluctuations, Swiss Alps

1. Einleitung

Die vorliegende Studie aus dem Niedersimmental schließt an die vegetationsgeschichtlichen Arbeiten von Welten (1952, 1982), Küttel (1974, 1979) und Lotter (1985) wie auch an neuere ökologische Untersuchungen (Müller und Wegmüller 1982, Wegmüller, J. und Wegmüller, S. 1985, Lienhard 1987) an. Ziel der vorliegenden Arbeit war, anhand stratigraphischer und pollenanalytischer Untersuchungen je eines Moores aus der montanen und subalpinen Stufe des Turnen/Pfaffen-Massivs die spät- und postglaziale Vegetationsgeschichte dieses Talabschnittes möglichst umfassend nachzuweisen und palynostratigraphisch zu gliedern. Unser besonderes Interesse galt dabei der Moorgenese, den Problemen der paläoklimatischen Schwankungen und der Waldgrenzverschiebung sowie Fragen der menschlichen Einflußnahme. Ferner sollte mit der vorliegenden Untersuchung ein Beitrag zur Schließung der Lücke in der vegetationsgeschichtlichen Forschung im montanen und subalpinen Bereich (Lang 1985a, 1985b: IGCP-Projekt 158b) geleistet werden.

2. Das Untersuchungsgebiet

2.1 Geologie und Geographie

Unser Untersuchungsgebiet (Abb. 1) liegt auf der rechten Talseite des Niedersimmentals (Berner Oberland). Die nördliche Begrenzung bildet der zwischen Weissenburg (742 m) und Erlenbach (681 m) gelegene Talgrund, die südliche folgt einer Linie, die von der Alp Tärfeten (1846,6 m) über das Turnen/Pfaffen-Massiv (2079,2 m) zur Alp Tschuggen (1407 m) führt. Im untern Teil der Talflanke bilden mesozoische Flysche, Mergel und Radiolarite der Simmendecke den geologischen Untergrund. Dagegen bestehen die hochaufragenden Felsen des Turnen/Pfaffen-Massivs aus Malmkalken der Klippendecke.

Eine Eigentümlichkeit dieses Massivs stellen die drei "Körbe" dar, sehr große, tief eingesenkte karstartige Einschnitte. Weitere Versackungen, in denen sich Moore gebildet haben, sind im Gebiet nicht selten. Ausführliche Darstellungen zur Geologie des Gebietes finden sich in den Arbeiten von Genge (1955), Rabowski (1912, 1920), Tschachtli (1941) und Nicol (1956).

2.2 Klima

Bedingt durch das unterschiedliche Relief ist das lokale Klima im Untersuchungsgebiet stark von der jeweiligen Meereshöhe und Exposition abhängig. So erreichen die mittleren Jahresniederschläge im kollinen und montanen Bereich 1300–1400 mm und im

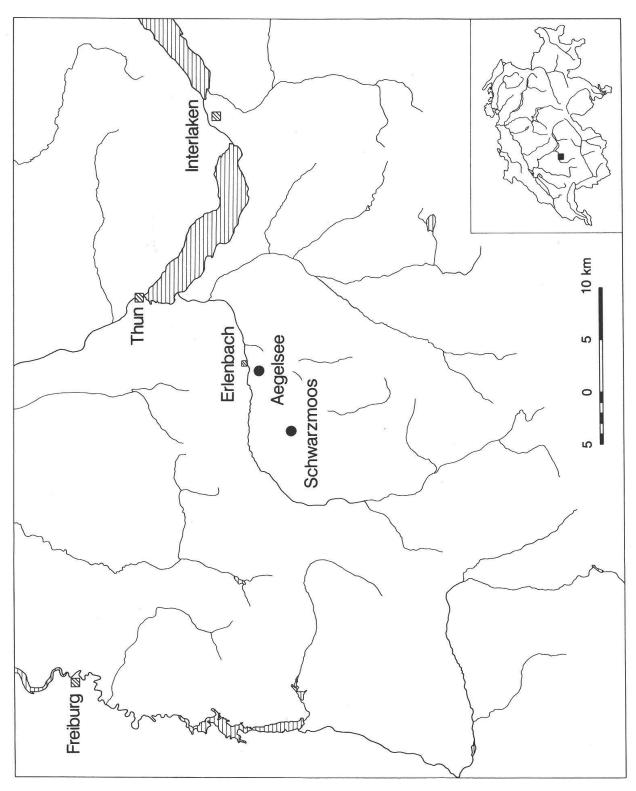


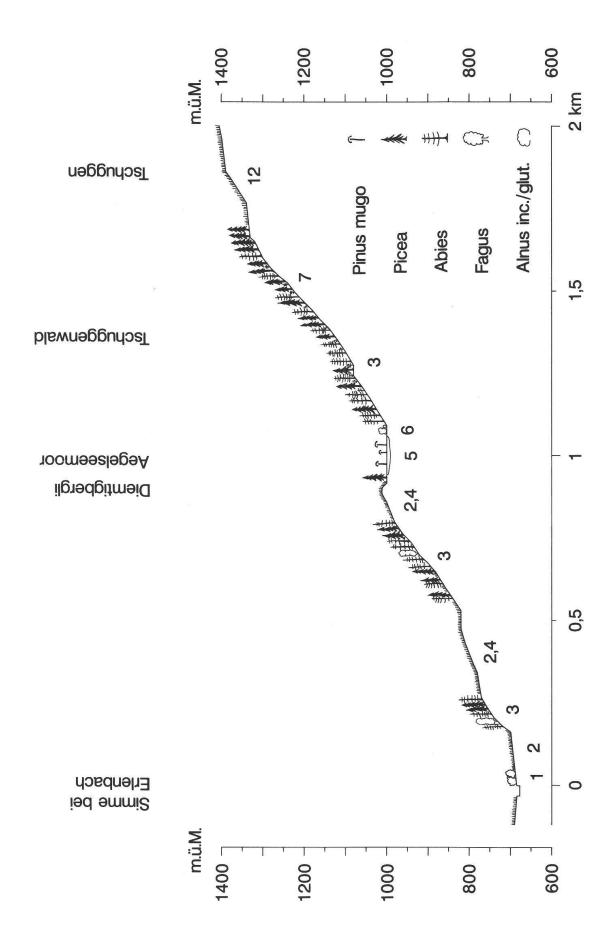
Abb. 1. Lage des Untersuchungsgebietes.

subalpinen Bereich zwischen 1400-1600 mm. Die Niederschläge fallen besonders in den Monaten Mai bis August. Die Jahresmitteltemperatur beträgt in der kollinen Stufe zwischen $7-9\,^{\circ}$ C, in der montanen Stufe $5-7\,^{\circ}$ C und in der subalpinen Stufe $0-5\,^{\circ}$ C. Die Januarmittelwerte für die Temperatur bewegen sich zwischen $-2\,^{\circ}$ C und $-5\,^{\circ}$ C in den tieferen Lagen und zwischen $-5\,^{\circ}$ C bis $-10\,^{\circ}$ C in den höheren Lagen des Untersuchungsgebietes. Die Julimittelwerte steigen in der kollinen Stufe auf $15-18\,^{\circ}$ C, in der montanen Stufe auf $10-15\,^{\circ}$ C und in der subalpinen Stufe auf $5-10\,^{\circ}$ C (Imhof 1965, Walter und Lieth 1964).

2.3 Aktuelle Vegetation und Höhenstufen

Die beiden Talflanken des W-E gerichteten Niedersimmentals weisen in der montanen Stufe zwei unterschiedlich strukturierte Waldtypen auf (Abb. 2 und 3). Dominieren auf der südexponierten Talseite warm-trockene Fichtenwälder, herrschen auf der humiden nordexponierten Seite optimal entwickelte Weißtannenwälder vor. Ein weiterer für das Vegetationsbild charakteristischer Grundzug liegt darin, daß die Buche talaufwärts nicht mehr bestandbildend auftritt, obwohl dies von der Höhenlage her durchaus möglich wäre. Wahrscheinlich stellen Spätfröste im Frühjahr wie auch längere sommerliche Trockenperioden, bedingt durch die abschirmende Wirkung der Stockhornkette, für die Buche begrenzende Faktoren dar. In der subalpinen Stufe verwischen sich infolge der höhern Niederschläge und der tiefern Temperaturen die durch die unterschiedliche Exposition bedingten Gegensätze.

In unserem Untersuchungsgebiet zeichnet sich folgende Höhenstufung ab (Abb. 2 und 3): Vom Talgrund weg erstrecken sich, soweit nicht durch Wiesen (Arrhenatherion, Trisetion) und Weiden (Festuco-Cynosurion) unterbrochen, ausgedehnte Weißtannenwälder mit wenig Buchen (Abieti-Fagetum) bis in 1000–1200 m Höhe, wo sie in luftfeuchten Lagen in hochstaudenreiche Weißtannenwälder mit Fichten (Adenostylo-Abietetum) übergehen. In 1400–1500 m Höhe werden diese durch subalpine Fichtenwälder (Vaccinio-Piceion) abgelöst. Auf humusarmen Kalkrippen stocken Bestände der aufrechten Bergföhre (Erico-Pinion). Die Waldgrenze liegt, soweit nicht durch Weiderodung heruntergestzt, im Gebiet des Turnen/Pfaffen-Massivs in rund 1850 m, die durch Fichten oder Bergföhren gebildete Baumgrenze in rund 2000 m Höhe. Arve (*Pinus cembra*) und Lärche (*Larix decidua*) sind im Gebiet selten.


Blaugrashalden (Seslerio-semperviretum), Rostseggenhalden (Caricetum ferrugineae), Milchkrautweiden (Crepido-Festucetum) und häufig auch degradierte Weiden (Sieversio-Nardetum) bilden je nach geologischer Unterlage, dem Grad der Bodenentwicklung, nach Exposition, Lokalklima und Bewirtschaftung die Vegetationsdecke zwischen Waldgrenze und Gipfel des Turnen/Pfaffen-Massivs.

2.4 Lage der untersuchten Objekte

2.4.1 Aegelsee

Das Aegelsee-Moor (mittlere Koord. 608 200/166 400, LK 1:25 000 Blatt 1227) liegt nahe der Vereinigungsstelle von Simmen- und Diemtigtal auf der Terrasse des Diemtigbergli, in einer Höhe von etwa 995 m ü. M. (Abb. 1). Das Restmoor sowie der in den 50er

<sup>Abb. 2. Vegetationsprofil: Simme bei Erlenbach i.S. – Tschuggenalp, mit Aegelseemoor. Legende:
1 Alnetum incanae;
2 Arrhenatherion elatioris;
3 Abieti-Fagetum;
4 Polygono-Trisetion;
5 Pino mugo-Sphagnetum;
6 Alnion glutinosae;
7 Adenostylo-Abietetum;
12 montane Weiden.</sup>

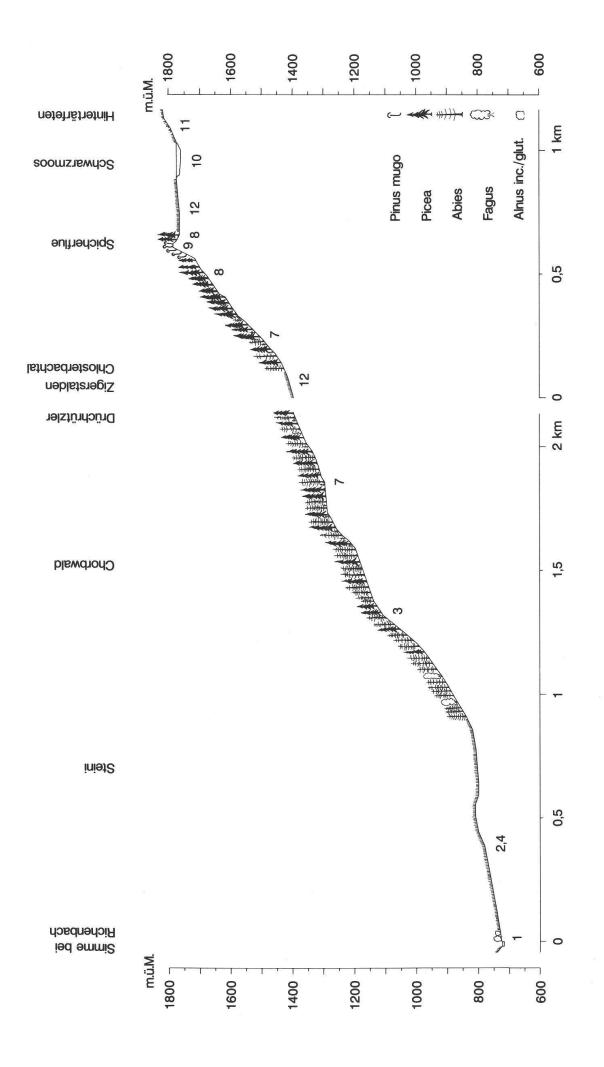
Jahren durch Ausbaggerung vergrößerte Aegelsee bilden zusammen ein 10,16 ha umfassendes Naturschutzgebiet, welches 1977 geschaffen wurde (Schmalz 1978). Das Restmoor erstreckt sich auf einer Länge von etwa 800 m in einer 100 bis 150 m breiten, von West nach Ost verlaufenden, flachen Längsmulde, die nordwärts durch einen Riegel mit würmzeitlicher Moränenbedeckung und südwärts durch den steil ansteigenden Hang des Tschuggenwaldes begrenzt ist (Abb. 2).

Geologisch betrachtet liegt das Untersuchungsgebiet im Bereich von Kalken und Schiefern der Simmendecke. Charakteristisch für das Gebiet des Diemtigberglis ist das Auftreten von zahlreichen triasischen Gipstrichtern. Die ganze Terrasse des Diemtigberglis, wie auch die vermoorte Mulde erhalten keine natürlichen oberflächlichen Zuflüsse, jedoch finden sich in den Streuwiesen im östlichen Teil des Naturschutzgebietes einige kleinere Grundwasseraustritte.

Die natürliche Vegetation im Untersuchungsgebiet bestünde aus Buchen-Tannen Mischwäldern (Abieti-Fagetum). Durch die menschliche Einflußnahme auf die Vegetation ist das Gebiet jedoch vielfach waldfrei und wird hauptsächlich mit Mähwiesen und als Weideland für die Viehzucht landwirtschaftlich genutzt (Abb. 2).

2.4.2 Schwarzmoos

Das Schwarzmoos (Koord. 603150/163750, LK 1:25000 Blatt 1227) liegt WSW des Turnen-Massivs (2072,2 m) in einer großen, kesselartigen Versackung der Alp Hintertärfeten (Abb. 1). Das von mehreren Quellaustritten des östlichen Steilhanges gespiesene Flachmoor entwässert sich westwärts über einen Riegel zum Tal des Chlosterbaches.


Nach Genge (1955) stieß ein kleiner Gletscher des Massivs während der letzten Eiszeit über die Mulde des Schwarzmooses in das Chlosterbach-Tal vor. Moränenwälle, die einer ausgedehnten Oszillation dieses Gletschers zu Beginn des Bühl 1 entsprechen sollen, finden sich am Zigerstalden. Ein letzter Eislappen soll im Bühl 3 noch in der Mulde des Schwarzmooses gelegen haben. Über die Lage des Moores innerhalb der Vegetationsstufen orientiert Abb. 3. Es liegt knapp unterhalb der heutigen potentiellen Waldgrenze. In der weiteren Umgebung des Moores sind die Wälder durch Weiderodungen weitgehend zerstört worden. Größere Bestände der aufrechten Bergföhre (*Pinus mugo*) finden sich an der NW des Schwarzmooses gelegenen Spicherflue (1801 m). Im NE steigt ein kleiner, sehr lichter Fichtenbestand am Osthang des Turnen bis in 2000 m Höhe auf, und im SW erstrecken sich auf der N-Seite des Tärfeten-Kammes ausgedehnte Grünerlen-Bestände (Alnetum viridis).

3. Material und Methoden

Die beiden Untersuchungsobjekte wurden im Verlauf des Spätsommers 1986 vermessen und nivelliert. Eine Reihe von Stratigraphiebohrungen mit einem Hillerbohrer und einem russischen Torfstecher wurden daraufhin entlang von eingemessenen Längs- und Quertransekten durchgeführt. Zwischen 1988 und 1989 wurden beide Objekte vegetationskundlich kartiert.

An ausgewählten Stellen wurden Sedimentbohrungen mit einem nach Merkt und Streif (1970) modifizierten Livingstone-Kolbenbohrer niedergebracht. Die Sedimentproben dieser Bohrungen

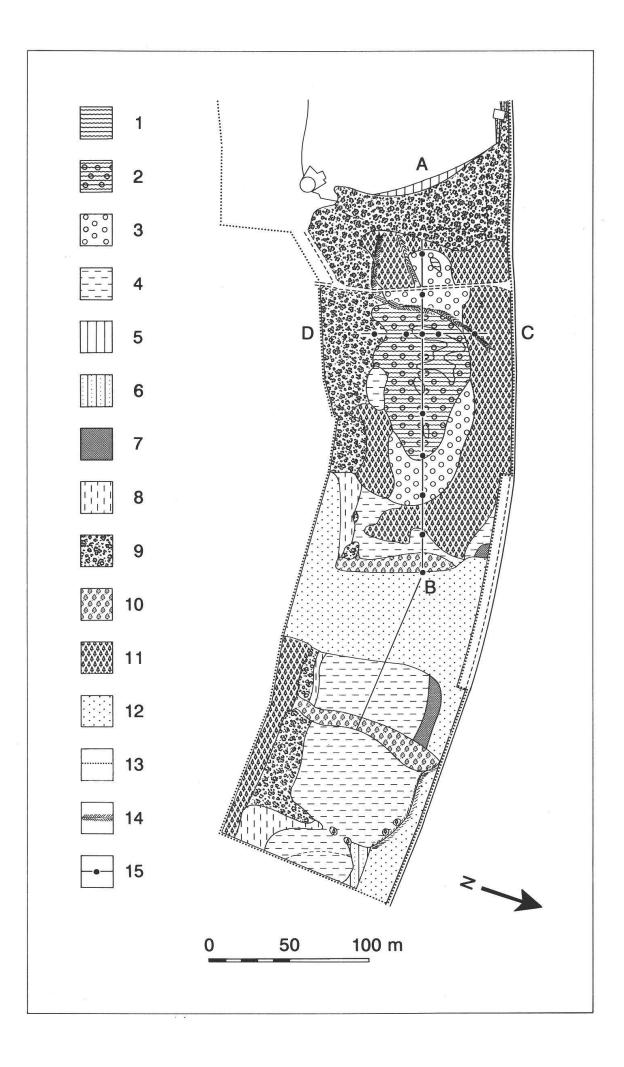
Abb. 3. Vegetationsprofile: Simme bei Richenbach – Drüchrützler und Zigerstalden-Hintertärfeten mit Schwarzmoos. Legende: 1 Alnetum incanae; 2 Arrhenatherion elatioris; 3 Abieti-Fagetum; 4 Polygono-Trisetion; 7 Adenostylo-Abietetum; 8 Vaccinio-Piceion; 9 Erico-Pinion; 10 Caricetum davallianae; 11 Caricetum ferrugineae; 12 montane und subalpine Weiden.

wurden nach der in Lotter (1985) beschriebenen Methode für die Pollenanalyse aufbereitet. Es wurde darauf geachtet, pro Präparat wenn möglich mindestens 500 Baumpollen (BP) auszuzählen. Als Pollensumme (100%) wurde im allgemeinen die Summe BP+NBP genommen; Pollen von Wasserpflanzen und Sporen wurden generell aus der Summe ausgeschlossen. Der Ausschluß lokaler ferntransportierter Pollen aus der Bezugssumme wird bei der Diskussion der einzelnen Diagramme speziell im Text erwähnt (cf. 4.1.4 und 4.2.4). Die aus der Pollenanalyse resultierenden Resultate wurden mit dem Computerprogramm Polprof von Tranquillini (1988) graphisch dargestellt und mittels des Zonation Programms (Birks und Gordon 1985) in lokale "pollen assemblage zones" (PAZ, Biozonen im Sinne des Stratigraphischen Codes, Hedberg 1972) eingeteilt. Es wurde dann versucht, diese PAZ den für das Schweizer Gebiet angepaßten Firbas-Pollenzonen (Firbas 1949, 1954, Welten 1982) zuzuordnen. Die Einteilung in Chronozonen (Mangerud et al. 1974, Ammann und Lotter 1989, Lotter und Zbinden 1989) wurden aufgrund der zur Verfügung stehenden ¹⁴C-Daten sowie mittels Vergleichen mit andern datierten Profilen (Heeb und Welten 1972, Welten 1982, Lotter 1988, Ammann und Lotter 1989) vorgenommen. Alle in diesem Beitrag verwendeten Altersangaben beziehen sich auf konventionelle ¹⁴C-Jahre B.P. (=vor 1950, Stuiver und Polach 1977). Für die Makrorestanalyse wurden 250 cm³ des Sediments mit verdünnter KOH (ca. 5%) wäh-

Für die Makrorestanalyse wurden $250~\text{cm}^3$ des Sediments mit verdünnter KOH (ca. 5%) während 24 h vorbehandelt, dann durch ein Sieb (315 µm) gespült und schließlich unter einer Binokularlupe nach Pflanzenresten durchmustert.

4. Ergebnisse

4.1 Aegelsee

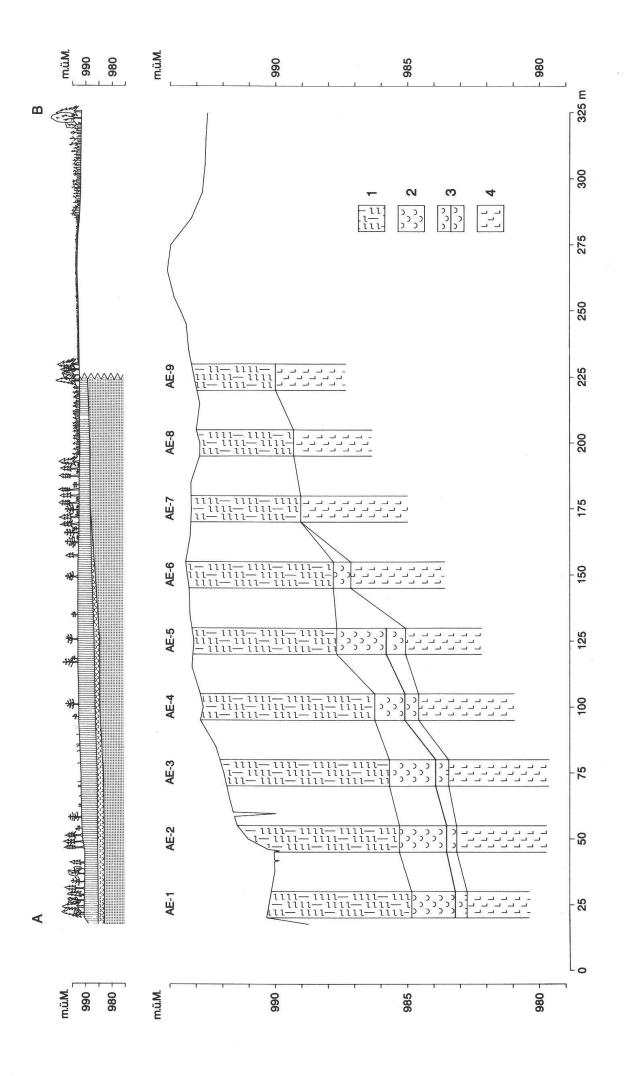

4.1.1 Vegetationskarte

Mit dem massiven Eingriff durch den Bau des Ausgleichsbeckens und durch die Anlage von zahlreichen Gräben im Restmoor (vgl. Abb. 4) wurde die Hydrologie des gesamten Torfkörpers nachhaltig gestört und der Wasserspiegel des Moores erheblich abgesenkt (Schmalz 1978). Diese Austrocknung wirkte sich seither stark auf die Hochmoorvegetation des Gebietes aus. Die pflanzensoziologische Kartierung des Naturschutzgebietes Aegelseemoor lieferte 12 verschiedene Vegetationseinheiten (siehe Lotter und Fischer 1990), welche in Abb. 4 dargestellt sind. Von botanischem Interesse sind vor allem die leider nur noch kleinflächig erhaltenen Hochmoor-Gesellschaften (Sphagnetum magellanici) und das Bergföhren-Hochmoor (Pino mugo-Sphagnetum) im zentralen Bereich sowie die Kleinseggenrieder (Caricetum davallianae) im Flachmoorbereich am östlichen Ende des Naturschutzgebietes.

4.1.2 Stratigraphie des Aegelseemoores

Die Stratigraphiebohrungen entlang dem Längs- (A-B in Abb. 4 und 5) und Quertransekt (C-D in Abb. 4 und 6) zeigten deutlich das Ausmaß des ehemaligen Aegelsees. Leider konnte der Transekt nicht wie geplant bis in das Flachmoorgebiet im östlichen

Abb. 4. Vegetationskarte des Naturschutzgebietes Aegelseemoor. Legende: 1 Hochmoor-Gesellschaft (Sphagnetum magellanici); 2 Bergföhren-Hochmoor (Pino mugo-Sphagnetum); 3 Torfmoos-Bergföhren-Birkenwald; 4 Kleinseggenrieder (Caricetum davallianae); 5 Großseggenried (Caricetum elatae); 6 Großseggenried mit Hochstauden (Magnocaricion); 7 Betonica-Pfeifengras-Gesellschaft (Molinion); 8 Hochstaudenried (Filipendulion); 9 Weiden-Birken-Erlen-Gebüsch (Alnion glutinosae); 10 Hecken (Prunion spinosae, Berberidion vulgaris); 11 Fichtenwald (Piceetum subalpinum); 12 Fettwiese; 13 Grenze des Naturschutzgebietes; 14 Entwässerungsgräben; 15 Transekte mit Bohrpunkten.


Bereich verlängert werden, da aufgeschüttetes Aushubmaterial aus dem Ausgleichbecken weitere Bohrungen verunmöglicht. Trotzdem ergibt sich ein gutes Bild bezüglich der Genese des heutigen Restmoores: Nach dem Rückzug des Simmengletschers, am Ende der letzten Eiszeit, sammelte sich in der Mulde zwischen dem Hang des Tschuggenwaldes im Süden und den glazialen Ablagerungen im Norden das Schmelzwasser. Durch die Sedimentation von feinen mineralischen Partikeln wurde die Mulde mit einer mehrere Meter mächtigen glazialen Tonschicht ausgekleidet und wasserundurchlässig abgedichtet; die Basis dieser Tonschicht wurde mit keiner unserer Bohrungen erreicht. Auf diese Tonschicht folgen karbonatreiche, limnische Sedimente (Seekreide, Kalkgyttja), welche auf bessere Vegetationsbedeckung und damit verbunden weniger Bodenerosion im Einzugsgebiet des Sees hindeuten. Diese Seekreideablagerungen von unterschiedlicher Mächtigkeit enthalten die Laacher See Tephra (LST), eine vulkanische Ascheschicht aus einer der letzten Eruptionen des Laacher Vulkans in der Eifel (BRD). Diese Tephraschicht stellt einen ausgezeichneten Leithorizont dar. Ihre Ablagerung wurde verschiedentlich auf rund 11 000 B.P. datiert (Wegmüller und Welten 1973, Van den Bogaard und Schminke 1985). Über der Seekreide folgt ein Verlandungssediment mit zunehmendem organischem Gehalt: Meistens folgt auf eine Feindetritusgyttja ein grobdetritusreicher, stark zersetzter Niedermoortorf und später ein Cyperaceen-Moostorf, der mehrfach mit Holz- und Reiserlagen durchsetzt ist. Im obersten Bereich mancher zentraler Profile (AE-3 bis AE-5) findet sich dann ein Übergang zu einem schwach zersetzten Sphagnum-Torf.

Durch eine pollenanalytische Datierung der Sedimentübergänge kann der zeitliche Verlauf der Verlandung des Sees zurückverfolgt werden: Sie ging von Ost nach West vor sich, wobei der Übergang von limnischen zu telmatischen/terrestrischen Ablagerungen bei den Profilen AE-6 bis AE-9 ins Präboreal zu liegen kommt. Die Profile AE-5 und AE-4 verlandeten im Verlauf des Boreals und AE-3 bis AE-1 zu Beginn des Atlantikums. Diese sukzessive Verkleinerung der Wasserfläche deutet auf eine natürliche Verlandung hin; abrupte Wasserspiegeländerungen im frühen Holozän, wie sie oft aufgrund von sedimentologischen Befunden in Seen des Mittellandes postuliert werden, konnten hier nicht nachgewiesen werden.

4.1.3 Stratigraphie der pollenanalytisch untersuchten Profile

Profil AE-1

```
649 -668 cm Kalkgyttia
668 -700,5 cm kalkige Tongyttja
700,5-702,2 cm Seekreide/Kalkgyttja
702,2-702,4 cm LST
702,4-706 cm Seekreide/Kalkgyttja
706 - 707
           cm Feindetritusgyttja
707 – 727 cm Seekreide/Kalkgyttja
727 - 729,5 \text{ cm}
               kalkige Tongyttja
729,5-741
           cm
               Seekreide/Kalkgyttja
741 - 747,5 \text{ cm}
               tonige Kalkgyttja
747,5-751 cm
               Tongyttja
751 –
           cm Ton
```


Profil AE-3

```
0 - 390
           cm Moostorf mit Cyperaceae und Sphagnum
390 - 445
           cm Cyperaceae-Moostorf mit viel Holz
445 - 575
           cm Cyperaceae-Moostorf mit Phragmites
575 - 591
           cm Cyperaceae-Moostorf mit Holz
591 - 629
           cm Cyperaceae-Moostorf
629 - 650
           cm Grobdetritusgyttja gemischt mit Cyperaceae-Torf
650 - 659
           cm Feindetritusgyttja
659 - 725
           cm kalkige Feindetritusgyttia
725 - 763
           cm Kalkgyttja
763 - 785
           cm kalkige Tongyttja
785 -801,3 cm Seekreide/Kalkgyttja
801,3-801,5 cm LST
801,5-807 cm Seekreide/Kalkgyttja
807 - 808
           cm Feindetritusgyttja
808 - 833
           cm Seekreide/Kalkgyttja
833 -836,6 cm kalkige Tongyttja
836,5-852,5 cm Kalkgyttja
852,5-858 cm Tongyttja
858 -
           cm Ton z. T. sandig
```

4.1.4 Lokale Pollen Assemblage Zones (PAZ)

In Profil AE-1, welches kontinuierlich zentimeterweise analysiert wurde, sind nur die Sporen sowie die Pollen von Wasserpflanzen aus der Bezugssumme ausgeschlossen worden. Im Hauptdiagramm wurden unter den NBP die Poaceae (enge Schraffur) und die Cyperaceae (weite Schraffur) aufsummiert. In Profil AE-3 hingegen wurden zusätzlich die Cyperaceae sowie *Filipendula* aus der Bezugssumme ausgeschlossen. Im Hauptdiagramm sind nur die Poaceae unter den NBP aufsummiert.

Die Zonation mittels numerischen Methoden (Birks und Gordon 1985) ergab für die Pollendiagramme vom Aegelsee 12 lokale PAZ, die sich zumeist noch in Unterzonen aufgliedern. Die Zonen wurden nach der dominanten Baumpollenart benannt und von unten nach oben durchnumeriert. Die Abkürzung A steht für die untersuchte Lokalität Aegelsee. Die spätglazialen und frühholozänen PAZ beider Profile lassen sich ohne weiteres korrelieren.

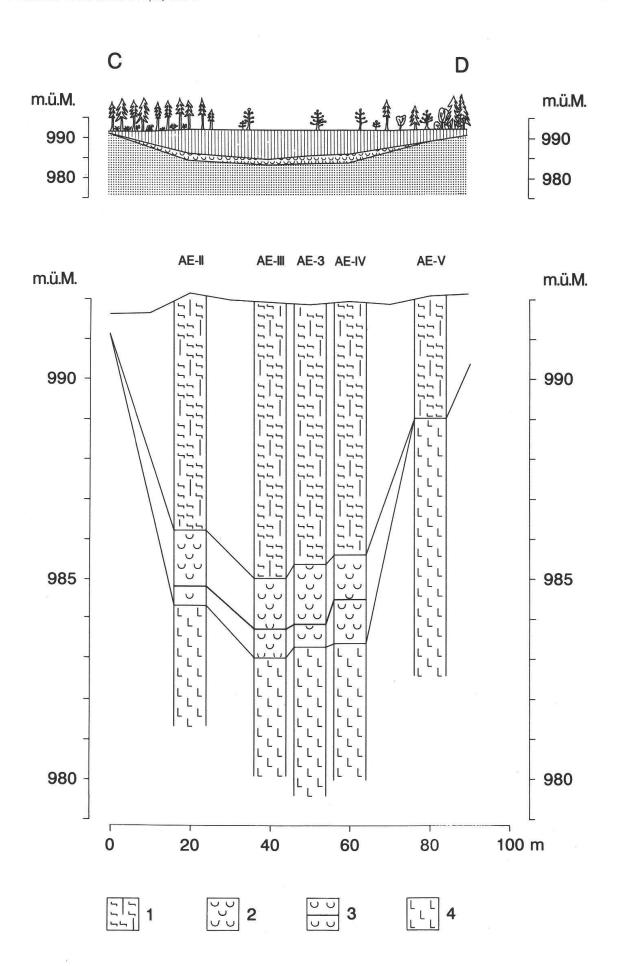
A-1 Juniperus-Poaceae-Zone

AE-1: bis 746,5 cm

Juniperus ansteigend, Poaceae, Cyperaceae, Artemisia

Obere Grenze: Juniperus > 50%

Alter: >12700 B. P.


A-2 Juniperus-Poaceae-Hippophaë-Zone

AE-1: 746,5-739,5 cm; AE-3: bis 851,75 cm

Erster Betula Gipfel (zw. 10-15%), Juniperus Maximum (70-75%), Hippophaë Gipfel (5-7%)

Obere Grenze: Juniperus < 50%, Betula > 20%

Alter: 12700-12500 B.P.

A-3 Betula-Juniperus-Zone

A-3a Salix-Subzone

AE-1: 739,5-730,5 cm; AE-3: 851,75-835,75 cm

Betula Maximum (55–60%), Juniperus fällt (40–50%), langgezogener Salix Gipfel (4–5%), gleichzeitige Zunahme von Artemisia (4–7%) und Thalictrum (bis 2%). Hippophaë <1-2%

Obere Grenze: Anstieg der NBP (v.a. Poaceae), Abfall von Betula

Alter: 12500-12200 B.P.

A-3b NBP-Pinus-Subzone

AE-1: 730,5-726,5 cm; AE-3: 835,75-826,25 cm

langsamer Anstieg von Pinus, Gipfel der NBP (40-45%) mit Poaceae (18-25%),

Artemisia (7–9%). Salix <2% Obere Grenze: Pinus Anstieg >25%

Alter: 12200-12000 B.P.

A-4 Pinus Zone

A-4a Betula-Juniperus-Subzone

AE-1: 726,5-719,5 cm; AE-3: 826,25-821,25 cm

Betula fällt auf 15%, Pinus steigt stark an, Juniperus fällt weiter ab

Obere Grenze: Ende Betula Abfall bei 15%, Pinus > 60%

Alter: 12000-11800 B.P.

A-4b Betula-Subzone

AE-1: 719,5-702,5 cm; AE-3: 821,25-798,75 cm

Pinus dominiert (um 70%), Betula zwischen 10-15%, Juniperus zwischen 2-3%

Obere Grenze: Betula <15%, Juniperus >2%

Alter: 11800-11000 B.P.

A-4c Juniperus-Betula-Subzone

AE-1: 702,5-699,5 cm; AE-3: 798,75-793,75 cm

Betula fällt endgültig ab, Pinus Gipfel (um 80%)

Obere Grenze: Artemisia > 3%, Pinus < 75%

Alter: 11 000 – 10 800 B.P.

A-5 Pinus-NBP-Juniperus-Zone

A-5a Poaceae-Artemisia-Subzone

AE-1: 699,5-683,5 cm; AE-3: 793,75-778,75 cm

Anstieg von Juniperus und NBP (v.a. Poaceae und Artemisia > 5%). Erste Quercus Körner. Antagonismus zwischen Pinus und Artemisia: zwei Pinus-Depressionen und ein Pinus Gipfel

Obere Grenze: Pinus Anstieg, Rumex Rückgang <0,5%

Alter: 10800-10400 B.P.

A-5b Pinus-Subzone

AE-1: 683,5-668,5 cm; AE-3: 778,75-763,75 cm

Höhere Pinus Werte, niedrigere Artemisia Werte als in PAZ A-5a

Obere Grenze: NBP (Artemisia) Rückgang

Alter: 10400-10000 (?) B.P.

A-6 Pinus-Betula-Zone

A-6a Juniperus-Subzone

AE-1: 668,5-661,5 cm; AE-3: 763,75-753,75 cm

Betula Gipfel (18%), Pinus Depression und Wiederanstieg, empirische Corylus-

Kurve

Obere Grenze: Betula > 20%, Pinus < 70%

Alter: 10000 (?)-9900 B.P.

A-6b Corylus-Subzone

AE-1: 661,5-654,5 cm; AE-3: 753,75-741,25 cm

Betula Anstieg, Gipfel (30-35%) und Abfall, Pinus Abfall und Wiederanstieg. Empirische Kurven von Ulmus und Quercus. Letzter Pinus Gipfel (70-75%)

Obere Grenze: Ulmus > 3%, Corylus > 4%

Alter: 9900-9750 B.P.

A-7 Pinus-Corylus-Zone

A-7a Ulmus-Subzone

AE-1: 654,5-650,5 cm; AE-3: 741,25-732,5 cm

Pinus und Betula Rückgang, Anstieg von EMW und Corylus

Obere Grenze: Pinus <55%, Corylus >15%

Alter: 9750-9600 B.P.

A-7b EMW-Subzone

AE-1: 650,5-(649 cm); AE-3: 732,5-705 cm

Abfall von Pinus, Anstieg von Corylus und EMW (v.a. Ulmus), erste Fraxinus

Körner

Obere Grenze: Quercus Anstieg (abs. Grenze), Pinus <25%

Alter: 9600-9300 B.P.

A-8 Corylus-EMW-Zone

A-8a Pinus-Subzone

AE-3: 705-665 cm

Quercus >10-12%, weiterer Corylus und EMW Ansteig

Obere Grenze: Pinus <15%

Alter: 9300-8800 B.P.

A-8b Ulmus-Quercus-Subzone

AE-3: 665-635 cm

Corvlus Gipfel

Obere Grenze: Anstieg von Alnus und Fraxinus, Corylus Abfall

Alter: 8800-8400 B.P.

A-9 EMW-Zone

A-9a Corylus-Alnus-Subzone

AE-3: 635-585 cm

Anstieg Poaceae, erste Abies-Pollen

Obere Grenze: Tilia > 10% (EMW Anstieg)

Alter: 8400-7700 B.P.

A-9b Corylus-Alnus-Pinus-Subzone

AE-3: 585-535 cm

Abies >1%, Tilia Gipfel (20%), dann Ulmus Gipfel (22%), viel Poaceae, Pinus

Zunahme auf 15%

Obere Grenze: Fraxinus > 5%

Alter: 7700-7000 B.P.

A-9c Alnus-Corylus-Abies-Subzone

AE-3: 535-495 cm

Beginn Abies Anstieg, Alnus Gipfel (30%), Fraxinus Gipfel (12%).

Erste Picea-Pollen

Obere Grenze: Abies Anstieg > 25%, Abfall von Quercus und Alnus

Alter: 7000-6500 B.P.

A-9d Abies-Corylus-Alnus-Subzone

AE-3: 495-475 cm

Abies Steilanstieg, EMW um 30%. Erste Fagus-Pollen

Obere Grenze: erster EMW Abfall (Ulmus, Tilia)

Alter: 6500-6300 B.P.

A-10 Abies-Zone

A-10a EMW-Alnus-Subzone

AE-3: 475-445 cm

weiterer Abies Anstieg, Picea-Kurve geschlossen

Obere Grenze: zweiter EMW Abfall (Quercus, Tilia, Fraxinus)

Alter: 6300-6000 B.P.

A-10b Alnus-EMW-Subzone

AE-3: 445-365 cm

Fagus-Kurve geschlossen, >1%

Obere Grenze: NBP Anstieg (Poaceae, Apiaceae, Caryophyllaceae)

Alter: 6000-5500 B.P.

A-10c Alnus-NBP-Subzone

AE-3: 365-315 cm

erste Cerealia, langsamer Picea Anstieg

Obere Grenze: Picea > 10%, NBP Abfall

Alter: 5500-5000 B.P.

A-11 Abies-Picea-Zone

A-11a Alnus-Fagus-Subzone

AE-3: 315-175 cm

Picea Maximum (bis 30%), langsamer Abfall der NBP (Poaceae), langsamer An-

stieg von Fagus bis 10%. Tilia <1%, Cerealia-Kurve geschlossen

Obere Grenze: Abfall von Picea nach Maximum

Alter: 5000-3300 B.P.

A-11b Alnus-Fagus-NBP-Subzone

AE-3: 175-125 cm

Fagus Rückgang gleichzeitig mit Quercus Gipfel (5%). Ulmus <1%, Alnus Anstieg (15%). Langsamer Abies Abfall. Cerealia, Rumex und Plantago lanceolata >1%,

Zunahme NBP (Poaceae) > 20%

Obere Grenze: Fagus > 10%, Picea > 25%, NBP Abfall

Alter: 3000-3000 B.P.

A-11c Alnus-Fagus-Fraxinus-Subzone

AE-3: 125-85 cm

Fraxinus Gipfel (3%), Fagus <10-15%, Abies Anstieg von 15 auf 30%

Obere Grenze: Fagus > 15%

Alter: 3300-2100 B.P.

A-12 Abies-Picea-Fagus-Zone

A-12a Alnus-Ouercus-Subzone

AE-3: 85-10 cm

Fagus Gipfel und Maximum (20%), Picea Gipfel (25-30%), Ericaceae Anstieg

Obere Grenze: NBP und Pinus Anstieg, Abies Abfall

Alter: 2100-200 B.P.

A-12b Pinus-Subzone

AE-3: 10-0 cm

Starke Zunahme von Pinus und NBP

Alter: 200 B.P.-heute (= -30 B.P.)

4.1.5 Chronologie und Chronostratigraphie

Tabelle 1 gibt Aufschluß über die ¹⁴C-Datierungen, welche uns vom Aegelsee zur Verfügung stehen.

Tab. 1. ¹⁴ C-Datierungen am Ae	gelsee	
---	--------	--

Profil	Lab. Nr.	Material	Tiefe cm	Alter ¹⁴ C Jahre B.P.
AE-3	B-5181	Torf	110-120	2940 ± 90
AE-3	B-5016	Torf	135-145	3070 ± 40
AE-3	B-5182	Torf	165 - 175	3240 ± 70
AE-3	B-5270	Torf	221 - 229	4130 ± 80
AE-3	B-5017	Torf	305-315	(5520 ± 70)
AE-3	B-5018	Torf	355-365	5430 ± 40
AE-3	B-5271	Torf	441 - 449	(6290 ± 70)
AE-3	B-5183	Torf	465 - 478	6270 ± 70
AE-3	B-5019	Torf	490-499	6530 ± 60
AE-3	B-5184	Torf	565-575	7540 ± 50
W1950	B-50	Torf	144 (≈ 70)	1790 ± 145
W1950	B-53	Torf	695 (≈310)	4920 ± 155

Die in Tab. 1 und 2 aufgelisteten ¹⁴C-Altersbestimmungen wurden, mit Ausnahme der AMS-Datierung (Tab. 2), im Radiokarbonlabor des Physikalischen Instituts der Universität Bern (Prof. H. Oeschger) durchgeführt.

Ein Hartwasserfehler, wie er im Karbonatgebiet bei limnischen Sedimenten (Gyttja) zu erwarten ist (vgl. Lotter 1988, Ammann und Lotter 1989), sollte bei den vorliegenden Daten aufgrund des Probenmaterials keine Rolle spielen. Dennoch ergeben sich zwei Inversionen in der Datierungsreihe. Aufgrund der Alter-Tiefe Beziehung (Abb. 7.) scheinen die Proben B-5017 und B-5271 aus dem Rahmen zu fallen und wurden deshalb für die chronostratigraphische Interpretation der Resultate nicht berücksichtigt.

Mittels Korrelation des vorliegenden Diagramms mit demjenigen von Welten (1952, 1982) konnten die beiden Proben B-50 und B-53 pollenstratigraphisch zugeordnet werden (Tab. 1 und Abb. 9).

Die in Tabelle 1 aufgelisteten Radiokarbondaten bilden die Grundlage für die Alter-Tiefe Beziehung in Profil AE-3 und damit auch für die Einteilung des Diagramms in Chronozonen nach Mangerud et al. (1974). Ferner konnten mit Hilfe dieser Kurve (Abb. 7) die Alter der verschiedenen PAZ abgeschätzt werden. Da wir über keine Daten aus den spätglazialen Ablagerungen des Aegelsees verfügen, wurde auf entsprechende Datierungen der im folgenden Abschnitt aufgeführten Lokalitäten zurückgegriffen.

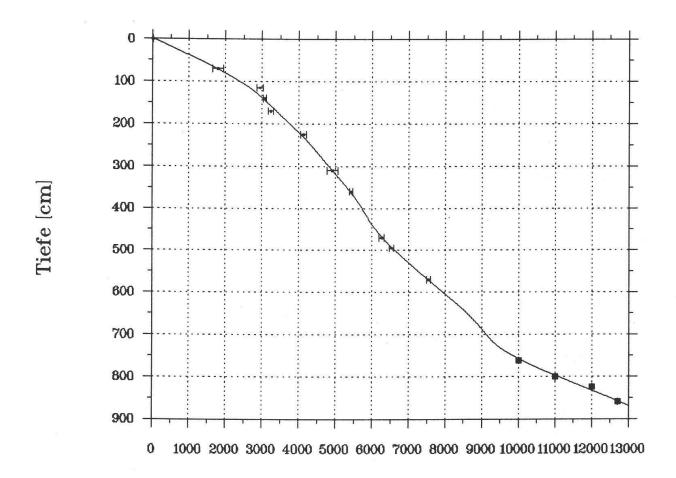
Anmerkungen zur Chronostratigraphie des Spätglazials:

Tiefe Alter 762,5 cm 10 000 B.P.

Bemerkung

Ende der Jüngeren Dryas Biozone (III sensu Firbas 1949), korrelierbar mit der Artemisia-Kurve sowie mit dem letzten großen Sprung der δ^{18} O-Kurve (Lotter und Eicher, in Vorb.), welcher im Grönlandeis auf 10720 ± 150 Kalenderjahre vor heute datiert wurde (Hammer et al. 1986). Dieses Ereignis wird häufig auf 10000 Radiokarbonjahre B.P. datiert (z. B. Wachseldorn, Welten 1982); in diesem Zeitbereich gibt es jedoch Probleme mit der ¹⁴C-Datierung (Oeschger et al. 1980, Lotter 1988, Ammann und Lotter 1989, Lotter und Zbinden 1989), so daß dieses Datum kritisch beurteilt werden muß.

801 cm	11 000 B.P.	LST, vielfach auf 11 000 B.P. datiert (Wegmüller und Welten 1973, van den Bogaard und Schminke 1985, Ammann und Lotter 1989).
825 cm	12 000 B.P.	Steilansteig der <i>Pinus</i> -Kurve und damit Beginn des Alleröd (II sensu Firbas 1949), auf rund 12000 B.P. datiert (Wachseldorn, Welten 1982, Lotter 1988, Ammann und Lotter 1989, Lotter und Zbinden 1989).
860 cm	12 700 B.P.	Juniperus-Maximum (Wachseldorn, Welten 1982, Oeschger et al. 1985, Lotter 1988, Ammann und Lotter 1989, Lotter und Zbinden 1989). Auch dieses Datum sollte aufgrund von Schwierigkeiten in der ¹⁴ C-Datierung kritisch betrachtet werden (Lotter 1988, Ammann und Lotter 1989, Lotter und Zbinden 1989).


Unter Einbezug dieser Daten wurde der spätglaziale Teil der Diagramme den entsprechenden Chronozonen zugeordnet (Abb. 8 und 9).

4.1.6 Grundzüge der vegetationsgeschichtlichen Entwicklung

Die spätglaziale und frühholozäne vegetationsgeschichtliche Abfolge am Aegelsee ist sehr gut mit jener des Schweizer Mittellandes vergleichbar (vgl. Welten 1982, Ammann und Tobolski 1983, Gaillard 1984, Lotter 1985, 1988, Zoller 1987): So fallen die untersten, pollenanalytisch datierbaren Proben (PAZ A-1) in den Beginn der Bölling Biozone (Ib sensu Firbas 1949, 1954). Trotz Probenmengen von 5-6 cm³ und der Anwendung von Anreicherungsmethoden konnten in den basalen Glazialtonen keine ausreichenden Pollensummen ausgezählt werden. Ein während der Erweiterung und Ausbaggerung des Aegelsees an einer Stichwand entnommenes und von Welten bearbeitetes, jedoch leider unpubliziertes Pollenprofil beginnt ebenfalls erst zu Beginn des Bölling (Ib) und zeigt eine vergleichbare Abfolge der Pollenspektren wie jene der von uns neu erarbeiteten Profile. Aufgrund von anderen Untersuchungen im Simmental (Chutti, Saanenmöser, Welten 1952, 1982) wissen wir jedoch, daß das Untersuchungsgebiet bereits vor 12700 B.P. eisfrei war. Die Bölling-Biozone (Ib) umfaßt am Aegelsee die lokalen PAZ A-1, A-2 und A-3a. Die Vegetationsentwicklung ist gekennzeichnet durch eine Abfolge von lockeren Wacholder-Beständen mit Sanddorn, die dann etwa ab 12500 B.P. von der Baumbirke sukzessive verdrängt wird. Ein Vergleich mit den Diagrammen vom Wachseldornmoos (Heeb und Welten 1972, Welten 1982) deutet darauf hin, daß der hohe böllingzeitliche Juniperus-Anteil charakteristisch für die montane Höhenstufe ist.

Die lokale PAZ A-3b umfaßt mit der erneuten Zunahme der Kräuter eine regressive Phase der Vegetationsentwicklung, welche wir der Älteren Dryas (Ic sensu Firbas 1949, 1954) zuordnen. Im Schweizer Mittelland ist diese zu Beginn der *Pinus*-Ausbreitung selten ausgeprägt entwickelt (Welten 1982, Rösch 1983, Gaillard 1984, Ammann 1985), hingegen stellt man sie mit zunehmender Meereshöhe fest, so z.B. in den Vogesen (Schloss 1979) oder im Jura (Wegmüller 1966). Da diese Schwankung, deren Ursache als klimatisch betrachtet wird, jedoch älter ist als 12000 B.P. (vgl. ¹⁴C-Datierungen am Lobsigensee, Ammann und Lotter 1989), scheint eine Parallelisierung mit der Älteren Dryas (DR2 sensu Mangerud et al. 1974, 12000–11800 B.P.) im fennoskandischen Raum nicht möglich.

Ab 12000 B.P. breitet sich *Pinus* am Aegelsee aus, wobei man annehmen kann, daß es sich hauptsächlich um *Pinus silvestris* gehandelt hat. Die Absolutberechnung zeigt, daß die Birke im Alleröd (II sensu Firbas 1949) bis A-4c nur prozentual zurückgeht und somit im Vegetationsbild neben der Föhre weiterhin eine Rolle gespielt hat.

Alter [Konv. 14C Jahre B.P.]

Abb. 7. Alter-Tiefe Beziehung in Profil AE-3.

Die Jüngere Dryas (III sensu Firbas 1949) umfaßt die lokale PAZ A-5 und läßt sich mittels Sauerstoffisotopenanalyse eindeutig nachweisen (Lotter und Eicher in Vorb.). Sie ist gekennzeichnet durch die erneute Zunahme der Kräuter: Der erhöhte Anteil der heliophilen Taxa (*Juniperus*, *Artemisia*) in Verbindung mit dem höheren mineralischen Sedimentanteil deutet auf eine Auflockerung der Bewaldungsdichte und damit verbunden auf eine höhere Bodenerosion. Die abnehmenden Pollenkonzentrationen der BP, bei ungefähr gleichbleibenden NBP-Konzentrationen zeigen, daß sich die Waldgrenze während des klimatischen Rückschlags immer noch über dem Aegelsee befunden hat.

Die Präboreal-Biozone (IV) wird durch die lokale PAZ A-6 gebildet, in der sowohl die relativen, wie auch die absoluten Anteile der Föhre und Birke wieder stark zunehmen. Die Abnahme der Heliophilen deutet auf einen langsam dichter werdenden Vegetationsschluß.

Das Boreal (V) umfaßt die lokalen PAZ A-7 und A-8, während denen die Hasel und die Arten des Eichenmischwaldes einwandern und sich ausbreiten, und der Anteil der

Föhre sukzessive zurückgeht. Im EMW sind vor allem die Ulme und ab A-8 auch die Eiche sowie die Linde und der Ahorn von Bedeutung.

Am Übergang zum Älteren Atlantikum (VI) verlanden weite Teile des ehemaligen Aegelsees (vgl. Abb. 5). In Profil AE-3 macht sich dies vor allem durch eine markante Zunahme der relativen Werte von Alnus sowie der Poaceae und Cyperaceae bemerkbar, welche den Vegetationsaspekt im Uferbereich dominierten. Im Verlauf von A-9 breitet sich der EMW weiter aus, wobei jetzt an frischeren Standorten die Esche hinzukommt. Die niedrigen Werte der Weißtanne, welche als Fernflug gedeutet werden, weisen auf deren langsames Einwandern, vermutlich aus den westlichen Alpen, hin (Wegmüller 1977). Um 6600 B.P. wandert dann, mit dem Beginn des Jüngeren Atlantikums (VII, A-10) die Weißtanne ein und breitet sich bis 6300 B.P. im Untersuchungsgebiet in der Folge rasch aus. Das von Welten (1982) an Gyttja erhaltene Datum von 6850 B.P. für die Weißtannenausbreitung scheint uns, vermutlich aufgrund eines Hartwasserfehlers, um rund 500 Jahre zu alt.

Die Arten des EMW waren bezüglich der Lichtkonkurrenz der schattentoleranten Weißtanne unterlegen und ihr Anteil ging folglich langsam zurück. Im Verlauf von A-10c finden sich die ersten Spuren menschlicher Aktivität im Pollendiagramm: Die starke Zunahme der Kräuter, vor allem von Poaceae, Caryophyllaceae und Apiaceae deutet auf eine Auflichtung der Weißtannenwälder im Gebiet des Aegelsees hin. Der Beginn der geschlossenen Cerealia-Kurve mit gleichzeitigem Auftreten von Rumex, Plantago lanceolata und Urtica legt den Schluß nahe, daß es sich bei dieser Zunahme der NBP um das Resultat von Rodungen handeln kann. Falls dies zutrifft, haben wir in dieser Höhenlage auf dem Diemtigbergli eine zwischen 5400 und 5000 B.P. datierte, sehr frühe Kulturphase, die jedoch archäologisch nicht belegt ist.

Um etwa 5000 B.P. erfolgte die Einwanderung von *Picea*, die sich dann im Verlauf des Subboreals (VIII, A-11a) am Aegelsee ausbreitete und zusammen mit der Weißtanne das Waldbild prägte. Die Ausbreitung der Fichte könnte durch die menschliche Aktivität im Untersuchungsgebiet gefördert worden sein, wie dies bereits Markgraf (1970) für verschiedene Schweizer Lokalitäten postuliert hat.

Die Buche, welche fast gleichzeitig ins Untersuchungsgebiet einwanderte, vermochte sich im Simmental auf dieser Höhenlage nicht durchzusetzen und spielte somit im Waldbild eine untergeordnete Rolle, welche sie bis heute beibehielt (vgl. 2.3).

Zu Beginn des Subatlantikums (IX, A-12b) nimmt der Anteil der Kräuter wieder stark zu, währenddessen die Anteile der Weißtanne und der Fichte sowie der Buche gleichzeitig abnehmen. Aufgrund des vermehrten Auftretens von Kulturzeigern (Cerealia, *Plantago lanceolata, Rumex*) kann hier mit einer weiteren, größeren Rodungsphase gerechnet werden, welche laut den ¹⁴C-Daten der späten Bronzezeit und der Eisenzeit zuzurechnen wäre. Die Bewaldung scheint aber dann in A-11c wieder dichter geworden zu sein, wobei die Buche nun einen etwas höheren Anteil ausmachte. Erst im Verlauf der historischen Zeit nehmen die Kulturzeiger wieder zu, diesmal jedoch in sehr starkem Ausmaß.

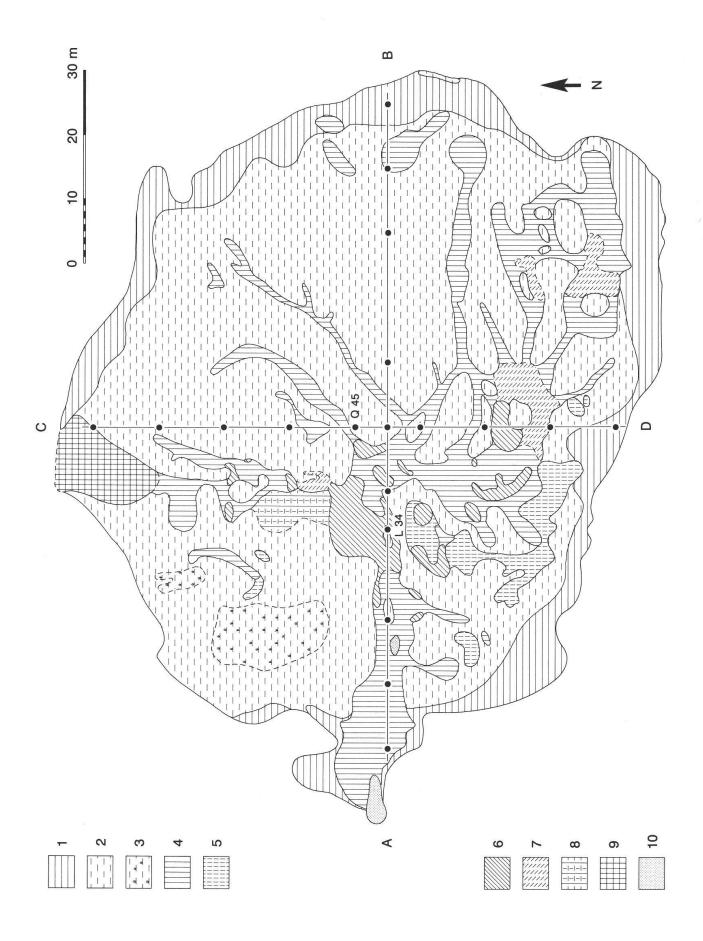
4.2 Schwarzmoos

4.2.1 Vegetationskarte

Das ausgedehnte Flachmoor weist von W nach E eine Länge von 100 m, von N nach S von 90 m auf. Die Vegetationskarte (Abb. 10) gibt Aufschluß über die Verbreitung der einzelnen Pflanzengesellschaften.

Flächenmäßig nimmt das Caricetum davallianae den größten Anteil des Kalk-Flachmoores ein. Die stete Zufuhr mineralreichen Wassers von den angrenzenden Steilhängen führt auf dem sanft geneigten Moor zur großflächigen Entwicklung dieser artenreichen Gesellschaft. Besonders reizvoll ist der Aspekt in der zweiten Julihälfte, wenn der Moorenzian (Swertia perennis) blüht und sich ein grauvioletter Schimmer über das Schwarzmoos legt. In der südwestlichen Moorpartie haben sich auf saurer Torfunterlage kleine Flächen des Caricetum fuscae entwickelt.

Das Moor ist von einem Rinnensystem durchzogen, bedingt durch Quellwasseraustritte aus dem östlichen und nördlichen Steilhang. In den Rinnen mit stärkerem Wasserdurchlauf findet sich die Gesellschaft des Caricetum rostrato-vesicariae. Wo die Rinnen sich verbreitern und verästeln und der Lauf des Wassers sich verlangsamt, stellen sich Triglochin palustris und Eleocharis pauciflora ein, oft leicht durchsetzt mit Carex limosa. Braun-Blanquet (1971) ordnet diese Gruppierung als Eleocharis-Variante dem Caricetum limosae zu. Struktur und Ökologie dieser Gesellschaft sollten näher untersucht werden. Am Rande tiefer Rinnen mit langsam strömendem Wasser finden sich Schwingrasen (Caricetum limosae) mit reicher Entfaltung von Carex limosa und Menyanthes trifoliata aber ohne Scheuchzeria palustris. Diese vor allem in den Alpen in Lagen von 1450–2050 m auftretende Pflanzengesellschaft ist nach Zimmerli (1988, 1989) heute stark gefährdet.


Zusammenfassend läßt sich festhalten, daß das Schwarzmoos aufgrund der vielfältigen ökologischen Standortbedingungen ein sehr differenziertes Vegetationsmosaik aufweist. Da durch den intensiven Weidegang (Trittbelastung und Viehdung) einzelne Gesellschaften gefährdet sind, sollte das Moor unter Schutz gestellt werden.

4.2.2 Stratigraphie des Schwarzmooses

Die entlang eines Längs- (A-B) und Quertransektes (C-D, vgl. Abb. 10) ausgeführten Sondierungen vermitteln Aufschluß über die Stratigraphie des Schwarzmooses (Abb. 11 und 12). Die größte Tiefe mit 11,0 wurde bei der im westlichen Teil des Moores durchgeführten Bohrung L-34 erreicht. Angesichts der Höhenlage des Moores handelt es sich um ein außergewöhnlich langes Profil. Ablagerungen vom Ende des Pleniglazials wurden nur in dieser und in der benachbarten Bohrung L-20 erfaßt. Der Übergang zum Bölling-Interstadial ist durch einen Sedimentwechsel von kiesigen Sanden zu Tongyttja markiert.

In den Profilen L-34 und L-40 liegt der Übergang Spätglazial/Holozän in 860 cm Tiefe ab Profiloberkante, im Profil L-20 in rund 800 cm Tiefe. Er zeichnet sich im Sediment durch einen Wechsel von Tongyttja zu toniger Kalkgyttja ab. In den Profilen Q-55 und Q-65 wurde der Übergang knapp verfehlt. Demgegenüber liegt er in den Profilen Q-15 und Q-25 der nördlichen Moorpartie in nur rund 362 cm bzw. 500 cm Tiefe.

In den Profilen folgt über der tonigen Kalkgyttjaschicht eine geringmächtige Schicht von Feindetritusgyttja, die zum Torf überleitet. Sie ist ins frühe Subboreal einzustufen und fällt in die Zeit der Fichtenausbreitung oder der daran anschließenden Fichten-Dominanz. Es handelt sich um einen Zeitabschnitt, in welchem sich durch den dichteren Waldschluß auf Hintertärfeten eine wesentliche Stabilisierung eingestellt hat und die Einschwemmungen in die Mulde des Schwarzmooses auf ein Minimum zurückgegangen sind. Die darauf folgende Torfbildung setzt im mittleren Subboreal ein und hält bis ins Jüngere Subatlantikum an.

410- 413 cm

413 - 507 cm

507- 516 cm

516- 558 cm

558- 590 cm

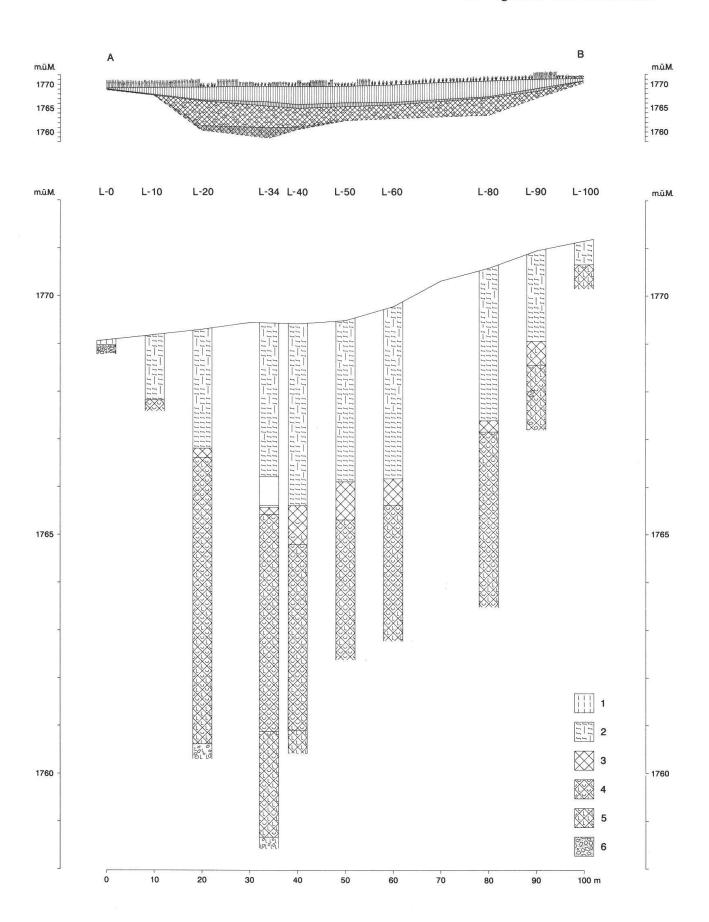
590- 640 cm

4.2.3 Stratigraphie der pollenanalytisch untersuchten Profile

Profil L-34 0 - 190 cmHypnaceen/Cyperaceen-Torf 190- 320 cm Hypnaceen-Torf mit wenig Cyperaceen-Resten 320 - 380 cm Sedimentlücke 380- 382 cm hellgraue Kalkgyttja 382- 398 cm dunkelbraune Gyttja 398- 420 cm graue, leicht tonhaltige Kalkgyttja 420- 448 cm hellgraue, leicht tonhaltige Kalkgyttja 448 - 515 cm dunkelgraue, leicht tonhaltige Kalkgyttja 515- 562 cm dunkelgraubraune tonhaltige Kalkgyttja 562- 678 cm graue tonhaltige Kalkgyttja 678- 690 cm dunkelbraune Kalkgyttja, tonhaltig 690- 777 cm dunkelgraue, gebänderte Kalkgyttja, tonhaltig 777- 825 cm braune, stark tonhaltige Kalkgyttja 825- 840 cm dunkelbraune, tonhaltige Kalkgyttja 840- 855 cm hellgraue Kalkgyttja, leicht tonhaltig 855- 951 cm dunkelgraubraune Tongyttja 951 - 958 cm tonhaltiger Feinsand 958 - 998 cm dunkelgraue, gebänderte Tongyttja 998-1000 cm tonhaltiger Feinsand 1000-1075 cm dunkelgraue Tongyttja 1075-1100 cm tonhaltiger Sand mit Steinchen Profil Q-45 0 - 30 cmCyperaceen-Torf mit Moosresten 30- 50 cm Cyperaceen/Hypnaceen-Torf 50- 53 cm hellgraue, tonhaltige Kalkeinschwemmung 53- 110 cm Cyperaceen-Torf mit Moosresten 110- 155 cm Cyperaceen/Hypnaceen-Torf 155- 205 cm Hypnaceen-Torf mit Cyperaceen-Resten 205- 225 cm Cyperaceen/Hypnaceen-Torf 225- 270 cm Hypnaceen-Torf, mit einzelnen Cyperaceen-Resten 270- 280 cm Hypnaceen-Torf 280- 310 cm Hypnaceen-Torf mit Cyperaceen-Resten 310- 350 cm Hypnaceen-Torf 350- 410 cm dunkelbraune Gyttja, nach unten zunehmend kalkhaltig

gelblichbraune Kalkgyttja

graue, tonhaltige Kalkgyttja


graue, sandige Tone

hellgraue, tonhaltige Kalkgyttja

braungraue tonhaltige Kalkgyttja

braungraue, gebänderte Kalkgyttja, tonhaltig

Abb. 10. Vegetationskarte des Schwarzmooses. Legende: 1 Calthion; 2 Caricetum davallianae; 3 Caricetum davallianae trichophoretosum; 4 Caricetum rostrato-vesicariae; 5 Caricetum fuscae; 6 Caricetum limosae; 7 Eleocharis-Variante des Caricetum limosae; 8 Übergangsgesellschaft Magnocaricion/Caricetum davallianae; 9 anthropogen beeinflußtes Magnocaricion; 10 offene Wasserstellen.

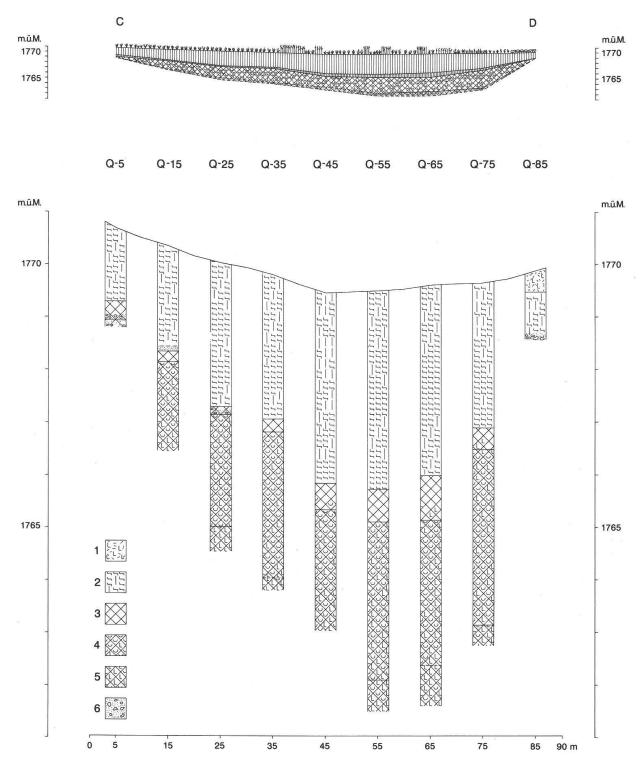


Abb. 12. Quertransekt C-D durch das Schwarzmoos (Abb. 10). Q-45: pollenanalytisch untersuchtes Profil (Abb. 14). 1 tonig-humoser Boden; 2 Cyperaceen/Hypnaceen-Torf; 3 Gyttja; 4 Kalkgyttja; 5 Tongyttja; 6 Sand und Kies.

Abb. 11. Längstransekt A-B durch das Schwarzmoos (Abb. 10). L-34: pollenanalytisch untersuchtes Profil (Abb. 13). 1 Cyperaceen-Torf; 2 Hypnaceen/Cyperaceen-Torf; 3 Feindetritusgyttja; 4 Kalkgyttja; 5 Tongyttja; 6 Sand and Kies.

4.2.4 Berechnung der Grundsumme bei Profilen im subalpin/alpinen Grenzbereich

Bevor auf die Unterteilung der Pollendiagramme in PAZ und deren Auswertung eingegangen werden kann, ist es angezeigt, kurz auf prinzipielle Aspekte der Berechnung und Darstellung hinzuweisen. Die Interpretation von Pollenprofilen aus dem Bereich der Waldgrenze bietet erhebliche Schwierigkeiten, stößt man doch hier vielfach an die Grenzen der Methode. Einer der Gründe liegt darin, daß in den Spektren Pollen von wärmeliebenden Gehölzen auftreten, die auf der betreffenden Höhenstufe selbst zur Zeit des postglazialen klimatischen Optimums nie vorgekommen sind. Der Pollen muß somit aus dem Fernflug von Beständen tieferer Lagen stammen. Eine weitere Erfahrung zeigt, daß der ferntransportierte Pollen in Pollenspektren von Profilen der alpinen Stufe anteilmäßig umso stärker in Erscheinung tritt, je geringer die Pollenproduktion aus der Umgebung des untersuchten Objekts ausfällt; das heißt, daß derartige Pollenspektren ein Vegetationsbild vermitteln, das der Realität bei weitem nicht entspricht (Markgraf 1980).

Mit diesem Problem haben sich bei Untersuchungen von Profilen aus dem Gebiet der Schweizer Alpen Welten (1950, 1952, 1982), Markgraf (1969), Kleiber (1974), Küttel (1974, 1979), Heitz (1975), Burga (1980, 1987) und Zoller (1987) eingehend auseinandergesetzt. Markgraf (1969) und Welten (1982, Profil Wallbach I)) unternahmen dabei den interessanten Versuch, durch Ausschluß des Fernflugpollens aus der Grundsumme ein realistischeres Bild der Vegetationsentwicklung auf den betreffenden Höhenstufen zu erhalten und damit das Problem einer Lösung näher zu bringen. Lang und Tobolski (1985) zeigten außerdem am Beispiel des Hobschensees (Simplonpass, 2017 m), welch hoher Aussagewert den pflanzlichen Makroresten bei der Interpretation von Diagrammen aus der alpinen Stufe zukommt. Im Falle der vorliegenden Profile aus dem Schwarzmoos entschloß sich der Bearbeiter ebenfalls zu einem modifizierten Vorgehen. Bei der Berechnung wurden, in Abweichung zu jener der Profile vom Aegelsee, die Anteile der wärmeliebenden Gehölze des EMW, von Corylus, Fagus, Alnus non viridis sowie von Carpinus und Juglans aus der Grundsumme ausgeschlossen. Sie umfaßt somit nur die Anteile von Pinus silvestris/mugo, P. cembra, Larix, Betula, Abies, Juniperus, Salix und Alnus viridis sowie die NBP ohne die Anteile der Cyperaceen und Hydrophyten. Die Anteile der ausgeschlossenen Taxa wurden ebenfalls in Prozenten der Grundsumme berechnet. Wir sind uns dabei bewußt, daß auch dieses Vorgehen Mängel aufweist und nur zu einer ersten Annäherung führen kann. So war es bei Pinus nicht möglich, den Pinus silvestris-Pollen vom Pinus mugo-Pollen zu trennen. Daher konnte der Pollen der Wald-Föhre, die in dieser Höhenlage kaum je vorgekommen ist, nicht ausgeschlossen werden. Die Abies-Anteile beließen wir in der Grundsumme. Zwar trat die Weißtanne nach den vorliegenden Ergebnissen in dieser Höhenlage kaum bestandbildend auf, doch dürfte sie im Verlaufe des Postglazials über die heutige obere Verbreitungsgrenze hinaus angestiegen sein.

4.2.5 Pollen Assemblage Zones (PAZ)

Insgesamt wurden in den beiden Profilen aus dem Schwarzwoos 11 lokale PAZ unterschieden (Abb. 13 und 14). Bei der Bezeichnung der einzelnen Zonen räumten wir den Pollenanflug aus dem Nahbereich des Moores Priorität ein. Die beiden sich überlappenden Profile L-34 und Q-45 ließen sich aufgrund der PAZ palynostratigraphisch ohne weiteres korrelieren.

S-1 Poaceae-Artemisia-Zone

L-34: 1095-1075 cm

Hohe Poaceae- und erhebliche Artemisia-Werte, reiches NBP-Spektrum, Spuren von Ephedra, Salix und Juniperus

Obere Grenze: Juniperus- und Betula-Anstieg

Älter: älter als 12700 B.P.

S-2 Juniperus-Betula-Artemisia-Zone

L-34: 1075-1055 cm

Begrenzter Juniperus- und Betula-Anstieg, starke Zunahme von Artemisia

Obere Grenze: Pinus-Anstieg, einsetzender NBP-Rückgang

Alter: ca. 12700-12000 B.P.

S-3 Pinus-Zone

S-3a L-34: 1055-1045 cm

Anstieg der Pinus-Werte, Rückgang der NBP

S-3b L-34: 1045-985 cm

Absolute Dominanz von *Pinus*, niedrige NBP-Werte. Das NBP-Spektrum bleibt typenreich. Anstieg der Pollenkonzentration

Obere Grenze: Anstieg der NBP-Werte

Alter: 12000-10800 B.P.

S-4 Pinus-Poaceae-Artemisia-Zone

L-34: 985-865 cm

Rückgang der *Pinus*-Werte, Anstieg der Poaceae, erneutes Auftreten von *Juniperus, Salix* und *Ephedra*. Abnahme der Pollenkonzentration. Subzonen S-4a und S-4c reicher an *Artemisia* und *Juniperus* als Subzonen S-4b und S-4d

Obere Grenze: *Betula* Anstieg Alter: 10800-10000 ? B.P.

S-5 Pinus-Betula-Zone

S-5a L-34: 865-845 cm

Anstieg der Betula-Kurve, Rückgang der NBP

S-5b L-34 845-835 cm

NBP-Anstieg, *Pinus*-Rückgang, *Betula*-Anstieg. Beginnender Anstieg der Kurven wärmeliebender Gehölze

Obere Grenze: Anstieg der EMW- und Corylus-Werte

Alter: 10000?-9000 B.P.

S-6 NBP-Pinus-Betula-Zone

S-6a L-34: 835-810 cm

NBP-Werte (Poaceae, Apiaceae, Cichoriaceae) sehr hoch, Betula- und Pinus-Werte konstant. Corylus erreicht Maximum, EMW stark ansteigend

S-6b L-34: 810-770 cm

NBP-Werte weiter ansteigend. Einsetzen der geschlossenen Kurven von Pinus cembra, Abies und Alnus viridis

Obere Grenze: Abies-Anstieg, Corylus-Rückgang

Alter: 9000-7500 B.P.

S-7 NBP-Pinus-Betula-Abies-Zone

Hohe NBP-Anteile, Anstieg von Pinus cembra und Abies, leichter Rückgang von Betula

S-7a L-34: 770-740 cm

Leichter Fraxinus-Anstieg, Rückgang von Corylus

S-7b L-34: 740-700 cm

Einsetzen der geschlossenen Fagus-Kurve

Obere Grenze: NBP-Rückgang und Anstieg zur Abies-Dominanz

Alter: 7500-6500 B.P.

S-8 NBP-Abies-Pinus-Picea-Zone

Abies dominant, Pinus subdominant, hohe NBP-Werte, gegen das Zonenende Picea-Anstieg und NBP-Abnahme

S-8a L-34: 700-630 cm

Rückgang der NBP, Anstieg von Abies und Pinus. Einsetzen der geschlossenen Picea-Kurve. Anstieg von Fagus und Acer

S-8b L-34: 630-560 cm; Q-45: 640-585 cm

Anstieg der NBP, artenreiches Spektrum. Rückgang von Abies und Pinus non cembra. Leichter Anstieg von Ulmus, Corylus und Fagus

S-8c L-34: 560-485 cm; Q-45: 585-515 cm

Rückgang der NBP, erneute Zunahme von Abies. Pinus cembra erreicht das Maximum. Fortgesetzter Anstieg der Picea-Kurve

S-8d L-34: 485-455 cm; Q-45: 515-490 cm

Rückgang und Zunahme der NBP, Abies-Dominanz, Picea subdominant Rückgang von Pinus cembra

S-8e L-34: 455-417 cm; Q-45: 490-455 cm

Kodominanz von Abies und Picea bei schwankenden NBP-Werten Rückgang des EMW

Obere Grenze: Anstieg von Picea zur Dominanz, Ulmen-Abfall

Alter: 6500-5000 B.P.

S-9 Picea-Pinus-Abies-Zone

S-9a L-34: 417-380 cm; Q-45: 455-410 cm

Picea-Anstieg zur Dominanz, starker Rückgang der NBP-Werte, minimale Pinus cembra-Anteile

S-9b Q-45: 410-325 cm

Absolute Picea-Dominanz, NBP-Werte minimal

S-9c Q-45: 325-220 cm

Erhöhte NBP-Anteile (Poaceae, Apiaceae), Picea dominant, Abies und Pinus-Werte ziemlich konstant, leichtes Hervortreten von Fagus

S-9d Q-45: 220-110 cm

Picea-Dominanz, NBP-Werte niedrig, stärkere Zunahme von Alnus viridis. Am Zonenende deutliche Quercus-Zunahme und erste Carpinus-Spur

Obere Grenze: Einsetzen der geschlossenen Carpinus-Kurve

Alter: 5000-ca. 2000 B.P.

S-10 Picea-Pinus-Abies-Carpinus-Zone

Q-45: 110-35 cm

Picea-Dominanz, NBP-Werte leicht schwankend. Alnus viridis ziemlich konstant, Pinus gegen den Schluß der Zone ansteigend. Spuren von Juglans und von Getreide

Obere Grenze: NBP-Anstieg

Alter: ca. 2000-ca. 1000 B.P.

S-11 NBP-Picea-Pinus-Zone

Q-45: 35-0 cm

Starke Zunahme der NBP-Werte, markanter Picea-Rückgang und Pinus-Vorstoß, Auftreten

von Kulturzeigern

Alter: ca. 1000 B.P.-Gegenwart.

4.2.6 Datierungen

Zur zeitlichen Einstufung der lokalen PAZ standen uns folgende radiometrische Daten zur Verfügung:

Tab. 2. ¹⁴C-Datierungen an den Schwarzmoos-Profilen

Profil	Lab. Nr.	Material	Tiefe cm	Alter ¹⁴ C Jahre B.P.
Q-45	B-5198	Torf	92- 100	1620 ± 40
Q-45	B-5199	Torf	192- 200	3080 ± 40
Q-45	B-5200	Torf	330 - 338	3650 ± 40
L-34	B-5201	Kalkgyttja	825 - 840	9660 ± 60
L-34	UZ-2517/ETH-5714	Tongyttja	1069,5-1070,5	15165 ± 120 AMS*

^{*} Die für die Altersbestimmung erforderliche Präparierung und Aufbereitung der Probe UZ-2517/ETH-5714 erfolgte im Radiokarbonlabor des Geographischen Institutes der Universität Zürich (GIUZ). Die anschließende Datierung wurde mittels der AMS-Technik (accelerator mass spectrometry) auf dem Tandem-Beschleuniger des IMP (Institut für Mittelenergiephysik) der ETH-Hönggerberg durchgeführt.

Die AMS-Datierung für den Bölling-Beginn des Profils L-34 fiel mit 15165 ± 120 B.P. wesentlich zu alt aus. Die datierte Tongyttja dürfte zum Teil umgelagertes Material enthalten haben. Ferner ist ein Hartwasserfehler nicht auszuschließen. Wahrscheinlich fiel im gleichen Profil die Datierung des Boreal-Beginns (B-5201) mit 9660 ± 60 B.P. ebenfalls etwas zu alt aus (Kalkgyttja!).

Datierte palynostratigraphische Bezugspunkte der Aegelsee-Profile, die sich in unsern Pollensequenzen im Pollenfernflug klar abzeichnen, wurden ebenfalls zur chronostratigraphischen Einstufung herangezogen (Daten in Klammern). Vergleiche ermöglichten auch die beiden ebenfalls aus dem Simmental stammenden Profile Untere Bunschleralp SE Boltigen (1680 m) und Wallbach bei Lenk (1885 m) von Welten (1982) sowie die von Küttel (1974, 1979) bearbeiteten Profile Obergurbs (1910 m) aus dem Diemtigtal und Kühdungel (1800 m) aus dem Lauenental.

4.2.7 Grundzüge der vegetationsgeschichtlichen Entwicklung

Der Nachweis des pleniglazialen Endabschnittes (S-1) im Profil L-34 belegt, daß die Mulde des Schwarzmooses bereits vor dem Beginn des Bölling-Interstadials, d. h. vor 12 700 B.P., eisfrei geworden ist. Die von Genge (1955) beschriebene Serie von Moränenständen in der Gegend des Zigerstaldens muß demzufolge älter sein. Der Nachweis von vorböllingzeitlichen Sedimenten gelang ebenfalls Welten (1982) im Profil von der Untern Bunschleralp (1680 m), nicht aber Küttel (1974, 1979) in den Obergurbs-Profilen (1910 m).

Die hohen NBP-Werte der Basisspektren im Profil L-34, unter denen Poaceae, Apiaceae, Asteraceae und Cichoriaceae sowie *Artemisia* und *Thalictrum* hervortreten, weisen diesen Abschnitt als vollständig waldlos aus. Auf den Rohschuttböden stellt sich nach dem Eisrückzug eine noch sehr offene Pioniervegetation ein.

Mit dem Einsetzen thermisch günstigerer Bedingungen im Bölling-Interstadial (S-2) kommt es in der alpinen Landschaft von Hintertärfeten vereinzelt zur Ausbildung sehr lichter *Juniperus-Salix*-Bestände mit viel *Artemisia*. Die Zunahme der *Betula*-Werte dürfte wahrscheinlich auf Fernflug aus tiefern Lagen zurückzuführen sein, was sicher auch für den Anstieg der *Pinus*-Werte am Ende des Interstadials gilt. Das artenreichere NBP-Spektrum läßt auf eine Konsolidierung der Vegetationsdecke der angrenzenden Steilhänge schließen. Dies wird ebenfalls durch den Sedimentwechsel von tonhaltigen Sanden zu Tongyttja in 1075 cm Tiefe angedeutet.

Die starke Zunahme der *Pinus*-Werte im Abschnitt des Alleröd-Interstadials (S-3a, S-3b), die für die Zeit von 12 000 – 11 000 B.P. eine intensive Bewaldung dieser Höhenlage vortäuscht, ist auf den stark angestiegenen Fernflug aus tieferen Lagen zurückzuführen. Trotz der hohen *Pinus*-Anteile ließen sich in diesem Abschnitt weder *Pinus*-Stomata noch *Pinus*-Holzreste nachweisen! Sicher war die Pollenproduktion der Pioniervegetation der angrenzenden Steilhänge noch gering, was rechnerisch ebenfalls zu einer Überhöhung der Fernflug-Anteile beiträgt. Andererseits darf nicht übersehen werden, daß bereits in diesem Abschnitt Pollen von *Larix* und *Pinus cembra* in Spuren festzustellen waren und sich in 1040 cm Tiefe ein kleines *Larix/Picea*-Holzstück fand. Wohl mögen vereinzelt *Pinus cembra*, *P. mugo* und auch *Larix* in diesem thermisch bereits günstigen Interstadial in diese Hochlagen vorgestoßen sein, doch kam es nicht zur Bewaldung. Für offene Verhältnisse spricht das weiterhin artenreiche NBP-Spektrum.

Küttel (1974, 1979) schloß für den gleichen Zeitabschnitt eine Bewaldung des Kars von Obergurbs ebenfalls aus, während Welten (1982) für die Untere Bunschleralp aufgrund der hohen *Pinus*-Werte auf dichtere Föhren-Bestände schloß, allerdings ohne Nachweis entsprechender Makroreste.

Der klimatische Rückschlag der Jüngern Dryaszeit (S-4) findet sich im Profil L-34 recht deutlich, wenn auch des ferntransportierten *Pinus*-Pollens wegen in abgeschwächter Form abgehoben. In der Zeit von 11000–10000 B.P. herrschen unter kalt-trockenen Bedingungen auf Hintertärfeten weithin lückige Pionierrasen vor mit viel *Artemisia*, *Plantago alpina*, *Selaginella selaginoides*, *Botrychium lunaria* und mit Vertretern der Poaceae, Chenopodiaceae, Apiaceae und Cichoriaceae. Ebenso finden sich kleinere Gruppen von *Juniperus* und *Salix*. Ob *Ephedra* in dieser Höhenlage aufgetreten ist oder ob der Pollen ebenfalls aus dem Fernflug stammt, ist nicht zu entscheiden. Unbestritten ist, daß die Waldgrenze in diesem klimatisch ungünstigen Zeitabschnitt eine wesentliche Absenkung erfahren hat.

Im Zuge der klimatischen Besserung folgt im Präboreal (S-5) – der Zeitabschnitt findet sich im Profil L-34 wie in vielen andern verhältnismäßig knapp abgebildet – auf eine kurze *Juniperus*-Phase ein markanter Birken-Vorstoß, der sich wahrscheinlich bis in die weitere Umgebung des Schwarzmooses erstreckt hat. Gegen das Ende dieses Zeitabschnittes zeichnet sich im *Pinus*-Fernflug ein markanter Rückgang ab, bedingt durch die zunehmende Konkurrenzierung der *Pinus silvestris*-Wälder der montanen Stufe durch den vorrückenden EMW, dessen Ausbreitung sich wie jene von *Corylus* auch im Fernflug klar abhebt.

In den vorherrschenden Pionierrasen auf Hintertärfeten beginnt sich im Verlauf des Präboreals ein Wandel abzuzeichnen: Elemente des spätglazialen Spektrums wie die Chenopodiaceae, Caryophyllaceae, Brassicaceae, sowie *Thalictrum* und der *Saxifraga*

oppositifolia-Typ setzen zumindest vorübergehend aus. Demgegenüber erscheinen in Spuren Elemente von Hochstaudenfluren (*Filipendula, Geranium*) und im weiteren Verlauf setzen Apiaceae und Cichoriaceae zu verstärkter Ausbreitung an.

Während sich im Boreal (S-6) in der montanen Stufe Corylus und EMW voll entfalten, stößt Pinus cembra kontinuierlich in die Höhenlage des Schwarzmooses vor und bildet hier mit Betula und wohl auch mit Pinus mugo sowie mit vereinzelten Lärchen kleine, sehr lichte Bestände. Von Bewaldung kann hier angesichts der hohen NBP-Werte nicht gesprochen werden, entwickelt sich doch in diesem Zeitabschnitt, der von rund 9000–8000 B.P. gedauert hat, eine reiche alpine Krautflur, an deren Zusammensetzung Poaceae, Apiaceae, Campanulaceae und Cichoriaceae sehr stark beteiligt sind und in der Lilium martagon schon früh auftritt. Bemerkenswert ist das Aussetzen von Plantago alpina und von Selaginella selaginoides. Ähnliche Entwicklungen finden sich auch in den Profilen Untere Bunschleralp, Wallbach I, Obergurbs und insbesondere auch im Profil Kühdungel abgebildet.

Interessant ist ferner die einsetzende reichere Entwicklung der Wasser- und Ufervegetation, gekennzeichnet durch die sprunghafte Zunahme von *Pediastrum*, die ersten Makroreste von *Potamogeton*, die stärkere Ausbreitung der Cyperaceen und das Hervortreten von *Equisetum*.

Während des langen Zeitabschnittes (8000–5000 B.P.) des Ältern und Jüngern Atlantikums (S-7, S-8) erfährt das alpine Vegetationsbild auf Hintertärfeten, vom Endabschnitt abgesehen, nur wenige Veränderungen. Sehr artenreiche alpine Krautfluren herrschen zwischen den kleinen Gruppen von Arven, Bergföhren und Lärchen vor. Betula geht langsam zurück. Zweimal kommt es zu einem markanten Anstieg des Weißtannengürtels, nämlich um 6300 B.P. und um rund 5800 B.P. Beide Vorstöße sind von einer Ausbreitung von Acer pseudoplatanus begleitet. Nach dem in 660 cm Tiefe festgestellten Holzrest von Abies dürfte die Weißtanne vereinzelt bis in diese Höhenlage vorgestoßen sein. Im subborealen Abschnitt ist ihr Vorkommen ebenfalls durch einige spärliche Makroreste belegt.

Von besonderem Interesse ist sodann die um rund 5500 B.P. einsetzende Einwanderung und Ausbreitung von *Picea abies* (S-8d), die im weiteren Verlauf zur kontinuierlichen Verdrängung von Arve und Lärche und schließlich zum Rückgang der artenreichen alpinen Krautflur führt. Das Auftreten der Fichte ist im Profil L-34 ab 470 cm Tiefe, im Profil Q-45 ab 500 cm Tiefe fortgesetzt durch zahlreiche Makroreste (Nadeln, Holz, Samenflügel) und auch durch Stomata eindrücklich belegt. Im gleichen Zeitbereich sind vereinzelt auch Makroreste von *Pinus* nachzuweisen.

Unsere Untersuchung führt damit zum interessanten Schluß, daß die geschlossene Bewaldung dieser Hochlagen erst an der Wende vom Jüngeren Atlantikum zum Subboreal erfolgt ist, und zwar durch die Fichte, während die Bergföhre die edaphisch schwierigern Standorte besiedelt hat. Diese Entwicklung konnte in beiden von uns untersuchten Profilen (L-34 und Q-45) in der gleichen palynostratigraphischen Position nachgewiesen und durch Makroreste belegt werden. Eine vergleichbare Entwicklung wies Welten (1982) im Profil Wallbach I nach.

In den randlichen Bereichen des Moores setzt in dieser Zeit über den minerogenen Sedimenten die Ablagerung reiner Gyttja ein; im zentralen Teil des Moores erfolgt dieser Übergang etwas später.

Vom Beginn des Subboreal weg bis zum Ende des Ältern Subatlantikums um rund 1000 B.P. herrscht nun in dieser Höhenlage *Picea* unumschränkt vor. *Pinus cembra* und *Larix* dürften durch die Fichte in höhere Lagen verdrängt worden sein. Vereinzelt mag

Abies knapp Fuß gefaßt haben. Für einen dichtern Waldschluß sprechen die niedrigen NBP-Werte (S-9b).

Eine etwas reichere NBP-Phase zeichnet sich in der Zone S-9c ab. Sie weist eine deutliche Ausbreitung von *Alnus viridis* auf und dürfte einen kühlern und wohl auch niederschlagsreichern Abschnitt anzeigen. Eine stärkere *Alnus viridis*-Entwicklung liegt auch in den Zonen S-9d und S-10 vor. Anzeichen kleiner Rodungen finden sich im Profil Q-45 in 150 cm, 110 cm und 80 cm Tiefe. Relative Zeitmarken vermitteln die ersten Spuren von *Carpinus* (ca. 2300 B.P.) und von *Juglans* (ca. 2000 B.P.).

Verhältnismäßig spät setzt auf Hintertärfeten die große Alpweiderodung ein (S-11), von der in erster Linie die Fichte betroffen ist. Diese Rodung fällt in die Zeit nach 1000 B.P., also ins Mittelalter. Kennzeichnende Merkmale sind die starke Zunahme der NBP, der Poaceae, Chenopodiaceae, der Rosaceae und Cichoriaceae sowie das verstärkte Hervortreten von *Plantago alpina*, *P. montana* und von *Urtica*.

5. Diskussion

An den beiden untersuchten Lokalitäten wurde anhand pollenanalytischer Untersuchungen die spät- und postglaziale Vegetationsgeschichte der montanen und subalpinen Stufe des Niedersimmentals erfaßt (Tab. 3).

Im folgenden seien vier Gesichtspunkte hervorgehoben, denen bei weiteren Untersuchungen besondere Beachtung geschenkt werden sollte:

- 1. Im Verlauf der letzten Jahre wurde die Existenz einer rückläufigen Phase zwischen Bölling- und Alleröd-Interstadial verschiedentlich diskutiert und vereinzelt auch in Frage gestellt (Welten 1982, Bortenschlager 1984a, 1984b, Gaillard 1984, Ammann 1984). Die untersuchten Profile des Aegelsees zeigen an dieser palynostratigraphisch klar abgehobenen Stelle eine deutliche regressive Phase (Ic sensu Firbas 1949, 1954). Die paläoklimatischen und ökologischen Verhältnisse dieses Abschnittes sind durch vertiefte und multidisziplinäre Untersuchungen weiter zu klären.
- 2. Das weitgehende Fehlen von Gehölz-Makroresten im gesamten spätglazialen Abschnitt des Schwarzmoos-Profils L-34 läßt den Schluß auf Waldlosigkeit zu. Die Pollenspektren der Gehölze vermitteln ein absolut unrealistisches Vegetationsbild. Die Grenze des geschlossenen Föhren-Waldes lag im klimatisch schon recht günstigen Alleröd-Interstadial unter 1800 m. Die Lage der Waldgrenze müßte an tiefer gelegenen Objekten anhand pollenanalytischer Untersuchungen in Verbindung mit Makrorest-Analysen geklärt werden.
- 3. Die Ausbreitung artenreicher Krautfluren auf 1800 m Höhe am Ende des Präboreal und im Boreal stellt eine bisher wenig beachtete Erscheinung dar. Sie ist Ausdruck für die eingetretene klimatische Besserung und auch für einen bestimmten Grad der Bodenreifung. Warum es im Verlauf des Atlantikums unter klimatisch sehr günstigen Verhältnissen nicht zu einem dichtern Schluß der Arven-Lärchen-Bergföhren-Bestände und zur Verdrängung der hochwüchsigen Krautfluren kam, ist nicht bekannt.
- 4. Die Bewaldung der Lagen um 1800 m Höhe vollzog sich am Übergang vom Atlantikum zum Subboreal durch die Fichte. Es ist schwierig, Gründe für diesen auch durch zahlreiche Makroreste nachgewiesenen späten Anstieg der Waldgrenze anzugeben. Die kleinen Arven-, Lärchen- und Bergföhren-Bestände bildeten für die Fichte keine wesentliche Konkurrenz. Bodenbildung und Bodenreifung dürften als begrenzender Faktor außer Betracht fallen. Anzeichen menschlicher Einflußnahme, welche die Ausbreitung der Fichte eingeleitet haben könnte (Markgraf 1970), waren nicht nachzuweisen.

Tab. 3. Grundzüge der Vegetationsgeschichte der montanen und subalpinen Stufe im Niedersimmental

Г					8		u,
	Jahre B. P.	Chronozonen	PAZ	Montane Stufe Aegelsee 995 m ü. M. Profile AE-1 und AE-3	Subalpine Stufe Schwarzmoos 1770 m ü. M. Profile L-34 und Q-45	PAZ	Chronozonen
				Kulturlandschaft, Weiden, starke mittel- alterliche Rodungen	Tiefgreifende mittelalterliche Weiderodungen. Markanter Rückgang der subalpinen Fichten- wälder	S-11	
-	1000	SA	A-12	Weißtannen-Fichten-Buchen-Wald	Subalpine Fichtenwälder; auf Kalkrippen Bergföhren-Bestände. Erneute Ausbreitung von Grünerlen. Spuren von Weiderodungen	S-10	SA
	2000				Subalpine Fichtenwälder. Rückgang der Grünerlen. Spuren erster Weiderodungen		
	3000			Spätbronzezeitliche Rodungen		1	
-	4000	SB	A-11	Weißtannen-Fichten-Wald mit Buche	Subalpine Fichtenwälder; vereinzelt Arve, Lärche und Weißtanne. Auf exponierten Standorten Bergföhren-Bestände	S-9	SB
					Anstieg der Waldgrenze über 1800 m hinaus		
	5000		A-10	Ausbreitung der Fichte; Anzeichen neo- lithischer Landnahme	Ausbreitung der Fichte; Rückgang der Verdrängung von Arve, artenreichen Lärche und Birke Krautfluren	S-8	
F	6000		A-10	Weißtannen-Wälder und Laubmischwälder (EMW)	Zweiphasiger Weißtannen- Vorstoß	/	
		4.77			701300	1	AT
-	7000	AT	A-9		Einwanderung der Weiß- tanne in der montanen Stufe	S-7	
F	8000			Ulmen-Linden-Eichen-Wälder; auf feuchten Standorten Esche und Erle	Lichte Arven-, Lärchen- und Bergföhren-Bestände alpine Kraut- mit Birken fluren		
L	9000	ВО	A-8	Ulmen-Linden-Eichen-Wälder mit Hasel	Einwanderung von Arve und Lärche	S-6	ВО
		PB	A-7		Ausbreitung artenreicher	S-5	PB
L	10 000	ГБ	A-6	Föhren-Birken-Wald	Birken-Vorstoß Krautfluren		
	10 000	DR 3	A-5	Aufgelockerter Föhrenwald mit Wacholder und Krautvegetation	Offene Pioniervegetation mit Wacholder und Weiden. Vereinzelte Lärchen und Bergföhren (?), unbewaldet	S-4	DR 3
	11 000	AL	A-4	Föhren-Birken-Wald	Artenreiche Pionierrasen; vereinzelt Arve, Lärche und Bergföhre (?); waldfrei	S-3	AL
	12 000		A-3 b	Aufgelockerter Birkenwald mit Krautvegetation	Pioniervegetation auf Rohschuttböden. Vereinzelt Wacholder- und Weidengebüsch.	3	n.a
		BØ	A-3 a	Birken-Wacholder-Vegetation mit Weide	Erste Konsolidierung der Steilhänge durch die Vegetation	S-2	BØ
F	13 000		A-2 A-1	Wacholder-Sanddorn-Zwergbirken-Gebüsch; Steppenrasen			
-	14 000	DR 1			Offene Pioniervegetation auf Rohschuttböden	S-1	DR 1
E	14 000	DR 1			Official Fromer regulation and Romandouden		

So stellt sich die Frage, ob nicht die klimatische Trendwende am Übergang vom Atlantikum zum Subboreal die kräftige Ausbreitung der Fichte ausgelöst und begünstigt hat.

6. Zusammenfassung

Im Niedersimmental (Berner Oberland) wurde je ein Moor der montanen (Aegelsee, 995 m ü. M.) und der subalpinen Stufe (Schwarzmoos, 1770 m ü. M.) palynostratigraphisch untersucht.

Zwei Vegetationskarten (Abb. 4 und 10) vermitteln Aufschluß über die aktuelle Vegetation beider Moore. Anhand zahlreicher Sondierungen wurde die Stratigraphie der Beckenfüllungen geklärt (Abb. 5 und 6, Abb. 11 und 12). Beide Mulden wurden bereits vor dem Beginn des Bölling-Interstadials eisfrei. Im Aegelsee setzten die organischen Ablagerungen im Boreal ein, im Schwarzmoos im Übergang vom Jüngern Atlantikum zum Subboreal (5000 B.P.).

Über die Grundzüge der vegetationsgeschichtlichen Entwicklung auf beiden Höhenstufen orientiert die Tabelle 3. Am Aegelsee setzte die spätglaziale Wiederbewaldung um 12 700 B.P. mit *Juniperus-Hippophaë*-Beständen ein, die ab 12 500 B.P. von Baumbirken abgelöst wurden. Innerhalb des Bölling-Interstadials ließ sich eine klimatisch regressive Phase nachweisen, die zeitlich vor 12 000 B.P. einzustufen ist. Von 12 000 B.P. an breitete sich *Pinus (silvestris)* aus. Der Nachweis einer dünnen Schicht der Laacher See Tephra ermöglichte eine genaue zeitliche Abgrenzung des Alleröd-Interstadials von der Jüngern Dryaszeit (11 000 B.P.). Während der Jüngern Dryaszeit lag die Waldgrenze oberhalb des Aegelsees. Die Umgebung des Schwarzmooses blieb während des gesamten Spätglazials unbewaldet. Weithin herrschte auf den Rohschuttböden eine offene Pioniervegetation mit vereinzelten *Juniperus*- und *Salix*-Gebüschen vor.

Am Aegelsee folgte auf die präborealen Föhren-Birken-Wälder im Boreal die EMW/ Corylus Ausbreitung. Die Einwanderung und Ausbreitung von Abies setzte zwischen 6600 und 6300 B.P. ein, jene von Picea zwischen 5400 und 5000 B.P. Der präboreale Birkenvorstoß dürfte sich bis in die Umgebung des Schwarzmooses ausgewirkt haben. Zu Beginn des Boreals kam es hier zur Ausbreitung artenreicher Krautfluren, die erst am Ende des Jüngern Atlantikums durch den vorrückenden Fichtenwald verdrängt wurden. Um rund 8500 B.P. setzte die Einwanderung von Pinus cembra und bald darauf auch jene von Larix decidua ein.

Die Einwanderung von *Picea* setzte in der subalpinen Stufe um rund 5500 B.P. ein (erste Spuren um 6500 B.P.); eine sehr kräftige Ausbreitung, die durch zahlreiche Makroreste belegt ist, erfolgte um 5000 B.P. Gleichzeitig stieg die Waldgrenze über das Schwarzmoor hinaus an. Von diesem Zeitpunkt weg herrschten in der subalpinen Stufe der Gegend bis zum Beginn des Jüngern Subatlantikums (1000 B.P.) Fichtenwälder und an exponierten Stellen Bergföhren-Bestände vor.

Erste Anzeichen der Landnahme zeichnen sich am Aegelsee für die Zeit von 5400–5000 B.P. (*Picea*-Anstieg!) ab; weitere Rodungen erfolgten in der späten Bronzezeit und dann sehr einschneidende im Mittelalter. In der subalpinen Stufe setzten die großen Weiderodungen im Jüngern Subatlantikum ein.

Wir danken all jenen, die uns bei den Arbeiten an diesem Projekt unterstützt haben: B. Brogli, B. Steck-Blaser, J. Fischer, I. Hofmann, J. Lüthy, A. Neuenschwander, K. Ruch, J. Wegmüller, H. Oeschger, T. Riesen, M. Möll, W. A. Keller, W. Wölfli und W. Schoch. Dieses Projekt wurde vom Schweizerischen Nationalfonds unterstützt (NF-Projekt Nr. 3.406-0.86).

7. Literatur

- Ammann B. 1984. Prozente, Konzentrationen und Durchschnittsinflux der Pollenzonen im Spätglazial vom Lobsigensee. Studien zum Spät-Quartär des Lobsigensees 10. *In:* Lang, G. (ed.), Festschrift Max Welten. Diss. Bot. 72: 11–44.
- Ammann B. 1985. Introduction and palynology: vegetational history and core correlation at Lob-sigensee (Swiss Plateau). In: Lang, G. (ed.), Swiss lake and mire environments during the last 15,000 years. Diss. Bot. 87: 127–134.
- Ammann B. and Tobolski K. 1983. Vegetational development during the late-Würm at Lobsigensee (Swiss Plateau). Studies in the Late Quaternary of Lobsigensee 1. Rev. Paléobiol. 2: 163–180.
- Ammann B. and Lotter A. F. 1989. Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18: 109–126.
- Birks H. J. B. and Gordon A. D. 1985. Numerical methods in Quaternary pollen analysis. Academic Press, London. 317 S.
- Bogaard P. van den und Schminke H.-U. 1985. Laacher See Tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geol. Soc. Am. Bull. 96: 1554–1571.
- Bortenschlager S. 1984a. Die Vegetationsentwicklung im Spätglazial: Das Moor beim Lanser See III, ein Typprofil für die Ostalpen. In: Lang, G. (ed.) Festschrift Max Welten. Diss. Bot. 72: 71-79.
- Bortenschlager S. 1984b. Beiträge zur Vegetationsgeschichte Tirols I. Inneres Ötztal und unteres Inntal. Ber. Nat.-Med. Verein Innsbruck 71: 19–56.
- Braun-Blanquet J. 1971. Übersicht der Pflanzengesellschaften der rätischen Alpen im Rahmen ihrer Gesamtverbreitung. III. Teil: Flachmoorgesellschaften (Scheuchzerio-Caricetea fuscae). Veröff. Geobot. Inst. ETH Rübel Zürich 46: 1–70.
- Burga C. A. 1980. Pollenanalytische Untersuchungen zur Vegetationsgeschichte des Schams und des San Bernardino-Paßgebietes (Graubünden-Schweiz). Diss. Bot. 56: 1–194.
- Burga C. A. 1987. Gletscher- und Vegetationsgeschichte der Südrätischen Alpen seit der Späteiszeit. Denkschr. Schweiz. Naturf. Ges. 101: 1–164.
- Firbas F. 1949. Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Vol. 1, Jena: Fischer, 480 S.
- Firbas F. 1954. Die Synchronisierung der mitteleuropäischen Pollendiagramme. Danm. Geol. Unders. II, 80: 12–21.
- Gaillard M.-J. 1984. Etude palynologique de l'évolution tardi- et postglaciaire de la végétation du Moyen-Pays Romand (Suisse). Diss. Bot. 77: 1-322.
- Genge E. 1955. Über eiszeitliche Ablagerungen im untern Simmental. Mitt. Naturf. Ges. Bern. N. F. 12: 23-58.
- Hammer C. U., Clausen H. B. and Tauber H. 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the ¹⁴C time scale. Radiocarbon 28/2A: 284–291.
- Hedberg H. D. 1972. Summary of an international guide to stratigraphic classification, terminology, and usage. Boreas 1: 213–239.
- Heeb K. und Welten M. 1972. Moore und Vegetationsgeschichte der Schwarzenegg und des Molassevorlandes zwischen dem Aaretal unterhalb Thun und dem obern Emmental. Mitt. Naturf. Ges. Bern N.F. 29: 3-54.
- Heitz C. 1975. Vegetationsentwicklung und Waldgrenzschwankungen des Spät- und Postglazials im Oberhalbstein (Graubünden/Schweiz) mit besonderer Berücksichtigung der Fichteneinwanderung. Beitr. Geobot. Landesaufn. Schweiz 55: 1–63.
- Imhof E. 1965. Atlas der Schweiz. 1. Lieferung.
- Kleiber H. 1974. Pollenanalytische Untersuchungen zum Eisrückzug und zur Vegetationsgeschichte im Oberengadin. Bot. Jb. Syst. 94: 1-53.
- Küttel M. 1974. Zum alpinen Spät- und frühen Postglazial: Das Profil Obergurbs (1910 m) im Diemtigtal, Berner Oberland, Schweiz. Z. Gletscherk. Glazialgeol. 10: 207–216.
- Küttel M. 1979. Pollenanalytische Untersuchungen zur Vegetationsgeschichte und zum Gletscherrückzug in den westlichen Schweizer Alpen. Ber. Schweiz. Bot. Ges. 89: 9–62.
- Lang G. 1985 a. Palynological research in Switzerland 1925–1985. In: Lang, G. (ed.) Swiss lake and mire environments during the last 15,000 years. Diss. Bot. 87: 11–82.

- Lang G. 1985 b. Palynologic and stratigraphic investigations of Swiss lake and mire deposits. In: Lang, G. (ed.) Swiss lake and mire environments during the last 15,000 years. Diss. Bot. 87: 107–114.
- Lang G. und Tobolski K. 1985. Hobschensee Late-Glacial and Holocene environment of a lake near the timberline. In: Lang, G. (ed.) Swiss lake and mire environments during the last 15,000 years. Diss. Bot. 87: 209–228.
- Lienhard L. 1987. Die Vegetation des Naturschutzgebietes "Stockenflue" (Niedersimmental). Lizentiatsarbeit, Manuskript. Bern, 88 S.
- Lotter A. 1985. Amsoldingersee Late-Glacial and Holocene environments of a lake at the southern edge of the Swiss Plateau. In: Lang, G. (ed.) Swiss lake and mire environments during the last 15,000 years. Diss. Bot. 87: 185–208.
- Lotter A. 1988. Paläoökologische und paläolimnologische Studie des Rotsees bei Luzern. Pollen-, großrest-, diatomeen- und sedimentanalytische Untersuchungen. Diss. Bot. 124: 1–187.
- Lotter A. F. and Zbinden H. 1989. Late-Glacial pollen analysis, oxygen-isotope record, and radiocarbon stratigraphy from Rotsee (Lucerne), Central Swiss Plateau. Eclogae Geol. Helv. 82: 191– 202.
- Lotter A. F. und Fischer J. 1990. Die Vegetation und Flora im Gebiet des Aegelsees (Berner Oberland) im Wandel der Zeit: Vergangenheit, Gegenwart und Zukunft. Mitt. Naturf. Ges. Bern N.F. 47 (im Druck).
- Mangerud J., Andersen S. T., Berglund B. E. and Donner J. J. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109–128.
- Markgraf V. 1969. Moorkundliche und vegetationsgeschichtliche Untersuchungen an einem Moorsee an der Waldgrenze im Wallis. Bot. Jb. Syst. 89: 1–63.
- Markgraf V. 1970. Palaeohistory of spruce in Switzerland. Nature 228: 249-251.
- Markgraf V. 1980. Pollen dispersal in a mountain area. Grana 19: 127-146.
- Merkt J. und Streif H. J. 1970. Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geol. Jb. 88: 137–148.
- Müller H. und Wegmüller S. 1982. *Satureja grandiflora* (L). Scheele im Simmental Vorposten oder Relikt? Mitt. Naturf. Ges. Bern N.F. 39: 131–149.
- Nicol G. 1956. Geologie der östlichen Stockhornkette (Berner Oberland). Mitt. Naturf. Ges. Bern N. F. 13: 151–244.
- Oeschger H., Welten M., Eicher U., Möll M., Riesen T., Siegenthaler U. und Wegmüller S. 1980.

 14C and other parameters during the Younger Dryas cold phase. Radiocarbon 22: 299–310.
- Oeschger H., Andrée M., Moell M., Riesen T., Siegenthaler U., Ammann B., Tobolski K., Bonani G., Hofmann H. J., Morenzoni E., Nessi M., Suter M. and Wölfli W. 1985. Radiocarbon chronology at Lobsigensee. Comparison of materials and methods. In: Lang, G. (ed.) Swiss lake and mire environments during the last 15,000 years. Diss. Bot. 87: 135–139.
- Rabowski F. 1912. Simmental et Diemtigtal 1:50 000. Carte spéc. 69.
- Rabowski F. 1920. Les préalpes entre le Simmental et le Diemtigtal. Mat. carte géol. Suisse N.S. 35: 1-130.
- Rösch M. 1983. Geschichte der Nussbaumer Seen (Kanton Thurgau) und ihrer Umgebung seit dem Ausgang der letzten Eiszeit aufgrund quartärbotanischer, stratigraphischer und sedimentologischer Untersuchungen. Mitt. Thurg. Naturf. Ges. 45: 1–110.
- Schloss S. 1979. Pollenanalytische und stratigraphische Untersuchungen im Sewensee. Ein Beitrag zur spät- und postglazialen Vegetationsgeschichte der Südvogesen. Diss. Bot. 52: 1–138.
- Schmalz K. L. 1978. Das Naturschutzgebiet Aegelsee-Moor auf dem Bergli, Gemeinde Diemtigen. Mitt. Naturf. Ges. Bern N.F. 35: 174–185.
- Stuiver M. and Polach H. A. 1977. Discussion: reporting of ¹⁴C-data. Radiocarbon 19: 355–363. Tranquillini A. 1988. POLPROF ein Programm zum computergesteuerten Zeichnen von Pollenprofilen. Ber. Nat.-Med. Verein Insbruck Suppl. 2: 27–34.
- Tschachtli B. S. 1941. Über Flysch und Couches rouges in den Decken der östlichen Préalpes romandes (Simmental-Saanen). Diss. phil. II, Bern. 79 S.
- Walter H. und Lieth H. 1964. Klimadiagramm Weltatlas. 2. Lieferung. Jena.

- Wegmüller J. und Wegmüller S. 1985. Ökologische Untersuchungen an Zwergfichtenbeständen im Gebiet des Turnen (Niedersimmental). Mitt. Naturf. Ges. Bern N.F. 42: 87–104.
- Wegmüller S. 1966. Über die spät- und postglaziale Vegetationsgeschichte des südwestlichen Jura. Beitr. Geobot. Landesaufn. Schweiz 48: 1–143.
- Wegmüller S. 1977. Pollenanalytische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte der französischen Alpen (Dauphiné). Haupt, Bern: 185 S.
- Wegmüller S. und Welten M. 1973. Spätglaziale Bimstufflagen des Laacher Vulkanismus im Gebiet der westlichen Schweiz und der Dauphiné (F). Eclogae Geol. Helv. 66: 533-541.
- Welten M. 1950. Die Alpweiderodung im Pollendiagramm. Ber. Geobot. Inst. Rübel Zürich 1949: 57-67.
- Welten M. 1952. Über die spät- und postglaziale Vegetationsgeschichte des Simmentals. Veröff. Geobot. Inst. Rübel Zürich 26: 1–135.
- Welten M. 1982. Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern Wallis. Denkschr. Schweiz. Naturf. Ges. 95: 1–104.
- Zimmerli S. 1988. Vegetation und Standort von Schwingrasen in der Schweiz. Veröff. Geobot. Inst. ETH Rübel Zürich 102: 1–105.
- Zimmerli S. 1989. Das Inventar der Schwingrasen der Schweiz. Ber. Geobot. Inst. ETH Rübel Zürich 55: 51-68.
- Zoller H. 1987. Zur Geschichte der Vegetation im Spätglazial und Holozän der Schweiz. Mitt. Naturf. Ges. Luzern 29: 123–149.